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Abstract

The regulation of intragenic miRNAs by their own intronic promoters is one of the open problems of miRNA
biogenesis. Here, we describe PROmiRNA, a new approach for miRNA promoter annotation based on a semi-
supervised statistical model trained on deepCAGE data and sequence features. We validate our results with existing
annotation, PolII occupancy data and read coverage from RNA-seq data. Compared to previous methods
PROmiRNA increases the detection rate of intronic promoters by 30%, allowing us to perform a large-scale analysis
of their genomic features, as well as elucidate their contribution to tissue-specific regulation. PROmiRNA can be
downloaded from http://promirna.molgen.mpg.de.
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Background
miRNAs are non-coding RNAs, approximately 22
nucleotides long, which have been shown to be crucial
post-transcriptional regulators of gene expression in
metazoans and plants, targeting up to 50% of the protein-
coding genes [1,2]. Most of the research over the past
decade has concentrated on elucidating the mechanisms
of miRNA-mediated post-transcriptional regulation in
cancer and other diseases, and on the potential clinical
applications of this knowledge [1,3].
However, it is still poorly understood how miRNAs

themselves are regulated. This is partly due to the diffi-
culty of predicting promoters from short conserved
sequence features without producing a high number of
false positives [1,3-5], and partly due to the heterogene-
ity of the miRNA biogenesis pathways. Although in the
past few years several promoter prediction methods
have achieved very good performance when predicting
gene promoters using a variety of machine learning
techniques [6-8], there has been little progress in the
field of miRNA promoters. miRNAs, whether they are

located in intergenic regions or embedded within
introns of protein-coding genes, are in most cases gen-
erated from long primary transcripts (pri-miRNAs).
These transcripts, which can be up to several kilobases
long, are then rapidly cleaved in the nucleus by the
enzyme Drosha [3]. This presents a technical barrier for
large-scale identification of miRNA transcription start
sites (TSSs), as they can be located very far away from the
mature miRNA and therefore cannot be easily inferred
from the genomic location of the mature miRNA. The
difficulty of experimentally detecting and consequently
annotating miRNA promoters has limited our ability to
identify the regulatory circuits that control miRNA exp-
ression, and has therefore prevented a comprehensive
analysis of intronic miRNA promoter characteristics and
usage easily inferred from the genomic location of the
mature miRNA.
A few studies indicate that intronic miRNAs (that is

miRNAs located inside the introns of other genes) are not
necessarily co-transcribed with their host gene, which sug-
gests that they might have their own independent intronic
promoters [9,10]. The role of intronic miRNA promoters
is largely unknown and this adds another layer of com-
plexity to the transcriptional regulation of miRNAs. In
addition, recent studies indicate that several alternative
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miRNA biogenesis pathways exist, for instance the one
giving rise to splicing-derived miRNAs, called mirtrons
[11]. Despite this complexity, miRNA TSS identification
is a crucial step in understanding miRNA regulation,
locating the core promoters, and searching for putative
transcription factor binding sites (TFBSs).
Existing miRNA promoter recognition methods can

be organized into two categories. Chromatin signature-
based methods use histone mark profiles, such as
H3K4me3 [12,13] or nucleosome positioning patterns
[9] in specific cell lines to annotate miRNA promoters
de novo. Supervised methods trained on protein-coding
gene features exploit the evidence that miRNA promoters
present the typical characteristics of promoters controlled
by RNA Polymerase II [14] to build classification models
from protein-coding gene promoters and apply them to
distinguish miRNA promoters from non-promoters
[10,15,16].
Although histone mark-based methods can identify up

to 80% of miRNA promoters, they have been designed
for specific cell lines [12,13]. Additionally, due to the
nature of ChIP-seq experiments and the nucleosomes
themselves, histone mark profiles provide a broader view
of gene promoters, rather than a direct readout of pro-
moter activity and usage. As a consequence, chromatin-
based methods represent a valuable strategy for detecting
intergenic and host gene miRNA promoters, but they
might lack the sensitivity required to identify intronic
promoters. Concerning the second category of methods,
we believe that, although miRNA and protein-coding
gene promoters show several similarities, this is mainly
true for intergenic miRNAs, as too little is still known
about intronic miRNA promoters. For this reason, a
supervised method trained on protein-coding genes
might not be the optimal choice for identifying miRNA
promoters, especially intronic ones. On the other hand,
given the limited number of known miRNA TSSs, it does
not seem feasible to build a supervised model using
miRNA promoter annotation only.
In this study we present a novel methodology for

annotating miRNA promoters called PROmiRNA. Our
model is a semi-supervised classification mixture model
and uses the deepCAGE data from several tissues, which
was generated by the FANTOM4 project [17], together
with sequence features, to distinguish putative miRNA
promoters from background noise. We apply PRO-
miRNA to the human genome, to annotate all alternative
miRNA promoters and analyze their regulatory features,
especially those that characterize intronic promoters.
The semi-supervised approach ensures that a minimal
number of initial assumptions are made about the nature
of miRNA promoters and their similarities to protein-
coding gene promoters, while the use of several

deepCAGE libraries ensures a high coverage of the
method, allowing us to identify at least one TSS for
about 82% of the miRNAs annotated in miRBase [18].
We compare PROmiRNA to the methods from Barski et
al. [12] and Ozsolak et al. [9] and we find that up to 82%
of the miRNA promoters annotated by these two studies
are also discovered by PROmiRNA. In addition, PRO-
miRNA returns all possible alternative promoters for
each miRNA, which are mostly missed by the other two
methods. We also found that up to 62% of annotated
intragenic miRNAs have their own promoters, indepen-
dent of the host gene promoter, compared to 30% to
35% reported from previous studies [9,10]. In the
absence of a large set of known miRNA TSSs against
which to validate our novel promoters, we compute an
indirect measure of the performance of our method
based on the overlap of the identified promoters with
PolII ChIP-seq data from the ENCODE project. We
obtain a precision of 83% and 76% for intergenic and
intronic miRNA promoters, respectively. We also find
that up to 85% of our newly annotated promoters are
significantly enriched in read coverage from RNA-seq
experiment data, evidence that supports our predictions.
Additionally, we validate the promoters identified by
our model with a significant number of existing anno-
tated miRNA TSSs and we are able to experimentally
validate the identified promoter for two miRNAs, one
of which is a novel intronic promoter for miR-130a
which has not previously been described.
Recent studies of mammalian promoters suggest that

alternative promoters of non-coding transcripts are
often located inside introns and can be associated with
various disorders including cancer [19]. This might also
be the case for intronic miRNA promoters and raises
important questions about their functional role, their
contribution to miRNA expression versus host gene
promoters and their evolution. To the best of our
knowledge, these questions remain unanswered and the
characteristics of intronic promoters, as well as their
mechanisms of regulation and evolution have not been
systematically investigated.
In this study we attempt to answer these questions

and find that intronic promoters convey an additional
degree of freedom over intragenic miRNA transcrip-
tional regulation, allowing miRNA expression levels to
be modulated in a tissue- and condition-specific manner.
We discuss the regulatory features of intronic miRNA
promoters, compared to other miRNA promoter classes,
and we propose for the first time a model for intronic
promoter usage and evolution. PROmiRNA can be used
to identify and study miRNA promoters in any other spe-
cies where either deepCAGE or TSS-seq data are available
and can be applied to already annotated mature miRNAs,
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as well as newly discovered miRNA from sequencing
experiments. The source code for PROmiRNA, as well the
original data used in this study are free for download [20].

Results
Identification of candidate miRNA promoter regions and
statistical modeling
In this study we propose a semi-supervised mixture
model for miRNA promoter recognition, which uses the
deepCAGE data generated within the FANTOM4 Con-
sortium as well as sequence features in order to separate
putative promoters from background noise.
Genomic regions enriched in cap analysis of gene

expression (CAGE) tags presumably correspond to tran-
script TSSs, therefore our algorithm starts with scanning
the genome in the regions up to 50 kb upstream of an
annotated miRNA precursor, searching for clusters of
mapped CAGE tags (Figure 1). Such regions represent
an initial set of candidate miRNA promoters. A prob-
abilistic model is trained on a data set composed of tag
counts in the candidate human miRNA promoters (the
unlabeled set) and in randomly selected intergenic and
intronic background regions (the negative set), as
described in Materials and methods. When plotting the
read count distributions from the pooled FANTOM4
libraries, one observes an approximately bimodal behavior
(see Figure S3a in Additional file 1) and it is tempting to
assume that the distribution of the data is represented by
a mixture model of putative promoters versus background
noise. However, while some miRNA promoters are
expressed at higher levels, that is a high number of read
counts, some lowly expressed regions might fall into the
distribution of the noise. For this reason, in addition to tag
counts, other promoter features, such as CpG content,
conservation score, TATA box affinity and mature
miRNA proximity, are introduced into the model through
an informative prior probability density function (see
Materials and methods).
The optimal separation between the promoter class and

the background noise class is learned directly from the
data described above, including both CAGE tags and pro-
moter features in the learning process. After training, the
classifier is able to give the posterior probability that a
given region is a miRNA promoter. The regions with a
posterior probability higher than 0.5 (that is, they are
more likely to be a promoter than not), are labeled as such
and assigned to the miRNAs downstream within 50 kb.
The application of our algorithm to the human genome

allowed us to generate a reliable set of miRNA promoters.
This set was used to perform a detailed analysis of promo-
ter features in different miRNA classes and to interpret
them in terms of promoter usage, miRNA expression and
miRNA evolution.

