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Project Abstract 
 
 

The study discusses how crystal orientation distributions can be mapped on 

finite element grids for conducting large scale anisotropy simulations which 

use anisotropic crystalline constitutive laws. Methods based on direct pole 

figure inversion, series expansions of spherical harmonics, or a large sets of 

discrete orientation values are not appropriate to reproduce 

crystallographic textures in a sufficiently localized spherical form onto 

finite element grids. The texture component method which employs Lorentz 

or Gauss shaped spherical functions is better suited for this task. It offers a 

good compromise between discreteness (spherical localization), exactness 

(approximation of complicated orientation distribution functions can be 

achieved by a few texture components), compactness (simple functions), 

scalability (the number of used texture components can be systematically 

varied according to the desired precision of the texture fit), and physical 

significance (texture components are related to microstructural 

mechanisms).  
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1 Introduction 
Modern experimental and theoretical methods for investigating crystallographic orientation 
distributions (textures) facilitate and in part necessarily entail the accumulation of data sets 
consisting of huge sets of discrete crystallographic orientation values (microtexture, 
nanotexture) or pole figure projections of statistical orientation distributions (macrotexture). 
In either case quantitative standard measures must be identified to utilize these data in 
subsequent polycrystal anisotropy simulations which incorporate orientation dependent 
constitutive laws. 
 
Examples are the mapping of crystallographic textures into mathematical methods for 
predictions of elastic and elastic-plastic anisotropy, ferromagnetic response, thermal 
expansion, and the resistive electrical conductivity of textured polycrystalline matter 
containing large numbers of crystals and its integral response to mechanical and/or 
electromagnetical loadings. The second even more demanding task along this line is the 
prediction of the change of crystalline anisotropy during loading, as for instance occurring 
during elastic-plastic deformation where the crystals individually rotate and subdevide during 
deformation owing to the antisymmetry of the displacement gradients created by crystal slip.  
 
This study deals with the integration of crystallographic texture data into such large scale 
anisotropy simulations. Particular pronunciation is placed on reducing redundant texture 
information to a level where sufficient details can be recovered without loosing physical 
significance.  
 
This rather complex problem can be split into two quite separate tasks (Figure 1 [1]). The first 
one is the formulation of a basic solution method which uses texture as a state variable. This 
is typically achieved by formulating an orientation dependent constitutive law which maps the 
requested physical anisotropy at the single crystal scale and by embedding this formulation 
into a finite element code. The numerical implementation then tackles the interaction of the 
differently oriented volume portions and thereby predicts the integral response of the sample 
under loads. Any such formulation requires a discrete representation of the orientation 
distribution function or a portion of it at each integration point. Therefore, the second task 
consists in mapping single orientations directly on the Gauss points of the finite element mesh 
or in decomposing orientation distributions in such a way that they can be subsequently 
mapped on a mesh in a manner that they correspond to the initial overall distribution.  
 
Integral anisotropy predictions of polycrystalline matter can in principle be conducted by 
directly feeding sets of discrete orientations onto the integration points of finite element 
models, i.e. by simply assigning each orientation to a separate integration point. However, 
such a mapping method is not practicable when aiming at the simulation of specimens which 
consist for instance of 1010 discrete crystals. A second limitation comes from the necessity to 
formulate a scalable method. Scalability in this context means the requirement to map large as 
well as small texture data sets with equal mathematical consistency. Both aspects suggest the 
introduction of a compact mathematical form to map and update textures properly in 
anisotropy predictions. The present study discusses the advantages and disadvantages of some 
functions available for the representation of textures under the special boundary conditions 
mentioned above. This means in particular the requirement for a discrete representation of the 
orientation distribution function or a portion of it at each integration point.  
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2 Basic approaches for the reproduction of 
the orientation distribution function 

2.1 Introduction 
The orientation distribution of the crystals assembling a polycrystalline aggregate, f(g), can be 
reproduced from two-dimensional centro-symmetric projections which are referred to as pole 
figures or sets of single orientations [2-5]. In either case different mathematical methods can be 
used. In the first case the orientation distribution is commonly described in terms of the direct 
inversion of the pole figures or in terms of Fourier-based series expansion methods which use 
spherical harmonics as library functions. In the second case one commonly reproduces the 
orientation distribution by use of large sets of discrete single grain orientations with identical 
scatter and amplitude or by use of the texture component method where each preferred 
orientation has individual scatter and amplitude.  
 
