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ABSTRACT   

 

This report presents a modified Taylor model is presented which statistically 

considers grain interaction in a polycrystalline aggregate in terms of a 

standard deviation for the symmetric part of the velocity gradient. The model 

can be solved using a Newton iteration method. We simulate crystallographic 

rolling textures and the anisotropy arising from uniaxial tension tests 

(Lankford values for different directions in the rolling sheet plane). The 

results reveal in part a good agreement with experimental data. 
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1   Introduction 

1.1 Motivation for this texture study 

Crystalline engineering materials mostly occur in polycrystalline forms where each grain has a 

different crystallographic orientation, shape, and volume fraction. The distribution of the grain 

orientations is referred to as crystallographic texture. The discrete nature of crystallographic slip 

along certain lattice directions on preferred crystallographic planes together with the occurrence of 

pronounced textures with certain preferred orientations entail an overall highly anisotropic elastic-

plastic response of such polycrystalline samples under mechanical loads.  

 

An important aim of polycrystal research consists in developing mechanical models for 

understanding and predicting the evolution of texture and crystalline anisotropy particularly at large 

plastic strains. In this context mechanical homogenization models (such as Taylor-type models) 

play an important role due to their considerable success in providing in part excellent texture 

approximations on the basis of relatively simple and, therefore, computationally very efficient 

constitutive concepts [for overviews see 1-5].  

 

The current study is concerned with the introduction of a modified Taylor model which considers 

grain interaction in a polycrystalline aggregate in a statistical fashion by introducing a standard 

deviation for the symmetric part of the imposed velocity gradient. We use it for the simulation of 

rolling textures and Lankford values of face centered cubic (FCC) metals. 

 

 

 

 

1.2   Fundamentals of plasticity homogenization models for textured polycrystals 

Two early versions of texture homogenization models were proposed by Sachs [6] and Taylor [7]. 

The Sachs model is a no-strain-constraints (NC) model in which the external stresses are 

considered homogeneous for each individual grain of a polycrystalline aggregate. Since it neglects 

strain compatibility the Sachs model represents a lower-bound result for the stresses of a 

mechanically loaded polycrystalline sample [3]. The Taylor model is a full-strain-constraints (FC) 

approach in which the external strains are equally valid for each single grain. Since it neglects 
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stress equilibrium the Taylor model represents an upper-bound result for the strains of a polycrystal 

[3]. 

 

Early modifications of this full-constraints Taylor model were introduced by incorporating strain 

relaxations between neighboring grains, leading to the so called relaxed-constraints Taylor model 

variants (RC models) [8-11]. In these approaches some of the external shear components are not 

transferred into the grain, i.e. the RC models allows for shear strains at the grain-scale. A relaxation 

of the strain component ε13 corresponds to a shear in longitudinal direction (so called lath RC 

model), while ε23 denotes the transverse shear. The relaxation of both ε13 and ε23 is referred to as 

pancake RC model. Allowing relaxations for these shears locally leads to distinct changes in the 

reorientation rates and, therefore, in the texture development when compared to the predictions of 

the FC Taylor model. Although the texture predictions obtained by RC models principally yield 

better results than those of the NC or FC approaches, deviations were observed particularly in the 

large strain regime.  

 

Therefore, different approaches were suggested to render the classical Taylor or Sachs 

homogenization models physically more plausible and in better accord with experimental data. 

Conceptual modifications of the constitutive descriptions consist essentially in the introduction of 

grain-interactions or respectively interaction penalty measures as well as in strain relaxation 

schemes which depend on the corresponding gain in the deformation energy resulting from certain 

types and amounts of strain relaxations. These terms quantify the elastic-plastic mismatch between 

neighboring grains or within larger grain clusters where the interacting grains are typically selected 

statistically from a large set of single orientations which map the inherited texture. Details about 

these model variants can be found in [12-18].  

