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Abstract

Background: Although technical advances in genomics and proteomics research have yielded a better
understanding of the coding capacity of a genome, one major challenge remaining is the identification of all
expressed proteins, especially those less than 100 amino acids in length. Such information can be particularly
relevant to human pathogens, such as Trypanosoma brucei, the causative agent of African trypanosomiasis, since it
will provide further insight into the parasite biology and life cycle.

Results: Starting with 993 T. brucei transcripts, previously shown by RNA-Sequencing not to coincide with
annotated coding sequences (CDS), homology searches revealed that 173 predicted short open reading frames in
these transcripts are conserved across kinetoplastids with 13 also conserved in representative eukaryotes. Mining
mass spectrometry data sets revealed 42 transcripts encoding at least one matching peptide. RNAi-induced
down-regulation of these 42 transcripts revealed seven to be essential in insect-form trypanosomes with two also
required for the bloodstream life cycle stage. To validate the specificity of the RNAI results, each lethal phenotype
was rescued by co-expressing an RNAi-resistant construct of each corresponding CDS. These previously
non-annotated essential small proteins localized to a variety of cell compartments, including the cell surface,
mitochondria, nucleus and cytoplasm, inferring the diverse biological roles they are likely to play in T. brucei. We
also provide evidence that one of these small proteins is required for replicating the kinetoplast (mitochondrial) DNA.

Conclusions: Our studies highlight the presence and significance of small proteins in a protist and expose potential

new targets to block the survival of trypanosomes in the insect vector and/or the mammalian host.
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Background

Recent advances in high-throughput sequencing tech-
nologies have led to the discovery of a large number of
transcripts originating from regions of the genome pre-
viously thought to be silent [1]. One major challenge
arising from these observations is to determine whether
these transcripts code for a protein or should be classi-
fied as non-coding RNAs. This task is rather overwhelm-
ing, since a majority of these transcripts only have the
potential to encode small proteins, generally less than
100 amino acids (aa) [2,3]. Historically, an arbitrary cut-
off for open reading frames of 100 aa was applied in
genome annotation projects [4,5] and thus the extent
and functional significance of small open reading frames
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(sORFs) remains a largely unexplored territory in many
organisms. Nevertheless, copious reports clearly indi-
cate that they play crucial biological roles, including
protection against pathogens [6,7], signal transduction
[8], serving as molecular chaperones [9], developmental
regulation [10-13] and even calcium transport in car-
diac muscle contraction[14].

Several proteins encoded by sORFs have been identified
serendipitously by biochemical methods as part of a com-
plex or the product of a processed precursor protein. One
example is the Drosophila tarsal-less (tal) gene, originally
annotated as non-coding, but later shown to encode three
small proteins with a crucial role in fly development [13].
Several studies have used genome-wide approaches to
gauge the prevalence of sORFs. When examining potential
small proteins in Drosophila melanogaster, Ladoukakis et al.
identified 4,561 sORFs that were conserved in a closely re-
lated species, Drosophila pseudoobscura [15]. Synteny,
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evidence of transcription and nucleotide substitution, nar-
rowed the 4,561 to a more conservative estimate of 401
sORFs. A study on the Arabidopsis small proteome
assessed evolutionary conservation and examined evi-
dence of transcription to predict the expression of as
many as 3,241 sORFs [16]. A report on the mammalian
small proteome by Frith et al. used FANTOM cDNA data
to identify a potential 1,240 sORFs using a CRITICA
gene-detection program [17]. Additionally, 25 sORFs were
GFP-tagged and, following transfection into cells, 14 of
the fusion proteins were detected, providing evidence of
translation [17]. More recently, using a novel combination
of peptidomics and RNA-Sequencing (RNA-Seq), Slavoff
et al. identified 86 novel small proteins in humans and
two were tagged and shown to localize to the mitochon-
dria and cytoplasm [18]. Nevertheless, to date few func-
tional studies of proteins encoded by sORFs have been
performed. In yeast, 140 small proteins were tested by
generating gene deletions and 22 had an effect on Saccha-
romyces cerevisiae growth under various conditions [19],
whereas overexpression of 473 small proteins in Arabidop-
sis resulted in 49 recognizable phenotypes [20].

Mass spectrometry, a powerful technique in proteo-
mics to validate the existence of putative protein candi-
dates, has been applied in several studies [18,21-25].
High-resolution mass spectrometry provides very accur-
ate precursor ion masses and combined with stringent
statistical methods enhances the certainty of peptide
identification [26]. This is a key issue in the validation of
newly identified sORFs. In general, a protein database
derived from the genome is used in shotgun proteomics
to identify peptides and proteins from mass spectromet-
ric raw data, but six frame translation of the genome is
also frequently employed [24,25]. In either case, the cer-
tainty of the existence of any protein can be increased
by an observed corresponding RNA transcript. Recently,
we used a combination of stringent methods, that is,
ribosome footprinting, next generation sequencing and
advanced mass spectrometric technology, to discover a
plethora of novel sORFs in cytomegalovirus, many of
which we determined to exist at the protein level [23].

The question of whether functional small proteins
exist is particularly relevant in organisms with a tightly
organized genome, such as the parasitic protozoan Try-
panosoma brucei. Protein-coding genes are arranged in
long unidirectional clusters with intergenic regions only
a few hundred nucleotides in length, thus leaving little
space for sORFs or non-coding RNAs. The initial se-
quencing and annotation of the 11 megabase-sized chro-
mosomes, published in 2005, predicted 9,068 protein-
coding genes [27]. As of November 2013, this number
has increased to 10,574 (TriTrypDB); however, a major
challenge remains to identify all expressed proteins. This
quest was addressed by several RNA-Seq studies using
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HMlumina high-throughput cDNA sequencing [28-31]. In
particular, we provided evidence that the coding poten-
tial of the T. brucei genome was larger than originally
anticipated by identifying 1,114 transcripts mapping to
regions of the genome with no annotated ORFs [28]. A
total of 993 of these transcripts have the potential to
contain a coding sequence (CDS) of at least 25 amino
acids and the remaining 121 transcripts either have no
coding potential at all or no ORF larger than 75 nucleo-
tides. However, it remains to be established whether
these transcripts encode functional proteins.

Founded on the set of transcripts identified by our tran-
scriptome analysis [28], we applied bioinformatics ap-
proaches to identify small proteins conserved across
kinetoplastid species and representative eukaryotes. Com-
bined with mass spectrometry data, we pinpointed 42
high-confidence small proteins ranging in size from 49 to
219 amino acids. RNAi-knockdown revealed seven essen-
tial proteins in the insect-stage of the life cycle and their
diverse subcellular localizations suggested involvement in
many aspects of T. brucei biology.

Results

T. brucei transcripts encoding evolutionarily conserved
potential small proteins

We previously published a single-nucleotide resolution
genomic map of the T. brucei transcriptome, which in-
cluded 1,114 transcripts not originating from annotated
CDS ([28]; original RNA-Seq data have been submitted to
the National Center for Biotechnology Information (NCBI)
Sequence Read Archive - SRA at [32] - under accession no.
SRA012290 and the 1,114 transcripts are accessible through
a community file, Tbrucei_novel_transcripts.fasta, on Tri-
TrypDB at [33]). After a reexamination of this data set
using the latest 7. brucei genome annotation (GeneDB ver-
sion 5, [34]), we excluded 39 and 10 transcripts coding for
snoRNAs and annotated proteins larger than 300 amino
acids, respectively, and added two novel transcripts coding
for proteins identified by mass spectrometry (MS) data
(Figure 1). Setting a lower limit of 25 aa, 987 of the
remaining transcripts contain between one (112 transcripts)
and 31 (1 transcript) ORFs for a total of 4,699 ORFs [see
Additional file 1]. Eighty transcripts were classified as non-
coding RNAs, since the predicted ORFs were less than 75
nucleotides. However, we cannot exclude the possibility
that the latter category has coding potential by using alter-
native initiation codons or encoding proteins smaller than
25 aa.