 

2.2 Series expansion methods 
In the Fourier-type series expansion methods the orientation distribution function is 
approximated by computing the coefficients νµ

lC  of its orthogonal expansion from the 
expansion coefficients )( il hF ν  of experimentally detected pole figures [2-5]. Since the centro-
symmetric pole figures are expanded with a series of even order spherical harmonics, only the 
even order coefficients νµ

lC  of )(gf  are generated, rendering the so determined function an 
approximate orientation distribution function containing only the even part of )(gf  which is 
referred to as )(~ gf . The complete function, )(gf , is named true orientation distribution 

function. The real orientation distribution is hence given by the equation )(
~~)(~)( gfgfgf += , 

where )(
~~ gf  represents any function which can be added to )(~ gf  without changing 

corresponding projections, i.e. pole figures [6]. The even function )(~ gf  usually causes texture 
dependent errors which are referred to ghost components. They can lead to positive or 
negative deviations from the true orientation distribution function. For reducing ghost 
intensities in the orientation distribution function advanced series expansion methods use the 
non-negativity condition which led to the development of an iterative series-expansion method 
[5, 7-9]. 
 
 

2.3 Direct pole figure inversion 
The methods which use direct inversions of pole figure projections were formulated by 
Williams [10], Ruer and Baro [11], Imhof [12], Matthies and Vinel [13], and Pawlik [14]. 
They approximate textures in terms of the direct integration of the fundamental equation of 
texture analysis using a set of experimental pole figures. Since the direct inversion methods 
directly use the discrete form of the fundamental equation for pole figure inversion they work 
in real space and not in Fourier space. This means that these approaches make use of the fact, 
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that the discrete hemisphere of the pole figure corresponds to families of projection tubes in 
the )(gf  space, i.e. the non-negativity condition for the orientation distribution function is 
automatically taken into account. The solution is achieved by iteration. The direct methods are 
– like all texture reproduction methods which use starting data of higher symmetry (i.e. 2D 
projections) than the orientation distribution function – affected by the inversion symmetry of 
the pole figure data entailing positive or negative texture portions without physical 
significance (texture ghosts) [5,14-16]. In the discrete form, cells in the pole figures and in the 

)(gf  space are directly related by linear equations. The density in each pole figure cell is the 
sum of the corresponding cell densities in the )(gf  space. Since different )(gf  sums lead to 
the same pole density, the set of linear equations is underdetermined which leads to so called 
ghost errors in the orientation distribution function. The second disadvantage of the direct 
inversion methods is that they do not provide Fourier coefficients. Although this shortcoming 
is inevitably connected with all direct approaches it can be avoided by subsequently fitting an 
orientation distribution function derived by direct inversion using a series expansion or a 
texture component based method (for the latter approach see next section). Fourier 
coefficients of texture functions are generally desirable because they facilitate the calculation 
of anisotropic behavior such as directional elastic, magnetic, or electrical properties of 
polycrystalline aggregates from texture data. Although directional physical properties are of 
course not necessarily connected to Fourier coefficients, their employment permits high speed 
calculations of integral properties of textured samples particularly in cases where 
homogenization theory is used to couple texture and properties. 
 
 

2.4 Texture component methods 
Mapping discrete portions of a statistical orientation distribution requires the reduction of the 
information content to a level at which complex integral anisotropy problems arising from the 
interaction of large numbers of intrinsically anisotropic crystals can be simulated at 
reasonable computation costs. Such an approach is provided by the texture component method 
[17-22]. It goes back to the early texture studies where experimental and predicted pole 
figures were mostly interpreted in terms of the evolution and physical significance of single 
discrete texture components [23]. Classical terms introduced in these early studies on 
crystallographic orientation distributions were for instance the “Copper texture component”, 
the “Brass texture component”, and the “Taylor texture component”. The use of preferred 
orientations prevailed in texture research until the late sixties of the last century, i.e. 
statements about texture evolution were made practically exclusively on the basis of pole 
figures and estimated preferred components (ideal positions, texture components). Modern 
approaches which describe texture components in orientation space [17-22] approximate the 
orientation distribution function by a superposition of sets of Gauss- or Lorentz-shaped model 
functions with individual height and individual full width at half maximum as a measure for 
the strength and scatter of a crystallographic texture component in orientation space. Such a 
discrete representation of a preferred orientation is referred to as a texture component. In 
contrast to the use of global symmetric Wigner functions for instance in the Fourier-type 
series expansion methods, the texture component method is based on using localized spherical 
normalized standard functions.  
 