 

Similar efforts were made for instance by Mao [19] to modify the Sachs model. He calculated the 

deformation by activating primary slip and assuming shear strain impediment in terms of back 

stresses generated by the surrounding grains. In this modified Sachs model the induced reaction 

stresses may entail the activation of additional slip systems which compensate for the primary 

deformation. Related concepts are the self-consistent polycrystal models [e.g. 20]. In these 

approaches each crystal is treated as an elastic-plastic inclusion which is embedded in an otherwise 

homogeneous effective medium which has the average properties of the polycrystal. Self-consistent 

polycrystal models are solved in an iterative fashion for the deformation and the stress. Although 
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self-consistent models satisfy both, strain compatibility and stress equilibrium at the same time they 

represent one-site approximations. Modifying them into N-site approximations by consideration of 

some local neighborhood would render them less efficient. 

 

Based on the Taylor model, a neighborhood compliance model was suggested by Sarma and 

Dawson [21]. In this model a neighborhood is determined for every single crystal, which contains a 

certain number of crystals around this main single crystal. A new compliance tensor for each single 

crystal embedded in such a grain cluster can be determined through a Taylor calculation and a local 

stress homogenization procedure. This early approach of Sarma and Dawson to explicitely 

incorporate grain neighborhood effects into texture models inspired our current study in which we 

introduce a statistical neighborhood for each grain of a polycrystal through a pseudorandom 

function imposed for the velocity gradient tensor.  

 

 

 

 

 

 

1.3  Basic introduction to the crystallographic textures of rolled FCC metals 

Owing to the cubic symmetry of the FCC crystal system and the orthorhombic sample system 

which is set up by the rolling direction (RD), normal direction (ND), and transverse direction (TD) 

of the sample, textures of rolled FCC polycrystals are typically presented in the reduced Euler 

space where an orientation is given by the three Euler angles ϕ1, φ, and ϕ2, (0°≤ϕ1, φ, ϕ2≤90°). We 

use the Bunge notation for the Euler angles throughout this report [22]. Crystal orientations can 

also be conveniently described by the use of Miller indices {hkl}<uvw>. In this concept the triple 

{hkl} describes the crystallographic plane parallel to the sheet surface whereas <uvw> indicates the 

crystal direction parallel to RD.  

 

Important texture components are on the αfcc–fiber which comprises all orientations with a 

common crystallographic fiber axis <011> parallel to the normal direction including major 

components {011}<100> (Goss-component, ϕ1=0°, φ=45°, ϕ2=0°), {011}<211> (Brass–

component, ϕ1=35°, φ=45°, ϕ2=0°), {011}<111>, and {011}<011> (90° about the normal rotated 

Goss-component,  ϕ1=90°, φ=45°, ϕ2=0°) and the less symmetric β–skeleton line including major 
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components {211}<111> (Copper–component,  ϕ1=90°, φ=35°, ϕ2=45°), {123}<634> (S–

component,  ϕ1=60°, φ=32°, ϕ2=65°), and the Brass component {011}<211> (ϕ1=35°, φ=45°, 

ϕ2=0°) [1,2,4,8,9,23-25].  

 

 

 

 

1.4  Macroscopic parameters for plastic sheet anisotropy 

Sheet rolling is related to a plane-strain compression process [1-4, 26]. The plastic anisotropy of a 

rolled sheet is typically characterized in terms of the Lankford coefficient [27] or R-value, which is 

defined as the ratio of the width plastic strain, P
Wε , to the through-thickness plastic strain, P

Tε , i.e. 

 
P
T

P
WR εε /=                                                                 (1.1) 

 

Although this simple definition offers at first view an adequate and straightforward means for 

assessing the in-plane and through-thickness flow and shape anisotropy of sheets, experiments 

reveal that the R-value shows a significant strain dependence even at very small strains [2-4,28-30]. 

As additional parameters Kocks et al. [4] have suggested to use the ratio of the width component of 

the strain rate, D , to its through-thickness component, i.e. 

 

TW DDr /=                                                                 (1.2) 

 

and the ratio of the width component of the strain rate to the length component 

 

LW DDq /= .                                                              (1.3) 

 

Mathematically, the latter parameter q  is a very helpful one because it will not vary from 0 to 

infinity as the conventional r  parameter.  

