Chaotic flows in microchannels: A lattice Boltzmann study
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ABSTRACT

Roughness effects on lubricant flows are investigated
via 2D lattice Boltzmann simulations. At a Reynolds
numbers of order 1000 a transition from laminar to un-
steady flow is observed by an increase of the roughness
height from about 10% to about 25% of the channel
width. At lower Reynolds numbers (where the flow is
laminar in both channels), the transition is observed
when increasing the wall roughness further. In other
words, the critical Reynolds number for the transition
from laminar toward unsteady flow decreases at higher
wall roughness. Wall roughness may, therefore, qualita-
tively change the flow properties in confined geometry.
Due to the ubiquitous presence of the wall roughness,
the phenomenon is relevant in all cases where relatively
high Reynolds number flow occur in strongly confined
channels such as lubricant flow during the deformation
of solid surfaces. For a fixed Reynolds number and chan-
nel geometry, time and spatial dependence of the ve-
locity field and fluctuating quantities obey the scaling
behavior as expected from the structure of the Navier-
Stokes (NS) equations. This underlines the physical sig-
nificance of the observed transition. As a possible appli-
cation, wall roughness may, therefore, be used in order
to enhance mixing efficiency at a given Reynolds num-
ber.

Keywords: lattice Boltzmann method; chaotic mix-
ing; flow at rough surfaces; flow instability

1 Introduction

Fluid mechanics at deformable metallic surfaces has
long been studied within the framework of classical con-
tinuum-based metal/fluid tribology theory and macro-
scopic engineering experimentation in the context of sheet
metal forming [1]. Since the last decade, more attention
has been paid to the study fluid mechanics at defor-
mable metallic surfaces also at the molecular dynamics
scale [1].

Both methods of tackling fluid mechanics at defor-
mable metallic surfaces are characterized by several lim-
itations. The first set of limitations associated with
conventional macroscopic continuum-based approaches
along these lines lies in the scale. Classical works about

tribology at metal/fluid interfaces which take a contin-
uum perspective study fluid dynamics at the macro-
scopic or respectively statistical scale [1].

This means that fluid flow is usually assumed to be
laminar and the metallic surface is anticipated to be per-
fectly flat. Both assumptions must be modified when it
comes to a detailed analysis. Firstly, we recall that fluid
velocities of order 100m/s (7% of the sound speed in
water) or higher are quite common in rapid quenching
processes [2]. Taking a channel of width 100um, and
a dynamic viscosity of v = 1075 (oil) yields Reynolds
numbers of order Re~ 1000. On the other hand, metallic
surfaces are never flat but reveal an average roughness
ranging from some nanometers to some tens of microm-
eters depending on the mechanical and microstructural
boundary conditions. This applies in particular to the
evolution of surface roughness during elastic-plastic de-
formation.

It is the purpose of the present report to show that,
when these two facts (relatively high Reynolds num-
ber and non-negligible wall roughness) are combined to-
gether, non-trivial flow behavior may occur. It must be
emphasized that we do not consider turbulent flows [3].
Rather, we wish to focus on situations where the flow is
laminar and steady for channels with smooth and weakly
rough walls but becomes unsteady (and progressively
chaotic) as the wall roughness is increased. Reynolds
numbers considered here are, therefore, far below the
turbulent regime. They are, however, high enough so
that Stokes approximation (neglecting the non-linear
term in the NS-equation) does not hold.

2 Simulation method

The lattice Boltzmann method (LBM), a kinetic ap-
proach to solve the NS-equation is used. While direct
derivations of the method now exist, the LBM has been
historically devised as an improvement of the lattice gas
cellular automata (LGCA) [4]-[9] providing e.g. a far
better statistical accuracy [9]-[11]. In the past 20 years,
the LBM has been extensively used as an efficient tool
for the study of a variety of fluid flow problems such
as two-phase flow through porous media [12], particle-
fluid suspensions [13], [14] and high Reynolds number
turbulent flows [15].



