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Abstract 

 

In modern neuroscience there is general agreement that brain function relies on 
networks and that connectivity is therefore of paramount importance for brain function. 
Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic 
resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. 
Existing methods typically aim to find a predefined number of areas and/or are limited 
to small regions of grey matter. However, it is in general not likely that a single 
parcellation dividing the brain into a finite number of areas is an adequate 
representation of the function-anatomical organization of the brain. In this work, we 
propose hierarchical clustering as a solution to overcome these limitations and achieve 
whole-brain parcellation. We demonstrate that this method encodes the information of 
the underlying structure at all granularity levels in a hierarchical tree or dendrogram. 
We develop an optimal tree building and processing pipeline that reduces the 
complexity of the tree with minimal information loss. We show how these trees can be 
used to compare the similarity structure of different subjects or recordings and how to 
extract parcellations from them. Our novel approach yields a more exhaustive 
representation of the real underlying structure and successfully tackles the challenge of 
whole-brain parcellation.  
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Abbreviations 

 

dMRI:  diffusion magnetic resonance imaging. 
fMRI:  functional magnetic resonance imaging. 
TR:  repetition time. 
TE:  echo time. 
GRAPPA: generalized autocalibrating partially parallel acquisitions. 
FA:  fractional anisotropy. 
SNR:  signal to noise ratio. 
CPCC:  cophenetic correlation coefficient. 
tCPCC:  tree cophenetic correlation coefficient. 
wTriples:  weighted triples similarity. 
SS: spread vs. separation. 



Introduction 
 
It is commonly accepted among neuroscientists that the cerebral cortex can be 
subdivided into areas according to various structural criteria, including the distribution 
of different cell types (cytoarchitecture), the distribution of myelinated fibers 
(myeloarchitecture), and the distribution of different neurotransmitter receptors 
(receptorarchitecture) (Amunts et al., 2010; Amunts et al., 2007; Brodmann, 1909; Vogt, 
1910, 1911; Zilles, 2004; Zilles and Amunts, 2009, 2010; Zilles et al., 2004). The most 
widely known such parcellation is still the cytoarchitectonic map of Brodmann, based on 
the specific variation in size and packing density of cell bodies over the layers of the 
cortical sheet in one single subject. It is also generally agreed that brain structure is 
closely related to brain function and, therefore, structurally defined cortical areas tend 
to carry functional meaning. Consequently, many studies have aimed to find the 
boundaries between these areas, using a variety of techniques based on local structural 
tissue properties. However, the brain is not only a collection of isolated functional units; 
the different parts communicate and interact in a complex network ultimately resulting 
in higher cognitive capabilities. The connectivity pattern of a specific point in the cortex 
is, therefore, a major source of information about its function and an important 
parameter for the description and distinction of cortical areas (Barbas and Rempel-
Clower, 1997; Knösche and Tittgemeyer, 2011; Passingham et al., 2002).  The 
subdivision of the brain into function-anatomically defined areas is also a necessary step 
for the connectome, characterized by elements (the regions being connected) and the 
connections between them (Sporns, 2011).  

However, it is unlikely that a single parcellation dividing the brain into a finite number 
of functional areas would be an adequate representation of the functional organization 
of the brain, in the same way that a political map subdividing the earth’s land surface is 
not a perfect representation of the cultural differences and kinships amongst its people. 
The measurable changes of properties on the cortical surface are often gradual rather 
than abrupt. In these cases, we might find different partitions depending on how we 
define the minimum structural difference that just merits distinction, that is, on the 
required level of granularity of the partition. Also, even in cases where these changes are 
sharp and a partition remains constant for a wide range of granularities, there can still 
exist nested divisions within the regions of this partition. This is exemplified by the 
cytoarchitecture work of Caspers and colleagues (2008) and the tractography work of 
Ruschel and colleagues (2013), where Brodmann’s areas 39 and 40 were further 
subdivided. A partition should, therefore, be seen as an approximation of the similarity 
structure (e.g., expressed by a correlation matrix) of some structural properties at a 
particular level of granularity.  

Brain connectivity is among the most relevant structural cues in terms of brain function 
(Knösche and Tittgemeyer, 2011). The arrival of dMRI, and particularly the ability to 
describe the anatomical connectivity pattern of a point in the cortex by means of 
tractography, has enabled researchers to perform in vivo cortical parcellation based on 
brain connectivity (Anwander et al., 2007; Johansen-Berg et al., 2004). Classical 



approaches usually focus on one particular subdivision of the cortical surface and apply 
rather strong constraints and assumptions. For example, target-based clustering 
(Behrens et al., 2003) involves the strong assumption that each parcel should be mainly 
connected to one out of a set of predefined target areas. On the other hand, so-called free 

clustering algorithms do not have this assumption, but the number of expected parcels, 
average size of clusters, or a similar parameter must be known in advance (Anwander et 
al., 2007), posing a classical model selection problem. The implicit assumption here is 
that there is a parcellation that can be considered a reasonably unique and complete 
representation of the connectivity similarity structure, which is rarely likely to be the 
case. There have been attempts to deal with non-uniqueness through having a series of 
parcellations (Kahnt et al., 2012), attempting to find an, in some sense, optimal 
parcellation (Jbabdi et al., 2009), or searching for a space of optimal parcellations  
(Gorbach et al., 2011; Roca et al., 2009). However, when faced with a whole-brain 
approach, the challenge of not only having a high and unknown expected number of 
areas, but also that number being subject to the desired granularity of the partitioning, 
arises. 

In this work, we propose hierarchical clustering as an approach to overcome these 
limitations. Hierarchical methods have been applied before to partition functional 
magnetic resonance imaging (fMRI) connectivity data (Cordes et al., 2002; Stanberry et 
al., 2003; Liu et al., 2012) and recently also to obtain full cortical fMRI parcellations at 
multiple granularities (Blumensath et al., 2013). In dMRI, agglomerative hierarchical 
clustering has been used to perform parcellation of white matter pathways by 
Wassermann and colleagues (2010) and Guevara and colleagues (2011). 

We aim to demonstrate that hierarchical clustering is also a promising means by which 
to characterize the similarity structure of anatomical connectivity patterns in the human 
brain, where the information of the underlying structure at all granularity levels is 
encoded in a hierarchical tree or dendrogram. For this purpose, we implemented and 
compared several hierarchical methods and the best performing algorithm, both by 
data-fit and computational cost criteria, was selected. It combines hierarchical centroid 
linkage clustering with a physical neighborhood restriction. Once trees are obtained, 
interpreting the large amount of data encoded and extracting the most relevant 
information is not an easy task. To aid this process, a dendrogram pre-processing 
pipeline was designed that reduces the complexity of the resulting trees, while keeping 
most of its information, to facilitate further analysis. Finally, we pursue the idea that 
these trees can then be sampled to obtain relevant partitions at different granularity 
levels.  

Another important issue is the comparison of parcellations between subjects. This is a 
non-trivial issue, since, as argued above, in each subject many different parcellations are 
possible, depending on local and global granularity constraints. Also, even if one 
manages to identify matching parcellations in different subjects, the comparison based 
thereupon only applies for the respective granularity level, while for finer or coarser 
subdivisions the result could be completely different. On the other hand, the hierarchical 
tree is just a compact representation of all possible parcellations. Hence, comparing the 



entire tree, instead of individual parcellations, should circumvent the above mentioned 
issues. We show how the trees can be used to compare the similarity structure of 
different subjects or time points: globally, using the full connectivity structure 
information through dendrogram comparison, and at selected granularity levels through 
the use of partition finding algorithms. Importantly, this is performed while remaining in 
the subject space without the need to transform the data to a common space prior to 
partitioning (Wang et al., 2013). 



Methods 

 
Data Acquisition and Preprocessing 

High resolution dMRI images as well as T1 and T2 weighted images were acquired for 4 
young and healthy participants (3 males and a female) on a Siemens TimTrio scanner 
with a 32-channel array head coil and maximum gradient strength of 40 mT/m. For one 
of the participants, a second set of images was acquired after a one-week interval. 
Written informed consent was obtained from the subjects in accordance with the ethical 
approval from the University of Leipzig. 

The dMRI data was acquired using spin-echo echo-planar imaging, with time repetition 
(TR) = 11s, echo time (TE) = 90ms, 85 axial slices, resolution 1.5 mm isotropic, 
GRAPPA/3, and 3 acquisitions. We used 60 diffusion gradient directions, which were 
evenly distributed over the half-sphere (b-value = 1000 s/mm²). The diffusion-weighted 
volumes were interspersed by acquisitions with no diffusion weighting (b0 images) at 
the beginning and after each block of 10 volumes (7 volumes). The total scan time for 
the dMRI protocol was approximately 45 min.  

As a first preprocessing step, the 3D T1-weighted (magnetization prepared-rapid 
gradient echo, TR = 1300 ms, time to inversion = 650 ms, TE = 3.93 ms, resolution 1.0 x 
1.0 x 1.5 mm, 2 acquisitions, reconstructed to 1mm isotropic resolution) images were 
reoriented to the mid-sagittal plane through the anterior and posterior commissures 
and the brain volume was segmented using the Lipsia software package (Lohman et al. 
2001). The 21 images without diffusion weighting were used to estimate motion 
correction parameters using rigid-body transformations (Jenkinson et al., 2002), 
implemented in FSL (FMRIB Software Library, Oxford, UK). Motion correction 
parameters were interpolated for all 201 volumes and combined with a global 
registration to the T1 anatomy using a mutual information registration algorithm. The 
diffusion gradient direction for each volume was corrected using the rotation 
parameters. The registered images were linearly interpolated to the new reference 
frame with an isotropic voxel resolution of 1 mm and the three corresponding 
acquisitions and gradient directions were averaged. Next, the diffusion tensor was 
calculated for each voxel after logarithmic transformation of the signal intensities 
(Basser et al., 1994). Finally, the fractional anisotropy (FA) of the tensor in each voxel 
was subsequently determined, and a multi-slice FA image (Basser and Pierpaoli, 1996) 
was created. The combined motion correction and registration to the individual T1 
anatomy provided some advantages. A simple motion correction to the first image in the 
diffusion weighted sequence would have introduced a variable amount of smoothing 
caused by the interpolation of the images to the reference image. E.g. the first images in 
the sequence would have needed less interpolation and the reduced smoothing would 
have caused a directional bias. Using the independent orientation of the T1 image as 
reference removed this potential bias. Additionally, the sampling of the data with a 
higher spatial resolution (1mm instead of 1.5mm) allowed keeping more details of the 
data compared to a resampling with the original resolution. In this way, interpolation of 



the raw data provided some methodological advantages in the following tractography 
step. 