The described properties clearly qualify the texture component approach as a key method for 
directly extracting texture information in a compact fashion from experiment or theory and 
subsequently feeding it into finite-element based anisotropy simulations which involve large 
numbers of crystals. The following sections will give a concise mathematical review of the 
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texture component method and explain how texture components can be mapped on a finite 
element grid in cases where the underlying constitutive model has been formulated in an 
orientation dependent fashion [24-27]. 
 
 
 
 

3 Basic formulation of the texture 
component method 

Following the work of Helming [20-22] the mathematical reproduction of the orientation 
distribution function by texture component functions which are locally restricted in 
orientation space can be expressed by the superposition  

1)(,where)()()( 00
C

0c

cc
C

1c

cc ===+= ∑∑
==

gfFIgfIgfIFgf  (1) 

where g is the orientation, )(gf  is the orientation distribution function and F is the volume 
portion of all randomly oriented crystals (random texture component). F may be understood 
as the intensity of the only global component used in the model, which is given by 1)( =gf c  
for each orientation point in Euler space, Gg∈ .The intensity cI  describes the volume 
fraction of all crystallites belonging to the component c. Figure 2 shows a schematical sketch 
of a spherical texture component c which is described in terms of a maximum orientation 
density at a preferred orientation gc and scatter width bc. The orientation density of the 
component decreases with increasing orientation distance ),(~~ gg cc ωω =  from the maximum, 
i.e. )(c gf  only depends on ),(~~ gg cc ωω =  and is independent on the rotation axis cn~ .  
 
The orientation distribution function is defined by  

0)(implieswhich 
d

8d)( 2 ≥= gf
V
V

ggf gπ
 

(2) 

where V is the sample volume and gVd  the volume of all crystals with an orientation g within 
the orientation portion  dg=sin(φ) dφ dϕ1 dϕ2. Normalization requires  

∑∫
=

==
C

0c

cc 1implieswhich 1d)( Iggf  (3) 

As a rule texture components require positivity, i.e. 

0andallfor 0)( cc >∈≥ IGggf  (4) 
where G is the orientation space. Equation 4 can also be derived by using Equation 2 and the 
assumption that the texture components do not overlap in orientation space and that an 
orientation distribution function can be described by one single texture component.  
 
Distribution functions which have a maximum at a preferred orientation gc and decrease with 
increasing orientation distance ),(~~ gg cc ωω =  are referred to as central functions. Such 
functions, including corresponding pole figures, can be generally represented in the form of 
series expansions of χ  functions or respectively Legendre polynomials. More practical 
approximations of texture components have been introduced on the basis of spherical Gauss- 
and Lorentz-functions. The examples presented later in this work made use of Gauss-shaped 
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model functions for the decomposition of the orientation distribution function which are 
described by 

( )ω~cosexp)( ccc SNgf =  (5) 
where 

)()(
1      and         

)2/cos(1
2ln

c
1

c
0

c
c

c

SISI
N

b
S

−
=

−
=  (6) 

and 

( ) ( ) ( ))2/cos()2/sin(exp,, cc
0

ccccc υυ SISNybgPM
h =  (7) 

and 

( )ygh ,cos cc =υ  (8) 

)(xIl are generalized Bessel functions. The value cb  is the halfwidth and can be interpreted as 
the mean diameter of a spherical component in orientation space [20-22].  
 
Equation 7 shows that the corresponding pole figure projections ( )ybgPM

h ,, cc  are given by 
closed analytical expressions. The components describing f(g) can be determined by the best 
fit of the experimental pole figure input data ( )

ii hr
M

h NyP~  with the recalculated pole figures 

( )∑
c

r
M

h
c ybgPI ,,~ cc . The index r marks the measured sample directions ry . The component 

parameters cI , cg  and cb  and the normalization 
ihN  of the pole figures are obtained by 

solving the least squares problem  

( ) ( ) .,,~~
,

2
cc MinybgPINyPw

ri c
r

M
h

c
hrhir iii

⇒⎥
⎦

⎤
⎢
⎣

⎡
−∑ ∑  (9) 

where irw  are weight factors. Usually the parameters cg  and cb  must be calculated by a non-
linear algorithm. First estimates are required, which may be obtained manually from the 
graphical representation of the difference pole figures which are calculated according to  

( ) ( ) ( )∑−=∆
c

r
M

h
c

rhrh ybgPIyPy
iii

,,~~ cc  (10)

Depending on experience in interpreting crystallographic textures the user can specify the 
position, height, and scatter of the texture components within certain bounds before the 
minimization. This makes particularly sense, when the number of texture components initially 
prescribed to match an experimental texture is small or when a certain scatter width of the 
components should not be exceeded. Further details on the method are given in the works of 
Helming et al. [20-22]. 
 