High-throughput miRNA promoter discovery
Annotated human miRNAs were extracted from miR-
Base v18. Table 1 gives the number of identified promo-
ters and the number of miRNAs that could be assigned
to at least one promoter for five promoter categories:
all, intergenic, host gene, intronic and hybrid promoters.
The miRNAs were classified as intergenic (if they were
located in regions between annotated genes) or intra-
genic (if they overlapped with exons or introns of other
genes on the same strand). Genes that contained a
miRNA inside one of their introns were referred to as
host genes. Hybrid promoters are defined as those pro-
moters which fall in intergenic regions upstream of
intragenic miRNAs and could not be assigned unam-
biguously to the miRNA. From 1,506 human miRNAs
contained in miRBase, 465 were classified as intergenic
and 1,041 as intragenic. After running PROmiRNA on
these miRNAs, 1,228 (82.6%) could be associated with at
least one identified TSS (see Table 1). A promoter could
not be identified for the remaining 218 miRNAs
(17.4%). This could be due to several reasons: the
miRNA might not be expressed in the analyzed cell
lines or tissues, the miRNA might be transcribed by
RNA Polymerase III and therefore not detectable by
means of deepCAGE, the miRNA-associated promoter
could be located further than 50 kb upstream of the
annotated precursor and therefore not detectable by our
algorithm or the miRNA-associated primary transcript
might be degraded too quickly to be detected by cap
trapping. For about half of the miRNAs without identi-
fied promoters we found promoter-like regions
upstream of the mature miRNA, which we referred to
as hybrid because they could not be unambiguously
assigned to miRNAs. We classified our identified TSSs
as intergenic (if they belonged to intergenic miRNAs),
intronic (if they were located inside annotated introns of
genes hosting intragenic miRNA) or as a host gene (if
they overlapped with a genomic region of 200 bp
around the annotated host gene’s TSS). For approxi-
mately 80% of the intragenic miRNAs we identified the
promoter of the associated host gene, their own intronic
promoter or both. In total, 60.5% of the intragenic miR-
NAs could be associated with an independent intronic
promoter and 60% to their host gene promoter (see
Table 1).
We identified a promoter for 389 out of the 465 inter-

genic miRNAs (83.7%, Table 1). The algorithm assigned
on average 4.7 alternative TSSs per miRNA, and 81% of
the miRNAs had more than one identified TSS (see
Table 1). This evidence indicates that alternative promo-
ters are a common mechanism for creating diversity in
miRNA transcriptional regulation, as previously observed
for protein-coding genes [21].
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Figure 1 Workflow of the algorithm and analysis. (a) DeepCAGE data from 33 FANTOM4 RNA libraries are used to define transcription start
site (TSS) clusters of overlapping tags in regions up to 50 kb upstream of annotated precursor miRNAs (pre-miRNAs). (b) TSS clusters
overlapping with the gene starts of other annotated Ensembl transcripts are filtered out, as well as tags spanning exonic regions. (c) Sequence
features, such as CpG content, conservation score and TATA box affinity, are calculated in both 1,000 bp long regions around putative TSSs and
in random intergenic regions, and, together with read count distributions, are used to model the mixture of the two promoter and non-
promoter classes. (d) Those regions whose probability of being a promoter is higher than the probability of being noise are used to analyze
general characteristics of miRNA promoters, such as enrichment of specific transcription factor binding sites. bp, base pair; kb, kilobase; pre-
miRNA, precursor miRNA; TSS, transcription start site.
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A minor sub-class of intragenic miRNAs exists, which
includes exonic miRNAs, that is miRNAs that reside in
exons of transcripts, mainly non-coding transcripts [22].
The number of exonic miRNAs annotated in mirBase is
small (89) compared to the majority of intronic miRNAs.
We analyzed the exonic miRNAs separately and observed
that most of them (62%) do not have a predicted intronic
promoter, indicating that they might be products of spli-
cing from host-gene transcripts. For the remaining 34
exonic miRNAs the predicted intronic promoters most
likely correspond to alternative TSSs of the non-coding
transcripts that contain them and they might drive the
expression of such miRNAs independently.
Likewise, several hundred novel mirtrons, that is

spliced intronic miRNAs, have been recently discovered
in human and mouse [11]. Out of 51 mirtron-like miR-
NAs, re-annotated in mirBase from Ladewig et al., 34 are
predicted also to have independent intronic promoters,
most in a different intron than the one containing the
miRNA. Transcription of intronic miRNAs driven by a
promoter located in another intron of the same transcript
has been postulated in the past and also experimentally
validated in a few cases [9]. The evidence that mirtrons
can also have an independent promoter points to the
possibility of a competing process, or more generally
cross-talk, between the splicesome and the miRNA pro-
cessing complex [23]. However, only experimental vali-
dation could confirm whether this is actually the case.
The complete list of all identified miRNA promoters,

together with their genomic coordinates, features and
prior and posterior probabilities, is provided in Additional
file 2.

Comparison with existing annotation and other miRNA
promoter recognition methods
miRNAs TSSs annotated in the literature
To assess the reliability of our method we checked
whether or not we were able to re-annotate known
miRNA TSSs that have been described in the scientific
literature, as well as miRNA TSSs that were recognized
using other methods. Our method could correctly iden-
tify the transcription start site of miR-122, located 4,800
bp upstream of the precursor miRNA (pre-miRNA). This
TSS was validated by Chien et al. with the presence of
ESTs in the TSS proximity, starting at the promoter and
spanning the mature miRNA region, and experimentally
proven using a promoter reporter assay [16]. We also

detected the conserved promoter of miR-146a in the lung
and monocytic cell line RNA libraries, located about 17
kb upstream of the precursor miRNA, as well as the miR-
146b promoter, 40 kb away from its miRNA precursor
[24]. We could correctly identify the promoter of miR-
155, mainly in the RNA libraries from the monocytic and
immune system cell lines, as coincident with the promo-
ter of its host gene [25]. We could also correctly identify
the high-CpG promoter of the intergenic miR-34a, about
30 kb upstream of the precursor miRNA [26], and the
conserved TATA-box main promoter of miR-21 [27], as
well as closer alternative promoters, like the one located
about 2,000 bp upstream of the precursor, already discov-
ered by Ozsolak et al. in a nucleosome-depleted region
[9]. Finally, we were able to detect the TSS of miR-663a,
about 180 bp upstream of the miRNA precursor, and the
TSS of miR-17, 2,220 bp upstream of the precursor, both
annotated in Ensembl. We could not verify the transcrip-
tion start region of miR-127 located a few hundred base
pairs upstream of the pre-miRNA, which was found to be
induced in a urinary bladder carcinoma cell line and in
fibroblasts, independently of the other members of the
same miRNA cluster (miR-136, miR-431, miR-432 and
miR-433) [28]. This is possibly due to the fact that the
cell lines investigated in [28] were not present in the
RNA libraries used for this study.
Comparison with histone mark-based methods
We chose two recent miRNA promoter annotation
methods for comparison with our method, the one from
Barski et al., which uses histone modification data, such
as H3K4me3 and H2A.Z profiles [12], and the other one
from Ozsolak et al., which mainly uses chromatin struc-
ture to define high-scoring putative miRNA promoters in
nucleosome-free regions [9]. This choice is motivated by
two reasons: first, these two approaches are de novo
miRNA promoter discovery methods; second, the studies
from Zhou et al. [15] and Chien et al. [16], based on
supervised classification models, either intentionally
exclude intronic miRNAs from their analysis or do not
report a list of intronic miRNA promoters, preventing a
comparison for this specific promoter class.
The number of miRNAs that could be assigned to at

least one promoter is reported in Table 2 for PRO-
miRNA and the other two methods, the one from Barski
et al. [12] and the one from Ozsolak et al. [9]. miRNAs
promoters fall into four categories: all promoters, inter-
genic, intragenic and intronic promoters. Intragenic

Table 1 Results from PROmiRNA on human miRNAs

Category All Intergenic Host gene Intronic Hybrid

Number of promoters 7,244 1,386 1,815 2,037 2,006

Percentage of miRNAs with at least one promoter 82.6% 83.7% 60% 60.5% -

Percentage of miRNAs with more than one promoter 84% 80% 69% 74% -
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promoters are promoters assigned to intragenic miRNAs
and include both host gene promoters and intronic
promoters.
A strict comparison with the results from these two

studies is hard due to the fact that they used specific
cell lines, CD4+ cells in [12] and MCF7 and MALME in
[9], respectively, to investigate miRNA promoters, and
they could assign a promoter to at most 48% of the ana-
lyzed miRNAs (probably corresponding to miRNAs
actively transcribed in those cells). In contrast, we used
33 RNA libraries, corresponding to different tissues and
cell lines, which ensures a higher coverage. In addition,
the miRBase annotation changes quickly as more and
more miRNAs are discovered: while Barski and Ozsolak
analyzed 541 and 370 miRNAs, respectively, we annotated
TSSs for about 1,500 known miRNAs. Nonetheless, a
rough comparison was possible: we checked for overlaps
between genomic regions within 500 bp of our identified
TSSs and the promoter regions reported by the other two
methods.
In the comparison with Barski’s method [12], we

found overlapping annotations for 110 out of 177 (62%)
of their promoters. Of the remaining 67 miRNA promoters
that were recognized by Barski but not by our method, we
investigated the distances of the promoters from their pre-
miRNAs and found that 57 of their promoters were located
more than 50 kb upstream of the annotated pre-miRNA, in
regions that were not scanned by our method. When we
extended our algorithm to scan genomic regions beyond
50 kb we found an overlap for 35 more TSSs, for a total of
82% common TSSs between our method and Barski’s
method. Similarly, in the comparison with Ozsolak’s
method [9], we found that our annotated TSSs overlapped
153 out of 188 (81.4%) of the TSSs found by Ozsolak.
On top of identifying most of the miRNA promoters

identified by the other methods, PROmiRNA also
returned all possible alternative promoters for a certain
miRNA, including the intronic promoters. We divided
the annotated promoters from the previous two methods
into intronic and host gene promoters, based on miRBase
v18 and Ensembl v66 annotation and observed that PRO-
miRNA had a substantially increased detection rate for
intronic miRNA promoters (see Table 2): it could assign
an intronic promoter to about 62% of the intragenic miR-
NAs, versus 14% in [12] and 35% in [9]. This sensitivity
for intronic miRNA promoters is, to the best of our

