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Abstract—A new work-hardening model for homogeneous and heterogeneous cell-forming alloys is intro-
duced. It distinguishes three internal state variables in terms of three categories of dislocations: mobile dislo-
cations, immobile dislocations in the cell interiors and immobile dislocations in the cell walls. For each
dislocation population an evolution law is derived taking into account dislocation generation, annihilation
and storage by dipole and lock formation. In particular, these rate equations take into account the number of
active glide systems and, thus, introduce texture in the model in addition to the Taylor factor. Microstructure is
represented by the dislocation cell structure as well as second-phase particles, which may undergo changes
by precipitation and Ostwald ripening. Interaction of mobile dislocations with the microstructure is taken
into account through an effective slip length of the mobile dislocations.

For the same set of parameters, the predictions are in excellent agreement with measured stress–strain
curves of both a precipitation-hardened aluminium alloy (Al–4.16 wt% Cu–1.37 wt% Mg, AlCuMg2) and a
precipitation-free model alloy (Al–0.35 wt% Cu–0.25 wt% Mg), the composition of which corresponds to
the matrix of the two-phase alloy. 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd.

Zusammenfassung—Ein neues Verfestigungsmodell fu¨r homogene und heterogene Legierungen wird vorge-
stellt. Es werden drei innere Zustandsvariablen in Form von drei Versetzungsklassen unterschieden, mobile
Versetzungen, immobile Versetzungen im Zellinnern und immobile Versetzungen in den Zellwa¨nden der
Substruktur. Fu¨r die Dichte jeder dieser Versetzungsklassen wird eine Evolutionsgleichung hergeleitet, die
Versetzungsproduktion, -annihilation und -speicherung durch Bildung von Dipolen und seßhaften Verset-
zungsreaktionsprodukten beru¨cksichtigt. Insbesondere wird dabei die Zahl der aktiven Gleitsysteme beru¨ck-
sichtigt, wodurch die Textur zusa¨tzlich zum Taylorfaktor in das Modell einfließt. Die Mikrostruktur wird
durch die Versetzungszellstruktur und Sekunda¨rphasen repra¨sentiert, wobei letztere Ausscheidungs- und
Reifungsprozessen unterworfen sind. Die Wechselwirkung der mobilen Versetzungen mit der Mikrostruktur
wird durch eine effektive freie Wegla¨nge der mobilen Versetzungen beru¨cksichtigt.

Die Modellvorhersagen stimmen bei gleichem Parametersatz sehr gut mit gemessenen Spannungs-
Dehnungs-Kurven einer ausscheidungsha¨rtbaren Aluminiumlegierung (Al–4.16 wt% Cu–1.37 wt% Mg,
AlCuMg2) und einer ausscheidungsfreien Modellegierung (Al–0.35 wt% Cu–0.25 wt% Mg), die der Matrix
des zweiphasigen Werkstoffs entspricht, u¨berein.  2000 Acta Metallurgica Inc. Published by Elsevier
Science Ltd.
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1. INTRODUCTION

For a more precise modelling of forming processes,
e.g., by finite element (FE) codes, accurate prediction
of the strain-hardening behaviour is required. In the
majority of FE codes the hardening behaviour of
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commercial alloys is represented by empirical
relationships, mostly in terms of power laws of strain
and strain rate. Despite their remarkably good fit to
measured stress–strain curves, empirical relations
have no predictive power beyond the measured range
of deformation conditions and material chemistry. In
particular, such models use macroscopic quantities as
state parameters like strain or chemical composition
to describe the mechanical behaviour of a material.
This is fundamentally wrong, however, since the
mechanical properties depend on microstructure
rather than on overall chemistry, and thus are liable
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to change during processing of the material. In fact,
an appropriate representation of the hardening behav-
iour has to be based on microstructural state variables
which are affected by the processing history of the
material. There are micromechanical models that con-
tain explicit internal state variables, like the models
of Robinson and Bartolotta [1] or Chaboche [2],
which have been successfully implemented in finite
element codes. Although such approaches do define
evolutionary equations for the internal state variables,
the respective constants are commonly used as fit
parameters and do not relate to specific mechanisms
of microstructure evolution.

