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Congenital abnormalities of the kidney and urinary tract

(CAKUT) account for approximately half of children with

chronic kidney disease and they are the most frequent cause

of end-stage renal disease in children in the US. However, its

genetic etiology remains mostly elusive. VACTERL association

is a rare disorder that involves congenital abnormalities in

multiple organs including the kidney and urinary tract in up

to 60% of the cases. By homozygosity mapping and whole-

exome resequencing combined with high-throughput

mutation analysis by array-based multiplex PCR and

next-generation sequencing, we identified recessive

mutations in the gene TNF receptor–associated protein 1

(TRAP1) in two families with isolated CAKUT and three

families with VACTERL association. TRAP1 is a heat-shock

protein 90–related mitochondrial chaperone possibly

involved in antiapoptotic and endoplasmic reticulum stress

signaling. Trap1 is expressed in renal epithelia of developing

mouse kidney E13.5 and in the kidney of adult rats, most

prominently in proximal tubules and in thick medullary

ascending limbs of Henle’s loop. Thus, we identified

mutations in TRAP1 as highly likely causing CAKUT or

VACTERL association with CAKUT.
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Congenital abnormalities of the kidney and urinary tract
(CAKUT) occur in 3–6 per 1000 live births. CAKUT are the
most frequent cause for chronic kidney disease in children

http://www.kidney-international.org b a s i c r e s e a r c h

& 2013 International Society of Nephrology

Correspondence: Heiko M. Reutter, Institut für Humangenetik, Biomedizi-
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(B50%)1,2 in the United States. The acronym ‘CAKUT’
comprises heterogeneous malformations involving the kidney
(e.g., renal agenesis, hypodysplasia) and the urinary tract
(e.g., vesicoureteral reflux (VUR), ureteropelvic junction
obstruction).3 These congenital anomalies are related because
a part of their pathogenesis is an impaired co-development
of nephrogenic tissues derived from the metanephric
mesenchyme and the ureteric bud.4 Twenty monogenic
causes of isolated CAKUT in humans have been published
to date, as reviewed recently by Yosypiv.5 However, they only
account for B10–20% of all cases indicating a broad genetic
heterogeneity of CAKUT. A recent study on copy number
variations in a large cohort of individuals with CAKUT and

two publications identifying novel monogenic causes of
CAKUT bring further evidence that CAKUT is a condition of
extensive genetic heterogeneity.6–8 CAKUT most frequently
occur isolated, but they might be associated with extrarenal
phenotypes, for instance, with VACTERL association
(MIM #192350). The acronym ‘VACTERL’ describes the
combination of at least three of the following congenital
anomalies: vertebral defects (V), anorectal malformations
(A), cardiac defects (C), tracheoesophageal fistula with or
without esophageal atresia (TE), renal malformations (R),
and limb defects (L). VACTERL association is a rare disease
that occurs mostly sporadic in 1/10,000–40,000 live births.9

Its etiology is enigmatic, although animal models suggest an
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involvement of Sonic hedgehog signaling.10 In humans, ZIC3
mutations are the cause of a closely related nonclassic
VACTERL condition (VACTERL-X, MIM #314390).11,12 In
addition, there are six case reports published of individuals
with VACTERL association in conjunction with mitochondrial
dysfunction, as summarized recently by Siebel and Solomon.13

To identify new recessive genes that cause isolated CAKUT
or CAKUT in VACTERL association, we performed homo-
zygosity mapping and whole-exome resequencing (WER) in
24 affected individuals with CAKUT from 16 families, and in 4
individuals with CAKUT in VACTERL.

RESULTS
WER identifies a homozygous mutation in tumor necrosis
factor (TNF) receptor–associated protein 1 (TRAP1) in CAKUT
and in VACTERL association

By homozygosity mapping in a family of two siblings
(A3403) with unilateral and bilateral VUR III1, respectively
(Figure 1a and b and Table 1), we identified a short 5.2-Mb
segment of homozygosity on chromosome 5 (Figure 1c),
indicating distant consanguinity of the parents. This finding
suggested that in this family CAKUT are most likely caused
by a homozygous recessive mutation in an unknown CAKUT
gene. We performed WER in individual A3403-21, as described
previously by the authors.14,15 In order not to miss either
a homozygous mutation in a short run of homozygosity or a
compound heterozygous mutation (which, as in this case,
cannot be excluded a priori in families with remote con-
sanguinity),16 we considered variants not only in the
homozygosity peak but within regions of genetic linkage
for both siblings (coverageX4; minor variant frequencyX0.2).
After variant filtering, we retained 38 variants in 13 genes for
Sanger confirmation and segregation analysis (Supplemen-
tary Table S1 online). Only a single homozygous missense
mutation (R469H) in the gene TRAP1 on chromosome

