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Abstract 

We present a method to map and track textures in crystal plasticity finite element 
simulations using texture components. The use of such functions allows us to conduct 
forming simulations with full anisotropy update on all size scales ranging from the 
microscopic to the large-scale regime. The article presents the concept and some 
applications to the investigation of scaling aspects associated with texture and 
anisotropy during metal forming. 

 

1 Introduction 

Our main aim in polycrystal research lies in developing methods for mapping 
crystallographic anisotropy into mathematical methods for predicting large strain plastic 
deformation. A second even more demanding goal is the prediction of the change in 
crystalline anisotropy during deformation. This is necessary since the crystals rotate 
during deformation owing to their elastic-plastic spins. The microstructural processes 
involved during these reorientation processes of the grains in polycrystalline matter 
cannot be captured in terms of simple empirical constitutive laws but require the use of 
physically-based concepts. In this context the crystal plasticity finite element 
constitutive methods have gained momentum [1-6]. 

This article addresses the question how textures can be merged with crystal plasticity 
finite element constitutive descriptions in a rigorous, scalable, and efficient way. A 
particular challenge in this context lies in the reduction of redundant texture information 
to a level where sufficient details can be recovered without loosing physical 
significance. 

This problem of representing large texture sets in plasticity simulations can be split into 
two separate tasks. The first one is the formulation of a basic solution method which 
uses crystallographic orientation as a state variable. This is achieved by formulating an 
orientation dependent constitutive law which maps the requested physical anisotropy at 
the single crystal scale and by embedding this formulation into a finite element code. 
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For this we use the approach of Raabe et al. [2-8] and Kalidindi [1]. The numerical 
implementation then tackles the interaction of the differently oriented volume portions 
and thereby predicts the integral response of the sample under loads. Any such 
formulation requires a discrete representation of the orientation distribution function or 
a portion of it at each integration point. Therefore, the second task consists in feeding 
one single rotation matrix (crystal orientation) directly on each Gauss point of the finite 
element mesh. This amounts to mapping or respectively decomposing orientation 
distributions in such a way that they can be subsequently mapped on a mesh in a 
discrete manner thereby matching the initial overall distribution. For this task we use 
the texture component method [9,10] which approximates the orientation distribution 
function by a superposition of sets of simple standard functions with individual 
spherical coordinates, orientation density, and scatter in orientation space. 
 

2 Theoretical background 

We use the texture component method for reproducing orientation distributions. This 
mean that the texture is approximated by a superposition of model functions with 
individual height and individual full width, i.e.  
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where g is the orientation, )(gf  is the orientation distribution function (ODF) and F is 

the random texture component. The intensity cI  describes the volume fraction of all 
crystallites belonging to the component c. The ODF is defined by 
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where V is the volume and gVd  the volume of all crystals with an orientation g within 

dg=sin(φ) dφ dϕ1 dϕ2. Normalization requires  
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As a rule texture components require positivity, i.e. 

0andallfor 0)( cc >∈≥ IGggf  
(4) 

where G is the orientation space. For the components we use spherical Gauss-functions 
which are described by 

( )ω~cosexp)( ccc SNgf =  (5)  
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where cN  is a normalization factor and ω~  the orientation distance. Further details on 
texture components are given in [9,10]. The constitutive crystal plasticity model was 
also described in previous works [1-8]. 

3 Mapping texture components in the crystal plasticity finite element 
constitutive model 

One important challenge of polycrystal plasticity simulations lies in identifying an 
efficient way of mapping statistical orientation distributions on the integration points of 
a grid of a crystal plasticity finite element model. This applies in particular when aiming 
at the simulation of larger parts typically containing more than 1010 crystals. The new 
concept we suggest for this task is based on mapping small sets of spherical Gaussian 
texture components on the integration points of a crystal plasticity finite element model.  

 

 

 

Fig. 1: Principle of the texture component crystal plasticity finite element method. 

 

 

Fig. 1 shows the principle of the new approach. After recovering texture components 
from experimental or theoretical data they are mapped onto the integration points of a 
finite element mesh. This is conducted in two steps. First, the discrete preferred 
orientation gc (center orientation) is extracted from each of the texture components and 
assigned in terms of its respective Euler triple (ϕ1, φ, ϕ2), i.e. in the form of a 
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single rotation matrix, onto each integration point (Fig. 2a). In the second step, the 
mapped single center orientations of the texture components are rotated in such a 
fashion that the resulting overall distribution of all rotated orientations reproduces 
exactly the texture function which was originally prescribed in the form of a compact 
texture component (Fig. 2b).  