The selected 4,699 ORFs were highly enriched in short
ORFs (sORFs), that is, less than 100 amino acids, with
4,499 ORFs (96%) falling into this category [see Additional
file 2: Figure S1]. Since proteins encoded by sORFs largely
escape standard genome annotations, we examined evolu-
tionary conservation in combination with computational
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Figure 1 Flowchart of the strategy used to analyze T. brucei transcripts not coinciding with annotated coding sequences (CDS).

Remove 21 proteins (predicted
ribosomal or annotated proteins,
or multiple copies)

approaches to screen for ORFs conserved in kinetoplasti-
dae and representative eukaryotes as a benchmark for pro-
tein expression. Kinetoplastid protists belong to the
phylum Euglenozoa and include a significant number of
disease-causing parasites, such as 7. brucei and T. cruzi,
the causative agent of African trypanosomiasis and Chagas
disease, respectively, and the Old and New World Leish-
mania parasites, which cause various forms of leishmania-
sis worldwide. First, we conducted Basic Local Alignment
Search Tool (BLAST) analyses [35] of kinetoplastid ge-
nomes and annotated proteins, excluding the T. brucei
subspecies (see Methods for details). Of the 987 tran-
scripts, 157 encoded one ORF that was conserved in at
least one kinetoplastid organism and four transcripts (754.
NT.51, Th5.NT.84, Th6.NT.58 and Th8.NT.142) encoded
between two and twelve conserved ORFs for a total of 173
conserved ORFs [see Additional file 3]. Second, we com-
pared the selected 4,699 ORFs to the annotated proteins
from representative eukaryotes, namely S. cerevisiae, Cae-
norhabditis elegans, Arabidopsis thaliana, D. melanoga-
ster, Mus musculus and Homo sapiens. We found that 13
ORFs had significant alignments with BLAST bit scores
ranging from 34 to 227, with 6 coding for ribosomal pro-
teins [see Additional file 4]. It is worth noting that these
13 ORFs were part of the set conserved in kinetoplastids.
We next surveyed the 173 conserved ORFs for known
protein domain(s) using the CD-Search Tool (cdsearch/
cdd v3.10 [36]) and detected domains in 61 ORFs covering
a broad spectrum [see Additional file 5]. However, the
ribosomal protein superfamily (six hits), various Zn finger

domains (five hits) and the RNA recognition motif (RRM)
superfamily (three hits) were overrepresented. Finally, our
analysis of SignalP [37] and TMHMM ([38] predictions re-
vealed that 5 of the 173 potential small proteins have a
predicted signal peptide and that a considerable number
(43 or 25%) have a predicted trans-membrane domain
with seven having more than one predicted domain.

Identification of small protein candidates through mass
spectrometry data

For an alternative approach based on peptide evidence
to recognize transcripts coding for small proteins, we
surveyed MS data ([21,22] and this study) for peptides
matching the 4,699 selected ORFs described above. As
reported previously [28], searching the proteome data of
Panigrahi et al. [21] provided evidence for the expres-
sion of 16 small proteins, with all 16 being part of the
173 small protein candidates identified bioinformatically.
In addition, MS data from Butter et al. [22] and this
study revealed 63 hits. As well as providing validation
for 58 of the 173 small protein candidates, our data also
predicted five small proteins specific to T. brucei with
no recognizable homologues in other kinetoplastids. We
also performed a search against hexatranslations of the
trypanosome genome, which revealed the same set of
newly identified proteins (data not shown). Taken to-
gether, we were able to provide supporting MS data for
63 predicted small proteins with 22 being represented in
more than one MS data set, and, except for the T. brucei-
specific hits, all the other matches were among the
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evolutionarily conserved 173 small protein candidates
[see Additional file 3].

The 63 small protein candidates with supporting MS
data were filtered further by removing predicted ribosomal
proteins or annotated proteins with a predicted function
and CDS with multiple copies in the genome, leaving us
with 42 small proteins for further analysis [see Additional
file 3]. This final group of selected proteins ranges in size
from 49 to 219 amino acids and 35 qualify as small pro-
teins. Transcript lengths vary from 333 to 4,100 nucleo-
tides and the average 5° UTR length is 119 nucleotides
with a median of 110 nucleotides. This is similar to the
global analysis of the transcriptome [28,30], where a me-
dian length of 128 to 130 nucleotides was reported. On
the other hand, the 3* UTR is on average 390 nucleotides
long with a median of 237 nucleotides, with the latter be-
ing notably smaller than the medians reported in the
aforementioned transcriptome studies, namely 400 nucle-
otides [30] and 388 nucleotides [28].

Noteworthy characteristics of this collection of 42
small proteins are as follows: three have putative homo-
logues in representative eukaryotes (767.NT.49, Th11.
NT.47 and Th11.NT.220); predicted domains include
two RRMs and two Zn-finger domains; sixteen have a
predicted trans-membrane domain; and one has a pre-
dicted signal peptide [see Additional file 3].

RNAi screen of the 42 small proteins revealed 7 to be
essential in the insect life-cycle stage

RNAi knock-down strategies have revolutionized the
functional analysis of genes in T. brucei [39]. mRNA
degradation is triggered most efficiently by double-
stranded RNA (dsRNA) produced in vivo as a hairpin
RNA transcribed from a tetracycline-inducible promoter.
Thus, we generated a hairpin construct for each of the
42 ORFs using the pTrypRNAiGate plasmid [40]. Each
construct was stably integrated in the non-transcribed
rRNA spacer region of a special procyclic-form recipient
strain, named 29.13.6, expressing the tet repressor and
T7 RNA polymerase [41], and clonal cell lines were
established. Upon RNAI induction with tetracycline, 12
had a growth phenotype that differed from un-induced
control cells. Three of the knockdowns resulted in a
slow-growth phenotype. For example, RNAi of T7b5.
NT.58 resulted in a cell division time of 16 hours as
compared to 8.5 hours for un-induced cells and this
phenotype was not accompanied by noticeable changes
in cell morphology [see Additional file 2: Figure S2].
In addition, knockdown of two small proteins (7b11.
NT.222 and Th11.NT.66) resulted in faster growth with
no obvious changes in cell morphology [see Additional
file 2: Figure S2]. Monitoring cell growth after RNAI in-
duction of the remaining seven revealed that all cell lines
stopped dividing and eventually died demonstrating that
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Tb3.NT.18, Th10.NT.86, Th10.NT.87, Th10.NT.90, Th11.
NT.28, Th11.NT.29 and Th11.NT.108 are essential genes
(Table 1; Additional file 2: Figure S3). For subsequent
analyses we focused on the seven essential predicted
small proteins and the RNAi knockdowns revealing a
change in the doubling time were not pursued further.

To confirm that the observed essentiality of the seven
small proteins was specific to RNAi knockdown of the
predicted transcript, we performed the following experi-
ments. First, we verified the transcript length expected by
the RNA-Seq data [28] using Northern blot analysis. In six
of the seven cases a single predominant hybridizing band
was detected and the observed size matched the predicted
size within the limits of resolution of Northern blotting
[see Additional file 2: Figure S4]. The seventh transcript,
Tb3.NT.18, had two bands detected by Northern blot.
One band corresponded to the size of the predicted novel
transcript of 709 nucleotides. Further interrogation by
Northern blotting and RT-PCR with probes specific for
the upstream (75927.3.1080) and downstream annotated
gene (75927.3.1090) led us to conclude that the longer
RNA contained both 7h3.NT.18 and the downstream
transcript encoding a component of the T. brucei Ul
small nuclear ribonucleoprotein (snRNP). This finding was
reminiscent of the presence of an upstream open reading
frame (uORF) described in organisms from fungi to
humans [42,43]. uORFs are defined as predominantly
short ORFs found in the 5" UTR of a previously annotated
gene and experiments are ongoing to investigate whether
Th3.N'T.18 qualifies as an uORF.