 
White matter tractography 

The brain volume was segmented into white and gray matter compartments by means of 
FA thresholding (white matter: FA ≥ 0.15) and interactive corrections for deep white 
matter imperfections. Using an FA based mask allows to define seed voxels at a clearly 
defined white matter boundary. This precession would not have been possible using the 
white matter mask from the segmented T1 image, since the diffusion image shows small 
non-linear distortions. Each white matter voxel that neighbored a cortical gray matter 
voxel was used as a seed voxel for the probabilistic dMRI tractography (that is, each 
single grey matter/white matter boundary voxel at 1 mm resolution, between 130.000 
and 200.000 seed voxels per brain depending on size), as proposed by Anwander and 
colleagues (2007).  The tractography algorithm computed a transition probability of a 
simulated particle jumping from one voxel to the next from the diffusion data. Next, the 
probabilistic tractography started 100.000 particles in each seed voxel. The particles 
propagated in the white matter as guided by the local transition probabilities, defined by 
the probability density function from the diffusion tensor model. The target space was 
the whole white matter volume with a resolution of 1 mm3. The diffusion data was not 
interpolated in this step and used the interpolation of the raw diffusion data as 
computed in the preprocessing steps. Finally, a visitation map was computed from the 
number of particles which cross each voxel. The tractography algorithm was parallelized 
and implemented on a consumer PC graphic board (GPU) and took only a few seconds 
per seed point. 

The 3D distribution of the connectivity values (visitation map) of a particular seed voxel 
with all voxels in the brain is called a tractogram. In these tractograms, which we use as 
connectivity fingerprints, the value associated with a particular white matter voxel 
represents the visitation fraction, that is, what proportion of all particles started at the 
seed voxel went through that particular voxel. The visitation values ranging between 0 
and 100.000 were log transformed to reduce the dynamic range (in order to palliate the 
intrinsic bias that visitation-based connectivity values have towards favoring short 
connections against longer distance ones, which are especially problematic for the 
computation of similarities between tractograms) and scaled between 0 and 1 (1 means 
all, 0 means none of the started streamlines touched the voxel). These values are taken 
as a correlate for the anatomical connectivity between that voxel and the seed voxel of 
the tractogram. Although based on a simple local model (diffusion tensor), this 
probabilistic tractography can, to a certain extent, account for fanning fibers and fiber 
crossings. This provides tractograms with enough overlap area to detect connectivity 
pattern differences between voxels at the discrimination level required for successful 
parcellation. 

To analyze the effects of a reduced signal-to-noise ratio (SNR) onto the developed 
analysis methods, a second set of tractograms was obtained for the first three subjects 



using just a single acquisition of the diffusion data (in contrast to averaging the 3 
available acquisitions). 

 

Hierarchical clustering 

 

In order to characterize the similarity of structural connectivity in a granularity range as 
wide as possible, agglomerative hierarchical clustering was applied over the tractogram 
fingerprints. This type of clustering starts by considering every object in the dataset as a 
separate cluster, then it merges the closest (i.e., most similar) pair of clusters, according 
to some similarity criterion, and iterates until all of the data points belong to one single 
cluster. The result is essentially a binary tree, where each position in the x-axis 
corresponds to a connectivity fingerprint (also called leaves) and the values in y-axis 
where any two leaves join for the first time refer to the dissimilarity or distance between 
the two fingerprints as encoded by the tree. An outline of the clustering process applied 
to anatomical connectivity can be seen in Fig. 1. 
 

 

Figure 1: Schema of the hierarchical clustering process: a) Select gray-matter/white-
matter interface voxels; b) Generate probabilistic tractograms of seed voxels; 
c) Compute similarities between tractograms; d) Build-up connectivity tree; 
e) Select partitions within the tree and map back to the cortex. 

 
A non-centered variant of Pearson’s correlation coefficient was used as a similarity 
metric (Equation A1), as it is better suited for structural tractograms, where all values 
are positive and different degrees of negative linear dependency values do not hold 
relevant biological information (details on this choice can be found in the Appendix).  
 



Different agglomerative methods use different measures to calculate the new distances 
when elements are merged (linked). The most widely used linkage methods in the 
literature are the four types of graph methods (single, complete, weighted and average 
linkage methods), called so as they stem from graph theory (Murtagh, 1983). In all of 
these methods it is necessary to calculate the pairwise distances between all elements. 
This can prove costly when there are a large number of elements and the points are in a 
very high dimensional space, as is the case in the scenario of connectivity-based whole-
brain parcellation using 1 mm resolution. 

In order to reduce the computation and memory requirements, we elected to explore a 
fifth approach based on the centroid linkage method (Jain and Dubes, 1988). In this 
method, each cluster is defined by its centroid: a data point that represents all the points 
included in the cluster. In the study presented here, the centroid was computed as the 
average of the tractograms in natural space. 

If the assumption is made that a connectivity-defined region in the brain must always be 
a connected patch of gray matter, then only mergers between neighboring clusters are 
allowed, and only those distances have to be computed, drastically reducing the cost of 
the algorithm (a neighborhood restriction may also be used in the graph methods in 
order to force morphologically continuous clusters, but the whole distance matrix must 
still be calculated and thus it yields no computational advantage). The concept of 
spatially constrained hierarchical clustering has also been exploited for fMRI data 
(Blumensath et al. 2013), a modality where this particular restriction has proved of 
advantage for parcellation in the past (Craddock et al. 2011). 

As an output of these algorithms (both graph and centroid) a binary tree (also called 
bifurcating rooted tree or fully resolved dendrogram) is obtained. This tree encodes the 
connectivity similarity structure of the dataset at all granularity levels, transforming into 
a much-reduced dimensionality (2n, n being the number of seed elements) the 
information of the distance matrix (dimension n2) obtained from the tractogram space 
(dimension n∙m, m being the number of white matter voxels). 

One of the advantages of this method is the possibility of comparing the full connectivity 
structure across datasets through tree comparison, which we will further develop in a 
later subsection. In order to do this, the leaves of the trees to be compared must first be 
matched. With this in mind, an extra restriction was applied to the centroid method 
during the initial iterations of the tree building process. The objective is to ensure that at 
the lower levels of the tree (that is, the ones with highest granularity) the clusters are 
joined in a homogenous way, with roughly equal sizes, until a certain number of clusters 
has been reached. As will be explained later, this allows for easier leaf matching. There 
is, however, no restriction upon the shape of these clusters, and their merging is still 
guided by connectivity pattern similarity. The concept of a 2-stage clustering approach 
(where first a maximum granularity partition is obtained from which to build the 
hierarchical tree) has also been successfully used by Gorbach and colleagues (2011) and 
Blumensath and colleagues (2013) to partition dMRI and fMRI data respectively 
(although the particular implementations are substantially different).  



For thorough description of the methods implemented and their mathematical 
formulations please refer to the Appendix.  

 
Dendrogram preprocessing 

Even after the optimal linking method has been chosen, the task of extracting relevant 
information from the resulting dendrogram is not simple: the high number of seed 
voxels involved could translate into many possible granularity levels and partitions. The 
nature of the clustering process also forces the dendrogram to always have binary 
bifurcations, whereas in reality the dataset is likely to have structures nested in a non-
binary way. This means that some of the nodes in the tree do not contribute any real 
information about the similarity structure and are merely a by-product of the pair-wise 
agglomerative method. Also, as in most real datasets, outliers could be present. Finally, 
in the case of the centroid linkage method, non-monotonic steps can occur, which, 
although not constituting an error in themselves, can complicate partition finding 
algorithms and make visual interpretation of the tree difficult. 

In order to address these problems and ease the information extraction, several 
dendrogram preprocessing steps were developed and applied: elimination of outliers; 
monotonicity correction; limiting the maximum-granularity captured in the tree and 
detection of non-binary structures followed by removal of the corresponding 
intermediate nodes (see Appendix for details on this section). These preprocessing 
methods effectively reduce the number of branchings, which in turn reduces the tree 
complexity and possible confounds in the dendrogram, while still maintaining maximum 
usable information. This also facilitates the task of the information extraction 
algorithms, which are introduced below. 

 
Tree comparison across measurements 

Once the connectivity similarity structure of a brain is encoded in a dendrogram, there is 
the possibility of using the information from the whole tree to assess the structural 
differences in brain connectivity between different subjects or measurements. 

Dendrogram comparison techniques are already in use in other fields, with most efforts 
being dedicated to the field of phylogenetics (Critchlow et al., 1996; Restrepo et al., 
2007). However, these techniques are used to compare different trees built over the 
same dataset, relying on a perfect match between the leaf elements of both trees. In the 
scenario of brain connectivity trees from different measurements, this would only be the 
case if the dendrograms being compared originate from the same brain, and only if there 
have not been significant changes in morphology nor the data acquisition method. 

 

Leaf-matching across trees 

In order to be able to apply these comparison methods when assessing connectivity 
structure variability across subjects, the problem of leaf identification had to be tackled. 
Potentially, there are different possible criteria for the identification of associated pairs 



of leafs in two dendrograms, for example spatial proximity after a more or less 
sophisticated co-registration of the images or cortical surfaces derived from these 
images. However, as the dendrograms to be compared are based on the similarity of 
tractograms, it seems appropriate to use the same criterion for finding matched pairs of 
leafs. The solution provided involves several steps:  

• First, the trees are pre-processed with the techniques previously introduced, in 
order to reduce the number of leaves and provide a maximum granularity partition. 
These maximum granularity partitions are fine-tuned so that all the trees to be 
compared have the same number of meta-leaves. This number is chosen to obtain an 
acceptable complexity reduction while incurring minimal information loss. 

• Mean tractograms corresponding to each of the meta-leaves are obtained for all 
subjects. The mean tractogram of any given node is calculated as the log-transformed 
average of the raw (not log-transformed) seed tractograms contained in the 
respective node. 

• The subjects’ FA images are non-linearly registered to a common space, and this 
transformation is applied to the mean tractograms. The registration is performed 
through the ANTS package (SyN registration algorithm; Avants et al., 2008;  Klein et 
al., 2009). The mean tractograms are then transformed to the same common space 
using the deformation fields obtained from the FA image registration. 

• For each pair of trees being compared, a tractogram distance matrix between their 
corresponding meta-leaves is obtained. 