There have been numerous attempts in the past to
predict work-hardening behaviour in terms of dislo-
cation concepts, with limited success, however, with
regard to correctly predicting hardening behaviour in
a wide field of temperature, strain rate and material
chemistry. In the current study, we present a model
based on contemporary understanding of microstruc-
tural evolution and the interaction of dislocations with
microstructural essentials. It will be shown that such a
model gives a reasonable description of the hardening
behaviour and accounts adequately for changes of
material chemistry, in particular for age-hardened
alloys.

For properly testing both parts of the model (i.e.,
the dislocation–dislocation interaction and the dislo-
cation–precipitate interaction) it is essential to separ-
ate the two effects also experimentally. This can be
accomplished by using a single-phase alloy that rep-
resents the matrix material of the corresponding pre-
cipitation-hardened alloy.

The structure of the paper is as follows. First, we
present the three-variable concept and its evolution
laws. Second, the physical parameters are adjusted in
the allowed range to fit the measured stress–strain
curve of the single-phase model alloy. Third, the
same set of parameters is used to model the stress–
strain curve of the precipitation-hardened alloy by
optimizing just the parameters for the description of
precipitation that were not used for simulating the
model alloy as it is free of precipitates.

2. THE THREE-INTERNAL-VARIABLES MODEL

2.1. The concept

We confine our consideration to cell/subgrain-for-
ming metals and alloys, which includes most com-
mercial aluminium alloys, copper and nickel alloys
as well as steels. With progressing strain a cellular
dislocation arrangement develops, composed of cell
walls with high dislocation density (rw) which
enclose cell interiors of low dislocation density (ri).
Dislocation sources inside the material generate
mobile dislocations (rm), which interact with dislo-
cations in the cell interior and dislocations in the cell
walls upon their way through the crystal forced by

the applied stress to accommodate the imposed strain.
This interaction can result in the formation of dislo-
cation dipoles or even annihilation of dislocations.
Dipoles will finally be swept into the dislocation
walls, where they are subject to thermally activated
recovery processes.

Interior dislocation sources will emit dislocation
loops. If we consider the loops to be of square shape
with length 2L, we represent the loop expansion by
the motion of one of its segments, more specifically
an edge dislocation segment. Hence, we have to keep
in mind that a slip lengthL corresponds to a total
dislocation loop length of 8Land a swept area of
(2L)2. While in the real world a loop will percolate
through its slip plane and leave debris behind around
circumvented impenetrable areas, we follow the
classical analogon and assume instead that the con-
sidered dislocation segment will cease to move after
a slip lengthL. This slip length is determined by
obstacles which the mobile dislocations encounter on
their way through the crystal. Such obstacles will be
other dislocations, grain boundaries or precipitates,
each of which has a specific spacingLobst

i . There is
no unique concept to treat the superposition of more
than one obstacle type (hardening mechanism) but
with increasing obstacle density (smaller obstacle
spacing) the slip length must decrease. This can be
accounted for by the assumption

1
L

5 O
i

wi

Lobst
i

(1)

(where wi is a weight factor), since this will adjust
the slip length to be dominated by the shortest spacing
among the competing obstacles.

Of course, this does not account for different
obstacle strength or the local dislocation arrangement
due to the dislocation–obstacle interaction (e.g., geo-
metrically necessary dislocations next to non-deform-
able particles), but it reflects an effective influence of
the ensemble of obstacles.

With regard to recovery processes, we limit our
consideration to the climb of edge dislocations, since
we primilary consider elevated-temperature behaviour
(hot-forming). Cross-slip of screw segments will be
accounted for in an extended version of the model
when, in particular, low-temperature behaviour is of
concern.

All dislocation-hardening models are single-crystal
models in their fundamental set-up. The extension to
polycrystal behaviour is accomplished by introduc-
tion of the Taylor factorM, which relates the macro-
scopically imposed strain de to the total slip on all
active glide systems in the grainsΣdg, and thus the
macroscopic flow stresss to the acting shear stress
t in the slip systems,
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s 5 Mt 5
Odg

de
t. (2)

In polycrystals, besides the Taylor factor, the grain
size is introduced in the effective slip length equation
[equation (1)] to account for the limited crystallite
dimensions.