 

a)  

b)  

 

Fig. 2: Main steps of the spherical decomposition of a texture component. 

 

In other words the orientation scatter individually described by each texture component 
function is mapped onto the finite element by systematically modifying the orientations 
at each point in a way which exactly imitates the scatter prescribed by the texture 
component. This means that the scatter which was originally only given in orientation 
space is now represented by a distribution both, in real space and in orientation space, 
i.e. the initial spherical distribution is transformed into a spherical and lateral 
distribution. It is important in this context, that the use of the Taylor assumption locally 
allows one to map more than one preferred crystallographic orientation on each 
integration point and to assign to them different volume fraction (Fig. 3).  
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Fig. 3: Mapping of a set of texture components on a mesh. 

 

This means that the procedure of mapping and rotating single orientations in accord 
with the initial texture component scatter width is individually conducted for all 
prescribed components as well as for the random background extracted from initial 
experimental or theoretical data by use of the component method. After having mapped 
the texture components by decomposing them into a group of single orientations which 
are arranged in the form of a lateral and spherical distribution on the mesh, the texture 
component concept is no longer required in the further procedure. During the 
subsequent crystal plasticity finite element simulation each individual orientation 
originally pertaining to one of the texture components can undergo individual 
orientation change as in the conventional crystal plasticity methods. This means that the 
texture component method loses its significance during the simulation. In order to avoid 
confusion one should, therefore, underline that the texture component method is used to 
feed textures into finite element simulations on a strict physical and quantitative basis. 
The components as such, however, are in their original form as compact functions not 
tracked during the simulation. On the other hand the mapped orientation points which 
were extracted from the components must not be confused with individual grains, but 
they mark points of an exact distribution function. 
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4 Simulation Results and Experimental Results 

In the following we present some cup drawing applications of the new texture 
component crystal plasticity finite element simulation method, Fig. 4. Simulations of 
cup drawing tests depend on details of the contact between tool and specimen. The 
present cup drawing simulations were conducted under the assumption that the circular 
blank being drawn had an initial radius of 100 mm and an initial thickness of 0.82 mm. 
The interaction between the blank and the blank holder was assumed as a soft contact to 
impose the appropriate clamping pressure in the thickness direction of the element 
between blank, die, and blank holder. The simulations used an exponential soft contact 
function.  

 

 

 

 

Fig. 4: Shape change during drawing of an aluminum sample containing about 1010 
crystals. The gray scale scheme represents the von Mises equivalent stress. 

 

 

Different friction properties (µ=0 to 0.2) were checked and the results showed that 
friction properties had under these contact conditions only little influence on the relative 
ear height. This is an important aspect compared to conventional J2-based continuum 
plasticity simulations which generally reveal stronger dependence on friction. 
Consequently the µ =0 case was selected to save computing time.  
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Fig. 5 shows simulation results for a specimen the texture of which was approximated 
using a volume fraction of 70.97 % of an orientation close to the cube component (Euler 
angles at Gauss maximum: ϕ1=197.87°, φ=6.47°, ϕ2 =245.00°) and the rest 
as random texture background component. The texture recalculated by the component 
method given in terms of {111} and {200} pole figure projections shows good 
agreement with the original experimental data. The pole figures are shown in 
stereographic projections using 1.0, 2.0, 3.0, 4.0, 7.0 contour levels. The predicted 
distribution of the relative earing height reveals a very good correspondence with the 
simulation result.  

 

 
 

Fig. 5: Simulation and experiments for earing in an aluminum sample the texture of 
which was approximated by a volume fraction of 70.97 % of a component close to cube 
(Euler angles at Gauss maximum: ϕ1=197.87°, φ=6.47°, ϕ2 =245.00°) 
and the rest as random texture background component. The recalculated texture shows 
good agreement with the original experimental pole figure. The predicted distribution of 
the relative earing height reveals a very good correspondence with the simulation result. 

 

5 Conclusions 

The study presented a new finite element method which includes and updates 
crystallographic texture during forming simulations. The method is based on feeding 
discrete localized spherical texture components onto the Gauss points of the mesh of a 
finite element simulation which uses a crystal plasticity constitutive law. The method 
was tested and the results were compared to experimental data.  
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