16p13.3 survived the variant filtering process and segregation
analysis (Figure 1d). This homozygous variant in TRAP1 in
A3403-21 and A3403-22 was positioned in an B1.5-Mb run
of apparent homozygosity that was not detected by homo-
zygosity mapping (Figure 1c), because the threshold for
detection of ‘homozygosity peaks’ is 2.1 Mb.17

In family A4252 with CAKUT in VACTERL, we performed
WER in an affected individual (A4252-21). This girl was born
with a right double kidney and duplex ureter, left VUR,
esophageal atresia type IIIb, and anal atresia with a vestibular
fistula (Figure 1e and f and Table 1). Although there was no
consanguinity reported in this family, homozygosity map-
ping showed unusually broad homozygosity peaks on
chromosome 16 on the p-terminus and q-terminus (5.5
and 9.6 Mb, respectively; Figure 1g). In this case, we
hypothesized that CAKUT in VACTERL is caused by a
homozygous mutation within these homozygous regions.
When evaluating WER data in this individual, the 512,733
variants initially detected (minor variant frequency X0.55;
coverageX2) were reduced to only 11 variants within the
‘homozygosity peaks’ on chromosome 16 and 18 (Supple-
mentary Table S2 online). The only variant that was
confirmed by Sanger sequencing and that altered a conserved
amino-acid residue was TRAP1 R469H, the same allele as in
family A3403. By comparison of SNPs in the affected girl and
her parents, we demonstrated that partial maternal isodisomy
of chromosome 16 with two recombinants (one located on
the p-arm and one located on the q-arm) was the underlying
cause of homozygosity for TRAP1 R469H (Figure 1g–j).

The TRAP1 allele c.1406G4A, p.R469H alters an evolu-
tionary highly conserved amino-acid residue, and it is
predicted to be deleterious for protein function by publically
available software programs (Table 1 and Supplementary
Figure S1 online). In the Exome Variant Server database,
R469H has a minor allele frequency (MAF) of 0.9% in

Figure 1 | Homozygosity mapping and whole-exome resequencing identifies mutations in tumor necrosis factor (TNF)
receptor–associated protein 1 (TRAP1) as causing congenital abnormalities of the kidney and urinary tract (CAKUT) or VACTERL
association. (a, b) Voiding cysturethrograms (VCUG) of CAKUT siblings A3403-21 and A3403-22 showing unilateral vesicoureteral reflux (VUR)
grade III and bilateral VUR, respectively (white arrow heads). (c) Nonparametric LOD (NPL) scores across the human genome in two affected
siblings. X axis represents Affymetrix 250k StyI array single-nucleotide polymorphism (SNP) positions across human chromosomes concatenated
from the p-terminus (left) to the q-terminus (right). Genetic distance is given in cM. A single peak indicates distantly related parents.
(d) Chromatogram of newly identified homozygous missense mutation (arrow head) in the gene encoding TNF receptor–associated protein 1
(TRAP1) over wild-type control. (e) VCUG (upper panel) and cystoscopy (lower panel) demonstrating VUR and a dilated ureteral orifice,
respectively. (f) Chest X-ray (top panel) and esophagoscopy (bottom panel) showing esophageal atresia and esophagotracheal fistula in
individual A4252-21 with CAKUT in VACTERL association. (g) NPL score in an individual A4252-21 with VACTERL association. Two maximum
peaks indicate homozygosity at the p-terminus and q-terminus of chromosome 16. (h) Panel on the right illustrates maternal heterodisomy of
chromosome 16 and partial uniparental isodisomy (p-ter and q-ter) of the child (Fa, father; Mo, mother; Ch, child). (i) Partial haplotypes of
selected markers and their physical positions across chromosome 16 in the Fa, the Mo, and the affected Ch of CAKUT family A4252. Selected
markers (biallelic SNPs; minor allele frequency (MAF)¼ 0.496–0.5) homozygous in the father are shown in green (alleles AA) and light green
(alleles BB). The fact that for 19 of 52 alleles there is paternal noncontribution in the child strongly suggests maternal heterodisomy of
chromosome 16. No paternal noncontribution was observed in the child on any other chromosome (data not shown). (j) Selected markers
(biallelic SNPs; MAF¼ 0.497–0.5) heterozygous in the Mo of family A4252 are shown for alleles coded in red (AB; phase unknown). Note that in
the central segment (b), separated by vertical lines, the Ch haplotype is identical to the mother’s haplotype. In the p-ter (a) and q-ter (a’)
segments (a, a’), the child is homozygous, indicating maternal isodisomy in these segments. (k) Exon structure of human TRAP1 complementary
DNA. Positions of start codon (ATG) and of stop codon (TGA) are indicated. (l) Domain structure of the TRAP1 protein. HSP, heat-shock protein;
MTS, mitochondrial targeting sequence. (m) Translational changes of detected mutations are shown relative to their positions in TRAP1
complementary DNA (see l) and TRAP1 protein (see m) for affected individuals with CAKUT or CAKUT in VACTERL association with recessive
TRAP1 mutations. Family numbers are shown in parentheses. *Denotes an individual with compound heterozygous mutations in TRAP1.
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Americans of European descent. In our cohort of 675
individuals with CAKUT, most of them European, the MAF
is 1.9%. The three affected individuals from two unrelated
families with homozygous TRAP1 R469H, as well as six
additional heterozygous carriers, share haplotypes at the
TRAP1 locus (Supplementary Figure S2 online), which speaks
for TRAP1 R469H being a European founder mutation.