• Matching of the meta-leaves of the trees is done by applying a greedy algorithm to 
the distance matrix: The two tractograms with the highest similarity are matched 
and their entries are eliminated from the data. This step is iterated until there are no 
more entries in the matrix. In order to avoid poor matches, restrictions on minimum 
tractogram similarity and maximum Euclidean distance between cluster 
morphological centers are applied (minimum mean-tractogram similarity: 0.1 and 
minimum spatial distance between cluster centers: 2 cm) Clusters for which no 
suitable correspondence can be made are discarded and not considered in the 
comparison. There are other matching algorithms available, such as the Hungarian 
method (Kuhn 1955), which tries to optimize the matching in terms of global rather 
than local distance between matched elements. However, this also means higher 
computation time and resources. For a first implementation and proof of the method, 
we chose the simpler greedy matching with reduced computation time. 

The leaf matching process is outlined in Fig. 2. 

 



 

Figure 2: Leaf-identification pipeline: maximum effective granularity partitions are 
obtained for each subject, i.e., Subjects A and B (a); a mean tractogram is 
computed for each cluster (b); all tracts are registered to a common space 
(c); pairwise tract similarity matrix is computed between the subjects (d); a 
greedy algorithm is used to extract the cluster correspondence table from the 
matrix (e). These clusters will become the new leaves of the trees. 

 
Tree similarity measures 

Two different tree similarity measures were implemented: 

Tree cophenetic correlation coefficient (tCPCC): Farris (1969) introduced the cophenetic 
correlation coefficient (CPCC) to assess the degree to which a tree successfully encodes 
the similarity information by measuring the correlation between the pairwise distance 
matrix obtained directly from the data and a distance matrix derived from the tree 
structure. This principle can be adapted for tree comparison by instead correlating the 
distance values encoded by each of the trees for each pair of corresponding meta-leaves.  

Weighted triples similarity (wTriples): An alternative tree comparison method, described 
in detail by (Bansal et al., 2011), consists of comparing the joining order of all possible 
triples of leaves of each tree. The number of triples for which the joining order is exactly 
the same is divided by the total number of possible triples; obtaining a value ranging 
between 0 and 1 

The tCPCC and wTriples comparison methods are (partially) complementary: while the 
former stresses the similarity of the distance values encoded by both trees, the latter 
focuses on the similarity of the hierarchical topologies of both trees, regardless of the 
numerical values encoded. See Appendix for details on their mathematical 
implementation for this work. 

 

Partition selection 

As argued above, the tree is suitable for assessing the structural map of the cortical sheet 
as a whole. However, in order to fully appreciate the function-anatomical organization of 
the cortex, we also need to map this information back onto the cortical surface. Because 



the tree is a multidimensional structure, it cannot be fully projected directly onto this 2-
dimensional space. Some strategies have been proposed that allow including some 
degree of multigranularity information into surface mapping, such as using similar color 
hues for subclusters of a bigger cluster (for example using reddish, greenish and bluish 
hues for subclusters of 3 main divisions) or hierarchical “space-blobs” (Cachia et al., 
2003). These approaches, however, are not suitable for the very high range of 
granularities and high number of nodes present in our trees. As an alternative, 
representative parcellations (being equivalent to a complete cut of the tree that severs 
all connections between the top node and any leaf) may be found that best approximate 
the information encoded in the tree. It is very unlikely that a single partition can 
represent the entire similarity structure of the data. Using a series of partitions at 
different granularity levels, which in this case would also be hierarchically nested, might 
be a better way to achieve it. 

Many different methods for comparing and assessing partitions can be found in the 
literature (Halkidi et al., 2002; Rand, 1971; Theodoridis and Koutroubas, 1999). 
However, these methods usually refer to the original data, which in our case would 
involve operations with high dimensional tractograms, making them computationally 
expensive and slow. Limiting the data used to that contained in the tree allows fast 
partition assessment algorithms to be implemented. There is also literature available on 
tree partitioning algorithms (Jain and Dubes, 1988; Langfelder et al., 2008; Zahn, 1971), 
but these methods did not translate into meaningful partitions in the case of the brain 
connectivity trees studied here. The most traditional approach to tree partitioning does, 
however, deserve introduction. 

 

Minimum guaranteed intra-cluster similarity (horizontal cut) 

By definition, if a horizontal cut is made through a dendrogram the partition obtained is 
the one that guarantees, for a given number of clusters, a lower bound for the intra-
cluster similarity. Therefore, this cut yields regions with a certain minimum required 
consistency (or greater). In order to select a partition, either a number of desired 
clusters, or the distance level where the horizontal cut is made must be chosen. 

 

Cluster spread vs. separation (SS) index 

The horizontal cut method only takes into account the distance level of the clusters 
involved in the partition, that is, the encoded distance between the elements contained 
in those clusters, which relates to spread or scatter of the clusters. A more complete 
partition selection method should also consider the distance between such clusters 
related to their spread. Furthermore the horizontal cut may only be used with a pre-
defined granularity level and is unable to assess the quality of a partition. In order to 
tackle these shortcomings, we introduced a second algorithm presented below. 

The overall spread of the clusters in a partition can be quantified through the formula: 
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where di and Si are the distance level and size of cluster i, respectively. N is the number 
of clusters in the partition, and ST the sum of all clusters sizes in the partition. 

The distance level of the parent of a given node in the tree encodes the separation 
between the center of that cluster and that of its closest neighbor. The average 
separation between neighboring clusters for a given partition can then be expressed as: 
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where dp(i) is the distance level of the parent of node i. 

Using these two formulas, a partition quality measure is obtained by calculating the ratio 
between the mean spread of clusters in the partition and the mean separation between 
neighboring clusters: the spread-separation (SS) index. 
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A higher value will indicate that, for that partition, the mean separation of clusters is 
high compared to the separation of elements within the clusters. This index can be used 
to find global or local maxima in the tree, thus revealing partitions of particular 
significance. Alternatively, it can be coupled with a required number of clusters, in order 
to find the best possible partition of a given desired granularity. 

However, due to the data size and the extremely high number of possible partitions 
contained in the trees, an exhaustive assessment of all possible cuts through the tree 
would exceed any reasonable computational limits. In order to obtain partition selection 
methods fast enough to be integrated into an interactive tree exploration tool, a top-
down hierarchical search algorithm was implemented here. This means that, starting at 
the partition defined by the first branching of the tree (or sub-tree), all possible 
subdivisions of each cluster going down up to four branching levels are considered, and 
the resulting partitions are evaluated. The best performing partition is identified, and 
the corresponding cluster from which division it had derived is subdivided down one 
level. The process is iterated until the desired number of clusters has been obtained or 
the maximum granularity partition has been reached. 

 

Minimum cluster size difference 

Due to the nature of the tractogram similarity measure used, areas that share long 
common pathways (like, for example, the longitudinal fasciculus) will tend to be more 
similar to their surrounding areas sharing these large connections than to those with 
shorter pathways or more local connectivity fingerprints (such as the superior frontal 
lobe). Such highly cohesive areas tend to remain less partitioned by the spread-



separation scheme than areas with local connectivity. Depending on the purpose of the 
partitioning, it may be useful to circumvent this side-effect by obtaining partitions 
guided by the connectivity structure encoded in the tree but with an emphasis on 
clusters of similar sizes. This can be accomplished by finding partitions that minimize 
the mean square size difference for a given number of clusters (using the same partition 
search algorithm as described for the previous method). The objective function to be 
minimized is expressed as: 
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All algorithms described above were included as part of a fast interactive exploration 
and visualization tool for hierarchical characterization of brain connectivity, which 
simultaneously projects the selected partitions onto the brain surface. This tool was 
implemented as a module of the open-source OpenWalnut framework 
[www.openwalnut.org]. 

 



Results 
 

Choosing the linkage method 

Hierarchical trees were built for both hemispheres of subjects A, B and C (i.e., 6 datasets) 
using each of the graph linkages and the centroid-neighborhood method proposed. In 
order to assess their fit to the data, CPCC values (see Appendix) were computed for all 
obtained dendrograms. The results show that the Average and Centroid linkages 
perform well above the rest with no statistically significance difference between them 
(with values close to 0.8 over 1 against 0.65 from the next best performing method). 
Additional calculation of the computational load for each modality give the centroid 
method a clear advantage over the average method for very large datasets, with three 
orders of magnitude less operations needed. Therefore, the centroid method (with a 26 
voxel neighborhood restriction) was selected for the rest of the study. The dendrogram 
preprocessing pipeline was applied to the centroid trees obtained, achieving a 
complexity reduction of more than 90% with a loss of information of less than 0.5% 
(0.15% on average), making it a remarkably efficient and useful tool for improving the 
performance of partition finding and tree comparison algorithms. Detailed accounts of 
the linkage selection process and dendrogram cleaning pipeline and parameters are 
included in the Appendix. 

 

Comparing the connectivity structure across datasets 

The information encoded in the cleaned trees can be used as a whole in order to detect 
structural differences between datasets. As described in the Methods section, mean 
tractograms were obtained for each meta-leaf of the processed trees and non-linearly 
transformed to a common space, guided by FA registration. Here we morphed the data 
of subjects A and B into the space of subject C. For the within-subject comparisons 
across hemispheres, the tractograms of the right hemisphere were flipped and 
transformed into the left hemisphere; also guided by a previous FA registration. Next, 
the tractogram-distance matrices were obtained and the greedy leaf-matching algorithm 
was applied (see Methods). Using the resulting leaf-matching tables, the tCPCC and the 
wTriples similarity values were obtained. In order to test the reliability of the method 
and its robustness against noise, the whole process (starting at tractogram computation 
and tree building) was repeated with a noisier version of the same dataset, using only 
one, instead of three, repetitions of the MRI acquisition. Test-retest performance was 
also assessed using two datasets obtained from a fourth subject within a short period of 
time (1 week), referred to as D1 and D2. 

In order to establish a baseline level for the matching values, a random matching scheme 
was set up, in which each meta-leaf of the first tree was matched at random to a meta-
leaf of the second tree whose cluster center was not further away than 2cm.  Afterwards, 
tCPCC and wTriples values were obtained. This process was repeated 100 times for each 
possible subject combination and the average value was obtained. Distinct baseline 



values from both tCPCC and wTriples were computed for inter-subject comparisons, left 
vs. right hemisphere comparisons and high vs. low SNR comparisons. 

