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Report abstract 
 

Crystalline materials reveal highly anisotropic mechanical behavior1-6. 

Examples are metals, geological substances, semiconductors, 

superconductors, or semi-crystalline polymers. Large scale crystalline 

anisotropy has four major sources. First, crystals reveal intrinsic elastic 

reversible anisotropy due to the orientation dependence of the atomic 

bonds. Second, they reveal individual irreversible anisotropy due to 

crystallographic material translations along preferred directions and 

planes1-6. Third, crystalline matter usually occurs in polycrystalline 

form with typically more than 10 billion interacting crystals4-6 each of 

which has a different orientation, shape, and size7. Fourth, crystals 

undergo re-orientations during loading1-6. Our report presents for the 

first time a method which predicts mechanical anisotropy of 

polycrystals consisting of huge numbers of grains taking full account of 

these mechanisms. The novelty of the approach consists in the 

integration of a small set of spherical crystallographic orientation 

distribution functions8,9 into a non-linear finite element model with an 

elasto-plastic anisotropic constitutive law10-12. The method is suited for 

simulating anisotropical mechanical response of crystalline samples as 

encountered in materials science, geology, production technology, solid 

state physics, and civil engineering. 
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Mechanical anisotropy is a general property of materials which consist of one or more 

crystals. It proceeds from the intrinsic elastic-plastic anisotropy of each single crystals on the 

one hand and from the mechanical interaction and re-orientation of the crystals on the other 

hand (Fig. 1). Anisotropy may be desired such as in many functional materials (promotion of 

quasi single crystalline superconductivity in high-TC superconductors or transformer steels) or 

not desired such as in many partially crystalline thermoplastic polymers.  

 

 
 

Figure 1a   Research on anisotropy of materials has been a topic for 4000 years. The 
reasons for that are obvious: Engineers want to save material, obtain similar 
mechanical properties everywhere in the material, avoid failure, and minimize elastic 
back stresses in formed parts. Scientists want to understand the nano- and 
micromechanics of interacting crystals. Geologists and polymer chemists want to 
understand the origin of anisotropy in crystalline or partially crystalline material 
containing large numbers of crystals.  
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Figure 1b   Research on anisotropy in terms of multiscale modelling.  

 
 

This progress report is about a new method which is capable of predicting the 

mechanical anisotropy of polycrystalline material consisting of an arbitrary number of 

crystals, its origin, and its development under loads. The method takes full account of crystal-

scale reversible and irreversible anisotropy, the mechanical interactions among crystals, and 

their individual re-orientations. The approach can help to better understand and predict the 

anisotropy of samples consisting of huge numbers (e.g. 1010) of crystals.  

Classical crystal elasticity and plasticity finite element models represent excellent tools 

for simulating the mechanics and re-orientations of crystals under realistic boundary 

conditions10-12. However, these models are limited by the relatively small number of crystals 

they can handle (usually less than 104 ). This limit is due to the fact that crystal-scale finite 

element approaches up to now required a discrete representation of the crystalline orientation 

information at each integration point. When dealing with small numbers of crystals discrete 

mappings of their orientations are achieved by a simple one-to-one approach, where each 
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Gauss point in the finite element mesh is occupied by one discrete crystallographic 

orientation. This approach, however, is inappropriate when simulating samples which contain 

much larger numbers of crystals.  

The key challenge of our new approach, therefore, lies in identifying a way of placing 

orientation distributions rather than discrete sets of orientations onto a finite element mesh. 

This new technique is the main topic of this progress report, i.e. we introduce a new efficient 

method of mapping a representative crystallographic orientation distribution, comprising a 

huge number of grains, on the Gauss points of a finite element mesh using a compact 

mathematical form which permits crystalline re-orientation during loading. For this purpose 

we use the orientation component method8,9. This is a technique of approximating the 

orientation distribution function of large numbers of crystals in the form of discrete sets of 

symmetrical spherical central functions which are defined in orientation space. Such functions 

have individual height and full width at half maximum as a measure for the strength and 

scatter of the crystallographic orientation component they represent. The mathematical 

reproduction of the orientation distribution function by component functions can be expressed 

by the superposition  
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where g is the orientation, )(gf  is the orientation distribution function, and F is the volume 

portion of all randomly oriented crystals (random texture component). The intensity cI  

describes the volume fraction of all crystallites belonging to the orientation component  c. The 

orientation density of the component is described by a central function, i.e. its value decreases 

isotropically with increasing orientation distance ),(~~ gg cc ωω =  from the maximum. This 

means that )(c gf  only depends on ),(~~ gg cc ωω = , but it is independent on the rotation axis 

cn~ . In our approach we decompose an initial orientation distribution function by a set of 

spherical central Gauss functions which are described by 
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with )(xIl  being generalized Bessel functions. The value cb  is the full width at half 

maximum which corresponds to the mean diameter of a spherical component in orientation 

space. The orientation component method is well suited for an incorporation of orientation 

distributions into crystallographic finite element methods. This advantage is due to the fact 

that the method is based on using sets of localized spherical normalized standard functions 

which are characterized by simple parameters of physical significance (Euler angle triple for 

the main orientations, volume fractions, full widths at half maximum). Typically only a few 

orientation components are required to describe the orientation distribution function which in 

turn can represent the texture of any crystal assembly whatever size it may have.  