knowledge, unique to our method and has allowed us to
study the properties of intronic promoters for the first
time.
Ability of PROmiRNA to identify miRNA promoters at high
resolution
To get a better understanding of how our model
behaves on both intergenic and intragenic regions we
performed several controls. To prove that PROmiRNA is
effective in predicting highly expressed intronic promoters
versus additional intronic regions, we extracted a held-out
test set of 5,000 intronic regions upstream of annotated
miRNAs, where CAGE tags were present. In the absence
of true labels for intronic promoters, highly expressed tag
regions have a higher probability of representing true pro-
moters. We therefore defined highly expressed CAGE tag
regions as those tag clusters with a quantile-normalized
number of tags of at least 3.0. Figure 2a shows the fraction
of highly expressed CAGE-tag intronic regions versus
the fraction of additional predicted intronic regions for
probability cutoffs ranging from 0.05 to 0.95. We observe
a significantly higher proportion of highly expressed tag
regions compared to lowly expressed tag regions (3.3 fold
change) at a probability cutoff of 0.5, a level where 88%
of the highly expressed tag regions are retrieved by
PROmiRNA. This fold change increases further at higher
probability thresholds.
Figure 2a indicates that PROmiRNA picks up high-tag

miRNA intronic promoters at high resolution, but we
also observe a considerable number of low tag predictions
at all the probability cutoffs. These additional regions may
correspond, to a large extent, to lowly expressed miRNA
promoters that PROmiRNA predicts when the prior prob-
ability has a stronger impact on the final probability than
the tag counts.
To demonstrate the ability of PROmiRNA to correctly

recover intronic promoters, we extracted two sets of
regions: an upstream set containing intronic regions
upstream of each intronic miRNA and a downstream set
containing intronic regions downstream of each intronic
miRNA. For simplicity, we limited this analysis only to
the miRNA-containing introns, although transcription of
intronic miRNAs from TSSs located in different introns
has also been observed. We ran PROmiRNA on both the
upstream and downstream regions and computed the
percentage of bases covered by predictions in both sets at
different probability cutoffs. As shown in Figure 2b, at a

Table 2 Comparison of PROmiRNA with other methods

Percentage of miRNAs with a promoter PROmiRNA Barski et al. Ozsolak et al.

All 82.6% (1,228/1,506) 43% (233/541) 48% (177/370)

Intergenic 83.7% (389/465) 28% (50/182) 38.4% (40/104)

Intragenic 80% (831/1,041) 50% (172/343) 65.2% (137/210)

Intronic 60.5% (630/1,041) 14% (47/343) 31% (43/210)
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Figure 2 Performance of PROmiRNA on intronic and intergenic data set. (a) The fraction of predicted highly expressed CAGE tag clusters
versus lowly expressed tag clusters in intronic miRNA regions at varying probability cutoffs. (b) The percentage of PROmiRNA predictions in
intronic regions upstream of annotated miRNAs (upstream regions) versus the percentage of predictions in intronic regions downstream of
miRNAs (downstream regions) at different probability cutoffs. (c) The percentage of bases covered by predictions in random intronic regions
versus the probability threshold for both PROmiRNA and S-Peaker. (d) The percentage of bases covered by predictions in random intergenic
regions versus the probability threshold for both PROmiRNA and S-Peaker. (e) The percentage of Barski miRNA promoters (positive regions)
versus the percentage of negative regions hit by predictions at different probability cutoffs for both PROmiRNA and S-Peaker.
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probability threshold of 0.5 the percentage of bases cov-
ered by PROmiRNA predictions is significantly higher
(about a threefold change) in the upstream set than in
the downstream set. Although we cannot exclude the
possibility that a fraction of the predicted TSSs down-
stream of an intronic miRNA correspond to true tran-
script starts, the enrichment in predicted TSSs upstream
of intronic miRNAs supports our hypothesis that these
miRNAs are transcribed from their own intronic
promoters.
To assess how PROmiRNA behaves on randomly

selected regions we computed the percentage of bases
covered by PROmiRNA predictions on a set of 5,000
random intergenic regions as well a set of 5,000 random
intronic regions, all of which did not contain a miRNA,
at different probability cutoffs. We compared our results
to the predictions obtained by scanning the same sets of
regions with S-Peaker [8], a highly precise TSS prediction
method for gene promoters in general, which is based on
enrichment of known transcription factor signals. The
comparison between the two tools is not straightforward
because S-Peaker returns a per-base probability for each
input region while PROmiRNA outputs a global posterior
probability for the same region. Nevertheless, the fraction
of bases covered by predictions should represent a fair
measure of comparison. Figures 2c and 2d show that for
a probability cutoff equal to or higher than 0.5 the
fraction of bases covered by PROmiRNA predictions is
very low and highly comparable to the fraction obtained
with S-Peaker. This indicates that the predictions in both
random intergenic and intronic regions may include
some real TSSs that have not yet been annotated.
Finally, we investigated the ability of PROmiRNA to

retrieve the miRNA promoter regions from Barski et al.
[12] at high recall. To do this, from the 541 human
miRNA promoter regions in Barski we retained a set of
114 unique regions after removing the predicted regions
located more than 50 kb upstream of the mature
miRNA and collapsing the promoter annotation for
miRNAs in the same cluster. In addition, we kept only
the most upstream miRNA of each cluster. These
selected regions mainly correspond to intergenic
miRNA promoter regions, as shown in the previous
paragraph. We defined a set of positive regions - the
114 annotated miRNA promoters from Barski - and a
set of negative regions comprising those sequences
between the miRNA promoter and the miRNA location
itself. We scanned both positive and negative regions
with PROmiRNA and compared the percentage of posi-
tive regions versus the percentage of negative regions
hit by our predictions at different probability cutoffs.
We scanned the same regions with S-Peaker and the
results are summarized in Figure 2e. We observe a
higher percentage of positive regions hit by PROmiRNA

predictions (2.3 fold change) compared to the negative
regions at a probability threshold of 0.5, where about
77% of the positive regions contain at least one PRO-
miRNA prediction. The results are comparable with
S-Peaker at this cutoff. For higher cutoffs we observe a
greater than threefold change for both PROmiRNA and
S-Peaker. These results again show that our predictions
correlate well with Barski annotation. While the PRO-
miRNA predictions are enriched in the positive regions,
we cannot exclude the possibility that the predictions in
negative regions correspond to alternative TSSs active in
some of the 33 FANTOM cell lines but not detectable
from Barski’s method, which only looks at histone mark
signals.

Validation of our approach on PolII data and RNA-seq
data
In the absence of a sufficiently large benchmark set of
miRNA promoters it is difficult to know whether the
identified promoters, including the intronic miRNA pro-
moters that are uniquely recognized by our method,
correspond to true promoters. We therefore decided to
develop two indirect means of evaluating the precision
of our approach, by integrating information from two
different types of genomic data. First, we validated the
positions of our identified promoters with the PolII
ChIP-seq annotation from all libraries in the ENCODE
project (HAIB track in Additional file 1) and second,
we validated the existence of full-length pri-miRNAs
generated at the identified promoters by means of the
RNA-seq data from the Human Body Map 2.0 Project
[29]. In addition, we experimentally assessed the pro-
moter activity of two new annotated promoter regions,
for miR-122 and miR-130a, by means of a promoter
reporter assay.
PolII binding supports the majority of newly annotated
miRNA promoters
To evaluate our method we performed cross-validation
five times, each time using a random set of 8,000 candi-
date regions and compared the predicted promoters
with pre-computed PolII peaks pooled from all the
ChIP-seq experiments in the HAIB TFBS ENCODE pro-
ject track. An identified promoter overlapping an anno-
tated PolII peak was counted as a true positive, while an
identified promoter that did not overlap any annotated
PolII peak was counted as a false positive. By varying
the promoter posterior probability cutoff we built a pre-
cision-recall curve (Figure 3b) and a ROC (Figure 3a)
for all regions in the test sets, as well as for intergenic,
intronic and host gene putative promoters separately, as
well as for two sets of random intergenic and intronic
regions. A cutoff of 0.5 for the posterior promoter prob-
ability corresponds to the situation in which 81%, 60%
and 49% of the candidate regions are classified into the
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promoter class (p(prom) > 0.5) at a precision of 92%,
78% and 75% for host gene, intergenic and intronic pro-
moters, respectively. Also, at a cutoff of 0.5 the false
positive rate of the method is less than 20% for all pro-
moter classes (Figure 3a). The numbers reported in
Table 1, as well as the regions in Additional file 2, cor-
respond to the predicted miRNA promoters at a cutoff
of 0.5 and at a false positive rate of less than 20%,
according to PolII annotation. Figure 3 also shows that
the false positive rate for both random intergenic and
intronic regions is worse than for intergenic and intro-
nic regions upstream of annotated miRNAs, but still
better than random. This can be explained by the fact
that there is pervasive transcription in intergenic regions
corresponding to transcription start sites of unannotated
transcripts, especially non-coding RNAs. Similarly, the
method might predict TSSs in random intronic regions
that correspond to alternative TSSs or intronic promo-
ters of the corresponding transcripts.
Based on the PolII comparison, we also show (Figure S2

in Additional file 1) that the model used in this study,
which combines CAGE tag counts and promoter features,
outperforms both a simple model, which only uses CAGE
tag counts, as well as a model that only uses the informa-
tion from the prior probability, that is promoter features,
on the same set of test regions.