The results are shown in Fig. 3, where tCPCC and wTriples are plotted against the leaf 
matching quality (mean tractogram distances between matched clusters) between the 
two compared data sets. Several observations can be made: 

• All tree comparison values obtained are well above their corresponding baseline 
levels, indicating that the matchings were not trivial, and that there are non-random 
structural similarities between the trees that can be detected. 

• For tCPCC, the information loss by lower SNR and the variability between separate 
measurements of the same subject are smaller (i.e., the tCPCC is higher) than the 
differences between different hemispheres or subjects. This indicates that 
differences in leaf similarity, as encoded in the trees, are not generally obscured by 
noise and can be interpreted. In contrast, wTriples, which only measures tree 
topology (joining orders), seems to be much more susceptible to noise.  

• The similarities between the same hemispheres in different subjects and those 
between different hemispheres in the same subjects are within the same order of 
magnitude (between-hemispheres slightly lower, but not significant). 

• Same-subject comparisons features much better leaf-matching quality compared to 
between-hemispheres comparisons, which in turn match better than between-
subject comparisons. 

 

 
Figure 3: Tree similarity values plotted against matching quality for tree comparisons. 

Baseline levels for the corresponding matchings are shown below their 



datapoints in the same color, solid lines correspond to tCPCC baselines, and 
dotted lines to wTriples ones. 

 

Single subject partitioning 

Using the horizontal cut and the spread-separation tree-partitioning methods (see 
Methods) nested whole-brain partitions were obtained at different granularity levels 
(defined in this case by a particular number of clusters). The spread-separation method 
yielded very similar results to those of the horizontal cut method. The nested partitions 
are exemplified in Fig. 4, where we show the left hemisphere of subject A cut at 4 
different granularity levels, exploring a wide range of hierarchical boundaries. At very 
low granularity (15 clusters) the parcellation seemed to reflect the rough course of 
major fiber bundles (e.g., red for the fronto-occipital fascicle, green for the arcuate 
fascicle, purple for the cingulum bundle, and cyan for the cortico-spinal tract). Increasing 
the granularity to 50 clusters caused further subdivisions, especially in the dorsolateral 
and dorsomedial frontal and parietal cortices, and also in the inferior frontal cortex and 
around the auditory cortex, reaching area sizes similar to Brodmann areas. Meanwhile, 
the cortex near the fronto-occipital fascicle, the superior part of the arcuate fascicle, and 
the cingulum bundle remained largely undivided. To obtain more fine-grained 
subdivisions in these regions, the threshold of the clustering criterion had to be lowered 
further, allowing for 100 clusters. Further increase of granularity continued changing 
details, for example by further subdividing the inferior frontal gyrus. 
 

 

Figure 4: Parcellations extracted from the hierarchical tree of the left hemisphere of 
subject A using the horizontal cut algorithm. The numbers indicate the 
predefined number of clusters. The red horizontal lines in the trees denote 
the cutting level. The spread-separation method yields almost identical 
results. See text for further explanation. 



 

In Fig. 5, we focused on the subdivision of the left inferior frontal gyrus (IFG). At 
relatively low granularity (50 clusters), only some of the major boundaries between the 
opercular and triangular parts (subject A, B) and between the triangular and orbital 
parts of the IFG were revealed. At higher granularity, more subdivisions appeared, 
including those that are not covered by the classical tripartition (into opercular, 
triangular, and orbital parts). For the repetitive acquisitions in the same subject (D1 and 
D2), the subdivision was highly reproducible.  
 

 

Figure 5:  Spread-separation subdivision of the inferior frontal gyrus at two different 
levels of granularity, for the left hemispheres of subjects A, B, and C (left), as 
well as the two acquisitions of subject D (right). See text for further 
explanation. 

 

Fig. 6 exemplifies the similarity of our parcellation with cytoarchitectonic parcellation 
available from Jülich Research Centre (Forschungszentrum Jülich: https://www.jubrain.fz-

juelich.de/apps/cytoviewer/cytoviewer-main.php). 



 

Figure 6: Cytoarchitectonic parcellation provided by Jülich Research Centre (top), 
compared to the corresponding subtree of the left hemisphere of Subject A at 
a global horizontal partition for 100 clusters (bottom; two clusters, one in the 
IFG, and other in the parietal cortex over the STG, have been further 
subdivided once to better show the corresponding matching). 

 
It appears that, if tree-cutting is based on internal coherence and mutual separation of 
the clusters (i.e., horizontal cut or spread separation methods), uninteresting 
“background” connectivity by large fiber tracts cause, at any given level of granularity, 
some regions of the brain to remain largely undivided, while others were split into small 
sub-areas. This lead to the introduction of the minimized cluster size difference method 
(see Methods section). In Fig. 7, the result for this partition method is depicted for the 
same subject featured in Fig. 4. When comparing the results of the two partitioning 
methods, some clear differences are apparent. At low granularity (15 clusters), the large 
temporal-occipital-frontal cluster (in red, see Fig. 4) broke up into smaller areas, 
especially on the medial brain surface, while in frontal and prefrontal cortex fewer 
clusters were formed. This trend is also evident at higher granularities. For example, at 
250 clusters the occipital lobe was more subdivided and the frontal one was less 
subdivided than with the horizontal cut method. 
 



 

Figure 7: Minimum size-difference partitioning for the same subject and cluster 
numbers as depicted in Fig. 4. 

 
Thus far, we have explored the partitioning methods that required the input of a global 
granularity level (here expressed as number of clusters, but it could also be the average 
size of of the clusters, or similar). However, the question remains: Which granularity 
levels might be the most representative ones for the tree? In order to reduce this 
arbitrariness, one can use the SS index (see Methods section) to select partitions. Using 
the SS partitioning, a series of parcellations can be obtained with maximum SS indices 
for each granularity level. In Fig. 8 the SS indices were plotted as function of granularitiy 
for all data sets.  
 

 

Figure 8: SS indices obtained by the hierarchy search method, plotted against number 
of clusters. The red circles denote the maximums of the curves. 

 

It can be seen that for small numbers of clusters the index rises steeply, meaning that in 
this range further subdivision usually leads to much better parcellations. In many data 
sets, this is followed by a shoulder (at about 50–200 clusters), where further subdivision 



does not greatly improve, or even slightly reduces, the quality of the parcellation (as 
measured by the SS index). Next, there follows a moderate increase, where subdivisions 
tend to (slightly to moderately) improve the SS index, until a maximum value is reached 
at about 200–600 clusters. From there, the curve steadily decreases, meaning that 
further subdivisions always lead to worse partitions. Consequently, the relevant range of 
partitions seems to start at the edge of the first shoulder and end at the maximum 
(where both mergings and subdivisions cause a moderate decrease of the SS index). 
Ultimately, the interesting range of partitions based on the diffusion data seems to be 
roughly 20–600 clusters. 

 
Fig. 9 shows the maximum SS index partitions for all subjects and hemispheres. These 
partitions have the maximum distinctness for the respective data sets, that is, the best 
ratio between intra-cluster inhomogeneity and between-cluster separation. These 
parcellations feature small parcels with an extent comparable to the width of a major 
gyrus. It is evident that, at this level of granularity, the partitions of the two data sets 
from subject D are quite similar, while the partitions belonging to different hemispheres 
and/or subjects appear very different. 
 



 

Figure 9: Partitions with maximum SS index for all subjects’ left (A) and right (B) 
hemispheres. The top subpanels show the whole brain parcellation, the 
bottom subpanels zoom into the superior temporal gyrus area and the 
precentral gyrus. 



Discussion 

 

Tractography-based Parcellation 

As argued before, connectivity is among the most relevant structural cues for the 
characterization of the functio-anatomical identity of cortical tissue. Being the only 
method that can be applied to healthy human subjects, diffusion tractography is the 
method of choice for the reconstruction of these connectivity patterns (Anwander et al., 
2007; Johansen-Berg et al., 2004). For a thorough discussion of this issue, see Knösche 
and Tittgemeyer (2011).  
The tractography based parcellation requires a robust tractography method. The local 
tensor model based on High Angular Resolution Diffusion Images (HARDI) allows a 
reproducible computation of the connectivity profile. The method is sensitive to small 
changes in connectivity between two voxels and is robust to noise which could affect the 
local model. Other tractography methods like the Probabilistic Index of Connectivity 
(PICo) based on the Persistent Angular Structure (PAS) (Parker and Alexander, 2005) or 
probabilistic tractography based on spherical deconvolution (Descoteaux et al, 2009) 
had shown to better resolve crossing fiber structures. The more complex local model 
might have been less robust to remaining noise in the diffusion data, which might have 
affected the local estimation of the fiber orientations (Yo et al, 2009). While comparing a 
tensor based tractography with fiber tracking using spherical deconvolution Kristo and 
colleagues (2013) showed a higher reproducibility for the tensor based tractography. In 
this initial study we choose to use the more robust local model. The fact that 
probabilistic tractography is employed ensures that, to a certain degree, fiber crossings 
and branching are taken into account. The parcellation method we proposed could be 
applied on any other tractography method. The comparison of the result using different 
local models and tractography algorithms will be subject of future investigations. In 
addition, all tractography algorithms including the one used here have a number of 
adjustable parameters, which potentially can affect the tractography result and the 
parcellation. For example, here we had to make choices on the number of streamlines, 
the scaling and the thresholding of the tractograms and the sharpening of the local 
diffusion profile (Anwander et al., 2007). While a systematic parameter study on this 
and other tractography algorithms would certainly be very useful, the previous use of 
our approach in a number of parcellation studies yielding neuroanatomically plausible 
results provides some confidence (e.g., Anwander et al., 2007; Ruschel et al. 2013; 
Schubotz et al., 2010; Gorbach et al. 2011, 2012).  
In most implementations of tractography based parcellation the target space comprises 
the entire rest of the brain, including white matter (Anwander et al., 2007; Johansen-
Berg et al., 2004; Mars et al., 2011; Schubotz et al., 2010; Tomassini et al., 2007). A 
possible alternative is to restrict the target space to grey matter (or, for technical 
reasons, the white matter voxels just adjacent to grey matter) (e.g., Bach et al., 2011). It 
is, however, not clear whether this really improves the situation. Most tractography 
methods are iterative algorithms that, especially over long distances, tend to accumulate 
errors and hence are subject to substantial blurring (Jones, 2010). So, it is likely that 
differences between tracts, which are still quite evident in the intermediate white 



matter, become smoothed out at the distant cortical targets. On the other hand, using the 
entire brain as target space might also introduce biases of its own, as the tracts starting 
from two spatially distinct cortical elements are different by definition in their initial 
sections, even if they finally reach the same targets. This is especially true, if the tracts 
start in different gyri. How much this effect influences the result depends on the overall 
extent of the tractogram, that is, the relative weight of short and long range connections. 
So, the fact that parcellations often seem to reflect, to some degree, sulcal patterns (see 
Fig. 4-9), might have a methodological background. On the other hand, it is well known 
that in many cases macroanatomical landmarks, such as sulcal lines, are indeed likely to 
play a role as function-anatomical boundaries (Hasnain et al., 2001; Tahmasebi et al., 
2012). To what extent correlation between gyrification and tractography based 
parcellation is a product of methodological peculiarities or reflects neuroanatomical 
reality remains to be investigated. 
 