The second step of the new method is that the orientation component method must now 

be connected to a suited crystal elasticity and plasticity constitutive model. In our approach 

we use the large-strain constitutive crystal model suggested by Kalidindi12. In this formulation 

one assumes the stress response at each macroscopic continuum material point to be 

potentially given by one crystal or by a volume-averaged response of a set of crystals 

comprising the respective material point. Details of the constitutive law are given in 12. 

The third element of our new approach consists in the integration of the orientation 

component functions into the crystal finite element method. More precisely, the main task of 

the new concept is to represent sets of spherical Gaussian orientation components on the 

integration points of a finite element mesh designed for crystalline constitutive laws. This 

procedure works in two steps: In the first step the discrete preferred orientation gc (center 

orientation, mean orientation) is extracted from each of the orientation components and 

assigned in terms of its respective Euler triple (ϕ1, φ, ϕ2), i.e. in the form of a single rotation 

matrix, onto each integration point (Fig. 2). In the second step, these discrete orientations are 

re-oriented in such a fashion that their resulting overall distribution reproduces the 
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texture function which was originally prescribed in the form of a Gaussian orientation 

component (Fig. 2). In other words the orientation scatter described initially by a texture com-

ponent function is in the finite element mesh represented by a systematically re-oriented set of 

orientations, each assigned to one integration point, which reproduces the original spherical 

scatter prescribed by that component. This means that the scatter which was originally only 

given in orientation space is now represented by a distribution both, in real space and in 

orientation space, i.e. the initial spherical distribution is transformed into a spherical and 

lateral distribution.  

 

 
Figure 2  The first step of the decomposition of an orientation component consists in 
extracting the preferred orientation (center or mean orientation) from the orientation 
function and assigning it in terms of its respective Euler angle triple, i.e. in the form of 
a single identical rotation matrix, onto each integration point. In this state the sample 
is a single crystal. In the second step all orientations are re-oriented to give the initial 
orientation distribution. 

 

 

The described allocation and re-orientation procedure is formulated as a weighted 

sampling Monte Carlo integration scheme in orientation space. Local homogenization allows 

one to map more than one preferred crystallographic orientation on each integration point and 

to assign to each of them an individual volume fraction. This means that the procedure of 

mapping and rotating single orientations in accord with an initial orientation component 

scatter width is individually conducted for all prescribed components as well as for the 

random background extracted from initial experimental or theoretical data. After 

decomposing and representing the initial orientation components as a lateral and spherical 
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single orientation distribution in the mesh, the texture component concept is no longer 

required in the further procedure. This is due to the fact that during the subsequent crystal 

finite element simulation each individual orientation originally pertaining to one of the 

orientation components can undergo an individual orientation change. This means that the 

orientation component method loses its significance during the simulation. In order to avoid 

confusion one should, therefore, underline that the orientation component method is used to 

feed crystal orientations into finite element simulations on a strictly physical, scaleable, and 

quantitative basis. The components as such, however, are in their original form as compact 

functions not tracked during the simulation. It must also be noted that the orientation points 

which were originally obtained from the components do not represent individual grains but 

portions of an orientation distribution function.  

 

 
 

 
Figure 3  Example of a simulated large strain forming operation (99.99% aluminum) 
including orientation information and rotation of the crystals during straining. The 
importance of the crystallographic orientation can be seen from the resulting shape 
revealing the so called earing phenomenon. The color scheme indicates the wall 
thickness. 
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Figure 4  Shape change during drawing of an aluminum sample containing about 1010 
crystals. The color scheme represents the von Mises equivalent stress. 

Fig. 3 shows an example of a cup drawn aluminum sample and a corresponding 

experiment. The simulation predicts very well the final ear shape and the thickness 

distribution of the drawn sample. The original sample contained about 108 crystals which 

were all included in the simulation via our new orientation component finite element method. 

Fig. 4 shows an example of a large strain drawing simulation of an aluminum sheet containing 

about 1010 crystals. The last part of the figure shows details of the elastic spring-back effect, 

i.e. the elastic–plastic relaxation of the material after removal of the tool. 

The current progress report gave an introduction into a novel finite element method 

which includes and updates orientation distributions in physically based anisotropy 

simulations. The method is based on feeding spherical orientation functions onto the Gauss 

points of a finite element mesh which uses a elastic-plastic constitutive law taking full 

account of single crystalline anisotropy. The major progress of the approach consists in its 

ability to feed large numbers of crystals in terms of mathematically compact orientation 

component functions into finite element simulations on a strictly physical, scaleable, and 

quantitative basis. 
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