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Report Abstract 

This progress report introduces a crystal plasticity finite element method which includes and 
updates the texture of polycrystalline matter for physically based simulations of large strain forming 
operations. The approach works by directly mapping a set of discrete texture components into a 
crystal plasticity finite element method. The method is well suited for industrial applications since it 
is formulated on the basis of existing commercial software solutions. The study gives an overview 
of the new texture component crystal plasticity finite element method and presents examples. 

 

The Basic Problem of Constitutive Anisotropy Modeling 

Engineering metals subject to forming operations typically have crystallographic textures which 
they inherit from proceeding processing steps. The intrinsic elastic and plastic anisotropy of 
crystalline matter entails an overall anisotropic response of such specimens when mechanically 
loaded. This behavior imposes two basic problems. The first challenge is the formulation of 
methods to map the initial anisotropy into classical mathematical approaches for predicting large 
strain deformation. The second even more demanding goal is the description of the change of 
crystalline anisotropy during forming. This is necessary since the crystals rotate during deformation 
owing to the antisymmetry of the crystalline displacement gradients. The first problem can be 
solved using adequate yield surface functions. The second problem cannot be solved by a statistical 
constitutive law since each crystal takes an individual re-orientation path during forming. 
Translating this into the yield surface concept means that any constitutive evolution law for the 
shape function of the yield surface depends on at least 103 possible discrete texture components 
with potentially individual behavior as well as on the imposed stress and strain rate states. 
Rendering this into a simple constitutive form is practically hopeless. For this purpose we have 
developed a new efficient and at the same time physically rooted prediction method for the 
simulation of polycrystal plasticity which accounts for these two crystallographic aspects [1,2]. It is 
based on directly mapping discrete orientation components onto the integration points of a crystal 
plasticity finite element model. The texture components can be extracted from experimental data, 
such as pole figures stemming from x-ray or electron diffraction.  

 

Introduction to Using Texture Components in a Crystal Plasticity FE Constitutive Model 

As outlined above the main issue of large-strain large-specimen crystal plasticity metal forming 
simulations is to tackle both, the anisotropy due to the starting texture and due to texture evolution. 
One method could be to simply assign each grain orientation to a separate integration point. 
However, such a brute force approach is not feasible when aiming at the simulation of larger parts 
containing ~1010 grains (e.g. automotive parts made of 6xxx aluminium or IF steel). This essential 
limitation suggests the employment of a more compact mathematical form to map and update 
textures of large parts properly during metal forming simulations. Crystal plasticity finite element 
approaches which update the texture require a discrete representation of the orientation distribution 
function or a portion of it at each integration point. Mapping such a discrete portion of the global 
texture requires the reduction of the information content to a level at which complex deformation 
processes can be simulated at reasonable computation costs. Such a form is offered by the texture 



 

component method. It approximates the orientation distribution function by a superposition of sets 
of simple standard functions with individual coordinates, orientation density, and scatter in 
orientation space. Such a representation of a preferred orientation is referred to as a texture 
component. In contrast to the use of global symmetric Wigner functions for instance in the Fourier-
type series expansion methods [3], the texture component method is based on using spherical 
normalized localized standard functions [4-6]. The superposition can be expressed by  
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where g is the orientation, )(gf  is the orientation distribution function, F is the volume portion of 
all randomly oriented crystals (random texture component), cI  is the volume portion of all crystals 
which belong to the texture component c (Fig. 1). The orientation distribution function is defined by  
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where V is the sample volume and gVd  the volume of all crystals with an orientation g within the 
orientation portion  dg=sin(φ) dφ dϕ1 dϕ2. Normalization requires  
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As a rule texture components require positivity, i.e. 
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where G is the orientation 
space. Eq. 4 can also be 
derived by using Eq. 2 and 
the assumption that the 
texture components do not 
overlap in orientation 
space and that an orienta-
tion distribution function 
can be described by one 
single texture component. 
Distribution functions 
which have a maximum at 
a preferred orientation gc 
and decrease with increas-
ing orientation distance 