Advantages and Limitations of Hierarchical Clustering 

In this work, we propose a hierarchical clustering method for the analysis of high-
resolution, whole-brain anatomical connectivity data that provides an optimal data 
compression with minimal information loss. The method uses differences in 
connectivity patterns for drawing a functio-anatomical map of the cortex without the 
need to choose a particular granularity level.  This way, almost all of the information on 
the connectivity pattern similarities is retained and all possible parcellations of the 
cortical sheet are not only stored, but also related to each other in a meaningful way. 
While this concept is not entirely new (Blumensath et al., 2013; Guevara et al., 2011), it 
is the first time that is is applied to whole-brain diffusion based anatomical connectivity 
data. Compared to classical single-partition connectivity-based brain parcellation 
methods (for a review, see, Knösche and Tittgemeyer, 2011), it offers a number of 
advantages. 

First, it is important to compare functio-anatomical maps between subjects or between 
different datasets of the same subject (e.g., at different ages). With single-partition 
parcellation, one has to chose a particular level of granularity in order to obtain a 
parcellation. This level of granularity can be expressed, for example, by the number of 
desired clusters, by the differences between or the homogeneity within clusters, or by 
the sizes of the clusters. All these criteria can require different values in different 
datasets for defining the same functio-anatomical subdivision. It is therefore difficult to 
obtain comparable parcellations. Moreover, there might be more than one level of 
granularity relevant for the comparison. Using the whole information encoded in 
hierarchical trees, connectivity similarity (and therefore functio-anatomical 
organization of the cortex) can be compared efficiently without any explicit choices on 
granularities.  Such comparisons can be potentially used to show changes or differences 
in the functio-anatomical organization of the brain in a great number of settings, 
including disease, development, aging and cognitive abilities. The particular advantage is 
that one can start at a general comparison (i.e., comparing the entire trees) without 
making any choices or assumptions, and then gradual zoom into certain parts of the 



trees (i.e., comparing subtrees) and/or particular levels of detail (i.e., pruning the lower 
level nodes). 

Second, if larger parts of the cortex or the entire brain are to be parcellated, the 
definition of a granularity level, as required by non-hierarchical methods, becomes quite 
arbitrary. Even if comparison is not the goal, it is not easy to say, how many clusters are 
to be expected or how big they are. Also, the magnitude of difference between parcels 
depends on the brain region. For example, regions near large fiber tracts, such as the 
arcuate fascicle, tend to exhibit higher similarity in terms of their connectivity pattern, 
requiring lower thresholds for parcellation. Hierarchical parcellation circumvents the 
granularity choice. The obtained trees can be explored interactively in order to discover 
the functio-anatomical organization in different brain regions. Of course, it remains an 
important issue to extract actual partitions of the cortex from the tree (see below). 

Third, the hierarchical trees encode the interrelation between different levels of 
description of the functio-anatomical cortex organization, from relatively local to very 
global. In fact, using very high resolution MRI data one could even imagine bridging the 
gap between microscopic and macroscopic levels (see Heidemann et al., 2012, for an 
intermediate stept into that direction). This is of particular importance, if the 
parcellation is used as a basis for building a connectome. If the connectome is truly, as 
defined by Sporns (2011), “a comprehensive structural description of the network of 
elements and connections forming the human brain”, it essentially has to span multiple 
levels of detail. Using the parcels of a hierarchical parcellation as the elements of the 
connectome could lead to a hierarchical connectome that not only describes the brain 
network at different levels of detail, but also encodes the relations between these levels. 
Note, however, that the construction of a true connectome relies on adequacy of the 
employed connectivity measures in terms of the true functio-anatomical structure of the 
brain. Certainly, non-invasive measures based on MRI, valuable as they may be, bear 
significant limitations in that respect. The parcellation resulting from hierarchical 
clustering could also be used as initial regions for global tractography methods like the 
recently proposed plausibility tracking method (Schreiber et al., 2014). 

Nevertheless, hierarchical clustering also suffers from some principled limitations. Given 
its iterative agglomerative nature, established mergers cannot be undone. The 
procedure therefore has some sensitivity to local effects and errors may propagate, 
missing on the global optimum, when considering specific partitions. For this reasons, in 
scenarios dealing with small datasets or when only a single optimal partition is desired, 
optimization based methods such as k-means or model-based methods might be more 
adequate. However, for large datasets and a large number of expected clusters, these 
other methods may lead to exploding complexity and computation power requirements 
in order to achieve acceptable reliability (by design in the case of model-based methods, 
in order to maintain stability against local effects due to initial conditions in the case of 
k-means: Kuncheva and Vetrov, 2006; Pham et al., 2005). For these reasons, we strongly 
believe that in our scenario of whole brain parcellation, the advantages that hierarchical 
clustering offers (namely: multiple-nested-granularity, possibility for whole-structure 
comparison, and scalability with dataset size) greatly compensate for its limitations.  



 

Meta-Leaf Matching 

For the comparison of any cortical map between datasets, hierarchical parcellations 
being no exception, it is necessary to establish a correspondence between the cortical 
elements. In other words, we need to decide for each element (e.g., voxel) in one dataset, 
what is the functio-anatomically equivalent element in the other dataset. This is not a big 
issue when comparing repeated measurements of the same subject, but due to the 
natural anatomical variability (Thompson et al., 1996) it poses quite a challenge if we 
want to compare across subjects or hemispheres.  Attempts to obtain such a mapping on 
the basis of strutural MRI have resulted in numerous linear and non-linear registration 
algorithms  (e.g., matching of freesurfer surfaces nodes; Roca et al., 2010), but the results 
are not always satisfactory, in particular if the surfaces differ in terms of number and 
orientation of gyri and sulci (Ono et al., 1990). Here, this problem concerns the meta-leaf 
identification between trees, which was achieved by maximizing mean-tractogram 
similarities using a greedy algorithm. This approach relies on the assumption that the 
connectivity pattern is a good reflection of the functio-anatomical identity of an cortical 
element - the same assumption that underlies the entire connectivity-based parcellation 
idea. For a more detailed discussion of the justification of this assumption, see Knösche 
and Tittgemeyer (2011). Our analysis showed that the meta-leaf similarity method 
yields meaningful comparisons between trees. However, at this stage, inter-subject 
matching is not always stable enough to quantitatively interpret small variations in 
them. The leaf matching is certainly one of the current challenges of the method. It 
remains to be investigated whether other matching strategies, like the “Hungarian” 
method (Kuhn 1955), yield an improvement. In general, however, it is not likely that by 
improved mathematical algorithms alone this issue is going to be resolved in a 
satisfactory way. Instead, the very notion of functio-anatomical equivalence needs to be 
refined. A comprehensive and reproducible definition of the equivalence of elements in 
two brains would provide solid ground from which to gauge any difference in structural 
properties or functional organization. Such a mapping would have to be unique, that is, 
each element in one brain must be assigned to exactly one element in the other brain, 
and vice versa. Furthermore, as the leaf matching criterion has of course a profound 
influence of the resulting tree comparison results, it has to be biologically meaningful. In 
other words, only if we have good reason to compare an element in one brain to just a 
particular element in the other brain (and not to any other), it makes sense to interprete 
their differences in, for example, connectivity or cytoarchitecture. Similar connectivity to 
the rest of the brain is certainly a good starting point for such an equivalence criterion, 
but it is surely not the ultimate solution. An interesting option might be guiding mesh 
matching with connectivity properties, as proposed (using much smaller pattern 
vectors) by Cathier and Mangin (2006) or Petrovic and Zollei (2011). 

 

Tree Comparison 

The hierarchical tree allows for comparison of the whole connectivity similarity 
structure across measurements, and not just particular partitions, which is not possible 



with the other methods. Note that the tree does actually contain all possible partitions 
together with their mutual relationships. 

This comparison measure gives us the degree by which the structure of the connectivity 
similarity organization varies across different measurements. More specifically, the 
tCPCC measure focuses on the actual degree of similarity between connectivity patterns, 
while wTriples measures topological similarity (for example if the region most similar to 
a given selected area is the same in both measurements). 

Unfortunately, compared to repeated measurements, the quality of meta-leaf matching 
across subjects or hemispheres inevitably decreases (see above), and so does the 
reliability of the comparison. There might be two possible solutions to this problem: 
either improving the quality of the matching by using more sophisticated methods, like 
combining surface topology information with connectivity pattern information 
(although this is unlikely to boost the quality to the same level as repeated 
measurements), or accepting that, due to the inter-subject variability, a perfect matching 
at high granularities is not possible, and trying to establish suitable levels at which the 
matching may be done with sufficient quality (one would have to be aware that the 
matching results obtained are only valid at those granularities). 

 

Extraction of Partitions 

Although a hierarchical tree in its entirety comprises the joint information of all possible 
partitions and their mutual relations, concrete anatomical interpretation requires the 
generation of actual partitions. As a compromise between single partitions and the 
entire tree, we characterized the hierarchical structure of the trees through series of 
partitions at different levels of granularity. Several partition schemes were 
implemented. Horizontal partitioning was shown to be a good approximation of the 
more sophisticated spread separation (SS) partitioning for a given granularity level. 
These partitions are very stable against noise and the boundaries have a high degree of 
reproducibility across subjects. In order to paliate the tendency of regions of the cortex 
that share large common tracts to remain in a single cluster across a higher range of 
granularities, a minimum size-difference clustering was implemented. This method 
effectively extracts more homogeneous parcellations.  

