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Abstract of Progress Report 
 

 

This MPG progress report presents applications of a 3D stochastic 

cellular automaton model for the spatial, kinetic, and 

crystallographic simulation of mesoscale transformation 

phenomena that involve non-conserved structural field variables 

and the motion of sharp interfaces, such as encountered in the 

fields of recrystallization and grain growth. The automaton is 

discrete in time, physical space, and orientation space. It is defined 

on a 3D cubic lattice considering the first, second, and third 

neighbor shell. The local transformation rule that acts on each 

lattice site consists of a probabilistic analog of the linearized 

symmetric Turnbull rate equation for grain boundary segment 

motion. All possible switches of cells are simultaneously considered 

using a weighted stochastic sampling integration scheme. The 

required input parameters are the mobility data for the grain 

boundaries, the local crystallographic texture, and a local stored 

energy measure as a function of space. 
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Fundamentals of the Model 
The material properties are regarded as continuum field quantities. For applying cellular automaton 

algorithms, physical space (sample) must be discretized into a regular array of equally shaped cells. 

Time t and space x=(x1,x2,x3) are independent variables. The crystal grain orientation g=g(ϕ1,φ,ϕ2) 

and mechanical, interface, or electromagnetic contributions to the Gibbs free energy Gt are 

dependent variables. The local transformation rule of the automaton consists of the probabilistic 

analog of a linear symmetric rate equation for thermally activated grain boundary segment motion 

under the influence of free energy gradients as introduced by Turnbull [1]. The automaton is 

defined on a spatially discrete 3D cubic lattice considering the first, second, and third neighbor 

shell. Each discrete lattice cell is characterized by an orientation and a value for the stored free 

energy (e.g. deformation energy in recrystallization simulations). The physical size of each lattice 

cell can be scaled by microstructure, e.g. by the local dislocation cell size. The possible switches of 

all cells in the automaton are in each time step simultaneously considered. The actual switch of cells 

adjacent to cells with different energy and/or orientation is made in accord with their switching 

probability, which is calculated by using the segment rate equation with local energy and mobility 

data, by using a weighted stochastic sampling integration scheme. The boundary mobility m is a 

function of the crystal misorientation ∆g and the boundary plane inclination n. Both quantities are 

derived dependent variables. The method requires the incorporation of experimental or theoretical 

data for grain boundary mobilities and energies as a function of their crystallographic 

misorientation. The transformation rate equation is scaled by the physical size of the lattice cells λ, 

the maximum admissible statistical integration variance σ, and the boundary mobility m.  

The new approach allows one the fast discrete 3D simulation of the evolution of grain 

microstructures in physical and crystallographic orientation space at a realistic time and space scale. 

It considers the initial microstructure including crystallographic textures, grain boundary 

characteristics (energy, mobility), and driving forces. The following paragraphs provide a brief 

derivation of the governing rate equation, the probabilistic equivalent of which serves as local 

transformation rule, explain the switching scheme, and present some examples. 
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Rate Equation of Boundary Motion and Probabilistic 

Analogue as Transformation Rule 
 

According to Turnbull [1] a phenomenological symmetric rate equation, which describes grain 

boundary motion in terms of isotropic single-atom diffusion processes perpendicular through a 

homogeneous planar grain boundary segment under the influence of free energy gradients, can be 

written, 

 

(1) 

 

 

where &x  is the interface velocity, υD  the Debye frequency, λgb  the jump width through the 

interface, c the intrinsic concentration of in-plane self diffusion carrier defects (e.g. grain boundary 

vacancies or shuffle sources), n the normal of the grain boundary segment, ∆G the Gibbs enthalpy 

of motion through in the interface, ∆Gt the Gibbs enthalpy associated with the transformation, kB 

the Boltzmann constant, and T the absolute temperature. Bold symbols indicate vector quantities. 