Second, semi-quantitative RT-PCR verified that the
knockdown of the seven essential transcripts was effi-
cient [see Additional file 2: Figure S5]. Third, to confirm
the specificity of the RNAi knockdown, we set out to
rescue each lethal phenotype with the expression of an
RNAij-resistant construct. To do this, the CDS targeted
by RNAi was assembled as a synthetic sequence bearing
at least one silent mutation per 12 contiguous base-pairs
[44] and flanked by heterologous UTR sequences (see
Methods). In addition, an HA-TEV-FLAG epitope tag or
a GFP tag was added to the C-terminus [see Additional
file 2: Figure S6]. Upon co-expression of the hairpin tar-
geting the endogenous transcript and the corresponding
modified CDS in a stable cell line, the endogenous tran-
script was destroyed, as shown by RT-PCR, and in all
seven cases the cells survived on the RNAi-resistant
transcript encoding the same small protein [see Additional
file 2: Figure S3]. These results led us to conclude that the
essential phenotype was a direct consequence of the
knockdown of the targeted CDS.

Initial characterization of the essential small proteins
The RNAI rescue experiments described above established
that the epitope-tagged small proteins were functional
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Table 1 Characteristics of the seven essential proteins in procyclics

ORF ID Transcript AA/MW pl Predicted Predicted Localization
size (nt) signal peptide TM domain
Tb10.NT.87 478 64/8.2 1146 No No Mitochondria
Tb11.NT.28 1,285 56/6.3 93 No Yes Mitochondria
Tb11.NT.29 796 62/7.6 6.96 No Yes Surface
Tb3.NT.18 709 85/9.3 791 No Yes Cytoplasm
Tb10.NT.86 605 93/10.5 9.67 No Yes Cytoplasm
Tb11.NT.108 461 96/10.5 6.49 No No Cytoplasm
Tb10.NT.90 529 67/7.3 449 No Yes Nucleus

AA, number of amino acids; MW, molecular weight; ORF, open reading frame; pl, isoelectric point; TM, transmembrane.

and, thus, could be used for biochemical and cell bio-
logical experiments. Using fluorescence microscopy we
detected expression of all seven small proteins (Figure 2)
and Western blot analysis confirmed that the proteins
had the predicted relative molecular mass [see Additional
file 2: Figure S7]. Tb11.NT.28 and Th10.NT.87 revealed
a fluorescence pattern typical of the procyclic trypano-
some branched tubular mitochondrion (Figure 2). Th11.
NT.29 appeared to be a surface protein, an observation
supported by subsequent experiments (see below). By

immunofluorescence, three proteins (763.NT.18, Th10.
NT.86 and Th11.NT.108) were shown to be enriched in
the cytoplasm, with 7611.NT.108 distributed through-
out this compartment, whereas Th3.NT.18 and 7h10.
NT.86 appeared somewhat concentrated around the
nucleus. Finally, Th10.NT.90 had a distinct localization
in the nucleus, possibly indicative of the nucleolus.
Since T. brucei undergoes extensive morphological and
metabolic changes during its life cycle alternating between
the mammalian (bloodstream) and insect (procyclic) hosts,

-

Small protein Hoechst

Figure 2 Localization of the seven small proteins essential in the procyclic life cycle stage. Anti-HA or anti-GFP antibodies were used to
detect C-terminal HA- (Tb11.NT.28 and Tb11.NT.29) or GFP- (Tb10.NT.87, To10.NT.90, To10.NT.86, Tb3.NT.18, and Tb11.NT.108) tagged versions of the
proteins by fluorescence microscopy. DNA was stained with Hoechst (blue) and DIC images are shown in the right panels. DIC, differential
interference contrast.

DIC
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it was of interest to gauge the essentiality of the seven
small proteins in bloodstream forms. Thus, the hairpin
constructs were transfected into a bloodstream form cell
line competent for RNAi and, following induction, 7511.
NT.29, a potential surface protein, and 7h10.NT.87, a
probable mitochondrial protein, were shown to be essen-
tial in this stage of the life cycle (Figure 3A and B). Growth
curves for the five nonessential proteins can be found in
Figure 3C and Additional file 2: Figure S8. Based on the
above results, we selected T7h11.NT.29, Th11.NT.28 and
Th10.NT.87 for further analysis.

Tb11.NT.29: a putative surface protein

The 796 nucleotide-long Th11.NT.29 transcript encodes a
62 aa protein, which is highly conserved in kinetoplastids
(84% identity between T. brucei and L. major) and has a
predicted trans-membrane domain (Figure 4A). Initial im-
munofluorescence suggested that 7h11.NT.29 might be
localized on the surface (Figure 2). To address this possi-
bility, we compared the signal for cells expressing epitope-
tagged Th11.NT.29 that were either permeabilized by
detergent prior to antibody exposure or remained non-
permeabilized. Under permeabilized conditions we de-
tected both Th11.NT.29 and the endoplasmic reticulum
(ER) protein BiP (Figure 4B). However, when we omitted
the permeabilization step, thus limiting access of anti-
bodies to potential surface molecules, no signal was
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detected for BiP, whereas the signal for Th11.NT.29
was still visible (Figure 4B). This behavior was similar
to procyclin (Figure 4C), a well-characterized T. brucei
surface protein specific for the procyclic life-cycle stage
[45]. Since the epitope tag was at the C-terminus of the
Th11.NT.29, this result also suggested that this portion
of the protein was exposed on the surface. To corrobor-
ate this localization, we performed cell fractionation
experiments and by Western blot analysis 7611.NT.29
was enriched in the membrane fraction, similar to pro-
cyclin, whereas HSP70 was, as expected, enriched in
the cytoplasmic fraction (Figure 4D).

To begin to probe the potential role of Th11.NT.29,
we monitored the effect of RNAi knockdown on cell
cycle progression and cell morphology. In procyclic cells
RNAI resulted in a slowdown in growth after two days
followed by cell death between day five and six post-
induction (Figure 5A), whereas the RNAi effect was
more pronounced in bloodstream form cells with cell
death occurring between day one and two (Figure 3A).
For cell cycle analysis in procyclics, parasites were
stained with Hoechst at various time points after induc-
tion and the number and position of nuclei and kineto-
plasts (mitochondrial kDNA) in each cell were recorded.
Cells with one kinetoplast and one nucleus (1K1N) are
in G1 of the cell cycle, cells with two kinetoplasts and
one nucleus (2K1N) have segregated the kinetoplast and
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Figure 3 Bloodstream-form growth following RNAi. (A) 7671.NT7.29 RNAi in bloodstream-form cells (BS). (B) To710.NT.87 RNAi in BS cells.
(C) Tb11.NT.28 RNAI in BS cells. Growth of un-induced (—tet) and induced cells (+ tet) shown in log scale. The data are based on three
independent experiments, and average values with standard deviations are presented.
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Figure 4 Characterization of Tb11.NT.29. (A) Sequence conservation of Tb11.NT.29 across kinetoplastids. Amino acid sequences from T. brucei
(Tor), T. cruzi (Tcr) and L. major (Lm) were aligned with ClustalW and conserved residues are shaded with black boxes while similar residues are
shaded in grey. The predicted transmembrane domain (TM helix) is indicated. (B) Immunofluorescence analysis on cells expressing a C-terminal
HA-tagged version of Tb11.NT.29. Permeabilized cells (left three panels) and non-permeabilized cells (right three panels) were probed for HA
(green) and BiP (red) and DNA was stained with Hoechst (blue). (C) Immunofluorescence analysis of procyclin as described in panel (B).