Calculating the SS index for every granularity level, we showed that for each data set 
there is an entire range of similarly good partitions (approx. between 50 and 200 
clusters). This fact raises general concerns about the search for a single optimal partition 
or even a series of a few partitions. Although one is able to single out one partition with 
the highest information content (in some sense) of all partitions, this information might 
still be completely insufficient to describe the entire structure. Hence, one has to try to 
find ways to (approximately) represent entire classes of parcellations in an effective 
manner. As each bifurcation in the tree represents the separation between two clusters 
(i.e., a boundary), such a technique could aim at finding the most relevant or persistent 
boundaries rather than entire parcellations. An idea would be to look at the branch 
lengths of the nodes involved. The longer the branch (in absolute value or in relation to 
the node height), the more stable that region is in comparison to its neighboring ones. 



This way, important boundaries would be mapped on the cortex, rather than entire 
parcellations. However, this principle needs further investigation.  

The extracted partitions could be used to do a connectome-based analysis of 
connectivity (Hagmann et al., 2008) or as a priori partition for white matter fiber 
analysis (Wassermann et al., 2010). Within each method, partitions are always fully 
nested. This eases the interpretation of the boundary changes from one granularity level 
to the next. On the other hand, in an agglomerative method the information about the 
fuzzyness of the changes in connectivity similarity is not as well captured as in other 
approaches (Cerliani et al., 2012; Gorbach et al., 2011), although it might be extracted to 
a limited degree from the tree topology. 

 

Relationship to other Multi-Granularity Methods 

As explained above, multi-granularity methods like the one proposed here offer several 
general advantages over single-partition methods: they yield a more exhaustive 
representation of the real connectivity similarity structure; they are preferable for the 
analysis of larger regions (up to entire hemispheres or brains), due to the expectation 
that different boundaries may be relevant at different levels of granularity; they 
facilitate comparisons between data sets; and they allow for adaptive parcellation 
depending on the features that we would like to emphasize. Other researchers have 
approached multi-granularity in different ways. For example, Kahnt and colleagues 
(2012) generated a series of k-means based parcellations from resting-state fMRI data of 
the orbito-frontal cortex using different numbers of expected clusters. The fundamental 
difference between their approach and the one proposed in the current work lies in the 
fact that the hierarchical tree imposes a constraint on the relationship between the 
different parcellations, in that finer parcellations are nested in the coarser ones. Hence, 
in our method any finer subdivision complements, rather than competes with, the 
previous parcellation. Moreover, the embedding of the parcellations into a tree structure 
yields immediate clues about the distinctness and stability of certain boundaries, as well 
as to the topological relationship between different parcellations. An effort to bring 
multiple k-means parcellations at different granularities into a hierarchy has been 
presented for fMRI co-activation data by Clos and colleagues (2013), where 
hierarchically inconsistent voxels from the clusters obtained are removed resulting in 
nested partitions. 

The work of Gorbach and colleagues (2011) takes a different approach to multi-
granularity by obtaining a “space” of optimal parcellations from dMRI data through an 
information bottleneck method, minimizing the tradeoff between data compression and 
information preservation. For each desired granularity, the number of clusters is 
determined by a Lagrange multiplier parameter and an upper boundary for the number 
of clusters. In their approach, while boundaries are not necessarily nested across 
granularities, they seem more stable. The method may have an advantage over 
agglomerative methods at granularity levels where changes are gradual and boundaries 
fuzzy. It offers a solution between nested partitions and single partitioning at multiple 
levels. However, computational costs also escalate for growing datasets and 
granularities. 



In comparison, our approach tries to characterize the whole connectivity similarity 
information in a compact tree, which is then easy to process. As demonstrated by the 
high CPCC values, most information of the connectivity similarity matrix (N2 floating 
points, with N being the number of tractogram seed voxels) is sucessfully encoded with 
only a fraction of the size (2N floating points plus 2N integers, easily stored as an ASCII 
text file). Furthermore, the number of tractogram similarities that must be computed in 
order to obtain the tree is 3 orders of magnitude lower than that needed to compute the 
matrix. This is an important advantage, given that tractogram similarity computation is a 
costly operation, if, like in our case, all the white matter is used as target space and high 
resolution (1 mm) is used (amounting to more than 15⋅105 floating point operations). 

However, the use of multi-granularity methods does not yet solve the problem of 
selecting relevant partitions. Cluster number selection remains an open problem in 
connectivity-based clustering literature. Various solutions have been proposed to solve 
it, such as visual inspection of reordered connectivity matrices (Johansen-Berg et al., 
2004), consistency across subjects (Ruschel et al., 2013), correspondence with 
cytoarchitectonic maps (Anwander et al., 2007), hierarchical consistency (when using 
optimization methods for different numbers of expected clusters; Clos et al., 2013), 
variation of information (Kahnt et al., 2012; Clos et al., 2013), information-based model 
selection (Gorbach et al., 2012), consistency across modalities (Kelly et al, 2012) and the 
tree-based methods we propose here, which are especially suitable for whole brain 
parcellation. The hierarchical tree method is actually open to all these approaches, while 
offering a much richer stock of available partitions, among which to select.  

 

Biological Validity 

Here we made a proposal how to account for the structural organization of the cortex 
based on anatomical connectivity measures. A key question that remains is the one for 
the biological relevance of the obtained results. First of all, our method is primarily a 
way to represent given information in a convenient way. Hence the validity and 
relevance of the parcellations hinges on the appropriateness of the underlying diffusion 
tractography.  However, on top of this, also the construction of the tree and the selection 
of partitions need to be evaluated.  

As this is a proof-of-principle study we only offer some preliminary evaluation of the 
neurobiological significance of the results, for example by comparing the inferior frontal 
gyrus parcellation with cytoarchitectonic maps. Much remains to be done in future 
studies. In particular, within-subject validation will be crucial as it avoids the inevitable 
uncertainties of comparing different brains. For example, functional localizer tasks in 
fMRI experiments could be used to gauge the functional significance of parcellations 
(Schubotz et al., 2010; Johansen-Berg et al., 2004). Alternatively, resting-state functional 
connectivity (Kelly et al., 2012) and meta-analytic co-activation studies (Clos eta l., 
2013) also offer promising comparison possibilities. For example, one might apply the 
same method to structural and functional connectivity measurements. In-vivo 
Brodmann mapping (Bazin et al. 2013) based on quantitative T1 imaging might offer 
another option. 



Outlook 

As pointed out before, this study aims at proposing a novel technology for parcellating 
the brain and offering initial proof-of-principle validation. Obviously, much remains to 
be done. First, there are a number of methodological issues that require further 
attention. As detailed out above, these especially involve the tree comparison technique 
(especially the leaf matching) and the partition extraction method.  

Second, we believe that this technology can be used to build a hierarchical function-
anatomical atlas or a hierarchical connectome of the brain, which of course will require 
a much more numerous and representative cohort of brains. Here, the issue of 
neurobiological validation requires substantial attention. For example, it has to be 
investigated to what extent features that are not easily captured by agglomerative trees, 
such as gradation or non-nested hierarchies, are present in the brain and how our 
method reacts to them.  

Third, although we have conceived and used our methods for the analysis of diffusion 
based anatomical connectivity, they should also be useful for the study of other kinds of 
multidimensional data, like resting-state functional connectivity. Whole brain 
parcellation methods have already been successfully used for the study of resting-state 
fMRI signals (Blumensath et al., 2013) and our approach might also bring new insights 
and possibilities to these approaches.  
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Appendix  
 
Tractogram distance measure 

In order to perform any kind of clustering a distance measure between the object points 
must first be defined. Here, this distance quantifies the similarity between the 
connectivity patterns of two seed points. It must satisfy the properties of symmetry ( 
d(x,y) = d(x,y) for any x,y ), non-negativity ( d(x,y) ≥ 0 for any x,y ) and identity of 
indiscernibles ( d(x,y) = 0, if x = y ). If the triangle inequality is also satisfied (d(x,y) ≤ 
d(x,z) + d(y,z) for any x,y,z ) the distance measure is also a metric. 

While the Euclidean distance is one of the most commonly used ones for low-
dimensional data, it does not score well for scaling patterns or very high dimensionality 
(Wang et al., 2002, Beyer et al., 1999). 

The correlation coefficient is a convenient way to measure the dependency between two 
variables (linearly) and it has been previously used as a similarity measure between 
tractograms (Anwander et al., 2007). Correlation as such can also produce negative 
values, which cannot be sensibly interpreted for spatial connectivity patterns (two 
uncorrelated patterns are just as dissimilar as two negatively correlated ones). That is 
why we modified the measure by omitting the centering. However, the fact that our 
tractograms contain very many zeros causes the mean values to be very small. In 
consequence the differences between our measure and classical Pearson’s correlation 
are minimal. 

The distance measure is then defined by 
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where xi is the ith element of tractogram x and ∑indicates arithmetic sum. The working 
principle in this measure is the same as in the traditional correlation, widely established, 
with the difference that negative correlations are disregarded and the discerning power 
is focused in positive correlations, which is better suited for comparison of anatomical 
tracts, that have no negative linear dependencies. Same as the traditional correlation, 
the proposed distance measure is not a metric since it does not satisfy the triangle 
inequality, but this does not lead to any shortcomings in clustering. Geometrically 
speaking, the proposed measure relates to the scaled projection of one vector on the 
other, while the correlation relates to the cosine of the angle between the vectors. Both 
measures are closely related. 

In order to render the similarity measure robust to random artifacts in the probabilistic 
tractography, connectivity values smaller than 0.4 (less than 100 out of 100.000 seeded 
particles, as visitation values are log transformed and normalized) are set to 0 prior to 
computing the similarity (Anwander et al., 2007). This value was chosen in order to 
eliminate only minimal noise and remain conservative (as any target voxel visited by 
more than 0.1% of the seeded particles will be considered), but the best threshold for 
probabilistic tractography is still an open question in literature (Jones 2010).  



 

Agglomerative hierarchical clustering 

Graph linkage methods 

In the graph linkage methods, distances between clusters are calculated from the 
individual distances between their component elements. There are four types of these 
linkages, governed by the following equations: 
 

Single linkage:  d(xy,z) = min( d(x,z), d(y,z) ) (A2a) 

Complete linkage:  d(xy,z) = max( d(x,z), d(y,z) ) (A2b) 

Weighted linkage:  d(xy,z) = ( d(x,z) + d(y,z) ) /2 (A2c) 

Average linkage:  d(xy,z) = ( Sx∙d(x,z) + Sy∙d(y,z) ) / (Sx+ Sy)    (A2d) 

 

where x and y are the clusters being merged, xy is the resulting new cluster, z is a cluster 
not being merged at that particular step, and Si is the size or number of elements 
contained in cluster i. In the single linkage method, the new distance to a third cluster 
will be the smallest of the two distances to that third cluster before merging (Equation 
A2a); in the complete linkage method, it will be the greatest of those distances (Equation 
A2b); in the weighted linkage method, it will be the mean of the distances of the joining 
clusters (Equation A2c), and in the average linkage method, it will be the mean of the 
distances of the joining clusters weighted by the number of elements each cluster holds, 
in other words, the new distance will be the average of all the pairwise distances 
between elements contained in clusters x and y with the elements of cluster z (Equation 
A2d) (Murtagh, 1983). 