The Debye frequency is of the order of 1013–1014 /s and the jump width of the order of the 

magnitude of the Burgers vector. After insertion of the enthalpy, entropy, and driving force, eq. (1) 

becomes 
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where p is the gradient in Gibbs enthalpy across the interface (driving force), Ω the atomic volume, 

∆Sf the entropy of formation, ∆Hf the enthalpy of formation, ∆Sm the entropy of motion, and ∆Hm 

the enthalpy of motion. The atomic volume is of the order of b3, where b is the magnitude of the 
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Burgers vector. While ∆Sf mainly quantifies the vibrational entropy, ∆Sm contains configurational 

and vibrational portions. Summarizing these terms leads to  

 

 

 

(3) 

 

 

 

This approximation reproduces the well known phenomenological Turnbull expression  

 

(4) 

 

where m is the mobility and Qgb the activation energy of boundary motion. Eq. (3) gives  

 

(5) 

 

Eqs. (1)–(5) provide a phenomenological kinetic picture of grain boundary motion, where the 

atomistic processes associated with a particular grain boundary segment are statistically described 

in terms of m0 = m0(∆g, n) and Qgb = Qgb(∆g, n). Since it is difficult to quantify some of the 

physical parameters in eq. (5), particularly with respect to their dependence on the misorientation, it 

is pertinent to use experimental rather than theoretical mobility data wherever possible [2,3]. 

 

The major task of the here suggested simulation approach now consists in the calculation of the 

switching probabilities of all cells which have neighboring cells with different energy and/or 

orientation under consideration of the crystallographic character of the boundary segments between 

them. The actual switching decision is for each cell then made by using a conventional weighted 
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orientation) of all cells are updated in synchrony. As will be shown below, the use of 
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experimentally determined mobility data automatically introduces the correct time and space scale 

into the prediction.  

 

The approach described requires the replacement of the deterministic rate equation of boundary 

segment motion, eqs. (3),(4), by a probabilistic analog which can be solved by weighted stochastic 

sampling. For this purpose eq. (4) is first separated into a deterministic part, &x0 , which depends 

weakly on temperature, and a probabilistic part, w, which depends strongly on temperature: 

 

(6) 

 

This equation could in principle serve as a probabilistic analog of the Turnbull rate equation. 

However, unlike boundary and vertex dynamics models [e.g. 3,4], the present simulations are 

carried out on a given spatial grid with an arbitrary cell size λm. The value of λm will usually be 

much larger than the atomic spacing b. If a moving boundary segment sweeps a cell, the grain thus 

grows (or shrinks) by λm
3  rather than b3. This scaling length turns eq. (6) into 

 

(7) 

 

ν can be regarded as the eigen-frequency of the chosen grid. m0
max  is the maximum occurring pre-

exponential factor of the mobility. Since the switching probability of the cells is obtained by 

stochastic sampling, the above eigen-frequency is too small and its use as the basic attack frequency 

would entail a substantial statistical error. It is thus necessary to normalize the above equation by an 

attack frequency ν0, so that 
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While &$x  is determined by the grid size and the frequency, $w  is determined by the temperature and 

experimental data. An appropriate value for the normalization or grid attack frequency ν0 can be 

identified by some straightforward statistical considerations. It is physically plausible that the 

maximum occurring probability in one integration step can never be larger than one, i.e. 

 

(10) 

where pmax is the maximum occurring driving force, ν0
min  the minimum allowed attack frequency, 

and Qgb
min  the minimum occurring activation energy. The statistical variance σ  associated with 

stochastic sampling is proportional to 1 N , where N  is the number of trials. The physical 

constraints for the normalization frequency imposed by eq. (10) are thus increased by the statistical 

condition that the maximum possible switching probability $ maxw  should not only be smaller than 

one but even be smaller than some maximum allowed statistical variance σ , i.e. $ maxw ≤σ . The 

appropriate attack frequency for a set of given parameters can thus be calculated according to 

 

(11) 

 

The simulation proceeds by switching all cells according to their proper statistical weight, 

determined by the local mobility and driving pressure. The probability of the fastest occurring 

boundary segment to realize a local transformation amounts to σ . The characteristic time constant 

of the simulation is 1 0ν min . All transformations (switch of cell state) are updated synchronously 

once per time interval. Except for the probabilistic evaluation of the single transformation steps, the 

approach is entirely deterministic and should not be confused with conventional kinetic Monte 

Carlo methods. Further details of the method are given in [5]. 