(D) Cell fractionation of parasites expressing a GFP-tagged version of Tb11.NT.29. Western blot analysis was performed against GFP-tagged Tb11.
NT.29 (top panel), procyclin (second from top), BiP (third panel from top) and HSP 70 (bottom panel) on total (T), cytoplasmic (C), membrane (M),

nuclear (N) and cytoskeleton (CSK) fractions.

are at the end of S phase, and cells with two kinetoplasts
and two nuclei (2K2N) have completed mitosis and are
poised for cytokinesis [46]. Any other arrangement is aber-
rant and might point to defects in cell cycle progression.
In wild-type cells, as expected for an asynchronously
growing cell population, the majority of parasites will be
1KIN with about 10% of cells having either a 2KIN or
2K2N configuration.

RNAi-induced down-regulation of Th11.NT.29 in pro-
cyclics resulted in the accumulation of cells containing
either 1K2N or 1KON, the latter referred to as zoids
(Figure 5B). Zoids and 1K2N cells increased nearly
equally in number and after three days of induction they
comprised 7.9% and 6.9% of the cell population, respect-
ively. Several morphological changes were observed after

the knockdown, including flagellar detachment both as
specific areas of separation between the cell membrane
and the flagellum, and complete separation with only
one visible contact point between the cell body and fla-
gellum (Figures 5C and D). We also noted a change in
the shape of the cell body that appeared to be specific to
2KIN or 2K2N cells. After kinetoplast replication and
separation, a narrowing of the cell body was evident be-
tween the two daughter kinetoplasts (Figure 5D), which
might indicate a defect in cytokinesis.

Tb11.NT.28: a mitochondrial inner membrane protein

The 56-amino acid Th11.NT.28 protein is 45% iden-
tical between T. brucei and L. major and contains a
predicted trans-membrane domain (Figure 6A). Initial
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and induced cells (+tet) shown in log scale. The data are based on three independent experiments, and average values with standard deviations
are presented. (B) Analysis of the K/N configurations after induction of Tb77.NT.29 RNAI in procyclic cells. Cells were scored as having one
kinetoplast and one nucleus (1KTN), two kinetoplasts and one nucleus (2K1N), two kinetoplasts and two nuclei (2K2N), one kinetoplast and no
nucleus (1KON), one kinetoplast and two nuclei (1K2N) and more than two nuclei (>2 N). The data are based on three independent experiments
and at each time point 1,000 cells were counted. (C) Accumulation of cells with altered morphology after induction of T671.NT.29 RNAi in
procyclic cells. (D) Example images of a normal cell and cells with altered morphology. Images for DNA content (Hoechst) and DIC are displayed.
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contrast.

immunofluorescence staining revealed a similar localization
pattern between 7611.N'T.28 and the fluorescent dye Mito-
Tracker Red, a cell-permeable mitochondrion selective
probe (Figure 6B). Cell fractionation experiments corrobo-
rated the potential mitochondrial localization in that 7h11.
NT.28 was enriched in the mitochondrial fraction similar
to RNA-editing associated protein (REAP), a known mito-
chondrial marker [47], whereas the cytoplasmic HSP70 was
excluded from this fraction (Figure 6C). To determine in
which mitochondrial compartment 7611.NT.28 might be
localized, we exposed whole cells to increasing concentra-
tions of digitonin, a detergent that preferentially solubilizes
the plasma membrane and the outer membrane of the
mitochondria. As the digitonin concentration is increased,
specific mitochondrial compartments have been shown to
be solubilized with 0.015% digitonin releasing proteins
from the inter-membrane space, 0.025% digitonin solubil-
izing matrix proteins, 0.04% digitonin resulting in release
of outer membrane proteins and 0.1% digitonin solubiliz-
ing inner membrane proteins [48,49]. As Th11.NT.28 was
only released upon exposure to 0.1% digitonin, its likely
localization is the inner membrane (Figure 6D), since
solubilization of trypanosome alternative oxidase (TAO), a

known inner membrane protein of T. brucei mitochondria
[50], occurred with the same digitonin concentration,
whereas a portion of mitochondrial HSP70, a matrix pro-
tein, was released with as little as 0.015% digitonin.

RNAi-induced knockdown of Th11.NT.28 resulted in
cell death in procyclic forms (Figure 7A), but did not
affect growth in bloodstream forms (Figure 3C). An ana-
lysis of cell cycle progression in the procyclic cells fol-
lowing RNAi did not result in an accumulation of cells
containing aberrant DNA amounts. However, a steady
increase in the number of 2K1N cells was observed with
this cell type constituting one third of all cells four days
post-induction (Figure 7B). In this category, 50% of cells
had duplicated the kinetoplast, but the daughter kine-
toplast remained linked in a dumbbell-shaped body, a
larger number than seen in wild-type cells [46]. This in-
dicated that although cells entered S phase it had not
been completed.

Tb10.NT.87: a mitochondrial matrix protein

Tbh10.NT.87, a very basic protein of 64 aa, is highly
conserved in kinetoplastids except for the first 10 aa
(Figure 8A). Performing fluorescence microscopy on
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Figure 6 Characterization of Tb11.NT.28. (A) Sequence conservation of Tb11.NT.28 across kinetoplastids. Amino acid sequences from T. brucei
(Tbr), T. cruzi (Tcr) and L. major (Lma) were aligned with ClustalW and conserved residues are shaded with black boxes while similar residues are
shaded in grey. The predicted transmembrane domain (TM helix) is indicated. (B) Immunofluorescence analysis of cells expressing a C-terminal

HA-tagged Tb.1

mitochondrial HSP 70 (mtHSP70, bottom panel).

1.NT.28. Cells were stained with an anti-HA antibody (green) and MitoTracker (red) and a merge of signal for HA and MitoTracker
is shown in yellow. (C) Cell fractionation of cells expressing C-terminal HA-tagged Tb11.NT.28. Western blot analysis was performed against
C-terminal HA-tagged Tb11.NT.28 (top panel), RNA-editing associated protein (REAP, middle panel) and cytoplasmic HSP70 (bottom panel) on total
(M), cytoplasmic (O), nuclear (N), endoplasmic reticulum (ER) and mitochondrial (Mito) fractions. (D) Digitonin extraction analysis of cells expressing
C-terminal HA-tagged Tb11.NT.28. Parasites were exposed to increasing concentrations of the detergent digitonin as indicated above the panels and
solubilized proteins were analyzed by Western blot for HA-tagged 7b11.NT.28 (top panel), trypanosome alternative oxidase (TAO, middle panel) and

live cells expressing the GFP-tagged RNAi-resistant
construct revealed similar localization patterns between
Th10.NT.87 and MitoTracker, indicative of a mitochon-
drial localization (Figure 8B). Cell fractionation experi-
ments were consistent with the immunofluorescence
data (Figure 8D) and digitonin solubilization assays,
as described above, suggested that 7610.NT.87 was a
matrix protein, since the solubilization properties were
similar to mitochondrial HSP70, an established marker
for the matrix (Figure 8E). To further pinpoint its cellu-
lar localization, we used immunogold electron micros-
copy of cells expressing HA-TEV-FLAG tagged Th10.
NT.87. Micrographs of thin sections showed that the
protein was in the mitochondrial matrix and its distri-
bution appeared to be uniform (Figure 8C).