In light of the fact that comparison with PolII peaks is
an indirect way to validate our transcription start sites,
one would expect a certain amount of disagreement.
Therefore, the false positive rate of 18% when compar-
ing our predictions to PolII peaks is indicative of the
very good performance of the method.
Most of the identified miRNA transcription start sites are
validated by full-length RNA-seq coverage data
Assuming that our identified TSSs are correct, we would
expect to find full-length primary transcripts that origi-
nate at an identified TSS and continue through the
annotated mature miRNA. To investigate this, we used
RNA-seq data from the Human Body Map 2.0 Project
from 16 different human tissues [29] and quantified the
coverage of mapped reads in the regions spanning the
identified pri-miRNAs. The rationale behind this
approach is that one would expect to see an enrichment
of read coverage in true putative primary miRNA tran-
scripts compared to random genomic regions, where a
putative pri-miRNA transcript is defined as that region
starting at the predicted TSS and terminating at the end
of the annotated miRNA precursor. Previous methods
have used EST libraries to validate their predictions and
check to which extent identified TSSs correspond to pri-
mary transcripts [9,12,13]. Here we took advantage of
the fact that the RNA-seq data from the Human Body

Figure 3 Performance of PROmiRNA based on a comparison with PolII ChIP-seq data from the ENCODE project. (a) ROC computed by
varying the posterior probability cutoff for four promoter classes and two sets of random intergenic and intronic regions. The ‘+’ symbols
correspond to the recall values and false positive rates at the decision cutoff of our binary classifier, p(prom) = 0.5 for the four promoter classes.
(b) Precision-recall curve computed by varying the posterior probability cutoff c for four promoter classes and two sets of random intergenic
and intronic regions. The horizontal lines correspond to the random case. The ‘+’ symbols correspond to the recall and precision values
calculated at a cutoff c = 0.5, which represents the minimum required posterior probability p(prom) from our classifier to classify candidate
regions as belonging to the promoter class. The precision of the method in identifying promoters at a cutoff of p(prom) = c = 0.5 is equal to
83%, 92%, 78% and 75% for all, host gene, intergenic and intronic promoters, respectively. ROC, receiver operating.
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Map 2.0 Project was generated from pooled RNA
extracted from 16 tissues, which largely overlap with the
tissues used in the FANTOM4 project. Given the higher
sequencing depth of such data compared to ESTs
libraries, we are also able to detect lowly expressed
transcripts.
The read coverage of regions between a TSS and the

end of the mature miRNA and the significance of this
coverage were calculated as described in Materials and
methods. Primary transcripts showing significant read
coverage were counted as present, while transcripts with
a non significant coverage were considered as absent.
We looked at the dependency of the computed precision
(see Materials and methods) on the read coverage for
host gene, intronic and intergenic primary transcripts
(Figure 4) and we observed that, already at low coverage,
the method performed very well at identifying host gene
and intergenic transcripts (precision approximately 99%
and 82% for host gene and intergenic transcripts,
respectively), but was only able to achieve a precision of
65% for intronic transcripts. The lower precision for
intronic transcripts could be due to the high number of
RNA-seq reads mapping unspecifically in intronic
regions (data not shown), which led to an overestima-
tion of the coverage in the intronic background set and
consequently an underestimation of the true number of
intronic pri-miRNAs.
Precision values calculated on the basis of PolII data or

RNA-seq data have to be interpreted as a lower bound

for the following reasons: first, the cell lines inside the
ENCODE project from where the PolII ChIP-seq data
were generated are different from the libraries in FAN-
TOM4, from where our annotations are derived. If the
intronic promoters correspond to alternative promoters
used in a tissue-specific manner, this could explain why
a smaller number of them, compared to the intergenic
promoter, were found to overlap a PolII peak. Second,
pri-miRNAs that are rapidly degraded will show lower
read coverage values, leading to an underestimation of
the true positives using the RNA-seq coverage. Third, the
high number of mapped reads in the introns might mask
read-enriched regions corresponding to real intronic pri-
miRNA transcripts; fourth, there is no way to discriminate
real intronic pri-miRNA transcripts from unannotated
alternative transcripts of the host gene. Overall, the results
indicate that our method can be considered highly reliable
in identifying both intergenic and intronic promoters
but that evaluating intronic miRNA primary transcripts
is much more difficult. The promoters that could be
validated by means of PolII or RNA-seq data, as well as a
comparison with the other methods described above, are
listed in Additional File 3.
Experimental validation of miR-122 and miR-130a
promoters
To assess the real promoter activity of identified miRNA
TSSs, five novel intronic miRNA promoters (miR-718,
miR-130a, miR-595, miR-4648 and miR-378g) and one
intergenic promoter (miR-122) were selected for experi-
mental validation by means of a promoter reporter assay.
The region from 500 bp upstream to 50 bp downstream
of each identified TSS was cloned into a promoter-less
plasmid of firefly luciferase. HEK293 cells were trans-
fected with the constructs as described in Materials and
methods. Cells transfected with promoter-less plasmids
were used as controls. We verified the TSS of miR-122
located around 4,800 bp upstream of the annotated pre-
miRNA (see Figure 5a,b), in agreement with the result
from [16]. We also detected a highly significant increase
in luciferase activity for the construct containing the
intronic miR-130a identified promoter region, located
about 1,600 bp upstream of the precursor (Figures 5a,c).
Interestingly, miR-130a is located in the first intron of a
long non-coding RNA (Ensembl id: ENSG00000254602).
The host gene promoter is located about 2,500 bps from
the precursor and is expressed in several RNA libraries,
while the intronic promoter, whose evidence was sup-
ported also by PolII ChIP-seq data (Figure 5c), was speci-
fic to one library. The promoters of the other tested
miRNAs could not be validated and this was probably
due to the fact that such alternative promoters were
tissue specific (miR-718 is T-cell specific and miR-595,
miR-4648 and miR-378g are brain specific) and were not
able to induce transcription in HEK293 cells.

Figure 4 Validation of PROmiRNA based on a comparison with
RNA-seq data from the Human Body Map 2.0 Project. The
precision of the method, indirectly computed on the basis of RNA-
seq data, is plotted against the percentage of continuously mapped
reads in the identified pri-miRNA regions for four promoter classes.
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Genomic features of miRNA promoters
We identified 7,244 miRNA TSSs at a posterior promoter
probability threshold of 0.5. We further analyzed the
surrounding 1,000 bp regions of these high-confidence
predictions. The predicted TSSs were divided into inter-
genic, intronic and host gene as described above. Our
analysis showed that the three classes of promoters had
different genomic features when considering CpG con-
tent, conservation across vertebrates, TATA box binding
motifs, location with respect to the pre-miRNA and TSS
width (Figure 6). Each of the features is discussed in
detail below.
Distinct miRNA promoter classes differ in CpG content
CpG islands are known to co-localize with transcription
start regions and are often used for promoter recognition.
It is known that human promoters can be naturally
divided into two classes according to whether they have

low or high CpG content [30]. We determined the
normalized CpG score for all promoters in the three
miRNA promoter classes as described in Materials and
methods, and looked at their distributions (Figure 6a).
All three classes of promoters showed the separation
into high CpG and low CpG promoters; however, the
different promoter classes had substantially different
CpG score distributions: the host gene promoters were
mainly high CpG, while intergenic and especially intronic
promoters were mostly low CpG.
Intronic miRNA promoters are less evolutionarily conserved
than intergenic and host gene promoters
Previous studies showed that some miRNA promoters
have a high level of conservation across vertebrates [31].
We found that the distributions of PhastCons conservation
scores for intronic and intergenic promoters were signifi-
cantly different from the host gene promoter distribution

Figure 5 Promoter reporter assay result and two validated miRNA promoters. (a) Luciferase assay results on six identified miRNA
promoters plus a control. The y-axis is the ratio between firefly luciferase and Renilla reniformis luciferase activity. Transfection efficiencies are
normalized to the expression of a co-transfecting plasmid expressing Renilla reniformis luciferase. Experiments are shown as average plus/minus
standard deviation of three independent transfections of three independent experiments. The promoter of miR-122 shows significantly higher
activity with respect to the control (fold change approximately 5, P < 0.01). The miR-130a intronic promoter shows an activity about tenfold
higher than the control (P < 0.0001). (b) Genomic characteristics of the region up to 5,000 bp upstream of pre-miR-122, including the validated
promoter location (CAGE tracks), the RNA-seq read coverage and the conservation score from the UCSC Genome Browser. (c) Genomic
characteristics of the 2,500 bp long region upstream of pre-miR-130a including the annotated transcripts of the host gene, the DNase clusters
corresponding to open chromatin regions, the H3K4me3 and H3K27Ac histone marks (generally associated with active promoters), the PolII
ChIP-seq peaks in different cell lines, the conservation score, the location of both host gene and intronic promoters (CAGE tracks) and the
RNA-seq reads. The presence of a DNase cluster, the H3K4me3 and H3K27Ac marks and a second PolII peak in NB4 cells in the region of the
identified intronic promoter, are additional evidence for the miR-130a intronic promoter.
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(Figure 6b), highlighting the fact that intronic promoters
are less conserved than either host gene or intergenic pro-
moters (P = 1.4 × 10-92 and P = 7.8 × 10-5, respectively,
Mann-Whitney U test).
miRNA transcription start sites are frequently located
several kilobases upstream of the annotated precursor
miRNAs
The majority of TSSs occurred within 10 kb upstream of
the annotated pre-miRNA for intragenic miRNAs, while
the TSS distances for intergenic miRNAs were signifi-
cantly higher (P = 1.5 × 109 and P = 1.8 × 10-7 for host
gene and intronic TSSs, respectively). The distribution
of the identified TSS distances from the pre-miRNAs
for the three promoter classes is shown in Figure 6c.
Wide miRNA promoters are associated with CpG islands
Carnici et al. observed that the shape of human promoters
is highly variable, ranging from very narrow promoters of
20 bp to 30 bp, characterized by a single peak of CAGE
tags, to promoters up to several hundreds or even thou-
sands of base pairs long, characterized by a broad distri-
bution of CAGE tags [21]. The authors found a significant
association between broad promoters and high CpG con-
tent, and narrow-peaked promoters and the presence of a
TATA box binding site. We looked at the distribution of
the logarithm of the promoter width for the three different
miRNA promoter classes (Figure 6d). We observed that
most of the intergenic and intronic miRNA promoters
were narrow (less than 100 bp wide) compared to the
large host gene promoters. Specifically, the percentage
of promoters wider than 100 bp was 25% for the host gene
promoters and 5% and 1% for intergenic and intronic
promoters, respectively. We also confirmed the association
observed by Carnici et al. between large promoters and
high CpG promoters (P = 2.15 × 10-43, Fisher exact test).
Intronic promoters have higher TATA box binding affinity
compared to intergenic and host gene promoters
Given that intronic miRNA promoters were CpG
depleted, we investigated the hypothesis that they might
be mainly TATA-box promoters. To verify this we used
the TRAP method [32] to calculate the overall TATA
box binding affinity of each identified miRNA promoter,
as described in Materials and methods. We observed
that intronic promoters have a significantly higher
TATA box binding affinity compared to host gene and
intergenic promoters (Figure 6e, P < 10-13 in both cases,
Mann-Whitney U test). To understand if this condition
still held when comparing intronic miRNA promoters
with all human protein-coding gene promoters, we
retrieved the 1,000 bp-long promoter regions upstream
of all genes annotated in Ensembl. We then calculated
the TATA box binding affinity for each promoter
region. We found that the TATA box binding affinity
for intronic promoters was still significantly higher than
the affinity of all human promoters (P = 4.22 × 10-17,