Mutation analysis reveals three additional families with
TRAP1 mutations

We subsequently analyzed the coding sequence of TRAP1
in a cohort of 675 individuals with isolated CAKUT
(Supplementary Table S3 online) and 300 individuals with
classic VACTERL association (i.e., VACTERL-X and other
related disorders have been excluded) using a bar-coded
multiplex PCR approach and consecutive next-generation
sequencing, as described previously by the authors.18 As a
control group, we included 800 individuals with the distinct
renal phenotype of nephronophthisis.

We detected six additional recessive mutations in TRAP1
in a compound heterozygous state in three additional
unrelated families with CAKUT or CAKUT in VACTERL
(Table 1, Figure 1k, l and m, Supplementary Figure S1 and S3
online). In individual A3051-21 with a left-sided multicystic
dysplastic kidney, we found a maternally inherited protein-
truncating frameshift mutation (c.127_137dup, p.R46fs*75).
This mutation abrogates the N-terminal mitochondrial
targeting sequence of TRAP1, which makes this a null allele.
The second allele was a missense mutation (c.1324G4A,
p.E442K) that segregated from the father.

In individual A4884-21 with CAKUT in VACTERL,
including right renal agenesis, vertebral malformations, anal
atresia with a rectoperineal fistula, atrial septum defect type
II, esophageal atresia, and abnormal position of the thumbs
(Table 1 and Supplementary Figure S4 online), we detected
compound heterozygous missense mutations in TRAP1
located in the ATPase domain (c.757A4G, p.I253V) and in
the HSP90 domain (c.1573C4T, p.L525F; Figure 1l).

In individual EA1717 with CAKUT in VACTERL,
including pyelectasis, left VUR, a complex anorectal
malformation including anal atresia and persistent
cloaca, esophageal atresia, cardiac defects, limb defects, and
persistent left vena cava superior (Table 1), we detected
compound heterozygous missense mutations that are both
located in the HSP90 domain of TRAP1 (c.1330T4A,
p.Y444N and c.1663G4A, p.V555I).

To exclude the presence of recessive mutations in controls,
we sequenced the TRAP1 coding sequence in 800 individuals
with the distinct renal phenotype of nephronophthisis. We
detected the TRAP1 allele I253V seven times (MAF 0.87%),
T444N twice (MAF 0.25%), and R469H twice (MAF
0.025%), all of them as single heterozygous alleles. TRAP1
R46Sfs*75, E442K, L525F, and V555I were absent from our
control cohort. Furthermore, no other possibly deleterious
variants were present in a homozygous or compound
heterozygous state in 800 individuals with nephronophthisis.