2.2. The model

2.2.1. Kinetic equation of state. The basic struc-
ture of the three-internal-variables model (3IVM)
consists of a kinetic equation of state and a set of
equations for the structure evolution as do many other
dislocation models of crystal plasticity [3–13]. In
extension of the various statistical one- [3–6] and
two- [7–13] variable models, the 3IVM suggested
here distinguishes three dislocation categories (see
Fig. 1): namely, mobile dislocations (rm), immobile
dislocations in the cell interiors (ri) and immobile dis-
locations in the cell walls (rw). For each class of dis-
locations an evolutionary law of the form

ṙx 5 ṙ 1
x 2ṙ2

x (3)

will be derived below, where the indexx assumes
either m (mobile), i (cell interior) or w (cell wall).
The ṙ 1

x term represents one or more production
terms whileṙ2

x represents the reduction terms.
The kinetic equation of state is used to calculate

the required external stresssext to comply with the

Fig. 1. Schematic drawing of the arrangement of the three dis-
location classes considered in the three-internal-variables
model: mobile dislocations (rm), immobile dislocations in the
cell interiors (ri) and immobile dislocations in the cell walls

(rw).

imposed strain rateė for a given structure and tem-
perature. Within the 3IVM, the Orowan equation

ġ 5 ėM 5 rmbv (4)

will be used as kinetic equation of state. In equation
(4), ġ is the shear rate,M the Taylor factor of the
polycrystalline material for the imposed strain path,
and b the magnitude of the Burgers vector. Use of
the Taylor factor to relate the macroscopic strain rate
to the dislocation behaviour in the crystals implies,
of course, that the dislocation properties are con-
sidered as population average values. The average
dislocation glide velocityv depends on the effective
stressteff 5 t2t̂, wheret is the acting shear stress
and t̂ is the athermal flow stress.

v 5 ln0 expS2
Q

kBTD sinhSteffV
kBTD, (5)

wherel is the jump width—i.e., the mean spacing of
obstacles (the immobile forest dislocations in this
case),n0 is the attack frequency*,Q is the effective
activation energy for dislocation glide, andV is the
activation volume. In commercial alloys the solute
atoms present in the matrix result in higher values for
Q than those used for pure metals. Substituting equ-
ation (5) into equation (4), equation (4) can be solved
for teff.

As the forest dislocation spacing is different in the
cell interior and the cell walls, one obtains two differ-
ent values for the effective stress,teffi

in the cell
interiors andteffw

in the cell walls. In both cases the
passing stress of dislocations has to be added to
derive the necessary resolved shear stress in the cell
interior ti and in the cell wallstw

tx 5 teffx
1 aGb√rx, x 5 i, w (6)

with a being a constant andG being the shear modu-
lus, both of which are mildly temperature-dependent.
The required external stress can then be calculated as
[5, 6]

sext 5 M(fiti 1 fwtw), (7)

whereM is again the Taylor factor for polycrystalline
material, which can be calculated for arbitrary strain
paths as a function of the total strain [15], andfi, fw

* There are different approaches for the attack frequency,
either inversely proportional to the obstacle spacing or inde-
pendent of obstacle spacing. Throughout the paper we
assume the attack frequency to be constant in line with
internal friction results [14].
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are the volume fractions of cell interior and cell
walls, respectively.

2.2.2. Structure evolution equations.While the
kinetic equation of state determines the flow stress for
a given structure, a set of structure evolution laws is
needed to calculate stress–strain curves. In this sec-
tion an evolution law will be derived for each of the
dislocation densities considered in the model based
on the underlying elementary dislocation processes.

The mobile dislocations carry the plastic strain.
They are assumed to penetrate both dislocation walls
and cell interiors. Each mobile dislocation is sup-
posed to travel a mean free pathLeff before it is immo-
bilized or annihilated by one of the processes outlined
below. A relationship between the imposed strain and
the mobile dislocation density is obtained if the
Orowan equation is considered on a larger time scale.
In a time incrementDt, a dislocation densityṙ 1

m Dt
is produced and immobilized after travelling the dis-
tanceLeff. This is associated with a strain increment
De, so

De

Dt
>ė 5 ṙ 1

m bLeff

1
M

. (8)

Leff is determined by the effective grain size*K and
three obstacle spacings: the forest dislocation spacing
in the cell wallsLw, the forest dislocation spacing in
the cell interiorLi, and the spacing of the precipitates
Lp. The calculation ofLp and why it is introduced at
this point will be discussed separately below.

