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Abstract

The solution of a continuum mechanical boundary value problem requires a constitutive response that connects defor-

mation and stress at each material point. Such connection can be regarded as three separate hierarchical problems.

At the top-most level, partitioning of the (mean) boundary values of the material point among its microstructural con-

stituents and the associated homogenization of their response is required, provided there is more than one constituent

present. Second, based on an elastoplastic decomposition of (finite strain) deformation, these responses follow from

explicit or implicit time integration of the plastic deformation rate per constituent. Third, to establish the latter, a state

variable-based constitutive law needs to be interrogated and its state updated.

The Düsseldorf Advanced MAterial Simulation Kit (DAMASK) reflects this hierarchy as it is built in a strictly

modular way. This modular structure makes it easy to add additional constitutive models as well as homogenization

schemes. Moreover it interfaces with a number of FE solvers as well as a spectral solver using an FFT.

We demonstrate the versatility of such a modular framework by considering three scenarios: Selective refinement of

the constitutive material description within a single geometry, component-scale forming simulations comparing different

homogenization schemes, and comparison of representative volume element simulations based on the FEM and the

spectral solver.
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1. Introduction

The Crystal Plasticity Finite Element Method (CP-FEM [1, 2]) has gained a lot of interest in the last

decade. This has led to a situation where a number of implementations of CP-FEM exist in a number of

groups around the world. Most of these implementations are special purpose and not easy to use. With the

Düsseldorf Advanced MAterial Simulation Kit (DAMASK) we, therefore, undertake the effort to provide

a flexible and easy to use CP implementation to the scientific community to further prosper the use of this

highly potent simulation method.
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Fig. 1. Structure of the material point model.

2. Structure of the material point model

The structure of the material point model reflects the multiscale character of continuum mechanical

boundary value problems and is shown in figure 1. The boundary value problem solver either FEM or

spectral solver using a fast Fourier transform (FFT) determines the boundary condition in the form of an

average deformation gradient F̄. The material point model needs to provide the corresponding average first

Piola-Kirchhoff stress P̄.

As the material point potentially is a polycrystalline aggregate, on the homogenization level (see sec-

tion 2.1) the average deformation gradient F̄ has to be partitioned into individual deformation gradients F for

each crystal of the aggregate. As a return quantity the individual crystal stresses P have to be homogenized

into the average stress P̄ of the material point.

Next, on the crystallite level (see section 2.2) the elasto-plasticity problem has to be solved to find

the stress P associated with the deformation gradient F. While this can be seen as a purely mathematical

problem in its course the constitutive law of plasticity (see section 2.3) is needed to provide the plastic

velocity gradient Lp as a function of the second Piola-Kirchhoff stress S.

2.1. Homogenization level

Figure 2 illustrates four commonly used homogenization schemes, namely the isostrain ([3] or full

constraints Taylor [4]) scheme, Taylor based schemes allowing for relaxation (e.g. [5–7]), cluster models

(e.g. LAMEL [8–10], GIA [11–13], or RGC [14]), and full-field homogenization by FEM [15–20] or

spectral methods using an FFT [21, 22]. Out of these four classes the isostrain and the Relaxed Grain

Cluster schemes are currently implemented in DAMASK.

2.2. Crystallite level

The elasto-plasticity problem is solved in a two-level integration following [23] however, with two

important modifications. First, the calculation of Lp is generalized by hiding the constitutive level (described

in section 2.3). On the crystallite level, Lp is treated as a given function of the stress S. Second, instead of the

stress, S, Lp is used as predictor in the Newton–Raphson scheme (figure 3) as this improves the convergence

behavior, however, at the cost of a more involved 9 × 9 Jacobian which is lager than the 6 × 6 used in [23].
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Fig. 2. Four commonly used homogenization schemes.
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2.3. Constitutive level
The constitutive law is the core of any crystal plasticity implementation. It determines the material

behavior and whether the model is empiric, phenomenological, or physics based. The main tasks of any

constitutive model are to define the state variables and calculate Lp as a function of S as well as its tangent

∂Lp/∂S. Usually, there is only one kind of constitutive law used in a crystal plasticity implementation.

In DAMASK, however, due to its modular nature and the generalization of Lp described in the previous

section, a number of different constitutive laws can be included concurrently. At the time being, a simple

J2 based isotropic model, a phenomenological power law formulation [23], a dislocation density based

formulation (the latter two include twinning), and a non-local model including dislocation fluxes are already

implemented within DAMASK.

2.4. Material configuration
Two parameters have to be specified at each material point to define its constitutive behavior. The first

parameter specifies the homogenization scheme (see section 2.1) to be used for this material point, the

second specifies the microstructure to be used. A microstructure can consist of one or several constituents,

where each constituent is defined by a pair of phase and texture. The phase determines which constitutive

law to use (see section 2.3) and the texture specifies the orientation information. A texture can be either

specified by texture components [24] or by providing a discrete representation of the orientation distribution

function (ODF) which can be used to sample the required number of orientations using the hybridIA scheme

introduced in [25].