Mann-Whitney U test). In contrast, there was no signifi-
cant difference between the binding affinity distribution
of intergenic and human protein coding gene promoters
(P = 0.68, Mann-Whitney U test).
To exclude the possibility that our results were biased

by the sequence composition of intronic regions, rich in
A and T nucleotides, we created two control sets: one
composed of 3,000 intronic non-repetitive regions
extracted randomly from the human genome, and the
other represented by 1,000-bp long background
sequences generated by means of a Markov model of
order two, trained on the intronic promoter sequences.
In both cases the TATA box affinity of intronic promoters
was significantly higher than the affinity in the control
regions (Figure 6f, P < 10-15, Mann-Whitney U test). The
over-representation of TATA box binding motifs in the
intronic promoter class in comparison to the host gene
promoter class was also confirmed by the hit-based motif
finding tool Matrix-scan [33] (P = 0.006, Fisher exact test).
These results suggest that the number of narrow TATA-
box intronic promoters is higher than expected, and that
wide CpG promoters are rather exceptional inside introns
of miRNA host genes.

Intergenic, intronic and host gene miRNAs are regulated
by different sets of transcription factors, suggesting
different evolutionary mechanisms
Inspired by the results of the TATA box affinity analysis,
we suspected that intronic promoters may have evolved
differently from both intergenic and host gene promoters,
therefore they would hold different regulatory elements.
To verify this hypothesis and find those TFs that regulate
a specific group of miRNAs, we looked at the enrichment
of TFBSs from the JASPAR database [34] in the three
promoter classes, by using the TRAP approach [32]. For
each identified TSS we retrieved the 1 kb region centered
on it, and for each set of sequences we ranked all 130
JASPAR factors according to their binding affinities for
these regions. A list of significantly enriched transcription
factor binding sites (TFBSs) (P < 0.01, Bonferroni correc-
tion) for each promoter class is given in Table S4. Our
results show that host gene, intergenic and intronic
promoters are indeed enriched in different sets of factors.
It has been observed that transcription factors that

regulate miRNA transcription largely overlap with those
that control protein coding genes (for example, p53,
MYC, MYCN and REST) [3]. We found that these fac-
tors mainly regulate miRNA expression by regulating
the host gene: general TFs such as REST, TP53, Myc and
Mycn, in addition to SP1, Egr1, Klf4, Arnt and others
(see Table S4) were enriched in host gene promoter
regions, compared to the other two promoter classes. In
contrast, we found that intronic promoters were enriched
in TATA boxes and tissue-specific master regulator TFs
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Figure 6 Distribution of promoter features for intergenic, intronic and host gene promoters. (a) Probability density function (PDF) of the
CpG score across intergenic (blue), intronic (red) and host gene (gray) promoters. (b) PDF of the conservation score, calculated from the
PhastCons vertebrate UCSC track, across intergenic, intronic and host gene promoters. (c) PDF of the distance between intergenic, intronic and
host gene TSSs from miRNA precursors. (d) PDF of transcription start site (TSS) width, shown as log10(width) for clarity, for intergenic, intronic
and host gene promoters. (e) PDF of the TATA box affinity values, calculated using TRAP, for intergenic, intronic and host gene promoters. (f)
Bar plot showing the fraction of promoters that have a TATA box affinity lower than 0.01, in the range between 0.01 and 0.07 or higher than
0.07 for intergenic, intronic and host gene promoters, as well as for all human promoters and background regions. The two affinity levels of 0.01
and 0.07 correspond to the median and upper quantile affinity values for human promoters, respectively. bp, base pair; miRNA, microRNA; PDF,
probability density function; TSS, transcription start site.
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such as Foxa1/Foxa2/HNF1A/HNF1B (liver factor), Pdx1
(pancreatic and duodenal homeobox), Gata1 (blood
factor), Sox5 (embryonic factor), FOXF2 (lung factor),
Prrx2 (skin factor) and others (see Table S4). The list of
enriched factors for intergenic promoters is a combina-
tion of host gene-specific and intronic-specific factors.
Half of the top TFs predicted by the TRAP tool were also
confirmed by the hit-based method Matrix-scan [33]
(see Additional file 1).
We clustered the identified miRNA promoters on the

basis of their affinity profiles for the 130 JASPAR core
vertebrate factors (Figure 7). Genes with similar affinity
profiles (that is, having gained or lost affinity for the same
factors) were grouped together. We found three main
groups of promoters that were enriched in different TFs.
Group 1 was significantly enriched in host gene promoters
versus intronic and intergenic promoters (P < 10-16 in
both cases) and in intergenic promoters versus intronic
promoters (P < 10-16, Figure 7). Group 2 did not show any
significant enrichment. Group 3 was significantly enriched
in intronic promoters (odds ratio = 2.4, P = 3.2 × 10-16,
Fisher exact test) and significantly depleted in host gene
and intergenic promoters (P = 1.1 × 10-16 and P = 9.2 ×
10-9, respectively). Overall, the results indicate that inter-
genic promoters are more similar to protein coding gene
promoters, as expected. In contrast, an additional degree
of freedom is provided by intronic promoters that regulate
intronic miRNAs using tissue-specific transcription
factors.

Role of intronic promoters
The results presented above imply crucial differences
between intronic promoters and intergenic and host
gene promoters with respect to their conservation, CpG
content and regulatory elements. This suggests a sepa-
rate evolutionary mechanism for these promoter classes
and possibly a different biological role. To further our
understanding of the role of intronic promoters, espe-
cially in relation to the host gene, we studied intronic
promoter usage in different tissues, the effect of intronic
promoters on miRNA expression, and the relationship
between intronic promoters and miRNA age.
Intronic promoters are expressed in a tissue-specific manner
Given the characteristics of miRNA intronic promoters,
we suspected that they might be used in a tissue-specific
manner. We defined a tissue-specific promoter as an
identified promoter that was expressed (that is, had
overlapping CAGE tags) in less than 4 out of 33 FAN-
TOM libraries. We computed the significance of the
association between intronic promoters and tissue speci-
ficity, compared to host gene promoters, by means of a
Fisher exact test. This association was highly significant
(odds ratio = 15.87, P < 2.2 × 10-16), suggesting that
intronic promoters are used in a tissue-specific manner.

Conversely, host gene promoters were significantly
depleted in tissue-specific promoters and could be con-
sidered as mainly for housekeeping. We also investigated
if intronic promoters were preferentially used in some
tissues rather than others and found that they were signifi-
cantly over-represented in brain, thymus, embryonic and
lung tissues, while being significantly under-represented in
T-cells, blood, monocytic cells, hepatocytes and breast and
adipose tissue (Figure S4). This confirms the preferential
usage of miRNA intronic promoters in certain tissues
and a co-transcription of the miRNA and its host gene
in others.
Intronic promoters potentially explain cases of poor
correlation between miRNA and host gene expression
Recent studies of matched mRNA-miRNA expression
profiles showed instances of poor correlation between
intragenic miRNAs and their corresponding host genes
[10]. To investigate whether poor miRNA-host gene
correlations are due to the usage of alternative intronic
promoters, independent of the host gene promoter, we
looked at the miRNA and mRNA expression data from
the study of Somel et al. on 14 human brain samples at
different developmental stages [35]. We divided the
intragenic miRNAs in our data set into two classes:
those which were associated with an intronic promoter
in the FANTOM brain libraries and those that shared a
promoter with the host gene. For each miRNA-host
gene pair we calculated the Spearman correlation
between their expression profiles, and looked at the dis-
tribution of the correlations for both classes (Figure 8a).
We found that miRNAs with an independent intronic
brain promoter were less positively correlated to the
host gene expression, compared to host-gene dependent
miRNAs (P = 0.08, Mann-Whitney U test). In particular,
the expression of those exonic miRNAs that are predicted
by our method to have an independent intronic promoter
in the brain does not correlate with the host gene’s expres-
sion: hsa-miR-124-1, hsa-miR-124-2, let-7a-3, let-7b,
hsa-miR-433, hsa-miR-127, hsa-miR-432, hsa-miR-136
and hsa-miR-431 show very high expression levels in the
brain, while their host genes are shut down, indicating
that an alternative promoter may be driving their expres-
sion. This evidence implies that the condition-specific use
of an intronic promoter, as an alternative to the host
gene’s promoter, could lead to the differential expression
of an intragenic miRNA and its host gene.
Evolutionarily conserved miRNAs are more likely to be
regulated by an intronic promoter
In addition to the effect of intronic promoters on
miRNA expression level, we considered if there was a
relation between the independent transcription of a
miRNA and miRNA age. To investigate this, we grouped
the miRNAs into three classes, young, adult and old
miRNA according to their age, as described in Materials
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and methods. Our results, summarized in Figure 8b,
indicate that there is a significant association between
old miRNAs (conserved across vertebrates) and intronic
promoters, compared to adult or young miRNAs (odds
ratio = 1.87 and P = 0.0067, Fisher exact test). This sug-
gests that intragenic old miRNAs, unlike adult and

young miRNAs, are more likely to be regulated by their
own independent promoter, rather than depending on
the host gene promoter (Figure 8b), suggesting the
divergent evolution of intragenic miRNAs and their host
genes. In addition, old miRNAs seem to be enriched in
non-coding transcripts compared to protein-coding