 

Another parameter for the quantification of the sheet resistance against thinning and its anisotropy 

was suggested by Spolidor [30] as 
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y
x

dx
dy

=ρ                                                                    (1.4) 

 

where x  and y  are the actual thickness and the width of the specimen, respectively. This 

parameter is designed to take into account the change of the loading path during a mechanical test. 

Taking an empirical theoretical perspective Rees [26] has developed an analytical function for the 

evolution of the −r value during straining which, however, is based on the assumption that the 

rolling anisotropy can be expressed by Hill's yield function. In our study we choose the q -

parameter to study the planar anisotropy of rolled FCC sheets. 

 

 

 

 

 

 

2   Constitutive equations for conventional elastic-
plastic Taylor modeling 

2.1  Elastic rule 

Based on the isomorphy assumption [31], the actual elastic law of a single crystal can be 

represented by the referential elastic law through a plastic transformation P . The elastic law for the 

current configuration is 

 

TTPK PICPPKPT )](
2
1[~2 −=                                           (2.1) 

FFC T=                                                               (2.2) 

 

where F is the deformation gradient, PK2T  is the second Piola-Kirchhoff stress tensor, C  is the 

right Cauchy-Green strain tensor, I  is the second order identity tensor, and the fourth order tensor 

K~  is the elasticity tensor with respect to the undistorted configuration. From equation (2.1), the 

Cauchy stress T  can be calculated as 

TT

J
FIFFKFT ~)]~~(

2
1[~~

~
1

−=                                               (2.3) 
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with 

FPF =~                                                               (2.4) 

and 

)~det(~ F=J  .                                                         (2.5) 

 

 

 

2.2  Flow rule 

The velocity gradient 1−= FFL &  is used to express the deformation process. Using equation (2.4) it 

can be expressed as 

1
P

1 ~~~~ −− += FLFFFL &                                                    (2.6) 

PPL &1
P

−−= .                                                         (2.7) 

 

Using αd~  for the slip direction and αn~  the slip plane normal direction with respect to the 

undistorted configuration, one obtains the dyadic product ααα ndM ~~~ ⊗=  as the Schmid tensor for 

the slip system α . For FCC crystals we assume slip to occur on the 12 octahedral systems 

{111}<110>. The plastic portion of the velocity gradient, pL , can then be formulated as 

 

α
α

αγ ML ~12

1
P ∑

=

= &                                                      (2.8) 

with 

m

Dsign

1

0 )(
α

α
αα τ

τ
τγγ && =    .                                           (2.9) 

 

The viscoplastic rule given by equation (2.9) is used to calculate the individual shear rates. In this 

expression 0γ&  is the reference shear rate, m  is the strain rate sensitivity, D
ατ  the drag stress, and ατ  

is the resolved shear stress of slip systemα , which can be approximated by 

 

αατ MIFFK ~)]~~(
2
1[~ ⋅−≈ T                                           (2.10) 
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3   Constitutive equations for the modified Taylor model 

The shortcoming of the classical Taylor model consists in the disregard of elastic-plastic grain 

interaction. Sarma and Dawson [21] assumed in their analysis that for one crystal which is 

embedded in an aggregate of 1000 grains only about 20 neighboring grains will influence the strain 

rate and stress of that crystal. This means that a relatively small set of grains suffices to compose a 

neighborhood for a grain in a polycrystal.  

 

Sarma and Dawson showed that for the case of an isotropic texture the various components of the 

deformation rates of all individual grains in the aggregate establish normal distributions about the 

mean value [21]. For the case of a plane strain compression texture Sarma and Dawson observed a 

skewness of the normal distribution. These theoretical results on the heterogeneity in the grain-to-

grain distribution of the accumulated plastic strains in mechanically loaded polycrystals were 

recently confirmed by experiment [32-33]. 