These methods require the calculation of the pairwise distances between all elements in 
the dataset. In our study this translates to an extremely high amount of distance 
calculations (~6∙109) where each of these requires 106 floating point operations (the 
number of seed voxels per hemisphere ranges from 65.000 to 100.000 and the size of 
each tractogram - the number of white matter voxels - ranges from 600.000 to 800.000 
points, depending on brain size). 

 
Centroid linkage method 

In this linkage, when two clusters merge, the mean tractogram of the new cluster is 
computed, and the new distances to the rest of the clusters are recalculated. 

 Centroid linkage:  xy = Σi (Sx∙xi + Sy∙yi ) / (Sx+ Sy) (A3) 

where the symbols have the same meaning as in the graph methods. In principle, this 
involves an extra computing effort, as the new distances that must be calculated in every 
merging step involve high-dimensional mean tractograms. However, it can also be used 
to avoid the necessity of calculating the whole pairwise distance matrix by means of 
applying a neighborhood restriction.  



 
Neighborhood restrictions implemented for the centroid method: 

With the neighborhood restriction, only tractograms with neighboring seed voxels are 
compared are and merged (or clusters where any of their included seed voxels are 
neighbors).  

Several neighborhood levels may be chosen. The following neighborhoods were 
implemented in this study: 18 (dv = √2), 26 (dv = √3), 32 (dv = 2), 92 (dv = 2√2) and 124 
(not defined by a value of dv) where dv stands for the maximum distance (in voxel units) 
of a neighbor voxel center from the seed voxel. A 3-dimensional representation of the 
implemented neighborhoods can be seen in Fig. A1. 

 

 

Figure A1: Neighborhood models implemented: 18, 26, 32, 92 and 124. 92 and 124 
neighborhoods are obtained through the convolution of two 18 or 26 
neighborhood kernels, respectively. 

 
As we worked with high resolution 1mm images, there was  no risk of adjacent voxels 
corresponding to the gm/wm interface of opposite gyri. In the case of the 92 and 124 
neighborhoods, however, which expanded to non-adjacent voxels, there was a risk of 
considering an element as a neighbor that resides in a different gyrus. To avoid this, the 
algorithm was implemented as the convolution of two smaller neighborhoods kernels: 
18*18 yields a 92 neighborhood, while 26*26 leads to 124 neighbors. In this sense, the 
smaller neighborhood was scanned, and if neighbors were detected, the respective 
neighborhood of each one of them was considered as well. This way, neighbors are 
considered as such only if they form a continuous sheet around the seed voxels. The 
results are analogous to what would be obtained through surface analysis with only a 
fraction of the cost. 

 



Pseudocode for final centroid method (including neighborhood and initial size 

restrictions): 

 
Pseudocode for the final centroid algorithm is shown in below. For simplicity, from this 
point on, this modified algorithm including neighborhood restriction and initial 
homogeneous merging stage will just be referred to as the centroid method or cXX 
where XX indicates the neighborhood level used. 

 

 
 
 
Assessing the quality of the trees: the Cophenetic correlation coefficient: 

In order to measure the goodness of fit of the dendrograms generated (that is, how well 
does the dendrogram resemble the original similarity data) the Cophenetic Correlation 
Coefficient (CPCC; Farris, 1969) was used. This measure quantifies how much 
information from the pairwise similarities between individual elements is present in the 
hierarchical tree, by calculating the degree of agreement between the distances encoded 
in the tree (named cophenetic distances, obtained by looking at the distance value of the 
merger where the desired elements are found in the same cluster for the first time) and 
the pairwise distances obtained from the original tractograms: 
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smallestSize = 1; 

activeSize = 1; 

 

// homogeneous merging stage 

While ( cluster# < N ) 

{ 

 Find most similar neighboring cluster pair where size1 == smallestSize and size2 <= activeSize; 

If ( no pair matches the conditions ) 

{ 

 If ( there are no more clusters with size == smallestSize ) 

 { 

  ++smallestSize; 

   activeSize = smallestSize; 

} 

else 

{ 

 ++ activeSize; 

} 

} 

else 

{ 

Merge clusters and recalculate distances to neighbors; 

} 

} 

 

// unrestricted stage 

While (active clusters > 1 ) 

{ 

 Find most similar neighboring cluster pair; 

 Merge clusters and recalculate distances to neighbors; 

} 
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where n is the total number of elements and dij and cij are the distance values between 
elements i and j, as computed from the tractograms or obtained from the tree, 
respectively (cij is then the y-axis value where the paths of leaves i and j meet in the 
tree). The range of CPCC is [−1, 1]. The higher the value, the better the ]it between the 
tree and the data, a value of 1 indicating that the matrix and the tree contain exactly the 
same information (there is a linear dependence between both, which is not possible 
unless the distances between all the tractograms are equal) and a value of 0 meaning 
that the tree contains none of the original information (due to the nature of the 
hierarchical agglomerative method, negative CPCC values will not occur).  

 

Choosing the linkage method 

Pairwise tractogram distance matrices were obtained for both hemispheres of subjects 
A, B and C (i.e., 6 datasets). Hierarchical trees were built over these matrices using each 
of the graph methods proposed. Trees were also built directly from the tractograms, 
using the centroid-neighborhood method for each of the different neighborhood levels. 
For the centroid trees, the number of clusters at where to stop the initial size-restricted 
merging stage was optimized in one of the datasets. This optimization looked to 
minimize information loss and provide a sufficiently high maximum granularity level 
while reducing tree complexity (and facilitating many steps of the tree processing). The 
optimized number of initial clusters was set at 5000. This same value was applied to the 
remaining datasets with similar results. As will be shown below, the information loss 
was also minimal for the rest of the datasets. Additionally, in order to test the outcome 
of the tree building algorithms over unstructured data, a set of artificial tractograms 
(equal in number to those obtained from the real datasets) was generated in a way that 
they would yield a distance matrix of random values uniformly distributed between 0 
and 1 (that is, a dataset without any hierarchical structure). This was achieved by 
creating tractograms representing points uniformly distributed over the surface of a 
sphere in n-dimensional space. However, in order to ensure this uniformity in a 
reasonable generation time, the dimension of the random tractograms was limited to n = 
10. When testing the centroid method (which requires physical neighborhood 
information), each of the three random tractogram sets was assigned coordinates from a 
different real dataset. 

 

It was not possible to detect significant differences in the overall topology of the trees 
obtained with the different methods by mere visual inspection, except perhaps that the 
distance values for the single and complete linkage methods tend to be much lower and 



much higher, respectively, than the ones for the other methods (Fig. A2). Numerical 
analysis is, therefore, necessary to assess their fit to the data. For this purpose, CPCC 
values were computed for all obtained dendrograms. In order to set a baseline level for 
the CPCC values, trees were also built from unstructured datasets (using artificially 
generated tractograms that yield random uniformly distributed distance matrices, as 
explained in the previous section), and their CPCC values computed. The results are 
shown in Fig. A3. 

 

 

Figure A2: Trees obtained from the left hemisphere data of subject A for each of the 
graph methods plus the centroid method with a 26 neighborhood. Note that a 
particular position on the x-axis does not identify a particular seed voxel; this 
may change in order to allow for the representation of the structure in tree 
form without any line crossings. 

 
 



 

Figure A3: Average CPCC values for trees obtained from each hemisphere of subjects A, 
B, and C, and from the three random tractogram sets. The first 4 pairs of 
columns refer to the single, complete, weighted, and average linkage 
methods. C18-124 refers to the centroid method with different degrees of 
neighborhood. See Methods section for more details. The error bars indicate 
the standard deviations. 

 

The results show that, for the real datasets the single linkage method performs worst, 
the complete and weighted linkage methods are not a very good match to the data 
either, and the average and centroid methods provide the best fit to the original data, 
obtaining high and very similar CPCC scores, with no statistically significance difference 
between them. Moreover, there was no significant improvement in quality using wider 
neighborhoods in the centroid method.  In all cases the values obtained were well above 
their baseline levels, especially in the case of the centroid method. 

Also, as a test of the information loss introduced by the homogeneous merging phase, 
CPCC values were computed for centroid trees built with equal parameters, but without 
merging restrictions (not shown). No significant change in the CPCC value was observed, 
meaning that the homogeneous merging stage with the selected parameter did not 
deteriorate the quality of the obtained tree (average CPCC difference was of 0.75% with 
a standard deviation of 0.65%). 

The computational load incurred for obtaining each tree was empirically derived as the 
number of tractogram similarities computed, and the results are plotted in Fig. A4. As 
can be seen, an average of 4.3∙104 × N tractogram similarity operations were necessary 
to build up the graph linkage trees (value out of axis range), with N being the size of the 
dataset from which the trees were computed (the complexity of the graph methods is 
N(N-1)/2 and the datasets used are in the range of 6.5∙104 to 10∙104 points). On the 
other hand, centroid methods required only 15N to 50N operations, three orders of 
magnitude less than the graph methods. 

 



 

Figure A4: Average computational complexity (expressed as the number of tractogram 
distance operations performed normalized by the size of the dataset N) of the 
tree building methods applied to the real datasets (graph linkage in red, 
centroid method with different neighborhood levels, 18 to 124, in blue). For 
interpretability, the bar for the graph linkage methods is truncated and the 
numerical value is indicated. Error bars show the standard deviation. 

 

It is clear from these results that from the methods considered, average and centroid 
linkages are the best fit to the data, with the latter having the further advantage of 
incurring far less computational load. Within the centroid methods, the computational 
load increased almost linearly with the number of neighboring voxels considered. 

The 26 neighborhood centroid method (c26) was chosen as the optimal trade-off 
between the quality of the tree and the computational cost, and was the only method 
used for the remainder of the study. 