),(~~ gg cc ωω =  are referred 
to as central functions. 
Such functions, including 

corresponding pole figures, can be generally represented in the form of series expansions of χ  
functions or respectively Legendre polynomials. More practical approximations of texture 
component have been introduced on the basis of spherical Gauß- and Lorentz-functions. Although 
these functions are not exactly in accord with the central limit theorem they can be represented in 
an analytically closed form (Table 1). For the examples presented in this report we used Gauß 
functions to decompose the texture. The texture component method provides a small set of compact 
functions which are characterized by simple parameters of physical significance (Euler angles, 
scatter, volume fraction). Usually, only a few texture components are required for representing 

 
Fig 1 Schematical sketch of a spherical texture component c with a 
preferred orientation gc and scatter width bc. )(c gf  only depends on 

),(~~ gg cc ωω = , i.e. it is independent on the rotation axis cn~  [5,6]. 



 

textures in a precise mathematical form. The inherent data reduction drastically enhances the 
computational efficiency of the subsequent finite element simulation (Fig. 2).  
Aluminium textures can be reproduced by using small sets of discrete texture components together 
with a random background component. The most important of these components in aluminium and 
other face centered cubic metals are the Cube-component ({001}<100>, ϕ1=0°, φ=0°, ϕ2=0°), the 
Goss-component ({011}<100>, ϕ1=0°, φ=45°, ϕ2=0°), the Brass–component ({011}<211>, ϕ1=35°, 
φ=45°, ϕ2=0°), the Copper–component ({211}<111>, ϕ1=90°, φ=35°, ϕ2=45°), and the S–
component (~{123}<634>, ϕ1=60°, φ=32°, ϕ2=65°).  
 

The texture components are 
extracted from experimentally 
obtained pole figures (x-ray 
diffraction, neutron diffraction) or 
single orientation data sets 
(electron diffraction) by identifying 
the main texture maxima and the 
suggested scatter width and by 
minimizing the deviation between 
the original (experimental) texture 
and the one created by the texture 
component functions in an iterative 
fashion. Depending on the 
experience in interpreting 
crystallographic textures the user 
can specify the position, height, 
and scatter of the texture compo-
nents within certain bounds during 
the minimization. This makes 
sense, when the number of texture 
components initially prescribed to 
match an experimental texture is 
small or when a certain scatter 
width of the components should 
not be exceeded. Subsequently, the 

so extracted texture components must be mapped onto the integration points of a finite element 
mesh. This is conducted in two steps. First, the discrete center orientation (mean orientation, 
preferred orientation) of each texture component is assigned in terms of its respective Euler triple 
(ϕ1, φ, ϕ2) onto each of the integration points. It is important in this context, that the use of the 
Taylor assumption locally allows us to map more than one crystallographic orientation on each 
integration point. Second, all center orientations of the components that were initially assigned to 
the integration points are now rotated in a fashion that the resulting distribution of all these new 
orientations deviating from the initial center orientation reproduces exactly the desired texture 
function extracted from experiment. In other words the orientation scatter individually described by 
each texture component function is mapped onto the finite element by systematically modifying the 
orientations at each point in a way which exactly imitates the scatter prescribed by the texture 
component. This means that the scatter which was originally only given in orientation space is now 
matched by an equivalent scatter both, in real space and in orientation space. 

Fig 2 Basic set-up of the texture component crystal plasticity 
finite element method [5,6].  



 

 
 

Table 1  Various types of standard texture component distributions including series coefficients and 
pole figures. I0(x) and I1(x) are generalized Bessel functions [6]. 