Th10.NT.87 was shown to be essential in both procyc-
lic and bloodstream forms (Figures 9A and 3B) and a
significant increase in cells with more than two nuclei
and grossly enlarged cell bodies was noted after knock-
down of Th10.NT.87 in procyclics (Figures 9B and C).
After four days of induction, 12.5% of cells had between
three and eight nuclei. Most of these cells contained a
single kinetoplast, indicating that although mitosis was
occurring there was not a corresponding replication and

division of mitochondrial DNA. The enlarged cell body
remained as one unit with a single flagellum as expected
in a cell with one kinetoplast. A substantial number of
zoids (13.7%) and 1K2N cells (16%) also accumulated by
this time point. In accordance with the presence of a
single kinetoplast in many cells containing multiple nu-
clei, a potential defect in KDNA replication was further
manifested by the appearance of cells with small kDNA
or no detectable kDNA (Figures 9D and E). For example,
after three days of Th10.NT.87 RNAi, 32% of cells had
normal-sized kDNA, whereas 65% of the cells were
scored as having a small kDNA.

Discussion

Although genome sequencing projects have provided a
wealth of information about genome structure and
organization, they also encountered a challenge to cata-
logue all protein-coding genes. Since gene annotation pro-
grams do not perform well in predicting small proteins,
that is, less than 100 aa, it has been common practice to
set an artificial length cutoff of 100 aa to avoid flawed pre-
dictions. However, recent computational and functional
studies highlighted the existence and importance of small
proteins in numerous organisms [16-20,51]. Our approach
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Figure 7 Analysis of growth and cell cycle progression following RNAi of Tb71.NT.28. (A) Tb11.NT.28 RNAI in procyclics (PC). Growth for
uninduced (—tet) and induced (+tet) cells shown in log scale. (B) Analysis of the K/N configurations after induction of Tb11.NT.28 RNAI. Cells were
scored every 24 hours as having normal DNA (one kinetoplast and one nucleus (1K1N), two kinetoplasts and one nucleus (2K1N) or two
kinetoplasts and two nuclei (2K2N)) or abnormal DNA content (one kinetoplast and no nucleus (1KON), one kinetoplast and two nuclei (TK2N)
and more than two nuclei (>2 N). Cell counts were done as described in the legend for Figure 5.

to gauge the extent of the small proteome in 7. brucei in-
tegrated experimental data (transcriptome and MS data)
and evolutionary conservation. Starting with 1,117 tran-
scribed sequences not mapping to an annotated CDS [28],
987 have the potential to code for one or more proteins of
at least 25 amino acids. This data set was then examined
for conserved proteins in related kinetoplastids and repre-
sentative eukaryotes. A similar strategy was applied in
yeast, where more than 60% of the 299 small proteins
identified had significant similarities with annotated pro-
teins in other eukaryotes, including humans [19]. Likewise,
an analysis of the M. musculus small proteome revealed
that two-thirds of the potential sORFs identified were con-
served in rat and 50% were conserved in human [17]. In
contrast, only 1.3% (13) of the predicted ORFs in 7. brucei
had potential homologues in representative eukaryotes,
with half of them coding for ribosomal proteins. One pos-
sible explanation for this stark difference in evolutionary
conservation might be the early divergence of T. brucei
from other eukaryotes. We observed a comparable lack of
conservation when searching for potential homologues in
related kinetoplastid species: 16.3% (161) of the 987 tran-
scripts have predicted ORFs with a significant homology
to annotated proteins or a six-frame translation of the
available genomes. This result was somewhat unexpected,
since more than half of the small proteins identified in
Arabidopsis had homologues in four closely related plants
[16] and more than 3,000 sORFs were found to be con-
served between D. melanogaster and a closely related spe-
cies, D. pseudoobscura [15]. On the other hand, since it
has been argued that conservation in closely related spe-
cies is evidence for translation, the 173 small proteins
identified by evolutionary conservation might represent a

substantial proportion of the small proteome. The cur-
rently available MS data support this view, since the pep-
tide hits were largely confined to the set of 173 proteins.
The only exception was the identification of five T. brucei-
specific proteins. Thus, to fully expose the catalogue of
small proteins, future approaches will have to concentrate
on the identification of T. brucei-specific ORFs through
MS analysis or ribosome profiling [52,53].

Examining the functional importance of small proteins
in yeast, revealed that 22 (15.5%) of 140 sORF knockout
cell lines had an essential phenotype in specific growth
conditions [19] while in Arabidopsis, overexpression of
10% of a handpicked set of almost 500 small proteins
resulted in an abnormal phenotype [20]. Our results
showed that 16.7% of the ORFs tested were essential in
procyclic cells, while an additional 12% altered normal
growth patterns. For example, 7h11.NT.28 was essential
in procyclics but not in bloodstream-form parasites. We
further provided evidence that this small protein of 56
amino acids is likely localized to the inner membrane of
the mitochondria. In 7. brucei, both the size and activity
of the mitochondria vary dramatically between life cycle
stages. In the bloodstream form, mitochondrial respira-
tory activity is repressed and a single tubule of the or-
ganelle is maintained. On the other hand, in procyclic
cells the mitochondrion forms an extensive, branching
network and has active respiration. Although further ex-
periments will be required to elucidate the function of
Th11.NT.28, examination of cell cycle progression fol-
lowing RNAIi induction revealed a decreased ability of
the cells to divide replicated kinetoplasts. In contrast,
Th10.NT.87, a mitochondrial matrix protein of 64 amino
acids, is essential in both procyclic- and bloodstream-
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Figure 8 Characterization of Tb70.NT.87. (A) Sequence conservation of Tb10.NT.87 across kinetoplastids. Amino acid sequences from T. brucei
(Tbr), T. cruzi (Tcr) and L. major (Lma) were aligned with ClustalW and conserved residues are shaded with black boxes while similar residues are
shaded in grey. (B) Live fluorescence microscopy of cells expressing a C-terminal GFP-tagged Tb10.NT.87. GFP-signal (green), MitoTracker (red),
GFP and MitoTracker merge (yellow), Hoechst (blue) and DIC images are shown. (C) Immunogold electron microscopy of C-terminal HA-tagged
Tb10.NT.87. Mitochondrial tubules indicated with the letter M and kinetoplast (mitochondrial DNA) indicated by an arrow and K. (D) Cellular
fractionation of cells expressing C-terminal GFP-tagged Tb10.NT.87. Western blot against C-terminal GFP-tagged Tb10.NT.87 (top panel), editing
protein (a-63/P1H3, middle panel) and cytoplasmic HSP70 (bottom panel) on total (T), cytoplasmic (C), nuclear (N), endoplasmic reticulum (ER)
and mitochondria (Mito) fractions. (E) Digitonin extraction analysis of cells expressing C-terminal GFP-tagged Tb10.NT.87. Parasites were exposed
to increasing concentrations of the detergent digitonin as indicated and solubilized proteins were analyzed by Western blot for GFP-tagged Tb10.

interference contrast.

NT.87 (top panel), mitochondrial HSP 70 (mtHSP70, middle panel), and trypanosome alternative oxidase (TAO, bottom panel). DIC, differential

form parasites. Ablation of this protein in procyclics re-
sulted in the accumulation of cells containing multiple nu-
clei and a single kinetoplast, as well as cells with small or
no kinetoplast, suggesting that kinetoplast replication is im-
paired. A similar scenario was observed in bloodstream-
form cells upon RNAi of Th10.NT.87 (data not shown).
The basic nature of T610.NT.87 (pI of 11.5) is intriguing
and will need further investigation. Nevertheless, our
current data are consistent with 7b10.NT.87 playing a role
in kinetoplast replication, which is an essential process in
both life cycle stages [54]. Finally, 7h11.NT.29, indispens-
able in both procyclic and bloodstream stages, is most
likely localized on the cell surface. Two days post-induction
cells appeared with an asymmetrical hourglass shape and a
kinetoplast sequestered in the smaller half of the cell, while
the remaining portion contains 1KIN or 1K2N. The pro-
portional accumulation of zoids and 1K2N cells that began
after these cells arose suggested that an aberrant cytokin-
esis of these asymmetrical hourglass cells occurred.