Trap1 is expressed in developing and adult kidney

To determine whether TRAP1 has a function during kidney
development, we analyzed Trap1 expression in developing

Table 1 | Mutations of TRAP1 in five families with isolated CAKUT or CAKUT in VACTERL association

Family
-Individ.
(sex)

Ethnic
origin

Nucleotide
alterationa

Deduced
protein
change

Continuous
amino-acid
sequence
conservation MutTb

Poly-
Phen2c SIFTd

MAF in
EVSe

Exon (state;
segregation)

Urinary tract
phenotypes Other phenotypes

A3403
-21 (F)
-22 (F)

Serbian c.1406G4A p.R469H E. coli (C. elegans
has L)

0.99 0.997 0.00 0.77% 13 (Hom; Fa,
Mo)

-21: VUR-III1
R -22: VUR-III1
R and L

None

A4252 -21 (F) Central
European

c.1406G4A p.R469H E. coli (C. elegans
has L)

0.99 0.997 0.00 0.77% 13 (Hom; Mo;
partial mater-
nal isodisomy)

Double kidney
R
VUR L

VACTERL association
including esophageal
atresia IIIb, anal atresia, vestibular fistula

A3051
-21 (M)

Macedo-
nian

c.127_137d-
up
c.1324 G4A

p.R46Sfs*75
p.E442K

NA
D. rerio

NA
0.99

NA
0.003

NA
0.3

Absent
0.08%

2 (het; Mo)
12 (het; Fa)

MCDK L None

A4884 -21 (F) Dutch c.757 A4G
c.1573C4T

p.I253V
p.L525F

E. coli
(X. tropicalis has
V, S. cerevisiae
has L)
E. coli

0.99
0.99

0.433
0.942

0.00
0.00

0.91%
Absent

7 (het; Mo)
14 (het; Fa)

Renal agenesis
R

VACTERL association
including cervical/thoracic hemiverte-
brae, 5 dysplastic short ribs R, anal
atresia with rectoperineal fistula, ASD
type II, esophageal atresia, abnormal
position of thumbs

EA1717
-21 (F)

Dutch c.1330T4A
c.1663G4A

p.Y444N
p.V555I

C. elegans
C. intestinalis

0.99
0.99

0.985
0.115

0.03
0.39

0.91%f

Absent
12 (het; Fa)
14 (het; Mo)

Pyelectasis and
VUR L

VACTERL association
including anal atresia,
esophageal atresia, ASD, VSD, hypo-
plastic/absent humerus, persistent L
vena cava superior, cloaca

Abbreviations: ASD, atrial septum defect; CAKUT, congenital abnormalities of the kidney and urinary tract; cDNA, complementary DNA; E. coli, Escherichia coli; EVS, Exome
Variant Server; F, female; Fa, mutation segregating from the father; L, left; NA, not applicable; M, male; MAF, minor allele frequency; MCDK, multicystic dysplastic kidney; Mo,
mutation segregating from the mother; MutT, MutationTaster; R, right; SIFT, sorting intolerant from tolerant; TRAP1, tumor necrosis factor (TNF) receptor–associated protein
1; VSD, ventricular septum defect; VUR-III1, vesicoureteral reflux third degree.
aTRAP1 cDNA mutations are numbered according to human cDNA reference sequence NM_016292.2, where þ 1 corresponds to the A of ATG start translation codon.
bMutationTaster score. Range: 0–1.0, 1.0 being most deleterious.
cPolyPhen2 (HumVar) score. Range: 0–1.0, 1.0 being most deleterious.
dSIFT score. Range: 0–1.0, 0 being most deleterious.
eMinor allele frequency in 8600 alleles of Americans of European descent.
fOne individual is homozygous for this allele.
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kidney in mouse embryos 13.5 dpc. Trap1 seemed to be
expressed at this stage in renal vesicles according to Trap1
transcription assays publically available through the Gudmap
project. By in situ hybridization (ISH) in E13.5 mouse
embryos, we found Trap1 to be strongly expressed in the
kidney, adrenal gland, and gonad. Trap1 expression specifi-
cally localized to renal epithelia (Figure 2a0).

To characterize TRAP1 localization in adult kidney, we
performed immunofluorescence stainings in rat using a
monoclonal TRAP1 antibody in conjunction with established
renal markers (Figure 3). TRAP1 is present most prominently
in peanut-lectin-marked proximal tubules in the renal
cortex (Figure 3a and b). In renal medulla, we detected
TRAP1 in peanut-lectin-negative tubular segments and in
NKCC-marked (NaþKþ2Cl� co-transporter) thick ascend-
ing limbs of Henle’s loop (Figure 3c and d). TRAP1
colocalizes with mitochondrial marker MTCO1 in renal
cortex and medulla.