There are excellent monographs [16]-[18] and com-
prehensive review articles [19], [13], [20] on the lattice
Boltzmann method and the historically related lattice
gas cellular automata (LGCA). Here, we give a short
introduction of the method. A simplified view of the
lattice Boltzmann method may be presented as follows:
A fluid portion residing at a given point, &, in space is
divided into a small number of parcels, f;, each mov-
ing with a well defined velocity, ¢;, on a lattice (see
Fig. 1). During the time step ¢t — ¢ + 1 (note that
At = 1), the fluid parcel, f;(x,t), is first relaxed to its
local equilibrium,-io fi%(x,t), with a rate of w,
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and then freely propagated to the site  + ¢;

Here, the post-collision population, f/, is introduced
to underline the formal separation of the relaxation and
propagation steps. The relaxation rate is closely related
to the fluid dynamic viscosity via
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The local equilibrium distribution, f;9, is usually
taken as a second order expansion of the Maxwell ve-

locity distribution leading to

v
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where ¢; is the sound speed and w; is a set of weights
normalized to unity. For the two dimensional nine ve-
locity model (D2Q9) used in our studies (see Fig. 1 for
an illustration) one finds wg = 4/9, w1 = we = w3 =
wy = 1/9 and ws = wg = wy = wg = 1/36 (see [18] for a
short but comprehensive derivation). Once the discrete
populations, f;, are known, fluid density, p(x,t), and
velocity, u(x, t), at a given point and time are obtained
via

P:Zfi(wat) and PUZZfi(wat)Ci~ (5)

For the fluid-solid interaction, the bounce-back rule
is used: Fluid populations arriving at a solid node are
sent back to the node where they came from. At not
too high viscosities, this leads to zero streaming veloc-
ity half-way between a solid node and its neighboring
fluid node (stick boundary condition). In the follow-
ing, all quantities are expressed in lattice Boltzmann
(LB) units. The unit of length is the internode spacing,
Az = 1. The time in measured in units of an itera-
tion step, At = 1. This fixes the unit of the velocity
Az /At = 1. Comparison with real experiments is eas-
ily done by e.g. fixing the dynamic viscosity, v, and the
sound speed, cs.

slip boundary condition (movable wall)
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Figure 1: Left: Schematic view of two dimensional nine
velocity (D2Q9) lattice Boltzmann Model. During the
free propagation step, the population f; is transported
along the velocity vector ¢;. The zero-velocity popula-
tion, fo, ensures correct hydrodynamic behavior in the
compressible regime, i.e. at high Mach numbers (fluid
velocity /sound speed). Right: Ilustration of rules in
order to realize stick or slip boundary conditions

3 Results

Figure 2 illustrates how a variation of the surface
roughness alone may trigger transition toward unsteady
flow. In the right panel of the figure, velocity versus
time is shown for two choices of the wall roughness as
described in the left panel. Here, horizontal, U, and
vertical, U,, components of the fluid velocity are moni-
tored at a fixed point in the middle of the flow region.
The time axis is rescaled by the momentum diffusion
time tq = H?/(8v) (H=effective channel width) as can
be estimated from a study of the Stokes flow in the same
channel with parallel walls.

The fluid is at rest for ¢ < 0. At £ = 0 an external
body force is switched on, which accelerates the fluid
gradually toward a steady state flow . In the channel
with a 2:20 zig-zag surface, the fluid velocity in the di-
rection parallel to the wall, U,, increases continuously
and smoothly until it reaches a constant value after a
time of order tq while the vertical component of the ve-
locity, Uy, remains zero for all times.

A qualitative change in the flow behavior is, how-
ever, observed as the roughness height is increased from
2 to 5 lattice units (corresponding to a change of the
roughness slope from 0.1 to 0.25 at the same roughness
wave length). Now, both U, and U, exhibit strong fluc-
tuations suggesting the presence of flow instability. A
further hint on flow instability is the observed drop of
the mean velocity at the onset of fluctuations, indicative
of a higher rate of energy loss (and thus a higher friction
force) due to the chaotic nature of the flow.

It must be emphasized here that the roughness-induced
flow instability discussed above is not restricted to the
specific choice of triangular obstacles. We do observe

INote that we apply the term “steady state” not only for a
time independent flow, but also for a time dependent flow, whose
statistical properties do not change with time.
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Figure 2: Left: A sketch of the simulation box for two
choices of the wall roughness. The top wall is assumed
to be flat, whereas the bottom wall has a zig-zag form.
A zig-zag wall can be characterized by two numbers:
The height, h, of the roughness tip and the half-wave
length A\/2. We use the notation h : A/2 for a given
zig-zag wall. Flow velocity versus time is recorded at
equidistant points along the line z = 40 (open circles).
Note that the region below the zig-zag line is filled with
solid particles (not shown for clarity). Right: Parallel,
Uy, and the perpendicular, U,, components of the fluid
velocity in the middle of the flow region versus time
for both choices of the wall roughness shown in the left
panel. The time axis is rescaled by the momentum dif-
fusion time. Note the strong fluctuations of the vertical
component of the velocity in the case of the 5:20 zig-zag
surface.

the same phenomenon also for a variety of other regular
surfaces as well as for a random distribution of rough-
ness elements.