Conclusions
Our study provides evidence for the existence and import-
ance of small proteins in the human pathogen T. brucei.

At the same time, it is somewhat puzzling that an unex-
pectedly low number of transcripts not matching anno-
tated proteins or having conservation with closely related
species were identified as containing functional ORFs.
Even though there may be small proteins expressed at low
levels not yet detectable by MS and others that might be
expressed at specific stages of the life cycle, it is tempting
to speculate that the T. brucei transcriptome includes a
substantial number of non-coding RNAs. As all the small
proteins identified as essential are unique to kinetoplas-
tids, they may become new targets to block the survival of
trypanosomes in the insect vector and/or the mammalian
host. The next important question to be tackled is the
mechanism of action of these small proteins.

Methods

Standard methods

Western blots [55], transfection of procyclic cells [56] and
RNA isolation [56] were performed using previously pub-
lished protocols. Oligonucleotides used to prepare clones
and probes for Northern blots are listed in Additional
file 2: Figure S9.
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Figure 9 Analysis of growth and cell cycle progression following RNAi of Tb10.NT.87. (A) Tb10.NT.87 RNAI in procyclics (PC). Growth for
uninduced (—tet) and induced (+tet) cells shown in log scale. (B) Cell cycle progression in procyclic cells after RNAi of To10.NT.87. Cells were
scored every 24 hours as having normal DNA (one kinetoplast and one nucleus (1K1N), two kinetoplasts and one nucleus (2K1N) or two
kinetoplasts and two nuclei (2K2N)) or abnormal DNA content (one kinetoplast and no nucleus (1KON), one kinetoplast and two nuclei (TK2N)
and more than two nuclei (>2 N)). (C) Example images of abnormal morphology noted after RNAi of Tb10.NT.87. Hoechst staining and DIC are
shown. (D) Examination of kDNA size after To10.NT.87 RNAI in procyclic cells. Cells were scored as having normal kDNA size, small kDNA, absent
kDNA or asymmetrical kDNA, which is one cell with two daughter kDNA of different sizes, by visually comparing the kDNA size to that in the
uninduced control. (E) Examples of cells with normal kDNA, small kDNA (both in G1 and dividing) and absent kDNA. Hoechst and DIC images are

displayed. Cell counts were done as described in the legend for Figure 5. DIC, differential interference contrast.

Bioinformatics

The 987 transcripts were translated using the getorf pro-
gram of the European Molecular Biology Open Software
Suite setting a lower limit of 25 aa and including only
OREFs that contained a start and stop codon [57].

We used the NCBI BLAST suite (BLAST 2.2.28, [35])
for our protein searches. The predicted 4,699 T. brucei
ORFs were used as queries for blastp to search all non-
redundant kinetoplastid protein sequences (taxid: 5653),
using an e-value cutoff of 0.1. T. brucei (taxid: 5691).
T. b. gambiense (taxid: 31285) and T. b. brucei (taxid: 5702)
sequences were excluded from the search. Similarly,
tblastn was used to search the kinetoplastid translated
nucleotide database with an e-value cutoff of 0.1. The
annotated proteins of S. cerevisiae (taxid: 4932), C. ele-
gans (taxid: 6239), A. thaliana (taxid: 3702), D. melano-
gaster (taxid: 7227), M. musculus (taxid: 10090) and H.
sapiens (taxid: 9606) were queried with the same strat-
egy. All alignments were manually inspected and verified
to exclude false positives due to the relaxed threshold.

The predicted T. brucei proteins were scanned for do-
mains using the NCBI CD-Search Tool (cdsearch/cdd
v3.10; [36]). Transmembrane helices in proteins were
predicted using the TMHMM Server v. 2.0 [38,58] and
the presence and location of signal peptide cleavage sites
were scanned at the SignalP 4.1 Server [37,59]; both
servers are at the Technical University of Denmark.

Mass spectrometry analysis

Procyclic-form trypanosomes (MiTat 1.4) were lysed in
50 mM Tris (pH 7.3) with 4% SDS. To decrease sample
complexity, the samples were filtered directly using differ-
ent (3 kDa, 10 kDa, 30 kDa and 50 kDa molecular weight
cut off (MWCO)) Amicon Ultracel centrifugal filter units
(Millipore, Billerica, MA, USA) and under strong de-
naturing conditions with 8 M urea. The filtrate was pre-
cipitated using 4 volumes of ethanol and subsequently
resuspended in 20 pl 8 M urea. The samples were reduced
with 1 mM dithiothreitol (DTT) and alkylated using
5 mM iodoacetamide, prior to digestion with 0.2 pug Lys-C
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(Wako, Richmond, VA, USA) for three hours followed by
digestion with 0.2 pg trypsin (Promega, Madison, WI,
USA) overnight. The peptides were desalted using a
StageTip [60]. For MS analysis, peptides were separated by
a nanoflow liquid chromatography EASY-nLC system on a
capillary packed with Reprosil-C18 (Dr. Maisch) with an
acetonitrile gradient from 2% to 60% at a flow rate of
250 nl/minute for 230 minutes. The Orbitrap XL mass
spectrometer was operated in a data-dependent acquisi-
tion mode performing Topl0 MS/MS per full cycle. Data
analysis was done with MaxQuant version 1.2.0.18 [26]
using a concatenated database of TREU 927 v.2.3 (10,533
entries, tritrypDB.org) and the hits generated by the RNA-
Seq analysis (987 entries, Additional file 1). Enzyme search
specificity was set for tryptic peptides. Up to two misclea-
vages for each peptide were allowed. Carbamidomethylation
on cysteines was set as fixed modification, while methionine
oxidation and protein N-acetylation were considered as
variable modifications. The search was performed with an
initial mass tolerance of 6 ppm mass accuracy for the pre-
cursor ion and 0.5 Da. False discovery rate was fixed at one
percent on peptide and protein level. For the second data
set [22], we reanalyzed previously generated MS data using
MaxQuant standard settings with the above described
concatenated database. The MS proteomics data have been
deposited to the ProteomeXchange Consortium [61] via the
PRIDE partner repository [62] with the dataset identifier
PXD000711 [22] and PXDO000712 (this study).