As outlined in Section 2.1, it is difficult to define
an effective obstacle spacing if more than a single
obstacle type interacts with the moving dislocations
with different strength. From the reasons given in
Section 2.1, we arrive at

1
Leff

5
bi

Li

1
bw

Lw

1
1
K

1
1

Lp(t)
, (9)

wherebi andbw are constants, which relate the spac-
ing of the respective dislocations (i, w) to the slip
length, if only this type of dislocation would deter-
mine the slip distanceLeff. We assume the mobile dis-
location density to be reduced by three processes;
namely, by the formation of dislocation dipoles† and
dislocation locks as well as by annihilation. For each
process a probability for the decrease of dislocation
density can be derived, as will be shown below in
detail for the annihilation process.

* The effective grain size is understood to be some con-
stant fraction of the true grain size.

† Note that dislocation dipoles can still be moved [16].
But since the motion of dislocation dipoles does not contrib-
ute to the net strain, they are no longer considered in the
class of mobile dislocations.

Assuming that spontaneousannihilation takes
place when two dislocations with antiparallel Burgers
vectors come closer to each other than a critical dis-
tancedannihil-c, the probability for the event can be cal-
culated according to Fig. 2. During a time increment
dt a mobile dislocation travels a distancev dt. Thus,
spontaneous annihilation will take place if
there is a suitable dislocation within the area
2dannihil-cv dt (shaded area in Fig. 2). The number dp
of mobile dislocations to serve as reaction partner
within this area reads

dp 5 2dannihil - cv dtrm. (10)

However, for an annihilation event to take place, it
is required to find an antiparallel dislocation; i.e., a
dislocation on the same glide system. If the number
of active glide systems is denotedn, and one assumes
an equal density of dislocations on all active glide
systems, this gives rise to a normalization term 1/n
for the probability calculation. Taking into account
the number of active glide systems renders the rate
equations texture-sensitive. Under the assumption of
an equal density of positive and negative dislocations,
an additional term 1/2 must be considered as the two
reacting dislocations have to be of opposite sign. The
reaction rateṗ of an individual moving dislocation
now reads

ṗ 5 2dannihil - cvrm

1
2n

. (11)

The Orowan equation (4) can be used to substitute
vrm to yield

ṗ 5 2dannihil - c

ėM
b

1
2n

. (12)

For calculating the reduction rateṙ2
m of the mobile

dislocation density due to annihilation, one has to take
into account that, with each annihilation event, two

Fig. 2. Geometrical set-up for calculating the annihilation prob-
ability.
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dislocations are eliminated and that the density of
mobile dislocations isrm

ṙ2
m(annihil) 5 2ṗrm 5 2dannihil - c

ėM
b

1
n
rm. (13)

The formation of dislocationlocks can be derived
analogously. For this, the critical distance for the
spontaneous formation of locks becomesdlock instead
of dannihil-c. Moreover, since reaction partners can be
dislocations on all other active glide systems, this
leads to a factor (n21)/ninstead of 1/n. The reduction
rate of the dislocation densityṙ2

m due to the formation
of locks then reads

ṙ2
m(lock) 5 4dlock

ėM
b

n21
n
rm. (14)

The third process taken into account is the forma-
tion of dipoles. Again, the derivation is very similar to
that for annihilation. For a dipole to form the distance
between the two dislocations has to exceed the critical
distance for annihilationdannihil-c but has to be small
enough to have the involved dislocations trap each
other. For this to happen, the acting resolved shear
stress due to the external stress has to be balanced
by the stress field of the individual dislocations. This
implies that the critical spacing for the formation of
dipoles (ddipol) scales inversely with the externally
applied stress. The respective area that has to be con-
sidered amounts to 2(ddipol2dannihil - c)v dt (shaded
area in Fig. 3). The reduction rateṙ2

m due to the for-
mation of dipoles then reads

ṙ2
m(dipol) 5 2(ddipol2dannihil - c)

ėM
b

1
n
rm. (15)

The second category of dislocations considered are
the immobile dislocationsin the cell interiorsri. The
rate of increase of the dislocation density inside the

Fig. 3. Geometrical set-up for calculating the probability for
the formation of dipoles.