3. Application examples

In this section we show three application examples. The first two use the FEM as solver while the third

one is a comparison of representative volume element (RVE) simulations based on the FEM and the spectral

solver.

3.1. Selective refinement of the constitutive material description within a single geometry
A unique feature of DAMASK is the ability to combine several constitutive laws within one geometry.

Figure 4 shows the results of such a simulation. An aluminium oligo-crystal was deformed under plane

strain compression [26]. The figure shows the dislocation density and the compressive strain where for the

upper row the whole geometry was modeled using the dislocation density based constitutive law, while for

the lower row a modular assignment of constitutive laws was used as illustrated in figure 5. The assignment

of constitutive laws in this example is based on the assumption, that the region around the triple point as

indicated in figure 4 is of special interest. The modular simulation saves about 30% computation time while

maintaining the quality of the results in the chosen region of interest. This kind of simulation, frequently

called direct CPFEM simulation, does not involve any homogenization. Within DAMASK this is formally

treated as using the isostrain homogenization, however, with a single grain.

3.2. Deep drawing of dual phase steel
Deep drawing of a dual phase steel has been simulated using the isostrain and RGC homogenization

schemes (see section 2.1). In both cases 25% of the total number of grains where treated as Martensite

while the rest was assigned the properties of Ferrite. The RGC simulations used 2 × 2 × 2 grain clusters

with abitraty orientation. Three different parameter sets have been used: 1) penalty free, i.e. no penalty

for incompatible F within the cluster; 2) compatible, i.e. very high penalty to assure compatibility; 3) best

fit, i.e. best fit to the experimental uniaxial stress–strain curve. The results are shown in figure 6. As the

material is rather isotropic there is not much difference in the predicted cup profiles and all simulations are

close to the experiment. However, for the punch force the situation is different1. As could be expected

1The absolut value of the punch force also depends on the friction model used. As in the experiment Teflon sheets were used for

lubrication, Coulomb friction with a low friction coefficient of μ = 0.04 was used in the simulation.
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Fig. 4. Comparison of full-field and modular simulation results.

Fig. 5. Assignment of constitutive laws used for the modular simulation.
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Fig. 6. Results of a simulation of the deep drawing of a dual phase steel comparing different homogenization schemes. Left: cup profile

Right: punch force

the isostrain scheme highly overpredicts the punch force. In contrast the experimental result lies within the

region covered by the RGC scheme. The fact the ”best fit” parameter set still overpredicts the experimentally

found values is probably due to the fact that the bending stiffness of the sheet is overpredicted as there were

only five linear elements used over the sheet thickness.

3.3. Comparing RVE calculations using the FEM and the spectral solver

Representative volume element simulations are of high interest for application in the so called ”virtual

laboratory” [27], where they are used to replace extensive experimental testing for calibrating continuum-

scale yield surface models. DAMASK provides interfaces to two commercial FE solvers (MSC.Marc and

Abaqus Std./Expl.) as well as to a spectral solver using an FFT. It, therefore, for the first time allows a

direct comparison of both solvers, where exactly the same code is used for the material point response. The

comparison is done based on a RVE with 100 randomly oriented grains (figure 7). Simple shear to about

20% shear deformation is performed. Figure 7 shows the distribution of shear stress (in terms of the first

Piola–Kirchhoff stress) for a typical RVE with a resolution of 10 × 10 × 10 elements. While both solvers

show very similar results, at this low resolution the underlying grain structure is hardly visible. However, the

spectral solver is not only faster than the FE solver (about two orders of magnitude) but it is also substantially

less memory intensive. Therefore, the maximum RVE dimension that can be handled is much larger for the

spectral solver. The figure, therefore, also shows the distribution of the shear stress for the two maximum

dimensions that could be achieved on similar hardware with each method, that is 32 × 32 × 32 for the FE

solver and 192 × 192 × 192 for the spectral solver. While the grain structure can just be recognized from

the FE simulation, it is clearly visible for the spectral method, where even in-grain gradients are resolved in

great detail.

4. Summary

The Düsseldorf Advanced MAterial Simulation Kit (DAMASK) is a highly modular crystal plasticity

implementation. Due to this modular character it is very flexible and can be easily extended, e.g. by adding

additional constitutive laws, homogenization schemes, or solver interfaces.

DAMASK can be applied from the single grain to the component scale as shown by two application

examples. The incorporation of several constitutive laws offers the unique possibility to create models using

selective refinement or coarsening of the constitutive description. Moreover, the combination with a spectral
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Undeformed RVE FEM 10 × 10 × 10 spectral 10 × 10 × 10

FEM 32 × 32 × 32 spectral 192 × 192 × 192

Fig. 7. Comparison of shear stress distribution after approximately 20% shear.

solver using an FFT offers high potential in the application for RVE simulations, which are of great interest

for the so called ”virtual laboratory.”

Appendix A. How to obtain DAMASK

DAMASK is free software: you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either version 3 of the License, or (at your

option) any later version.