Cell culture

T. brucei 29.13.6 Lister 427 procyclic cells [41] were cul-
tured at 28°C with 5% CO, in Cunningham’s media sup-
plemented with 10% Tet-system approved heat inactivated
fetal bovine serum (FBS, Clontech, Mountain View, CA,
USA), 2 mM L-glutamine, 100 units/ml penicillin, 100 pg/ml
streptomycin, 50 pg/ml gentamicin, 15 pg/mL G418
and 50 pg/ml hygromycin B. A total of 1 x 10” 29.13.6 cells
were used for each procyclic-form transfection. Cells were
spun down, washed in Cytomix (20 mM KCl, 0.15 mM
CaCl,, 10 mM K,HPO,, 25 mM 4-(2-hydroxyethyl)pipera-
zine-1-ethanesulfonic acid (Hepes), 2 mM ethylenedi-
aminetetraacetic acid (EDTA) and 5 mM MgCl, pH7.6),
then resuspended in 500 ul Cytomix. Then, 25 ug of linear-
ized plasmid DNA was added to the solution and cells were
pulsed twice at 1,600 V with a time constant of 0.6 ms on a
GenePulser Xcell (BioRad, Hercules, CA, USA). Cells were
allowed to rescue for 24 hours before selective drug was
added. Phleomycin and blasticidin were added to a final
concentration of 2.5 pg/ml and 10 pg/ml, respectively.
Transfected cells were cloned at least 24 hours after trans-
fection. Serial dilutions of the cells were then made in
media with 20% serum and the presence of 3 x 10’ 29.13.6
cells that had not been transfected. A total of 200 pl of
transfected cells were added to 1.8 ml of the cloning media
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and further diluted in six, five-fold dilutions. Each dilution
was plated in a 96-well plate and clones were selected from
dilutions where fewer than 30% of wells had growth. T.
brucei SM Lister 427 bloodstream-form cells [41] were
maintained at 37 °C with 5% CO, in HMI-9 media supple-
mented with 10% Tet-system approved heat inactivated
EBS (Clontech), 100 units/ml penicillin, 100 pg/ml strepto-
mycin, 50 pg/ml gentamicin, and 2.5 pg/ml G418. For
bloodstream form transfections, 3 x 10’ cells were centri-
fuged, washed quickly with Tb-BSF buffer [63], resuspended
in 100 pl Tb-BSF buffer containing 10 pg of plasmid DNA
and transfected with protocol X-01 in an AMAXA Nucleo-
fector’. Transfected cells were placed in 30 ml pre-warmed
HMI-9 media and two 10-fold serial dilutions were plated
in a 24-well plate. Six hours after transfection, pre-warmed
medium supplemented with appropriate selectable drugs
was added. The final concentration of selectable markers
was 2.5 pg/ml phleomycin and 5 pg/ml blasticidin. For in-
duction of hairpin or RNAi-resistant construct expression,
10 pg/ml and 1 pg/ml of doxycycline was added to
procyclic- and bloodstream-form cells, respectively.

Plasmid constructions

Constructs encoding hairpin RNAs

We followed the Gateway’-adapted cloning scheme de-
veloped by Margaret Phillips and colleagues [40]. Briefly,
a 300 to 400 base pair region was PCR amplified and
TA-cloned (deoxythymidine, T, deoxyadenosine, A) into
plasmid pCR/8GW/TOPO (Invitrogen, Grand Island,
NY, USA) to generate an entry clone. The entry clone
was then recombined with the destination vector
pTrypRNAiGate. Final constructs were verified by re-
striction enzyme digestions and DNA sequencing.

RNAi-resistant constructs

To rescue the lethal RNAi phenotype, RNAi-resistant
versions of the CDS were synthesized by GeneWiz, Inc,
Cambridge, MA, USA. A silent mutation was introduced
every twelfth nucleotide [44], a C-terminal HA-TEV-
FLAG tag was added and the CDS was flanked at the 5’
and 3’ end by a Hind III and Bam HI restriction site, re-
spectively. The RNAi-resistant construct was cloned into
the inducible pLew100v5 BSR plasmid flanked by the
GPEET procyclin 5 UTR and an aldolase 3'UTR. In
addition, inducible GFP-tagged RNAi-resistant constructs
were generated in pLew100v5 BSR. The plasmids contain-
ing the RNAi-resistant constructs were digested with Not
I to allow for recombination into a 7. brucei ribosomal
RNA spacer region following transfection. For each
knock-down, ten clones were tested for a phenotype.

Northern blotting
Total RNA was separated on 1.5% agarose gels in the
presence of 6.3% formaldehyde in 40 mM 3-
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morpholinopropane-1-sulfonic acid (MOPS) and 2 mM
EDTA. RNA ladder 0.5 to 10 kb (Invitrogen) was used as
marker. The RNA was transferred overnight to a Hybond-N
nylon membrane (GE Healthcare, Little Chalfont, United
Kingdom) by capillary transfer with 10x SSC (0.15 M so-
dium citrate, 1.5 M sodium chloride), UV cross-linked to
the membrane and stained with methylene blue. The mem-
brane was pre-hybridized for one hour in 5x SET (0.75 M
sodium chloride, 5 mm EDTA, 0.15 M Tris-HCl, pH 7.4),
10x Denhardts solution, 1% SDS and 100 pg/ml yeast
RNA, and then hybridized overnight in the same solution.
DNA probes were internally labeled by synthesis with
specific dsDNA templates, sense and antisense primers and
Pfx DNA polymerase (Invitrogen) in the presence of
[a-**P]dCTP. The membrane was washed two to three
times (10 minutes each) with 2x SSC, 0.1% SDS and
hybridization signals were detected by PhosphorImager.

Semi-quantitative reverse transcriptase (RT)-PCR

For each sample, 5 pg of total RNA was treated with 2 units
of DNase RQ (Promega), phenol extracted and ethanol pre-
cipitated. DNase-treated RNA was reverse transcribed
using random primers (Promega) and Superscript II en-
zyme (Invitrogen) according to the manufacturer’s protocol.
Twenty-two cycles of PCR were then performed using
Platinum Pfx (Invitrogen), according to the manufacturer’s
instructions, for each knockdown with histone 4 used as a
control. An annealing temperature of 50°C was used for all
oligonucleotides with an extension time of 30 seconds.

Immunofluorescence

A total of 5 to 8 x 10° cells were spun down and washed
twice with cell wash (20 mM Tris—HCl (pH 7.5),
100 mM NaCl and 3 mM MgCl,) before being placed
on slides coated with poly-L-lysine and settling for five
minutes. Then, 4% paraformaldehyde (PFA) was added
and the cells were fixed for 30 minutes at 4°C. Cells were
washed twice and then exposed to 0.1% NP-40 detergent
in a solution of 2% goat serum. Slides were washed again
and blocked with 10% goat serum for 10 minutes. Upon
removal of blocking solution, primary antibody, diluted
in 2% goat serum, was administered for one hour. Anti-
GFP (Roche, Basel, Switzerland), anti-HA (Covance,
Princeton, NJ, USA), and a-GPEET procyclin (Cedarlane
labs, Burlington, Ontario, Canada) antibodies were ob-
tained commercially. The antibodies to BiP were gener-
ously provided by Jay Bangs. Cells were washed five
times, before the addition of secondary antibody and
5 pg/ml Hoechst (Cell Signaling Technology, Inc,
Beverly, MA, USA). Cells were exposed to secondary
antibody, diluted in 2% goat serum, for one hour. All
secondary antibodies (Alexa Fluor 488-conjugated goat
anti-mouse, 594-conjugated goat anti-mouse, 488-
conjugated goat anti-rabbit and 594-conjugated goat anti-
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rabbit (Invitrogen)) were used at a 1:1,000 dilution.
Samples were washed five times for 10 minutes total
Wash solution was removed and FluorSave (Calbiochem,
Darmstadt, Germany) was added. Next, the coverslip was
placed on the slide, and FluorSave reagent dried for two
hours to overnight before cells were imaged on a Zeiss
(Jena, Germany) Axioplan 2 fluorescence microscope. For
kDNA size estimation, cells were fixed and stained with
Hoechst, following the protocol outlined above. Cells were
imaged and kDNA size was compared visually between
un-induced cells and induced cells.

MitoTracker

A total of 1 x10” cells was spun down, washed once in
cell wash (20 mM Tris—HCI (pH 7.5), 100 mM NaCl
and 3 mM MgCl,) and resuspended in Cunningham’s
media with no added serum. MitoTracker Red CM-
H2xRos (Invitrogen) was added to a final concentration
of 1 uM. Cells were incubated at 28°C and 5% CO, for
10 to 15 minutes, centrifuged, washed and placed in
fresh media without serum. Cells were rescued in media
without MitoTracker for 25 minutes, then Hoechst
(5 pg/ml) was added; cells were spun down and finally
resuspended in 20 to 50 pl of PBSG.