cells ṙ 1
i is equal to the decrease of mobile dislo-

cations due to the formation of locks, which was
derived in the previous section [equation (14)]

ṙ 1
i 5 ṙ2

m(lock) 5 4dlock

ėM
b

n21
n
rm. (16)

Since locks cannot glide, the only process to decrease
the immobile dislocation density is annihilation by
dislocation climb. The velocity of climbvclimb is dif-
fusion-controlled

vclimb 5
D

kBT
tA, (17)

where D is the self-diffusion coefficient, andA the
activation area. The rate equation for this process is
then given by

ṙ2
i 5 2vclimbdannihil - g

1
n
r2

i . (18)

The third class of dislocations are the immobile
dislocations in the cell wallsrw. These dislocations
undergo the same processes as those in the cell
interiors, but there is one additional process, which
contributes to the increase of this particular dislo-
cation density. According to Kratochvı´l and Libov-
ický [16], it can be assumed that all dislocation
dipoles finally end up and accumulate in the cell
walls. As dipoles are created in the whole volume,
but stored in the walls only, the rate of increase
amounts to

ṙ 1
w 5

1
fw
ṙ2

m(dipol) 5
1
fw

2(ddipol (19)

2dannihil - c)
ėM
b

1
n
rm.

2.2.3. Precipitates. Commercial alloys are com-
monly heterogeneous—i.e., comprise second phases
in a solid-solution matrix. Dislocation motion in such
systems has to take into account solid solution hard-
ening and precipitation hardening. Shearable precipi-
tates essentially affect the yield stress only, while the
hardening behaviour of the respective alloy is akin to
that of the pure matrix materials or its solid solution.
Non-shearable particles affect plastic flow mainly in
two ways. First, they increase the yield stress by the
Orowan stress

tOROWAN 5
Gb√Vp

r
, (20)

whereVp is the volume fraction of precipitates andr



4186 ROTERSet al.: WORK HARDENING

the average precipitate radius. Second, they drasti-
cally increase the hardening rate due to the plastic
zone (geometrically necessary dislocations) in the
wake of the particles. The dislocation concept intro-
duced here does not lend itself easily to accommodate
these physical processes, but they can be accounted
for qualitatively by the basic equations derived so far.
A higher yield stress can be represented by a larger
glide resistance as expressed by a larger activation
energyQ for glide [equation (5)]. The increased hard-
ening rate is taken care of by modification of the slip
length, i.e., by incorporating the precipitate spacing

Lp 5
r

√Vp

(21)

in the effective slip length as already accounted for
in equation (9). In particular, for elevated-temperature
deformation,Lp may depend on time, since precipi-
tation and Ostwald ripening may occur during defor-
mation. We follow a concept proposed by Estrin and
co-workers [17] to account for this complication. For
precipitate coarsening the change of precipitate radius
with time is given by

r 5 c(t 1 t0)1/k, (22)

with c the kinetic constant,t the time,t0 the time prior
to the test, andk 5 3 for ideal Ostwald ripening
according to the Lifshitz–Slyozov–Wagner theory
(LSW theory) [18, 19].

If concurrent precipitation occurs the precipitate
volume fraction will change, which can be described
by an Avrami-type equation [20]

Vp 5 H12expF2St 1 t0
t̂ DmGJV` (23)

with an Avrami exponentm and the volume fraction
V` of precipitates in thermodynamic equilibrium. The
characteristic time is

t̂ 5
A0

D
5

A0

D0

expSHm

kBTD (24)

with A0 a constant,D the respective diffusion coef-
ficient comprising the pre-exponential termD0 and
the activation enthalpyHm. The diffusion coefficients
are taken for the main alloy components [20].

It is noted that this concept unlawfully mixes two
kinetics, namely precipitation and ripening kinetics.
Since both processes operate on a different time scale,
however, the error introduced is small and mitigated
by using effective kinetic constants, e.g., an effective
k in equation (22).

Fig. 4. Modelled and measured stress–strain curves forė 5
131023 s21 and T 5 350°C. Single-phase model alloy (Al–

0.35 wt% Cu–0.25 wt% Mg).