 

In our present approach we adopt these observations of Sarma and Dawson for the formulation of a 

modified Taylor approach. Since we aim at preserving the concept of the classical Taylor models, 

namely, to treat each grain in an isolated fashion without explicit incorporation of a local grain 

neighborhood, we introduce (positive and negative) standard deviations from the mean value for 

each component of the local velocity gradient tensor. In our model we assume that the deviation 

distribution can be expressed in terms of a pseudorandom function for all strain rate components. 

We also assume that the local velocity gradient is of the same principal type as the external one, the 

only difference being the pseudorandom distribution for each tensor component. 

 

Using the pseudorandom number function )(iseedf  the local velocity gradient tensor L  of each 

single grain can be modified based on the formulation for the global velocity gradient, L , according 

to 

 

)(iseedfSDLL ijij ×+=                                                     (3.1) 

ILLL )(
3
1 tr−= .                                                         (3.2) 

 

In expression (3.1) SD  is the standard deviation and iseed is the seed for the random number 
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generator. A similar approach was recently suggested by Engler [34] who introduced with 

considerable success statistical variations of the strain rate state into a Taylor model. 

 

 

 

 

4   Numerical modelling of sheet rolling 

4.1  Sheet rolling kinematics and material constants 

Sheet rolling can be idealized as a plain strain compression state. Let the base vector 1e  be in the 

compression direction (ND), 2e  in the transverse direction (TD), and 3e  in the rolling direction 

(RD). Plane strain compression can then be approximated by the following isochoric motion  

 

])[)exp()(exp( 33331111 Xeeeex ⊗+⊗= tLtL                                  (4.1) 

 

In the present case we used 00707.011 −=L  and 1133 LL −= . The material was assumed as OFHC 

copper with the elastic constants GPaK 168~
1111 = , GPaK 121~

1122 = ,  GPaK 75~
1212 = ,  MPaD 160 =τ . 

Further constants were 
s
1001.00 =γ& ,  012.0=m . 

 

 

 

 

4.2   Simulation of the unloading process 

The aim of the unloading simulation consists in a relaxation step which reduces the macroscopic 

Cauchy stress to zero. The velocity gradient tensor for unloading is obtained as follows. First, the 

macroscopic stiffness tensor, K , is used for calculating the compliance tensor US  for the 

unloading,  

 
1)( −= KSU                                                                (4.2) 
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Second, the compliance is used for calculating the unloading deformation, UE  ,according to 

 

][TSE UU =  .                                                              (4.3) 

 

Finally, the unloading velocity gradient tensor is assumed to be parallel to the unloading 

deformation 

 

UU EL ||                                                                  (4.4) 

 

The beginning of the first unloading stage is not purely elastic, i.e. the macroscopic stress cannot 

directly relax to zero during unloading. Hence, a second unloading step is required to reach 

complete unloading. In this study more than two unloading steps are used to unload and relax the 

macroscopic Cauchy stress. 

 

 

 

 

 

 

 

5   Taylor-based simulation of uniaxial tension testing 
for polycrystals 

Classical variants of the Taylor model use the velocity gradient to describe the loading process, i.e. 

in terms of their boundary conditions they are models which are strictly deformation controlled. 

The uniaxial tension test, however, is a stress controlled process, which contradicts the basic 

approach taken by Taylor models. In the following we show how one can circumvent this problem 

and conduct a Taylor-based tension test simulation. 

 

Uniaxial tension can be achieved by modifying the velocity gradient of simple tension. Using X  

and x  for the initial and the current location of a material point, respectively, the simple tension 

movement can be written 



Ma, Roters, Raabe,  Texture and Anisotropy in FCC Metals 

Raabe, edoc Server, Max-Planck-Society        -    12    -                                        MPI Düsseldorf 
 

 

][
)exp(00

0)5.0exp(0
00)5.0exp(

33

33

33

Xeex
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⊗

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
= ji

tL
tL

tL
                        (5.1) 

with 

3,2,1, =ji . 