Figure 7 Heatmap of transcription factor binding affinities for all identified miRNA promoters. All identified miRNA promoters are
clustered based on their affinity profiles for the 130 JASPAR core vertebrate factors. Cluster 3 is enriched in intronic promoters, while cluster 1 is
enriched in host gene promoters. The transcription factors highlighted in the box on the right side are those with a high affinity for intronic
promoters, which are also identified as significantly enriched by TRAP. The transcription factors in the box on the left side are those with a high
affinity for host gene promoters, also reported by TRAP as significantly enriched in the same promoter class.
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transcripts (fold enrichment 4.5, P = 4.3 × 10-8, Fisher
exact test). This evidence might be related to the host
gene’s function and to possible feedback loops between
the miRNA and the host. However, a much more detailed
analysis of host gene function and miRNA targets and
host-target interactions are needed to support this
hypothesis.

Discussion
Identifying the exact location of miRNA promoters is
the critical first step towards annotating full miRNA pri-
mary transcripts, predicting the transcription factors that
regulate them and, ultimately, explaining miRNA function
in complex regulatory networks. Our study has two main
contributions: we introduce a new strategy to annotate
miRNA promoters using high-throughput genomic data
and we apply it to study the characteristics and activity of
intronic miRNA promoters.
Our model successfully integrates deepCAGE data

with other promoter features to score the potential of
candidate regions for being real miRNA TSSs. Despite
the transient nature of miRNA primary transcripts, we
show that deepCAGE data from several tissues can be
used systematically to identify miRNA promoters with
high coverage by exploiting the fact that most miRNA
primary transcripts are capped, and that miRNA expres-
sion patterns, as well as degradation rates, are tissue and
condition specific. The high coverage of the method is

demonstrated by the fact that we can assign a putative
promoter to 82% of annotated miRNAs.
A miRNA promoter classification method using high-

throughput sequencing data was recently proposed by
Chien et al. [16]. However, their model is a supervised
approach trained on protein-coding gene features and is
based on the assumption that miRNA and protein-
coding gene promoters have identical characteristics.
Although previous studies have shown that the tran-
scription of miRNA genes is regulated in a similar man-
ner to that of protein coding genes [3], mRNAs and
pri-miRNAs follow different post-transcriptional path-
ways, have different lifetimes and, most likely, different
read count distributions in the TSS region. Assuming
that read counts, which are a measure of expression at
the promoter level, are similar for protein-coding genes
and miRNAs might lead to a high number of false posi-
tives. In addition, given the small number of validated
pri-miRNA TSSs, we claim that a semi-supervised model,
which does not include protein-coding gene features in
the learning process, is more appropriate for describing
miRNA promoters.
Our method is able to verify known miRNA TSSs and

the remaining identified TSSs are strongly supported by
PolII ChIP-seq data, as well as full-length primary tran-
scripts from RNA-seq data. In addition, it compares well
with existing chromatin-based methods, confirming most
of the annotations reported previously. One potential

Figure 8 Role of intronic promoters. (a) Distribution of Spearman’s correlation coefficient between the expression profiles of intragenic
miRNAs and their corresponding host genes in the human brain. The gray probability density function (PDF) is for those intragenic miRNAs that
are predicted to have an independent intronic promoter in the FANTOM4 brain libraries, while the red PDF is for those miRNAs that are
predicted to depend on the promoter of the host gene. (b) Association between miRNA age and presence/absence of an independent
promoter. The miRNAs are divided into three age classes according to their conservation in different lineages: vertebrates, mammals and
primates. Each bar shows the fraction of intergenic, intronic and host gene promoters in each age class. Old miRNAs (conserved in vertebrates)
are enriched in independent intronic promoters compared to the other two classes. miRNA, microRNA; PDF, probability density function.
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limitation of our method is that it might not be sensitive
enough to detect transient pri-miRNAs whenever the
Drosha-processing step happens very quickly and few or
no reads can be associated with a pri-miRNA TSS. This
limitation could be overcome by chromatin-based meth-
ods, which have been successfully used over the past few
years to detect active promoters [5]. However, compared
to histone modification-based methods, deepCAGE data
offers the possibility of identifying all possible alternative
promoters, producing a direct readout of promoter activ-
ity, and thus aiding in detecting intronic miRNA promo-
ters that are preferentially used in a tissue-specific
manner. Compared to previous studies, we found an
increased number of miRNAs that are predicted to be
regulated by their own independent intronic promoter.
This number increased from 30% [9,10] to 50%, if we
consider only those promoters that could be validated by
PolII and/or RNA-seq coverage.
Previous studies indicate that some unknown proportion

of CAGE tags falling within transcripts are re-capped
products of spliced long RNAs [36]. Although most of
these unusual tags map to internal exons or cross exon-
exon junctions, and are therefore excluded by our method,
some of them might fall within intergenic or intronic
regions upstream of annotated miRNAs. Such re-capping
products, if any, can give rise to wrongly classified promo-
ters and might represent one of the reasons for the
observed lower precision of PROmiRNA in detecting
intergenic and intronic miRNAs compared to host gene
promoters.
In addition, it is important to stress that it is not yet

fully understood how miRNA biogenesis and the splicing
process of intragenic transcripts interact with each other.
Due to the nature of the data used here, our method can
be used to identify the start sites of putative primary
transcripts but it does not provide many clues for how
and when splicing of primary transcripts or miRNA-
containing introns happens. Cross-talk between the spli-
cesome and the Microprocessor complex has been
hypothesized in previous studies [22,23,37] and here we
show that exonic miRNAs, as well as mirtrons, can be
transcribed by an independent promoter, suggesting that
the relationship between miRNA processing and splicing
might be more complex than expected. The splicing-
dependent processing of exonic miRNAs, as well as mir-
trons, is an interesting possibility but too speculative to
be discussed here.
While this manuscript was in preparation, new CAGE

data from the RIKEN Institute were released by the
ENCODE project. We therefore checked our miRNA
promoters against the ENCODE-generated CAGE TSSs.
The details of this comparison are presented and dis-
cussed in Additional file 1. Overall the results indicate
that, although almost 100% of our identified miRNA

host gene promoters are also annotated in ENCODE,
the ability of their model to recover our independent
miRNA promoters drops to about 60% and 50% for
intergenic and intronic promoters, respectively.
Beyond the development of the method, we are also

able to identify several unique characteristics of intronic
promoters. We performed a large-scale analysis of
miRNA promoter features for both intergenic and intra-
genic miRNAs, and we can identify the unique charac-
teristics that distinguish intronic promoters from host
gene and intergenic promoters. This allows us to give a
partial explanation of the role of intronic promoters, as
well as to relate them to the evolution of different
miRNA classes. Our results show that CpG islands are
primarily a feature of wider host gene promoters, while
intergenic and especially intronic promoters are mainly
low CpG promoters. Additionally, intronic promoters
are usually narrow (less than 100 bp) and enriched in
TATA box elements. Our analysis also shows that intro-
nic promoters tend to be regulated by a different set of
transcription factors, compared to intergenic and host
gene promoters, and that these factors are enriched in
tissue-specific master regulators. This has two implica-
tions. First, the genomic features of intronic promoters,
that is low CpG content and TFBSs for tissue-specific
master regulators, suggest that they are alternative pro-
moters that modulate miRNA expression in a tissue or
cellular state-specific manner. This is further confirmed
by our analysis of miRNA promoter usage among all
the FANTOM4 libraries: intronic promoters are mainly
tissue-specific, unlike their host genes, and are used in an
alternative manner in complex tissues such as the brain.
The second implication is that the differences in regula-
tory elements between intragenic and host gene promo-
ters point towards a different evolution of the two
promoter classes, although additional investigation is
needed to fully understand these evolutionary differences.
The strong bias for miRNAs to be oriented on the

same strand as their host gene might suggest that they
are co-regulated. However, previous investigations indi-
cated that several intragenic miRNAs have inconsistent
expression patterns with their host genes, and that only
a minority of them are co-expressed with the host gene
[10]. Here we have observed several instances of poor or
negative correlation of matched miRNA and mRNA
expression in brain tissue. Although differences in host
gene and mature miRNA expression could be due to
differential miRNA processing or post-transcriptional
regulation [11,38], we tested the hypothesis that intronic
promoters are in part responsible for the host gene-
independent expression of miRNAs and they are not
just transcriptional noise. We could indeed show that
miRNAs with intronic promoters are significantly less
positively correlated to their host genes, and that
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instances of poor correlation can be attributed to the
use of intronic promoters. The notion of intronic pro-
moters driving expression of intragenic miRNAs has
been hypothesized before, but this is the first time, to
our knowledge, that a statistically significant association
between expression patterns and intronic promoters has
been demonstrated.
Finally we show that old miRNAs are unlikely to be

co-transcribed with their host gene, and the majority of
them have developed an independent intronic promoter.
It has been hypothesized that introns are ‘hot spots’ for
the emergence of novel miRNAs, as they are particularly
suitable for evolving hairpin structures from already
transcribed RNAs. Consistent with this hypothesis,
younger miRNAs are more often located in introns than
ancient ones [39]. In spite of that fact, we also observe
that more than half of the old miRNAs are located
inside introns and are significantly depleted in GC con-
tent compared to young miRNAs (P = 1.092 × 10-8,
Wilcoxon test, two sided), in agreement with previous
studies [40]. We speculate that old miRNAs might be
functionally important, and therefore modulate the
activity of target genes that are crucial for certain biolo-
gical processes. Our observation fits the evolutionary
model proposed by Chen and Rajewsky [41], according
to which novel non-conserved miRNAs are initially
expressed at low level and in specific tissues, to limit
the deleterious effect that they might have on their tar-
gets. We hypothesize that once such miRNAs complete
what they define as the purging phase of evolution and
become old, they acquire a defined and important func-
tional role in regulating some specific targets, therefore
developing their own promoter. This would ensure that
they are able to perform their function independently of
the host gene, which protects them from mutations that
might occur in the promoter of the host gene and
allows them to remain functional in situations where
the host gene is shut down.