 
 
 
 
 

Constitutive Model for the Crystal Plasticity Finite Element Simulations 
In the large-strain constitutive crystal plasticity model [7] modified for the present study [1,2] one 
assumes the stress response at each macroscopic continuum material point to be potentially given 
by one crystal or by a volume-averaged response of a set of grains comprising the respective mate-
rial point. The latter assumption can be referred to as a local Taylor-type or local strain-rate homo-
genization assumption. In case of a multi-grain description the volume averaged stress amounts to  
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where N is the total number of individual orientations mapped onto an integration point using the 
Taylor assumption, kw  the volume fraction of each single orientation extracted from a texture 



 

component as described above, Tk  the Cauchy stress produced by the kth individual orientation, 
and <T> the volume average stress produced by all orientation mapped at the integration point. The 
constitutive equation for the stress in each grain is then expressed in terms of  

=T* CE*  (6)  

where C is the fourth order elastic tensor and E* an elastic strain measure obtained by polar 
decomposition, 
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which leads to a stress measure which is the elastic work conjugate to the strain measure E*,  

( )( ) -det T= -1T* F * F * T F *  (8)  

where T is the symmetric Cauchy stress tensor in the grain, and F* is a local elastic deformation 
gradient defined in terms of the local total deformation gradient F and the local plastic deformation 
gradient Fp. The relation between the elastic and the plastic portion of F amounts to  
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The plastic deformation gradient is given by the flow rule 
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with its crystalline portion 
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where m k  are the kth dyadic slip products of unit vectors b̂k  in the slip direction and n̂ k  normal to 
the slip plane, and kγ&  the shear rates on these systems. The specific constitutive functions for the 
plastic shearing rates kγ&  on the slip systems are taken as 
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where τ k  is the resolved shear stress for the slip system k, and , cr itkτ  is the actual critical shear 
stress on the kth slip system. γ&0  and m are material parameters representing shearing rate and the 
rate sensitivity of slip. The calculation of , cr itkτ  has been achieved by accounting for latent harden-
ing through the use of an appropriate hardening matrix, 
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where hki is the rate of strain hardening on kth slip system due to a shearing on ith slip system, qki is 
the hardening matrix describing the latent hardening behavior of a crystallite, and ( )ih  is hardening 
rate of single slip system i. In the present study, 12 slip systems with crystallographic <110> slip 
directions and {111} slip planes are taken into account for room temperature simulations of plastic 
deformation of aluminium. The actual finite element calculations were carried out using the finite 
element software ABAQUS in conjunction with the user defined material subroutine UMAT. Cor-
responding simulations can also be conducted using the finite element package MARC. 



 

 

Simulations and Experiments 

The present cup drawing 
simulations were conducted under 
the assumption that the circular 
blank being drawn had an initial 
radius of 100 mm and a thickness 
of 0.82 mm. The blank was 
modeled using 432 C3D8 elements 
and 80 C3D6 elements. The 
interaction between the blank and 
the blank holder was assumed as a 
so called soft contact to impose 
the appropriate clamping pressure 
in the thickness direction of the element between blank, die, and blank holder. The simulations 
shown below used an exponential soft contact function. Different friction properties (µ=0 to 0.2) 
were checked and the results showed that friction properties had under these contact conditions 
only little influence on the ear height. This is an important aspect compared to conventional J2-
based continuum plasticity simulations which generally reveal stronger dependence on friction. 
Consequently the µ=0 case was selected to save computing time. It must be noted though that the 
influence of friction can be significantly different under different boundary conditions (Figs. 3, 4).  

Summary 

We discussed a new finite element method which 
includes and updates texture during forming 
simulations. The method is based on feeding 
texture components into a crystal plasticity FE 
model. We presented a comparison between 
experiment (aluminium), the new component 
approach, and a Hill-based yield surface 
simulation which does not update the texture 
during loading. 
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Fig 3 Simulation and experiment of cup drawing, aluminium. 
Left: The gray scale indicates the sheet thickness. Right: The 
gray scale indicates the orientation change during drawing. 

 

 
Fig 3 Simulations and experiment of earing 
for cup drawing, aluminium. Results of the 
texture component finite element simulation 
and a simulation obtained by use of a Hill 
yield surface which was fitted to the texture. 
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