 

Since crystalline response to the loading is anisotropic the Taylor assumption for such deformation 

does not, as a rule, entail an uniaxial stress state. Therefore, we use a Newton procedure to iterate 

the proper velocity gradient tensor, iL , which produces a macroscopic simple tension stress state 

for the time step i .This means that the following equation should be solved 

 

 0eeLTLG =⊗−= 33)()( iiii σ  .                                                  (5.2)  

 

In this expression the uniaxial tension direction is along the 3e  direction. From this equation the 

consistent tangent 
i

i
i L

G
J

∂
∂

= can be derived as outlined in detail in the Appendix of this report. The 

algorithm of the iteration procedure consists of the following steps: First, one starts with a given 

initial value LL =0
i  and a time increment it∆ . Second, 0

iG  and 0
iJ  are calculated to find the new 

velocity gradient ][)( 01001
iiii GJLL −−= . Third, the new value for 1

iG  is calculated. Finally, one has 

to check whether Erri ≤|||| 1G . If this applies the time step is finished. If it does not apply for a 

fixed iteration number the time step is reduced by a factor of 2 and the algorithm is repeated. 

 

In this study the ratio jη  of the dissipation rate, dissP , and the total deformation energy density rate, 

totalP , is used to express the deformation amount for the single crystal j  

 

j

p

jtotal

diss
j tr

tr
P
P

)(
)(

TL
TL

==η   .                                                 (5.4) 

 

For determining whether the polycrystal yields we use the volume average of this ratio according to  
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∑

∑

=

== N

j
j

N

j
jj

V

V

1

1
η

η                                                               (5.5) 

 

where jV  are the single volume elements.  

 

We analyze the −q value along different directions to investigate the planar anisotropy of rolled 

copper sheets. The loading directions of the simple tension tests are screened by using the fixed 

longitudinal direction 3e  and stepwise rotatations about the normal direction of the rolling plane 1e  

using a rotation tensor R . The new lattice position for the crystal i  is given by  

 

i
R

i FRF ~~ =                                                                 (5.6) 

 

where iF~  is the elastic part of the deformation gradient iF , which is not orthogonal after the rolling 

and the unloading deformations, and R
iF~  is the new value of this tensor after the rotation. 

Conducting sheet normal rotations in 5° steps yields 19 separate simple tension test simulations 

which are sufficient to study the anisotropy of rolled sheets. 
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6   Evaluation of the texture predictions 

Figs. 1 and 2 show that the introduction of a standard deviation for the velocity gradient by use of a 

pseudorandom distribution function drastically decreases the texture sharpness known from the 

classical Taylor theory. This can be attributed to the fact that the new approach considers the 

interaction of the grains at least in a statistical fashion as outlined above.  

 

Some positions of the main texture components are also in better accordance with experimental 

data than the predictions of the classical Taylor theory, though the agreement is not yet sufficiently 

convincing.  

 

For instance the position of the Brass component, as predicted by the modified Taylor model, is in 

better accord with the experiment when compared to the FC Taylor model. The scatter on the 

<110> texture fiber between the Goss and the Brass components, however, is larger than observed 

in experiment. The positions of the Copper and of the S components are in the new approach 

similar as in the Taylor FC simulation, but their sharpness is much smaller. 

 

The observation that the agreement between the new Taylor model and the experimental data is not 

yet sufficiently good can in part be attributed to the fact that we introduced the interaction effect for 

the modification of the symmetric part of the velocity gradient tensor, but the corresponding 

pseudorandom modification of the skew symmetric part of this tensor was not included although it 

might be of relevance for the calculation of the reorientation rates.  

 

Another aspect which offers room for improvement of the model is that we introduced the standard 

deviation equally for all components of the velocity gradient.  
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(a) (b) (c) 

Fig. 1  {111} pole figures for (a) the modified Taylor model (standard deviation=0.0002, 90% 
thickness reduction); (b) Taylor FC model (90% thickness reduction); (c) Experimental data for 
rolled Cu [data taken from Kocks, 4], rolled to 96%. 
 