In order to examine the physical significance of the
observed transition we have computed various quantities
for which exact behavior can be derived from the Navier-
Stokes equation. An example is the sum of the viscous
stress vpd < U, > /0y and the so-called Reynolds stress
—p < 6U,6U, > which obeys a straight line with an
slope, pg, (g=imposed external force per unit mass):
vp < 86[;”” > —p < Uglly >= Ty + pg(y — Yw) (yw=the
position of the wall, 7, =viscous stress at the wall). In-
deed, this equation is very well satisfied by our simula-
tion results [2].

A further, non-trivial, hint regarding the reliability
of simulated results is to verify whether the solutions
obtained within our simulations obey scaling rules as
expected from the structure of the NS-equations: For a
given Reynolds number and channel geometry the so-
lution of the NS-equation is unique if expressed in ap-
propriate dimensionless units. As shown in Figs.3 and
4, the solutions obtained within our simulations satisfy
this important reqirement.

Next we show in Fig. 5 how a proper channel design
may dramatically improve the efficiency of mixing. As
seen from this figure, the unstable character of the flow
is enhanced by the removal of obstacles. In other words
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Figure 3: Scaling behavior of the velocity field. Left:
Horizontal, U,, and vertical, U,, components of the
streaming velocity are shown versus time for two choices
of the parameter Uy (the external force is set such that,
in the case of a laminar flow, the mid-channel velocity
would equal Up). Left: Same as in the left panel, but
rescaled. U, and U, are divided by the characteristic
flow velocity, Uy, and the time is given in units of the
momentum diffusion time, t4.

a dense array of obstacles may even stabilize the flow.

4 Summary

Results of lattice Boltzmann simulations on rough-
ness-induced transition toward an unsteady flow are pre-
sented. The work is motivated by the fact that rela-
tively high Reynolds number flows may occur in narrow
channels in a variety of situations. The term “relatively
high”, here, means that we consider situations where the
non linear term in the NS equation is no longer negligi-
ble, but the flow remains laminar and stable with respect
to small perturbations. This brings about the relevance
of the wall-roughness as an independent parameter af-
fecting the flow properties: Wall roughness may serve as
a source of large perturbations in the sense that these
perturbations will not decay fast enough along the flow
so that their advection with the flow can give rise to a
complex and unsteady behavior.

In cases where the average roughness height is of
order of 10% of the channel width or larger, we do indeed
observe a crucial dependence of the flow on the wall
roughness for Reynolds numbers of order 1000. The
onset of unsteady flow is shifted toward lower Reynolds
numbers as the roughness height is increased.

The physical significance of the obtained results is
underlined by demonstrating that solutions obtained wi-
thin the present simulations satisfy the scaling require-
ment of the NS equation: When all quantities such as
velocity and the Reynolds stress are expressed in ap-
propriate units, the solution is unique for all choices of
the mean streaming velocity, system size etc. provided
that the Reynolds number and the channel shape are
unaltered.

The phenomenon reported here is of particular im-
portance in all cases where the roughness height is of the
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Figure 4: Scaling property of the Reynolds stress,
Trey =< 0Uz0Uy, > (80U = U— < U >). Tyey is com-
puter for different channel sizes and velocities as indi-
cated in the figure while both the channel shape and
the Reynolds number were kept unchanged. Right panel
shows the same quantities now rescaled appropriately.

Figure 5: Impact of the channel design on mixing. In
a zig-zag channel (top), 2/3 of all teeth are removed
(bottom). A flow which is not that irregular (top) then
becomes fully chaotic (bottom) leading to an efficient
mixing. Left: initial stage. Right: after a time of 1072 x

taig, where tqig is the time necessary for diffusion to
achieve complete mixing.

order of 10% the channel width or higher. An example
of considerable importance is lubricant flow occurring
during the deformation of solid surfaces.

Finally, we also give an example how an appropriate
design of the channel geometry may considerably en-
hance the chaotic nature of the flow (Fig. 5). In view of
increasing number of potential applications of chaotic
flows [21] in civil engineering, environmental industry
(e.g. solution recovery) as well as in the medical science
(e.g. enhanced chaotic mixing in microchannels), the
results of our studies may find a wide range of appli-
cations as they open an alternative way for tuning flow
properties.
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