 

4 Main texture components for body 
centered and face centered cubic crystals 

The texture component method provides a small set of compact functions which are 
characterized by simple parameters of physical significance (Euler angles, scatter, volume 
fraction). Usually, only a few texture components together with a random background 
component are required for representing textures in a precise mathematical form and for 
describing the integral anisotropy of a specimen.  
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The most important of these components in face centered cubic metals are the Cube-
component ({001}<100>, ϕ1=0°, φ=0°, ϕ2=0°), the Goss-component ({011}<100>, ϕ1=0°, 
φ=45°, ϕ2=0°), the Brass-component ({011}<211>, ϕ1=35°, φ=45°, ϕ2=0°), the Copper-
component ({211}<111>, ϕ1=90°, φ=35°, ϕ2=45°), and the S-component (~{123}<634>, 
ϕ1=60°, φ=32°, ϕ2=65°).  
 
In body centered cubic metals the most important texture components are the Rotated Cube 
component {001}<110> (ϕ1=0°, φ=0°, ϕ2=45°), the Inverse Brass-component {112}<110> 
(ϕ1=0°, φ=35°, ϕ2=45°), the {111}<110> component (ϕ1=0°, φ=54.7°, ϕ2=45°), the 
{111}<112> component (ϕ1=30°, φ=54.7°, ϕ2=45°), and the Goss-component ({011}<100>, 
ϕ1=0°, φ=45°, ϕ2=0°). 
 
 
 

5 Mapping texture components onto 
discrete spatial grids 

The main challenge of directly predicting integral polycrystal anisotropy on the basis of local 
single crystal behavior lies in identifying an efficient way of mapping an originally statistical 
and representative crystallographic orientation distribution in a discrete fashion on the 
integration points of a spatially discrete mesh (as for instance required for finite element 
implementation). This boundary condition favors the use of sets of localized spherical texture 
components. 
 
Figure 3 explains how texture components can be embedded in discrete crystal anisotropy 
simulations. The example given in Figure 3a refers to a simulation of the integral elastic 
stiffness of a textured polycrystal. In this case the orientations are mapped as independent 
state variable on each Gauss point and the single crystal stiffness modulus acts as a 
constitutive law (see also Figure 1). The example given in Figure 3b refers to a simulation of 
the integral elastic-plastic response and the corresponding crystallographic reorientation rates 
of a textured polycrystal. In this case the orientations are also mapped as independent state 
variable on each Gauss point and the single crystal stiffness and slip systems including some 
plastic hardening rule act as constitutive laws.  
 
Determination and mapping of the texture components proceeds as follows: In the first step 
the texture components must be recovered from experimental or theoretical data. This can be 
done by applying the texture component method formulated by Helming [20-22] as outlined 
in section 3. Mapping the components in a discrete fashion onto the integration points of a 
finite element mesh is conducted in two separate steps. First, the discrete preferred orientation 
(center orientation, mean orientation) of each texture component is equally assigned in terms 
of its respective Euler triple (ϕ1, φ, ϕ2) onto each of the integration points. It is important in 
this context, that the use of the Taylor assumption locally allows one to map more than one 
preferred crystallographic orientation on each integration point. In the second step, the 
mapped center orientations of the texture components are statistically rotated in such a fashion 
that the resulting distribution of all the rotated orientations reproduces exactly the desired 
texture component function. In other words the orientation scatter individually described by 
each texture component function according to the texture component method is mapped onto 
the finite element mesh by systematically modifying the orientations at each point in a way 
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which exactly imitates the orientation scatter of the texture component. This means that the 
scatter which was originally only given in orientation space is now matched by an equivalent 
scatter both, in real space and in orientation space. This procedure is individually conducted 
for all prescribed texture components extracted from initial experimental or theoretical data.  
 
The random scattering background component can be mapped by adding to each integration 
point a randomly chosen orientation using the volume fraction suggested by the texture 
component fit so that the total set of all these orientations amounts to a random distribution 
with the correct volume fraction. This method is useful since during plastic deformation 
additional texture components can gradually build up from this random component as is 
known from corresponding experiments which show that the random texture portion changes 
during forming.  
 
