

Lecture given by Prof. Dierk Raabe (d.raabe@mpie.de) at University Cambridge 12. May 2006

shortened version for the edoc System of Max Planck Society without movies

Max-Planck-Institut für Eisenforschung GmbH

Crystal Mechanics and Fresh Lobster

Dierk Raabe

Roters, Ma: crystal mechanics Sachs, Romano, Al-Sawalmih, Fabritius: chitin-composites Zaefferer, Bastos: 3D Microscopy Neugebauer, Petrov, Limperakis: ab initio and MD

Mechanics of few crystals (CP-FEM)

Mechanics of many crystals (TF-CP-FEM)

3D electron microscopy

Chitin-composites

Crystal Mechanics FEM (General)

Crystal Plasticity FEM (include more physics) 🐼 🛞

Multiplicative Decomposition of the Deformation Gradient

flow law

constitutive reduction of DOF:

$$\widetilde{\mathbf{L}}_{\mathrm{p}} = \sum_{\alpha=1}^{24} \dot{\gamma}_{\alpha} \widetilde{\mathbf{d}}_{\alpha} \otimes \widetilde{\mathbf{n}}_{\alpha}$$

F* : elastic and rotation deformation gradient

Definitions:

- **F** : total deformation gradient
- Fp: plastic deformation gradient
- Lp: plastic velocity gradient
- Le: elastic velocity gradient

Nanoindentation - 2D

Nanoindentation - 3D

Closer view of the experimentally observed pattern of the absolute values of the deformation-induced crystalline lattice rotations in ° in the vicinity of the indent

Nanoindentation - 3D

Bicrystals

2D Oligocrystals (few grains), Al, plane strain

Experiment (DIC, EBSD) v Mises strain

Simulation (CP-FEM) v Mises strain

3D Oligocrystals (few grains), Al

Mechanics of few crystals (CP-FEM)

Mechanics of many crystals (TF-CP-FEM)

3D electron microscopy

Chitin-composites

Crystal Mechanics FEM (large scale)

many crystals (10¹⁰)

10 billion grains

111

Using spherical functions in FEM

Crystal Plasticity FEM

Mechanics of few crystals (CP-FEM)

Mechanics of many crystals (TF-CP-FEM)

3D electron microscopy

Chitin-composites

3D electron orientation microscopy

3D electron orientation microscopy

lattice rotations around Laves phase in Fe₃Al

5° misorientation steps from shell to shell

3D : EBSD, EDX, SEM, FIB

3D electron orientation microscopy

Mechanics of few crystals (CP-FEM)

Mechanics of many crystals (TF-CP-FEM)

3D electron microscopy

Chitin-composites

Structure Hierarchy (Homarus americanus)

Cuticle hardened by mineralization with CaCO₃

Exocuticle and endocuticle display different stacking density of twisted plywood layers

Epicuticle

TONT OF

Endocuticle

Endocuticie

New West No.

⊢ 200 µm ⊣

⊢ 10 µm ⊣

SEM: Lobster endocuticle, untreated

measurements at : HMI Berlin

X-ray tomography, cuticle, horseshoe crab

TEM, lobster

chitin fibril bundles

branching

TEM

chitin fibril bundles

- •Orthorhombic **a= 4.74** Å, **b= 18.86** Å, **c= 10.32** Å (Takai et al, 1992)
- •Space group: P222 (# 16 @ITC)

•Point group: 222

Lin. Absorbtion Coef. : 200 μm⁻¹(@14 KeV(~ 1 Å))
Hexagonal , a=b=4,989 Å, c=17.062 Å (Maslen et al. 1993)

•Space group: R -3 2/c (#167 @ITC)

•Point group: -3 2/m

Structure and texture of chitin

Smart design, local coordinate system

Hardness

Hardness

Micro-Indentation - stiffness

Reduced stiffess profile parallel to surface

Micro-Indentation - stiffness

Tensile testing

Tensile testing

MD, LDF (Petrov, Limperakis, Neugebauer)

Searching the structure, checking available data

Ref: R. Minke and J. Blackwell, J. Mol. Biol. 120, 167 – 181 (1987).

Atomic geometry for atomic scale calculations?

conformational analysis with respect to potential energy and H-bond formation

find a stable atomic geometry of the α - chitin

SEM: Horseshoe crab endocuticle, untreated

The spherules contain calcium, probably as ${\rm CaCO}_3$

EDX endocuticle

Messages of the day

Crystal mechanics: more physics at small scales; more maths at large scales

Materials science of the lobster: example of an extraordinary chitin-protein-mineral composite with many challenges to theory and experiment

 Roters, Ma: crystal mechanics
 Sachs, Romano, Al-Sawalmih, Fabritius: chitin-composites Zaefferer, Bastos: 3D Microscopy
 Neugebauer, Petrov, Limperakis: ab initio and MD

!! Thanks !! to the team

Deutsche Forschungsgemeinschaft DFG