DISCUSSION

In this study, we identified by WER and high-throughput
mutation analysis five unrelated families with CAKUT or

CAKUT in VACTERL association with recessive mutations in
TRAP1. Two siblings with CAKUT had a homozygous missense
mutation (R469H), which segregated from a common
ancestor of their parents. A girl with VACTERL association
had the identical homozygous mutation due to maternal
isodisomy of chromosome 16 p-ter and q-ter. In a cohort of
675 individuals with CAKUT and 300 individuals with classic
VACTERL association, we identified 3 additional individuals
carrying compound heterozygous mutations in TRAP1.
Homozygous or compound heterozygous deleterious variants
were absent from 800 control individuals. By ISH and
immunofluorescence, we showed that Trap1 is expressed in
early mouse renal epithelia, whereas the Trap1 protein is present
only in defined segments of developed nephrons in rat.

In 6500 individuals recorded in the Exome Variant Server
server, there are several non-synonymous variants present in
TRAP1, including heterozygous truncating variants in 11
individuals. However, deleterious alleles in recessive disease
genes, unlike in dominant disease genes, do not underlie
direct negative selection through evolution. Consequently,
the presence of rare deleterious variants in recessive disease
genes in a large cohort is an expected finding.

Li

Mg
Pa

Ki

E13.5, HE

Go

Lu

ISH Trap1

ISH Trap1E13.5, HE

Ki

Go

Ag

Figure 2 | Trap1 is highly expressed in the renal epithelia of E13.5 mouse embryos. The upper panel shows an HE-stained sagittal section
(a) and a Trap1-ISH (a’) in consecutive sections of a mouse embryo E13.5. Note the prominent Trap1 expression in the developing kidney
(marked ‘Ki’ in the left panel). The lower panel shows higher magnifications of E13.5 mouse kidney. (b) HE staining, (b’) Trap1-ISH. The Trap1-ISH
staining pattern is consistent with Trap1 being expressed specifically in renal epithelia (b’). Ag, adrenal gland; Go, gonad; HE, hematoxylin-
eosin; ISH, in situ hybridization; Ki, kidney (i.e., metanephros); Li, liver; Lu, lung; Mg, midgut; Pa, pancreatic primordium; TRAP1, tumor necrosis
factor (TNF) receptor–associated protein 1.
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The allele TRAP1 Y444N, detected as a compound
heterozygous mutation in an individual with CAKUT in
VACTERL, is present homozygously in a single individual of the
ESP cohort of 6500 healthy Americans. However, in the context
of CAKUT, this does not necessarily mean that the variant is

nonpathogenic. CAKUT frequently remain completely asymp-
tomatic. For instance, a double kidney or unilateral renal
agenesis typically are an ‘accidental finding’ in renal ultrasound.

The fact that the homozygous mutation TRAP1 R469H
was found in an individual with CAKUT and an individual

TRAP1a

b

c

d

e

f

NCCT

TRAP1 NKCC2

Lectin

Lectin

Merge

Merge

DAPI

DAPI

TRAP1 MTCO1 Lectin Merge DAPI

TRAP1 NCCT Lectin Merge DAPI

TRAP1 NKCC2 Lectin

TRAP1 MTCO1 Lectin

Merge DAPI

Merge DAPI

Figure 3 | Renal tubular segmental localization of TRAP1 by immunofluorescence microscopy in adult rat kidney. (a–c) Renal cortex.
(a) TRAP1 (blue–green) is located in proximal tubules (marked green by peanut lectin) and is absent from distal convoluted tubules (DCT;
marked red by NCCT-ab). (False color addition of blue–green and green appears as light green.) (b) TRAP1 is mostly absent from cortical thick
ascending limb (TAL) of Henle’s loop (marked red by NKCC2-ab). (c) TRAP1 colocalizes with mitochondrial marker MTCO1 (marked red by
MTCO1-ab) in proximal tubules. (False color addition of blue–green and red appears as white.) (d–f) Renal medulla. TRAP1 is absent from
peanut-lectin-positive tubular segments. (d) TRAP1 expression is present in DCT (marked red by NCCT-ab). (e) TRAP1 is expressed in medullary
thick ascending limb (mTAL) of Henle’s loop (marked red by NKCC2-ab). (f) TRAP1 localizes to mitochondria (marked red by MTCO1-ab) of
peanut-lectin-negative tubular segments. Scale bar: 201 m. ab, antibody; DAPI, 40,6-diamidino-2-phenylindole; MTCO1, mitochondrially
encoded cytochrome c oxidase 1; NCCT, Naþ -Cl- co-transporter; NKCC2, Naþ -Kþ -2Cl- co-transporter; TRAP1, tumor necrosis factor (TNF)
receptor–associated protein 1.
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with VACTERL association is surprising. However, in
CAKUT and in VACTERL association, intra-familial pheno-
typic variability is very common.19–21 Even in a single
individual different CAKUT phenotypes may be present, for
instance, left renal agenesis and right VUR.