Conclusions
The systematic discovery and analysis of miRNA promo-
ters presented in this study is another step towards
understanding miRNA biogenesis, in particular the tran-
scriptional control of intragenic miRNAs, as well as the
way in which a novel miRNA promoter can emerge and
evolve to acquire a specialized function.

Materials and methods
Data sets
Human miRNAs and gene annotation
All annotated human miRNAs and their genomic coor-
dinates were obtained from miRBase release 18. Homo
sapiens gene annotation (GRCh37) was obtained from
Ensembl v66. We separated the annotated miRNAs into

two groups: intergenic (if they were contained in inter-
genic regions between annotated genes) or intragenic
(if the miRNA overlapped with an Ensembl gene,
referred to in this case as an miRNA host gene).
DeepCAGE data from FANTOM4
CAGE is used to profile gene TSSs genome-wide by
mapping tags from the 5’ end of RNA transcripts to the
genome. These tags are extracted by a combination of
cap trapping and cleavage by restriction enzymes [42].
CAGE was previously applied to different RNA libraries
in human and mouse, allowing the study of general pro-
moter properties and the analysis of promoter usage in
different tissues [21]. An extension of CAGE, called
deepCAGE, combines CAGE technology with deep
sequencing [43]. Within the FANTOM4 project this
method was used to define promoters in mouse as well
as human across several tissues and conditions [17,44].
We downloaded pre-mapped CAGE tags from 33
human RNA libraries from FANTOM4, corresponding
to several tissues, conditions and developmental stages.
Libraries corresponding to technical replicates were
excluded from the analysis. As the reads provided on
the FANTOM4 website [17] were mapped on the hg18
human assembly, we re-mapped the read coordinates to
the hg19 assembly using the LiftOver tool from UCSC.
The number of mapped reads in each library ranged
from 17,000 up to 2 million, resulting in a total tag
count of approximately 22 million CAGE tags (Table S1
in Additional file 1). Only CAGE tags mapping to
unique positions in the genome were considered for
further analysis.
PolII ChIP-seq data
Bed files corresponding to already processed PolII peaks
from several cell lines were downloaded from the HAIB
track inside the ENCODE project (see the details in
Table S2 in Additional file 1).
Human tissue RNA-seq data
RNA-seq data consisting of 100 bp long reads from 16
different RNA libraries, which were generated as part of
the Human Body Map 2.0 Project, were downloaded
from GEO (GEO ID: GSE30611). The data was generated
from three different types of libraries (polyA-selected,
poly-A selected with normalization and no-polyA
mRNA) and from two different flow cells, named FCA
and FCB. Each library is a mixture of 16 different human
tissues (Table S3 in Additional file 1).
miRNA and mRNA brain expression data
miRNA expression levels, measured using the small
RNA-seq technique, were taken from Somel et al. [35].
Data are available for ten human brain samples taken
during development and aging. The mRNA expression
levels of the corresponding host genes (for the same
human brain samples) were taken from Liu et al. [45]
and were measured using RNA-seq.

Marsico et al. Genome Biology 2013, 14:R84
http://genomebiology.com/2013/14/8/R84

Page 18 of 23



Data normalization
For each of the 33 FANTOM4 libraries used in this
study, and for each annotated pre-miRNA, we selected
those genomic positions up to 50 kb upstream of the
miRNA where at least one read was mapped. For each
genomic position we computed a tag count vector
whose elements are the read counts in that position for
each RNA library. As the libraries strongly differ in
terms of the total number of mapped reads, to take into
account systematic variations between samples that
might cause the absolute top counts to vary across the
experiments, we applied per-position quantile normali-
zation, inspired by the quantile normalization proce-
dures successfully applied to micro-array data. Position-
specific tag counts from each sample, which can be
interpreted as expression values at the promoter level at
1 bp resolution, were transformed to match a common
reference distribution randomly chosen between the 33
libraries. Quantile normalization has already been used
and shown to perform quite well when applied to
RNA-seq data for differential expression quantification
[46]. Furthermore, a similar procedure has been applied
to normalize deepCAGE data, where the reverse-
cumulative reference distribution for tag counts is expli-
citly modeled by a power law [44].

Core promoter construction and filtering
For each individual library, we grouped the tags into
clusters if the overlap between their mapped genomic
coordinates was at least 1 bp. These clusters were used
to define putative transcription start regions. We then
summed the normalized tag counts inside each cluster.
We defined intergenic promoters as those tag clusters
that were located in intergenic regions upstream of
annotated intergenic miRNAs. Host gene promoters
were defined as those tag clusters whose genomic posi-
tions overlapped with the start sites of annotated tran-
scripts of intragenic miRNA host genes. Intronic
promoters were defined as those tag clusters located in
the same intron, or a different intron, of an intragenic
miRNA host gene. Tag clusters whose genomic posi-
tions overlapped with the TSSs of other annotated
Ensembl transcripts were filtered out, because they did
not correspond to miRNA TSSs. Tags spanning anno-
tated exons of the same genes were also excluded from
further analysis, as most probably they correspond to
alternative transcripts of the host gene.

The model for promoter classification
Our probabilistic framework is based on a partially
supervised mixture model for classifying candidate
regions enriched in CAGE tags as either putative pro-
moters or background noise. Given that there is no
benchmark data set of validated miRNA promoters, and

very few pri-miRNA transcripts are annotated in geno-
mic databases, the use of a supervised learning method
did not seem feasible. Therefore, we opted for a semi-
supervised method where the probabilistic distribution
of the data is represented by a mixture model of puta-
tive promoters versus background regions, and where
the optimal separation between the two classes was
learned directly from the data. Specifically, our mixture
model uses tag counts and computed promoter features
to cluster the data into two classes, promoters and non-
promoters, and calculate the posterior probability that a
certain region belongs to one or the other class.
The use of a mixture model was motivated by two

main aspects: the distribution of the log of CAGE tag
counts, from all pooled RNA libraries considered in this
study, shows an approximately bimodal distribution
(Figure S3a in Additional file 1). Second, the use of a
mixture model avoided using ad hoc thresholds to
define regions that are sufficiently enriched in CAGE
tags to be considered as real transcription start sites.
Mixture modeling associates each cluster with a model

component, which is defined by the underlying distribu-
tion of the estimated data. In detail, if X represents the
observed data generated by continuous random variables
X1...XN,, Z a set of latent variables having a 1-of-K repre-
sentation, and θ a vector of unknown parameters, along
with a likelihood function p(X, Z|θ), the distribution over
the observed variables can be written as a linear combina-
tion of probability distributions over the K classes [47]. In
our case X represents the mixture of putative promoters
and background regions from all pooled RNA libraries
and K = 2, as we aim at producing a binary classification
of promoter/non-promoter. There are therefore only two
possible states for Z, Z1 = 1 for promoters and Z2 = 1 for
background regions.

p (X|θ) =
∑

Z

p (X, Z|θ) =
N∏

i=1

(∑
k

πk · pk (Xi|θk)

)
(1)

The πk are called mixing proportions or priors and are
such that the marginal distribution over Z is specified in
terms of the mixing coefficients:

p (Zk = 1) = πk (2)

More specifically, the total number of CAGE tags in a
certain region i, xi, is modeled with an inverse Gaussian
distribution, using different sets of parameters for the
promoter and the background class:

p (Xi|Zk) = Inverse Gaussian (Xi|μk, λk) =
(

λk

2πX3
i

)
· exp

(
−λk(Xi − μk)

2

2μ2
kXi

)
(3)

where k = 1 for the promoter class and k = 2 for the
background class. While a Poisson distribution or a
negative binomial distribution is usually the choice to
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model read count data, the inverse Gaussian distribution
allowed us to model continuous values more accurately,
such as quantile-normalized tag counts, and especially
to take into account long tails in the tag count distribution
due to the high numbers of reads mapping to highly
expressed promoter regions.
In unsupervised mixture modeling, the input is only

the data X and the cluster labels are unknown, that is
we do not know in advance if a certain region belongs
to the promoter or the background class. In this case
the expectation maximization (EM) algorithm is used
for parameter estimation [47]. While it is reasonable to
assume that the high read count mode in Figure 3Sa is
enriched in true miRNA promoters, the low read count
mode might contain noise as well as lowly expressed
promoters, which risk being wrongly classified as noise
if no further information is used in the model to discrimi-
nate between the two classes. Previous studies observed
high levels of stochastic background transcription in
CAGE data, corresponding to few tags mapping to a spe-
cific region and representing noise without biological
significance [44]. If this is true for highly expressed pro-
tein-coding genes, for a miRNA TSS region one or few
mapped tags may correspond to a real TSS, and the low
tag count could be due to fast pri-miRNA degradation,
rather than low expression. Therefore, we introduced
some prior knowledge into the model in the form of a
prior probability. The prior probability is based on several
significant sequence features, and allowed a better dis-
crimination between real TSSs with a low number of
associated tag counts and noise.
Formally, we assumed that some knowledge is available

for a subset of observations, and, inspired by the belief-
based mixture model in Szczurek et al. [48], for each can-
didate region we regarded the sequence features as our
belief that that region is a real promoter. We set an
equivalent of the prior πik differently for each example Xi,
where i = 1...N, N being the number of observations, to
handle imprecise knowledge about the examples. The
belief itself is a probability distribution over the promoter
and background classes given by a vector πi, satisfying∑

k

πik = 1 (4)