DAMASK is distributed in the hope that it will be useful, but without any warranty; without even the

implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License

for more details (http://www.gnu.org/licenses/).

If you are interested in obtaining a copy of DAMASK you can download it from damask.mpie.de,

where you also find additional information.

References

[1] F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homog-

enization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater.

58 (2010) 1152–1211.

[2] F. Roters, P. Eisenlohr, T. R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods, WILEY-VCH, Weinheim, 2010.

[3] W. Voigt, Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper, Wied. Ann. 38 (1889) 573–587.

[4] G. I. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307–324.

[5] H. Honeff, H. Mecking, Analysis of the deformation texture at different rolling conditions, in: S. Nagashima (Ed.), Proc. ICO-

TOM 6, Vol. 1, The Iron and Steel Institute of Japan, 1981, pp. 347–355.

[6] U. F. Kocks, H. Chandra, Slip Geometry in Partially Constrained Deformation, Acta Metall. 30 (1982) 695–709.



10   F. Roters et al.  /  Procedia IUTAM   3  ( 2012 )  3 – 10 

[7] P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic

deformation of crystals, Mat. Sci. Eng. 55 (1) (1982) 69–77.

[8] P. Van Houtte, L. Delannay, I. Samajdar, Quantitative prediction of cold rolling textures in low-carbon steel by means of the

LAMEL model, Texture Microstruct. 31 (1999) 109–149.

[9] P. Van Houtte, L. Delannay, S. R. Kalidindi, Comparison of two grain interaction models for polycrystal plasticity and deforma-

tion texture prediction, Int. J. Plasticity 18 (2002) 359–377.

[10] L. Delannay, S. R. Kalidindi, P. Van Houtte, Quantitative prediction of textures in aluminium cold rolled to moderate strains,

Mat. Sci. Eng. A 336 (2002) 233–244.

[11] M. Crumbach, M. Goerdeler, G. Gottstein, L. Neumann, H. Aretz, R. Kopp, Through-process texture modelling of aluminium

alloys, Modelling Simul. Mater. Sci. Eng. 12 (2004) S1–S18.

[12] M. Crumbach, M. Goerdeler, G. Gottstein, Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and

integration, Acta Mater. 54 (2006) 3275–3289.

[13] M. Crumbach, M. Goerdeler, G. Gottstein, Modelling of recrystallisation textures in aluminium alloys: II. Model performance

and experimental validation, Acta Mater. 54 (2006) 3291–3306.

[14] D. D. Tjahjanto, P. Eisenlohr, F. Roters, A novel grain cluster-based homogenization scheme, Modelling Simul. Mater. Sci. Eng.

18 (2010) 015006.

[15] R. J. M. Smit, W. A. M. Brekelmans, H. E. H. Meijer, Prediction of the mechanical behavior of nonlinear heterogeneous systems

by multi-level finite element modeling, Comput. Methods Appl. Mech. Eng. 155 (1998) 181–192.

[16] C. Miehe, J. Schrder, J. Schotte, Computational homogenization analysis in finite plasticity Simulation of texture development in

polycrystalline materials, Comput. Methods Appl. Mech. Eng. 171 (1999) 387–418.

[17] C. Miehe, J. Schotte, M. Lambrecht, Homogenization of inelastic solid materials at finite strains based on incremental minimiza-

tion principles. Application to the texture analysis of polycrystals, J. Mech. Phys. Solids 50 (2002) 2123–2167.

[18] F. Feyel, J. L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite

materials, Comput. Methods Appl. Mech. Eng. 183 (2000) 309–330.

[19] V. Kouznetsova, W. A. M. Brekelmans, F. P. T. Baaijens, An approach to micro-macro modeling of heterogeneous materials,

Computational Mechanics 27 (2001) 37–48.

[20] V. Kouznetsova, M. G. D. Geers, W. A. M. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a

gradient-enhanced computational homogenization scheme, Int. J. Numer. Meth. Eng. 54 (2002) 1235–1260.

[21] H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex mi-

crostructure, Comput. Methods Appl. Mech. Eng. 157 (1998) 69–94.

[22] R. A. Lebensohn, N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Mater. 49 (2001) 2723–

2737.

[23] S. R. Kalidindi, C. A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of fcc metals, J.

Mech. Phys. Solids 40 (1992) 537–569.

[24] D. Raabe, F. Roters, Using texture components in crystal plasticity finite element simulations, Int. J. Plasticity 20 (2004) 339–361.

[25] P. Eisenlohr, F. Roters, Selecting a set of discrete orientations for accurate texture reconstruction, Comp. Mater. Sci. 42 (2008)

670–678.

[26] M. Sachtleber, Z. Zhao, D. Raabe, Experimental investigation of plastic grain interaction, Mat. Sci. Eng. A 336 (2002) 81–87.

[27] M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, F. Roters, Virtual material testing for stamping simulations based on polycrystal

plasticity, Comp. Mater. Sci. 46 (2009) 383–392.