 
Confounds and challenges for dendrogram interpretation 

The resulting dendrograms serve two purposes: On the one hand they are a 
compression of the pairwise similarities between connectional fingerprints, and on the 
other hand they also hold information on the similarities between clusters at every 
possible granularity and the hierarchical relationships between them, allowing for easy 
and quick partition generations. They are, however, complex structures and their 
interpretation and partition selection are not always straightforward. In addition, 
several factors might add confounds and complicate the analysis. 

Artefactual datapoints 

As in most types of clusterings, these can produce unwanted outliers that obscure the 
data and introduce errors in the analysis. In our particular case errors and spatial 
discontinuities in the mask of seed voxels might result in unusable tractograms 
characterized by a very limited number of target voxels reached. This results in a very 
low similarity of these tractograms to the rest. 



Non-monotonicity 

In the most widely used linkage methods, the distance between a newly merged group of 
elements and the rest of the set are computed as a weighted average of the distance 
between elements (as in the graph methods, where the type of weighting defines the 
type of linkage). This means that this distance is always equal or greater than the 
distance between the groups that existed prior to the merge, resulting in a monotonic 
tree. In the centroid method, however, this is not always the case. As each group of 
elements is represented by a new representative centroid, this centroid could be closer 
to other elements than any of its components were before the merging (Morgan and Ray, 
1995), which is called an inversion. In other words, it can happen that the intra-cluster 
distance exceeds the inter-cluster distance (see Fig. A5a for a graphical clarification). 
These inversions or non-monotonic steps can appear when more than two points in the 
data have very similar distances to each other, and indicate areas with no clear binary 
cluster structure (Gower, 1990). As a toy example, if we consider points in 2D space 
positioned like vertices of a roughly equilateral triangle and use Euclidean distance, the 
centroid of 2 merging points will be closer to the third point than any of them were 
before. While these inversions do contain information about the distances encoded 
(when the tree is seen as a compression of the similarity matrix) they do not provide any 
additional information on the hierarchy structure, and they make interpretation of the 
hierarchy and tree analysis difficult and inconvenient (Murtagh 1985).  

Hierarchy-resolution limitation at highest granularities 

The proposed method produces connectivity profiles with a very high spatial sampling 
resulting from seeding tractography at the white matter boundary with a voxel 
resolution of 1mm. This produces an oversampling of the diffusion profiles compared to 
the limited spatial resolution of the diffusion acquisition and the uncertainty of the 
tractogram computation. As a result seed points with a very high similarity cannot be 
distinguished (for this reason, neighboring seed points with very high similarity are 
grouped together to base-areas as part of the proposed tree-building algorithm). The 
hierarchical relationships within these base-areas are characterized by several 
consecutive mergers with very small distance change indicating the non-separability of 
these regions and the irrelevance their internal structure for the hierarchical tree, while 
adding to the complexity of the tree. 

Forced binary structure 

As mentioned before, the iterative nature of the clustering process forces the 
dendrogram to always have binary bifurcations, whereas in reality the dataset may have 
structures nested in a non-binary way. This means that some of the nodes in the tree do 
not contribute to any real information about the similarity structure and are merely a 
by-product of the pair-wise agglomerative method. 

 



Dendrogram preprocessing pipeline 

In order to address the aforementioned problems and ease the information extraction, 
the following tree preprocessing steps were developed and applied: 

Outlier elimination 

Isolated leaves resulting from faulty tractograms can easily be detected and eliminated 
without negative influence on the whole brain coverage. Data points with a distance 
value compared to their most similar neighbor higher than a threshold were discarded 
and removed from the analysis. This step was actually implemented as part of the tree 
building algorithm, in order to prevent the outliers from affecting the value of the 
centroids. Removing these outliers in general stabilizes the tree and the clustering result 
and simplifies its interpretation. 

Monotonicity correction 

As inversions occur when more than two elements are at similar distances from each 
other, it is possible to transform the non-monotonic trees of the centroid method into 
monotonic ones with little information loss. This is accomplished by merging every two 
nodes where an inversion occurs, creating a non-binary branching with more than two 
nodes joining simultaneously into one (Fig. A5b). This non-binary structure more 
parsimoniously describes the original information present in the data. For each 
correction, the level value of the simplified node is calculated as the mean of the levels of 
the original nodes, weighted by their respective sizes in terms of number of leaves. 
Corrections are applied starting at the root node and working through the tree down to 
the leaf level. 

Limiting maximum granularity 

In terms of tree processing, the small differences between the leaves in the base-areas 
are ignored and the tree is transformed in a so-called rose tree, where the meta-leaves 
branch into single voxels (leaves, Fig. A5c). The partition defined by these meta-leaves 
would then represent the maximum effective granularity achievable from the data. 
While rose-trees can be computed directly from data (Blundell et al., 2010), the 
computation costs are far greater than with the method proposed here.  

In our implementation, the meta-leaves are the homogenous clusters obtained during 
the first stage of the proposed centroid algorithm. All branchings within those nodes are 
then eliminated and their contained data points joined simultaneously at the original 
node level. Additionally, this grouping sharpens the connectivity profiles of the meta-
leaves and allows for a better identification of connectivity similarities and differences 
between neighboring regions. 

Collapse of non-binary structures 

Cases where non-binary structures are present in the data are generally characterized in 
the tree by merges where the distance change is much smaller than the absolute 
distance level of the nodes being merged (when not resulting in an inversion). The 
dependency on the distance level accounts for the fact that the significance of distance 
change is the lower the higher a node stands in the tree hierarchy. A similar leveling 



concept to the one used with the non-monotonic steps was used here, flattening any 
merging with a distance change smaller than a certain proportion of the absolute 
distance value of the node considered. Constant and square dependencies were also 
considered, but the linear solution proved the best trade-off between complexity 
reduction and information loss. The resulting tree will be a better representation of the 
original data and will have a considerably reduced number of internal nodes, making it 
easier to identify natural divisions in the data (Fig. A5d). 

 

 

Figure A5: Dendrogram pre-processing: example raw tree (a), monotonicity correction 
(b), limiting the highest granularity encoded (c) and collapse of non-binary 
structures (d). 

 

The preprocessing methods described in this section effectively reduce the number of 
branchings, which in turn reduces the tree complexity and possible confounds in the 
dendrogram, while still maintaining maximum usable information (shown quantitatively 
in the Results section). This also facilitates the task of the information extraction 
algorithms, which is introduced below. 
 

 

Effects of dendrogram preprocessing 

The tree preprocessing steps described above were applied to the c26 dendrograms of 
each hemisphere from subjects A, B, and C. Parameter values were optimized for one of 
the datasets by testing multiple values and selecting those who performed best, 
achieving further complexity reduction without significantly adding any information 
loss. The optimized parameters were then applied to the remaining datasets and a 
similar effectiveness verified. 

Firstly, those data points with distances greater than 0.1 to their nearest neighbor were 
considered as outliers and excluded, resulting in a rejection of an average of 0.5% of the 
data points (this step is actually integrated into the tree building process). Next, non-
monotonicity was corrected and the maximum granularity was limited by merging all 
inner nodes of the 5000 homogeneous sub-trees obtained during the first phase of tree 
construction, effectively transforming these nodes into non-binary meta-leaves; non-



binary structures at all levels of the tree were detected and flattened using a parameter 
of l = 0.05 (nodes with branches shorter than 5% of the node height were eliminated). 
These parameters were empirically selected in order to obtain additional complexity 
reduction at higher levels of the tree (measuring complexity as the number of 
branchings or inner nodes in the tree) while keeping the total information loss in the 
same order range (<1%). In order to quantitatively assess the complexity reduction and 
the information loss caused by the pre-processing, inner node count and CPCC values 
were obtained for the trees at each processing step, and their relative changes in 
relation to the previous states were evaluated (Fig. A6). The results show that neither of 
the first two steps (monotonicity correction and limiting of maximum granularity) 
significantly reduced the amount of information contained in the trees, while the second 
step achieved a complexity reduction of almost 90%. The third step (flattening of non-
binary structures) further reduced the complexity by 5%, while introducing an average 
of 0.2 % of information loss (without statistical significance). Overall, the whole pre-
processing pipeline achieved a complexity reduction of more than 90% with a loss of 
information of less than 0.5% (0.15% on average), making it a remarkably efficient and 
useful tool for improving the performance of partition finding and tree comparison 
algorithms. It can also ease interpretation of the trees through visual inspection, 
although this still remains a challenging task. Visual changes on tree structure caused by 
the pre-processing are exemplified in Fig. A7. An example of the obtained meta-leaves in 
one of the subjects is shown in Fig. A8. 

 

 



Figure A6: Average Tree Information Loss (top) and Complexity Reduction (bottom) of 
each step in the pre-processing pipeline, relative to the status before applying 
that particular step. The last column of each chart represents the overall 
added effect of the complete pipeline. Information loss is measured as being 
the relative decrease in CPCC index value in each step. Complexity reduction 
is measured as being the relative number of inner nodes eliminated. Error 
bars show the standard deviation. 

 

 

Figure A7: Tree corresponding to the connectivity structure of the left hemisphere of 
subject A before (top) and after (bottom) tree preprocessing. 

 

 

Figure A8: Detail of the clusters contained by the sub-tree covering the IFG region of the 
left hemisphere of subject A (upper left) and its position in the complete tree 
(lower left) as well as a view of the zoomed-in sub-tree (lower center). The 



meta-leaves contained in the mentioned sub-tree have been projected onto 
the inflated surface (upper right) and the zoomed-in sub-tree (lower right). 

 
Measures for dendrogram comparison 

Tree cophenetic correlation coefficient (tCPCC): 

As different meta-leaves may have different sizes (in the sense of containing a different 
number of seed voxels), the CPCC factor (Farris 1969, Equation A4) was modified in 
order to include a weighting with cluster size. This way the relevance of the distance 
value between two meta-leaves was proportional to the fraction of the total seed voxels 
contained in them. The mathematical formula for the tCPCC resulted as follows: 
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where xij is the distance between meta-leaves i and j as encoded in tree X and Sxij is the 
sum of the sizes of meta-leaves i and j for tree X. 

As with the tCPCC, a value of 1 would indicate that the distance values between single 
meta-leaves encoded by both trees are linearly dependent (meaning that both trees 
contain the same information encoded in their distance values), and a value of 0 means 
that the trees do not share any common information. 

 

Weighted triples similarity (wTriples): 

As with the tCPCC, a weighting was included into the basic formula (Bansal et al., 2011) 
to account for meta-leaf size, and the final formula was expressed as: 
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