We modeled the prior probability of a certain region i
of being a promoter p(prom) = πi1 as a logistic function
of several sequence features, in a similar way to Pique-
Regi et al. in the software CENTIPEDE [49]:

πi1 =
1

1 + e−yi
(5)

yi = β0 + β1 · CpGi + β2 · consi + β3 · TATAi + β4 · mirna proximityi (6)

where CpGi is the normalized CpG content in the
genomic region i of length L around the candidate TSS,
computed as the ratio of observed over expected CG
dinucleotides:

CpGi =
CG/L(

(C + G) /2L
)2 (7)

consi is the average PhastCons conservation score of
region i computed from the alignment of 46 vertebrate
genomes taken from the UCSC Genome Browser;
TATAi is the affinity score of region i for a TATA box
element computed with the TRAP tool, and mirna prox-
imityi measures the proximity of the candidate TSS to
the mature miRNA. The prior probability of being a
background region is then p(bg) = 1 - πi1 = πi2.
The parameters of the model (μ1, l1, μ0 and l0) were

determined by maximizing the likelihood function in (1)
using the EM algorithm. The b parameters from the
prior probability were set in advance and determined by
means of a logistic regression model on a few available
miRNA promoter and background region examples (see
Additional file 1 for a detailed description). Once the
model had converged, the final posterior probability (or
conditional probability of Z given the data X) of belong-
ing to the promoter/background class, given the evi-
dence, could be found using Bayes’ theorem:

p (Zik|Xi) =
p (Xi|Zik = 1) · πik∑

k
p (Xi|Zik = 1) · πik

(8)

A new candidate region x0 can be easily tested by
computing

p (prom|x0) =
π1 (x0) p (x0|Z01 = 1)∑

k
πk (x0) p (x0|Z0k = 1) (9)

Construction of the training set
To help the algorithm in the learning process, we con-
structed a set of background sequences by extracting
them randomly from intergenic non-repetitive regions
in the human genome. For such sequences we also
determined CAGE tag counts and sequence properties
as described above. This set of observations was used as
exact examples (the negative set) for our algorithm:
their cluster labels were known and remained fixed dur-
ing the parameter estimation with the EM algorithm,
that is the conditional probabilities for such observations
were set to p(bg) = 1.0 and 0.0 p(prom) = 0.0.
Filtering of the identified promoters
As the same identified promoter can occur in more than
one tissue or regulate more than one miRNA, when
miRNAs occur in genomic clusters, a non-redundant set
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of representative promoter sequences was compiled
using the cd-hit software [50]. Specifically, sequences
were clustered with a similarity threshold of 0.8 and the
promoter with the highest count of mapped tags was
chosen as representative for each cluster.

Estimation of the method performance based on PolII
ENCODE ChIP-seq data
All processed peaks from the ChIP-seq libraries in the
HAIB ENCODE track were pooled together (see Table
S2 in Additional file 1). The 1,000 bp-long regions sur-
rounding candidate miRNA TSSs overlapped with PolII
peak regions. If the cutoff for the promoter posterior
probability is c, the numbers of true positives (TP), true
negatives (TN), false positives (FP) and false negatives
(FN) were determined in the following way: an identified
miRNA promoter (p(prom) >c) overlapping a PolII peak
region was considered to be a true positive; an identified
miRNA promoter not overlapping a PolII peak was con-
sidered to be a false positive; a region not classified as a
promoter (p(prom) <c) was considered to be a true nega-
tive if it did not overlap a PolII peak and as false negative
if it overlapped a PolII peak. A receiver operating curve
(ROC) was built by varying the cutoff c for p(prom) and
the precision was determined at recalls of 71%, 60%, 22%
and 21%, corresponding to p(prom) = c = 0.5 >p(bg), for
all, host gene, intergenic and intronic promoter classes,
respectively.

Estimation of the method precision based on RNA-seq
coverage
We extracted genomic regions starting at the identified
miRNA TSS and ending 70 bp after the annotated
mature miRNA. These regions corresponded, approxi-
mately, to full-length miRNA transcripts. For each
region we computed the coverage of RNA-seq reads
using the 16 Human Body Map strand-specific read
libraries. We defined the pri-miRNA coverage as the
fraction of bases continuously covered by mapped reads,
computed using the coverageBed program in Bedtools
[51]. Each identified region was associated with 16 cov-
erage values, one for each RNA-seq library. To decide if
a certain pri-miRNA transcript was present in the RNA-
seq data, we tested intergenic and intronic pri-miRNAs
separately and compared their read coverage values to a
background distribution. For intergenic primary tran-
scripts the background distribution of the read coverage
was computed from 10,000 randomly selected intergenic
regions, while for intragenic primary transcripts the
background was built from 10,000 random intronic
regions. A Kolmogorov-Smirnov test was used to assess
the significance of the read coverage enrichment of a
putative pri-miRNA compared to the background. An
identified primary transcript was defined as present, that

is considered to be a true positive, if it had a coverage
fold enrichment of at least 2.0 compared to the average
background and an adjusted P value from the Kolmo-
gorov-Smirnov test lower than 0.1. A primary transcript
was defined as absent, that is false positive, if it did not
satisfy the criteria above. The precision of the method
was then defined as prec = TP / (TP + FP). An estima-
tion of the number of false negatives from the RNA-seq
data would require the identification of all possible tran-
scripts from all libraries, included the pri-miRNA tran-
scripts that are missed from our method. The complete
transcriptome analysis of all the RNA-seq libraries from
the Human Body Map 2.0 Project is beyond the scope
of this work. For this reason we limited the RNA-seq-
based evaluation of PROmiRNA to the estimation of
true positives and false positives based on the read cov-
erage enrichment in the identified pri-miRNA regions.

Transcription factor binding site (TFBS) analysis
TF binding site affinity enrichment with TRAP
We calculated the enrichment of a transcription factor
for a set of 1 kb long promoter sequences using the
TRAP method. TRAP (Transcription Factor Affinity
Prediction) uses a physical model to predict the relative
binding affinities of TFs to DNA regulatory regions [52].
To compare the affinities of different transcription factors
for the same sequence, normalized affinities and associated
P values were calculated as described in [53]. In this analy-
sis we used all 130 core vertebrate TFs from the JASPAR
database, and the analysis was performed independently
for intergenic, intronic and host gene promoters. We ran
the TRAP program with default parameters, as described
in [32], producing a list of transcription factors ranked
according to their normalized affinity for the set of
sequences under study. The enrichment in binding affinity
was computed, in all cases, with respect to a background
set of protein-coding gene promoter sequences.
Hit-based TF sequence scanning
We used the pattern-matching program Matrix-scan
from the RSAT suite [33] to scan the identified miRNA
promoter sequences and search for hits of TFBSs, based
on position-specific scoring matrices, in the 1 kb long
regions surrounding the identified TSS using the same
JASPAR factors.

Determination of miRNA age
To determine human miRNA ages, we searched for
orthologs of all annotated mature human miRNAs in
the genomes of 11 species: chimpanzee, gorilla, orangutan,
rhesus macaque, marmoset, mouse, rat, dog, cow, opos-
sum and chicken. The genome sequences for these organ-
isms were downloaded from UCSC. Specifically, we
mapped miRNA precursors to each genome using reci-
procal BLAST or reciprocal LiftOver with default settings,
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and required the length of the hit sequence to be more
than 60% and less than 130% of the query sequence. We
then extracted mature miRNA orthologs from the precur-
sor sequence alignment made using the Muscle sequence
alignment algorithm [54]. Next, we classified miRNAs into
three categories based on their orthologous status: the first
class included human miRNAs with orthologs only in
primate species, referred to as young miRNAs; the second
class included miRNAs with at least one ortholog in pri-
mate species and at least one ortholog in mammal species,
referred to as adult miRNAs and the third class included
miRNAs that had at least one ortholog in the vertebrate
species, referred to as old miRNAs.

Plasmid constructs and luciferase assays
Fragments of approximately 500 bp upstream of the
putative transcriptional start site were cloned into
pGL3-basic 5-prime to the Luciferase gene. HEK293
cells were seeded in 96-well plates and co-transfected
with 0.1 μg of pGL3-basic-miRNA promoter construct
and 0.02 μg of pRL-TK vector (Promega) expressing the
Renilla reniformis Luciferase as a transfection control.
All transfections were carried out in triplicate, and all
experiments were done at least three times. Luciferase
activity was measured 24 h post transfection using the
Dual-Luciferase Reporter Assay System kit (Promega)
according to the manufacturer’s protocol.

Additional material

Additional file 1: This file contains a detailed description of the
data set used, the method and additional results.

Additional file 2: This file contains a list of all identified human
miRNA promoters, together with their genomic coordinates,
computed posterior probabilities, regulatory features, tissue of
expression and miRNA age.

Additional file 3: This file contains the results from the evaluation
with PolII ENCODE data and RNA-seq data, and the comparison
with other miRNA promoter recognition methods.
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