$ expmax
max max

minw
m p Q

k Tm

≤ −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0

0λ ν
gb
min

B

ν
λ σ0

0min
max max

exp≥ −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m p Q
k Tm

gb
min

B



Raabe,  CA simulation 

Raabe, edoc Server, Max-Planck-Society             -  9  -                                          MPI Düsseldorf 
 

 

 

Example 1: 3D Recrystallization of an Aluminium Single 

Crystal 
 

Figure 1 shows an example of a 3D recrystallization simulation of a heavily deformed aluminum 

single crystal. The deformed crystal had a uniform near-cube orientation and an initial dislocation 

density of 1015 m-2. The driving force was due to the stored elastic energy. Crystal recovery and the 

back driving force arising from boundary curvature were not considered. The simulation used site 

saturated nucleation conditions with a pseudo-activation energy of 0.45 eV. The nuclei were 

statistically distributed in physical and orientation space. Euler space was discretized into a set of 

936 possible discrete orientations. The density of nuclei amounted to 7.47·1023 m-3. The grid size 

was 80·80·80 (µm)3. The activation energy of the grain boundary mobility amounted to 1.46 eV (all 

boundaries had the same mobility). The temperature was 800 K. The elementary time constant of 

the simulation was 1.53 s. Figure 1a shows the sample with 10.05 vol.%, Figure 1b with 21.74 

vol.%, and Figure 1c with 38.42 vol.% recrystallized grains. According to the random distribution 

of nuclei and the absence of special boundaries the final recrystallization texture was random.  



Raabe,  CA simulation 

Raabe, edoc Server, Max-Planck-Society             -  10  -                                          MPI Düsseldorf 
 

 

                   
 

Figure 1: 3D recrystallization simulation. Metal: Al, initial dislocation density: 1015 m-2, recovery 

and boundary curvature were not considered, site saturated nucleation conditions, 936 discrete 

orientations, grid size: 80·80·80 (µm)3, cell size: 0.1 µm, activation energy of grain boundary 

mobility: 1.46 eV, ln(m0/γ)= 16.0 µm2/s, γ= 0.7 J/m2, temperature: 800 K, time constant: 1.53 s, 

periodic boundary conditions. (a) 4.59 s, 10.05 vol.% recrystallized, (b) 6.12 s, 21.74 vol.% 

recrystallized, (c) 7.65 s, 38.42 vol.% recrystallized. 

 

 

 

 
 

Example 2: 3D Grain Growth in an Aluminium Polycrystal 
 

Figure 2 shows subsequent stages of a 3D grain growth simulation in aluminium. The driving force 

was calculated from the local boundary curvature. The simulation used periodic boundary 

conditions, a grid size of 32·32·0.5 (µm)3, and 936 discrete texture components. All boundaries had 

identical mobilities, using Q=1.6 eV, ln(m0/γ)= 16.0 µm2/s, and γ= 0.7 J/m2. 
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Figure 2: Subsequent sections from 3D grain growth simulation, Al, periodic boundary 

conditions, grid size: 32·32·0.5 (µm)3, cell size: 0.1 µm, 936 texture components, Q=1.6 eV, 

ln(m0/γ)= 16.0 µm2/s, γ= 0.7 J/m2, 800 K, (a) 15.1 s, (b) 75.5 s, (c) 755 s, (d) 1510 s. 

 

 



Raabe,  CA simulation 

Raabe, edoc Server, Max-Planck-Society             -  12  -                                          MPI Düsseldorf 
 

 
Report Text References 

 

1. D. Turnbull, Trans. AIME, 191 (1951), 661. 

2. L.S. Shvindlerman, U. Czubayko, G. Gottstein, and D.A. Molodov, Proc. 16th RISØ 

International Symp. on Materials Science: Microstructural and Crystallographic Aspects of 

Recrystallization, eds.: N. Hansen, D. Juul Jensen, Y.L. Liu, and B. Ralph, (1995), 545. 

3. J.F. Humphreys, Mat. Sc. Techn., 8 (1992), 135. 

4. B.L. Adams, D. Kinderlehrer, W.W. Mullins, A.D. Rollett, and T.S. Ta'asan, scripta mater., 

submitted, (1998). 

5. D. Raabe, in: Texture and Anisotropy of Polycrystals, Materials Science Forum, 273-275 

(1998), 169-174, ed.: R.A. Schwarzer, Trans Tech Publications. 