3. APPLICATIONS

3.1. Experimental

In order to validate the model, hot compression
tests were performed atT 5 350°C with a strain rate
of ė 5 1023 s21 on AlCuMg2 (Al–4.16 wt% Cu–1.37
wt% Mg). The experimental stress–strain curve of the
precipitation-hardened aluminium alloy exhibits a
characteristic stress peak (solid line in Fig. 5). This
maximum is caused by the ripening of precipitates.
In order to check this assumption a model alloy (Al–
0.35 wt% Cu–0.25 wt% Mg) with reduced copper and
magnesium content was also tested. AtT 5 350°C
the model alloy is a homogeneous solid solution with
the same composition as the matrix of the two-phase
alloy and, thus, can be used to study the properties
of the matrix material of the two-phase alloy. It can
be seen from Fig. 4 that the stress–strain curve of the
model alloy shows a behaviour typical of hardening
superimposed by dynamic recovery.

3.2. Single-phase model alloy

In a first step the 3IVM was adapted to the single-
phase model alloy. Since the kinetic equation as well
as the structure evolution equations contain a variety

Fig. 5. Modelled and measured stress–strain curves forė 5
131023 s21 and T 5 350°C. Precipitation-hardened alu-
minium alloy (Al–4.16 wt% Cu–1.37 wt% Mg, AlCuMg2).
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of physical constants that are not known exactly but
in their order of magnitude, they were set to reason-
able values before the fitting process. All material
constants were chosen for pure aluminium. The vol-
ume fractions were set tofi 5 0.9 andfw 5 0.1. In
accordance with the studies of Essman and Mughrabi
[21] and Tippeltet al. [22], the critical distance for
annihilation in the direction of climb was set to
dannihil - c 5 1 nm. As dislocations have a higher
mobility for glide than for climb, bothdannihil-g and
dlock were set to 5 nm. The attack frequency was
chosen asf 5 7.83109 Hz [14]. The initial value of
all three dislocation densities was 1010 m22. As com-
pression tests were modelled, an average Taylor fac-
tor of M 5 3.06 was used for all simulations. Texture
change during deformation was not taken into
account.

The remaining parameters were optimized to obtain
the lowest possible value for the mean square devi-
ation of measured and simulated stress–strain curves.
For the fitting process the experimental data were
used only up to a strain ofe 5 0.7, because at larger
strains the influence of friction became dominant,
which was not accounted for in the simulation. It can
be seen from Fig. 4 that the simulated stress–strain
curve (dashed line in Fig. 4), which is predicted by
using the 3IVM without consideration of precipi-
tation, is in very good accord with the experimental
curve (solid line). The mean deviation amounts to less
than 3%.

The optimization process yielded the following
values: effective grain sizeK 5 10 µm, which is 10%
less than the average grain size; number of active
glide systemsn 5 3, this value may seem too low as
five active glide systems are necessary for compatible
deformation, however Kocks and Canova [23]
showed that this is true only in the direct vicinity of
the grain boundaries and that the number of active
glide systems is lower in most of the crystal volume;
activation energy for dislocation glideQ 5 1.96 eV,
looking at equation (5) this value could be expected
to be much lower as the activation energy for forest
cutting is of the orderGb3/4π. But it has to be taken
into account that the model alloy is not a pure metal
and the solute atoms result in an increase of the yield
stress which can be represented by higher values for
Q (see Section 2.2.3). Secondly, many of the mobile
dislocations are jogged rather than ideal straight dislo-
cations. Therefore, the activation energy for the
movement of jogs has to be taken into account as
well, andQ actually is an effective activation energy
for dislocation glide which is impossible to predict
without making additional assumptions on the exact
dislocation configuration.

3.3. AlCuMg2

In a second step the stress–strain curve for the pre-
cipitation-hardened alloy was modelled using the
same set of parameters with additional consideration
of precipitation kinetics.

Fig. 6. Modelled dislocation densities forė 5 131023 s21 and
T 5 350° C. Single-phase model alloy (Al–0.35 wt% Cu–0.25

wt% Mg).

The diffusional data for precipitation were taken as
that of copper in aluminium. The equilibrium volume
fraction of precipitatesV` amounts to about 0.06.
Optimizing the other parameters of equations (22)–
(24) for the precipitation and coarsening kinetics
(A0 5 1.1310214, m 5 1.4, c 5 6.031029, k 5 2.3,
t0 5 0 s) leads to a curve with a well-defined stress
maximum (Fig. 5). A comparison of the resulting
curve with the experimental data for AlCuMg2 shows
again very good agreement with a mean deviation of
about 7%.