 

 

 

 

(a) (b) (c) 

Fig. 2  Orientation distribution function for (a) the modified Taylor model (standard 
deviation=0.0002, 90% thickness reduction);  (b) Taylor FC model (90% thickness reduction);   
(c) experimental data for Cu-2%Zn rolled to 96% thickness reduction [data taken from Savoie, 35]. 
The functions are given in the reduced Euler space in the form of ∆ϕ2=5° sections running from 
ϕ2=0° to ϕ2=90°. 
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7   Evaluation of the anisotropy predictions 

We studied the in-plane anisotropy for a rolled Copper sheet as a function of the preceding 

deformation by use of the new Taylor model. We use the volume average parameter η  to describe 

the deformation. For purely elastic straining η  is almost zero. For larger deformations it saturates 

at 1.0.  

 

Fig. 3a shows the influence of the deformation on the −q value as a function of the angle between 

straining direction and the former rolling direction for a standard deviation 0=SD . When the 

deformation is small (e.g. η =0.05), only a small portion of the grains begins to yield while the 

others are loaded only into the elastic regime. The −q value does at this stage, therefore, not 

represent the complete plastic anisotropy of the rolled sheet. As the deformation increases the 

−q value gradually converges. The numerical result is based on the simulated texture shown in Fig. 

2b. In Fig. 3b the simulated Lankford coefficients for different SD  at 0.1=η  are compared to 

experimental data taken from the work of Kocks [4]. The curve indicated by Exp1 was a rolled and 

annealed Copper specimen while the curve indicated by Exp2 was rolled and not subsequently heat 

treated. The comparison shows that the anisotropy predictions obtained by the modified Taylor 

model reveal a good agreement with the experimental data for angles above 50°. The discrepancy 

of experiment and simulation for angles below 50° can essentially be attributed to the deviation 

between the experimentally observed and simulated input textures. Fig. 3b also shows the influence 

of the standard deviation on the −q value as a function of the angle between straining direction and 

the former rolling direction. Although the match between experiments and simulations in Fig. 3b, 

such as for 0005.0~0002.0=SD  and 0.1=η , is somewhat better than the FC Taylor model in 

Fig. 3a for 0=SD  and 0.1=η  a principal shift of the predictions towards larger values is still 

apparent. 
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(a) (b) 

Fig. 3 (a) The q-value  for different deformation stages predicted by use of the FC Taylor model; 
=η  0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 0=SD . 

(b) The q-value for different standard deviations; =SD  0.0, 0.1, 0.2, 0.3, 0.4, 0.5 ( 310−× ), 0.1=η .
Exp1: Experiment for Cu rolled to 93% and annealed at 600°C (data taken from Kocks [4]). 
Exp2: Experiment for Cu rolled to 96% (data taken from Kocks [4]).  
 



Ma, Roters, Raabe,  Texture and Anisotropy in FCC Metals 

Raabe, edoc Server, Max-Planck-Society        -    18    -                                        MPI Düsseldorf 
 

 

 

Conclusions 

 

We presented a modified Taylor model which statistically considers grain interaction in a 

polycrystalline aggregate in terms of a standard deviation for the symmetric part of the velocity 

gradient. The model was solved by using a Newton iteration scheme. We simulated 

crystallographic rolling textures and the elastic-plastic anisotropy arising from uniaxial tension 

tests. The results reveal in part a good agreement with experimental data. In particular we observed 

a considerable drop in the predicted texture sharpness. The simulation results obtained for uniaxial 

tension showed that the texture sharpness has considerable influence on the plain anisotropy of 

rolled sheets. 
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Appendix :  Derivation of the consistent tangent 
modulus 
 

 

The volume average of Cauchy stress can be simplified for the case that every single crystal has the 

same volume 
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For every time step t∆ the following equation should be satisfied for every single crystal  
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There are two variables n
iF~ and L in this function, so that their derivative relation can be set 
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Based on these equations the consistent tangent module J  can be written as  
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With this result the equation (2.3) can be simplified for small elastic deformations 

 

TT FIFFKFT ~)]~~(
2
1[~~

−≈                                               (A.6) 

 

and the derivative of T  with respect of F~  is 
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with 
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Replacing T by iT  and F~ by iF~ in equation (A.7) and combining with equation (A.5), one can get 

the consistent tangent module J  in explicit form. 
 