 
 

6 Example of a polycrystal plasticity 
simulation 

In the following we present results obtained from a cup drawing simulation using a crystal 
plasticity finite element method in conjunction with the texture component method outlined 
above. Simulations of cup drawing, particularly those which predict details of the shape 
change, depend on details of the contact situation between sample and tool. The cup drawing 
simulations were conducted under the assumption that the circular blank being drawn had an 
initial radius of 100 mm and an initial thickness of 0.82 mm. The blank was modeled using 
432 elements of type C3D8 and 80 elements of type C3D6. The interaction between the blank 
and the blank holder was assumed as a soft contact to impose the appropriate clamping 
pressure in the thickness direction of the element between blank, die, and blank holder. The 
simulations used an exponential soft contact function.  
 
Figure 4 shows the simulated and experimentally observed development of earing in a cup 
drawn aluminium sample together with the experimental and reproduced pole figures. The 
diagram shows simulation results for a specimen the texture of which was approximated using 
a volume fraction of 29 % of an orientation close to the cube component (Euler angles at 
Gauss maximum: ϕ1=197.87°, φ=6.47°, ϕ2 =245.00°) and the rest (71%) as random texture 
background component. The texture reproduced by the component method given in terms of 
{111} and {200} pole figure projections shows good agreement with the original 
experimental data. The pole figures are shown in stereographic projections using 1.0, 2.0, 3.0, 
4.0, 7.0 contour levels. The predicted distribution of the earing height reveals a very good 
correspondence with the simulation result.  

 
 

7 Conclusions 
The study discussed various reproduction methods of crystallographic orientation 
distributions with respect to their applicability in discrete simulation methods of integral 
polycrystal anisotropy properties which use the crystal orientation as an independent state 
variable in their underlying constitutive laws. We discussed direct pole figure inversion, 
Fourier-type series expansions, and the texture component method. The latter method which 
employs Lorentz or Gauss shaped spherical functions is well suited for the described task. It 
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offers a good compromise between discreteness (spherical localization), exactness (texture 
approximation can be achieved by a few texture components), compactness (simple 
functions), scalability (the number of used texture components can be varied according to the 
desired precision of the texture fit), and physical significance (texture components are related 
to microstructural mechanisms). The integration of the texture components into property 
simulations was demonstrated based on feeding discrete localized spherical texture 
components onto the Gauss points of the mesh of a finite element simulation which used a 
crystal plasticity constitutive law. The method was tested and the results were compared to 
experimental data. 
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9 Figures 
 
Figure 1 
The prediction of integral polycrystal anisotropy can be split into two quite separate tasks [1]. 
The first one is the formulation of a solution method which uses texture as a state variable. 
This is typically achieved by formulating an orientation dependent constitutive law which 
maps the requested physical anisotropy at the single crystal scale and by embedding this 
formulation into a finite element code (elasticity in the present case). The numerical 
implementation then tackles the interaction of the differently oriented volume portion and 
thereby predicts the integral response of the sample under loads. Any such formulation 
requires a discrete representation of the orientation distribution function or a portion of it at 
each integration point. Therefore, the second task consists in mapping single orientations 
directly on the Gauss points of the finite element mesh or in decomposing orientation 
distributions in such a way that they can be subsequently mapped on a mesh in a manner that 
they correspond to the initial overall distribution.  
 
 
Figure 2 
Schematical presentation of a spherical texture component c with a preferred orientation gc 
and scatter width bc. )(c gf  only depends on ),(~~ gg cc ωω = , i.e. it is independent on the 
rotation axis cn~  [20-22]. 
 
 
Figure 3a 
Principle of the texture component method for the calculation of the integral anisotropy of 
polycrystalline matter. The example in Figure 3a refers to a simulation of the integral elastic 
stiffness of a textured polycrystal. In this case the orientations are mapped as independent 
state variable on each Gauss point and the single crystal stiffness modulus acts as a 
constitutive law.  
 
Figure 3b 
Principle of the texture component method for the calculation of the integral anisotropy of 
polycrystalline matter. The example given in Figure 3b refers to a simulation of the integral 
elastic-plastic response and the corresponding crystallographic reorientation rates of a 
textured polycrystal. In this case the orientations are also mapped as independent state 
variable on each Gauss point and the single crystal stiffness and slip systems including some 
plastic hardening rule act as constitutive laws.  
 
 
Figure 4 
Simulation and experimental results for earing in an aluminum sample the texture of which 
was approximated using a volume fraction of 29 % of an orientation close to the cube 
component (Euler angles at Gauss maximum: ϕ1=197.87°, φ=6.47°, ϕ2 =245.00°) and the rest 
as random texture background component. The reproduced texture shows good agreement 
with the original experimental pole figure. The predicted distribution of the earing height 
reveals a very good correspondence with the simulation result. 
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Figure 3a 
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Figure 3b 
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