The frequencies of individuals with recessive TRAP1
mutations in our cohorts (0.15% in CAKUT, 0.6% in
CAKUT with VACTERL) suggest that mutations in TRAP1
are a rare cause of these conditions. Similarly, mutations
in two recently identified CAKUT-causing genes, WNT4 and
DSTYK, are rare causes of CAKUT.7,8 These findings in
humans, along with numerous CAKUT-mouse models,
indicate that CAKUT are a common clinical phenotype
arising from a multitude of different single-gene causes.

In conclusion, we propose that recessive mutations in
TRAP1 are a novel rare cause of isolated CAKUT and the first
recessive cause of the VACTERL association.

MATERIALS AND METHODS
Human subjects
We obtained blood samples and pedigrees following informed
consent from individuals with CAKUT and from individuals with
VACTERL association. Approval for human subjects research was
obtained from the University of Michigan Institutional Review
Board and other institutions involved. The diagnosis of CAKUT and
VACTERL association was based on published clinical criteria.9

Homozygosity mapping
We performed homozygosity mapping as described previously.17

Whole-exome resequencing
Exome library preparation and next generation sequencing was
conducted using the SeqCap EZ Exome v2 (Nimblegen, Roche
NimbleGen, Madison, WI) and Genome Analyzer II (Illumina,
San Diego, CA). Subsequent variant detection, filtering, and analysis
have been described previously by the authors.14,15 All detected
variants were confirmed by Sanger sequencing.

Immunofluorescence microscopy
Immunofluorescence was performed as previously described by the
authors14 using a Leica SP5X system (Leica Microsystems GmbH,
Wetzlar, Germany) with an upright DM6000 compound microscope
(Leica Microsystems GmbH), and images were processed with the
Leica AF software suite. The following antibodies were used: TRAP1
(Abcam, Cambridge, MA (TRAP1-6), cat# ab2721), MTCO1
(Abcam cat# ab45918), NKCC2 (LSBio cat# LS-C150446, Seattle,
WA), and NCCT (Millipore cat# AB3553, Billerica, MA). Specificity
of the anti-TRAP1 antibody for rat TRAP1 was confirmed in
immunoblot (Supplementary Figure S5 online).

In situ hybridization
ISH was conducted on sections of wild-type mouse embryos with an
Naval Medical Research Institute background at embryonic day 13.5.
Mouse embryos were dissected into ice-cold phosphate-buffered
saline, fixed overnight in 4% paraformaldehyde/phosphate-buffered
saline, and then processed into paraffin wax. ISH was performed on
paraffin sections (5mm) using antisense probes generated by PCR
from an E11.0 total embryo complementary DNA library, and
specific staining was verified using a sense probe. PCR products

contained 30 T7 and 50 T3 RNA polymerase binding sites for in vitro
transcription, and probes were purified using G-50 sephadex
columns (GE Healthcare, Bio-Sciences, Piscataway, NJ). The 779-
bp probe for Trap1 spans exons 13–17 (accession: NM_026508.2).

ISH was performed according to the protocol from Chotteau-
Lelievre et al.22 with minor modifications, and detection of alkaline
phosphatase activity was visualized using BM Purple (Roche
Diagnostics, Mannheim, Germany). After staining, slides were
quickly dehydrated in 80% and then 100% ethanol, cleared twice
for 1 min in xylene (Roth, Carl Roth GmbH, Karlsruhe, Germany),
and coverslips were mounted with Entellan mounting medium
(Merck, Merck KGaA, Darmstadt, Germany). Photographs were
obtained using the AxioVision software (Zeiss, Carl Zeiss,
Oberkochen, Germany) with a Zeiss AxioCam and SteREO
Discovery.V12 microscope (Carl Zeiss). Three sections from at
least two different embryos were analyzed.

Bioinformatics
Next generation sequencing reads alignment and variant detection
was done with Genomics Workbench software (CLC Biotech,
Cambridge, MA). Mapping parameters were as follows: global
alignment, length fraction¼ 0.9, and similarity fraction¼ 0.9. Genetic
location is according to the assembly of the Genome Reference
Consortium GRCh37.
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isolated congenital abnormalities of the kidney and urinary tract
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Supplementary material is linked to the online version of the paper at
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