3.4. Dislocation densities

Figures 6 and 7 illustrate the evolution of the dislo-
cation densities with strain. The shape of the curves
for the total dislocation densities,rges5 firi 1
fwrw 1 rm, is in both cases quite similar to the shape

of the stress–strain curve. In the case of the single-
phase alloy all dislocation densities reach their satu-
ration level after a strain of about 0.25, while in the
two-phase alloy due to precipitate ripening all dislo-
cation densities reveal a maximum, but do not attain
a steady-state value within the tested strain regime.
In general, dislocation densities are about three to five
times higher for the two-phase alloy than for the sin-

Fig. 7. Modelled dislocation densities forė 5 131023 s21 and
T 5 350° C. Precipitation-hardened aluminium alloy (Al–4.16

wt% Cu–1.37 wt% Mg, AlCuMg2).
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gle-phase alloy. Even though the dislocation density
in the cell interiors is in both cases significantly lower
than that in the cell walls, the cell interiors do sig-
nificantly contribute to the total dislocations density
and, therefore, to the flow stress as their volume frac-
tion is 90%. In the single-phase alloy the mobile dis-
location density amounts to only 7% of the total dislo-
cation density, while in the two-phase alloy almost
30% of the total dislocation density are mobile dislo-
cations.

3.5. Implementation in FE codes

The model presented readily lends itself to
implementation in FE codes. Owing to the formation
of flow stress development in terms of differential
microstructural evolution equations, the spatial and
temporal changes of the flow stress can be used to
update the properties of any specific finite element.
Of course, the strain used in the model corresponds
to the von Mises equivalent strain as conventionally
output from FE codes. A particular advantage of the
hardening model is the explicit use of the number of
activated slip systems for dynamic recovery to
account for texture effects besides the macroscopic
Taylor factor. This is particularly useful for advanced
FE codes based on crystal plasticity.

In fact, interactive work hardening and FE compu-
tations of the rolling process have been conducted and
reported elsewhere [24]. From the results it is obvious
that the predictions of stress distribution in the rolling
gap from this model are quite different from FE com-
putations that utilize empirical power-law relations
for the flow stress. First estimates of rolling forces
and material temperature at roll exit confirm an
improved prediction by the microstructural 3IVM.

The need for consideration of internal state vari-
ables to improve FE codes has also stimulated the
development of micromechanical models like the
Robinson and Bartolotta [1] or Chaboche [2] model,
which consider the evolution of an internal state vari-
able as well, e.g., in terms of an internal stress. Micro-
structural models like the approach presented here
and micromechanical models may give numerically
equivalent results for the prediction of flow stress.
However, microstructural models will eventually be
superior due to the explicit use of crystal plasticity
mechanisms and, therefore, a physical reasoning and
definition of bounds for the adjustable parameters.
This becomes particularly significant upon change of
material chemistry.

The evolution equation for the considered dislo-
cation densities are defined in differential form and,
therefore, are genuine for computation of non-station-
ary processes, e.g., change of strain path or tempera-
ture. In contrast, the temporal evolution of precipi-
tation is presented only in an integral form in Section
2.2.3 [equations (22) and (23)] which precludes treat-
ment of strong temperature changes. To account for
such processing conditions incremental growth of
precipitates has to be summed up for each element

in all consecutive time steps. An explicit differential
formulation is given elsewhere [25].

4. CONCLUSION

A new microstructural strain-hardening model of
polycrystals is introduced based on three internal state
variables. Three dislocation populations are dis-
tinguished: mobile dislocations and immobile dislo-
cations both in cell walls and the cell interior. Precipi-
tation and ripening of second-phase particles are
considered—for isothermal conditions—via their
influence on the mean free path of the mobile dislo-
cations. By comparison of the behaviour of a two-
phase commercial alloy with a precipitate-free model
alloy, it was shown that the model is capable of
adequately predicting the stress–strain curves of two-
phase aluminium alloys at elevated temperatures. The
model lends itself as a material constitutive law in
FEM simulations. As the number of active slip sys-
tems is explicitly used in the evolution laws for the
dislocation densities, the model is particularly suited
for crystal plasticity FE simulations.
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