Live cell imaging

A total of 5 to 8x10° cells was collected, Hoechst
(5 pg/ml) was added and the cells were incubated in the
dark for two minutes. Cells were centrifuged, washed
once in phosphate-buffered saline with glucose (PBSG),
resuspended in 20 to 50 ul of PBSG, and imaged on a
Zeiss Axioplan 2 fluorescence microscope.

Cell fractionations

Cell compartment gproteome kit (Qiagen)

Each fractionation used 1x10° cells expressing GEP-
tagged TbI11.NT.29 and the manufacturer’s (Qiagen,
Venlo, Limburg, The Netherlands) instructions were
followed. The anti-HSP70 and anti-BiP antibodies were
generously provided by Jay Bangs.

Mitochondrial isolation gproteome kit (Qiagen)

Each fractionation used 1x10° cells expressing GEP-
tagged Th10.NT.87 or Th11.NT.28 and the manufacturer’s
(Qiagen) instructions were followed. The antibodies to
REAP and ThMP63 were generously provided by Steve
Hajduk and Ken Stuart, respectively.

Digitonin solubilization assay

Cells (1x10®%) expressing GFP-tagged ThIO.NT.87 or
HA-tagged Tb11.NT.28 were spun down for each assay,
washed twice with 20 mM sodium phosphate (pH 7.9),
20 mM glucose and 0.15 M NaCl, and then resuspended
in 500 pl SoTE buffer (20 mM Tris—HCI (pH 7.5), 0.6 M
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sorbitol, 2 mM EDTA). Next, 500 pl of SoTE buffer with
varying digitonin amounts was added to each sample to
a final concentration of detergent of 0.015%, 0.025%,
0.04%, 0.05% or 0.1% [48,49]. Samples were incubated
for five minutes at 4°C followed by centrifugation for
three minutes at 5,000 g at 4°C. SDS-sample buffer was
added to the supernatants and samples were analyzed by
SDS-PAGE and Western blotting. The antibodies to
TAO and mtHSP70 were generously provided by Minu
Chaudhuri and Jay Bangs, respectively.

Electron microscopy

Samples were fixed in 4% PFA/0.1% gluteraldehyde in PBS
for 30 minutes followed by further fixation in 4% PFA for
one hour, rinsed in PBS, scraped and re-suspended in 10%
gelatin. Chilled blocks were trimmed, placed in 2.3 M su-
crose overnight on a rotor at 4°C, transferred to aluminum
pins and frozen rapidly in liquid nitrogen. The frozen
blocks were cut on a Leica Cryo-EMUC6 UltraCut and
65 nm thick sections were collected using the Tokoyasu
method [64] and placed on carbon/formvar coated grids
and floated in a dish of PBS for immunolabeling. Grids
were placed section side down on drops of 0.1 M ammo-
nium chloride to quench untreated aldehyde groups, then
blocked for nonspecific binding on 1% fish skin gelatin in
PBS. Single labeled grids were incubated on a primary anti-
body mouse anti-HA (Covance) 1:50 dilution, which re-
quired a rabbit anti-mouse bridge (Jacksonlmmuno, West
Grove, PA, USA). The secondary antibody was 10 nm Pro-
tein A gold (Utrecht Medical Center). All grids were rinsed
in PBS, fixed using 1% gluteraldehyde for five minutes,
rinsed again and transferred to a UA/methylcellulose drop
before being collected and dried. Samples were viewed
using a FEI Tencai Biotwin TEM at 80 Kv. Images were
taken using Morada CCD and iTEM (Olympus) software.

Additional files

Additional file 1: Coding potential of the 987 transcripts described
in Figure 1. Setting a lower limit of 25 aa, all the potential ORFs are
listed. For example Tb1.NT.1_1 refers to the novel transcript Tb1.NT.1
according to the nomenclature by Kolev et al. [28] and _1 indicates ORF
#1. The numbers in parenthesis specify the CDS.

Additional file 2: Figure S1. Length distribution of the predicted 4,699
ORFs. Figure S2. Growth analysis of the five small proteins with faster or
slower growth in procyclics following induction of RNAI. Figure S3.
Growth analysis of the seven small proteins essential in procyclics
following induction of RNAi with and without expression of an
RNAi-resistant construct. The data are based on three independent
experiments. Figure S4. Northern blot analysis of essential ORFs. Northern
blots for six (TbT1.NT.108, To10.NT.90, TO10.NT.86, Tb10.NT.87, Tb11.NT.28 and
Tb3.NT.18) of the seven essential transcripts. Marker sizes in kb are indicated
on the left. The predicted transcript size is indicated below each panel.
Northern blot analysis for Tb71.NT.29 can be found in Kolev NG, Franklin JB,
Carmi S, Shi H, Michaeli S, Tschudi C: The transcriptome of the human
pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog
2010, 6:21001090 [28]. Figure S5. Semi-quantitative RT-PCR analysis of RNAi
knockdown. RT-PCR was performed on the transcripts encoding each
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essential small protein from procyclic cells un-induced (—) or induced (+) for
RNAI. Histone 4 (H4) was used as a control. The small protein transcript and
H4 are indicated to the right of each panel. Figure S6. Listing of the seven
essential proteins in procyclics with a C-terminal GFP or HA tag. All
constructs rescued the lethal RNAi phenotype. Figure S7. Western blot
analysis of GFP-tagged proteins encoded by an RNAi-resistant construct.
Size markers (kDa) are shown at the left. Figure S8. Growth analysis of
bloodstream-form  cells following RNAi against four small proteins. Growth
for un-induced (tet-) and induced (tet+) cells are shown in log scale. The
data are based on three independent experiments. Figure S9. Listing of
oligonucleotides used in this study.

Additional file 3: Listing of the 178 transcripts (sheet 178 ORFs)
and 42 transcripts (sheet 42 ORFs) encoding potential ORFs with
matching peptides and hits in Kinetoplastids. Panigrahi et al: A
comprehensive analysis of Trypanosoma brucei mitochondrial proteome.
Proteomics 2009, 9:434-450 [21]. Butter et al: Comparative proteomics of
two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals
novel components of the parasite's host adaptation machinery. Mol Cell
Proteomics 2013, 12:172-179 [22]. viv, T. vivax; cru, T. cruzi; Leish,
Leishmania; con, T. congolense; evansi, T. evansi. PTM Abbreviations: P,
phosphorylation; S, sumoylation; PM, palmitoylation; G, glycosylation.
Phosphorylation prediction: NetPhos http://www.cbs.dtu.dk/services/
NetPhos/; Sumoylation prediction: http://sumosp.biocuckoo.org/;
Palmitoylation Prediction: http://csspalm.biocuckoo.org/; Glycosylation
Prediction: http://www.cbs.dtu.dk/services/YinOYang/.

Additional file 4: T. brucei predicted ORFs conserved in representative
eukaryotes. BLAST bit scores of T. brucei predicted ORFs with potential
homologs in representative eukaryotes. Bit scores are shown after the
accession number and they represent a normalized version of the raw
BLAST alignment score.

Additional file 5: Survey of conserved domains in 173 T. brucei
predicted ORFs.

Abbreviations

aa: amino acids; BLAST: Basic Local Alignment Search Tool; CDS: coding
sequences; dsRNA: double-stranded RNA; EDTA: ethylenediaminetetraacetic
acid; ER: endoplastic reticulum; GFP: green fluorescent protein; MS: mass
spectrometry; PBS: phosphate-buffered saline; PFA: paraformaldehyde;
REAP: RNA-editing associated protein; RNA-Seq: RNA sequencing; RRM: RNA
recognition motif; RT-PCR: reverse transcriptase-polymerase chain reaction;
snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; sORF: short open
reading frame; TAO: trypanosome alternative oxidase; UORF: upstream open
reading frame; UTR: untranslated region.
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