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We consider the problem of self-tolerance in the frame of a minimalistic model of the idio-
typic network. A node of this network represents a population of B-lymphocytes of the
same idiotype, which is encoded by a bit string. The links of the network connect nodes
with (nearly) complementary strings. The population of a node survives if the number of
occupied neighbors is not too small and not too large. There is an influx of lymphocytes
with random idiotype from the bone marrow. Previous investigations have shown that this
system evolves toward highly organized architectures, where the nodes can be classified
into groups according to their statistical properties.The building principles of these architec-
tures can be analytically described and the statistical results of simulations agree very well
with results of a modular mean-field theory. In this paper, we present simulation results
for the case that one or several nodes, playing the role of self, are permanently occupied.
These self nodes influence their linked neighbors, the autoreactive clones, but are them-
selves not affected by idiotypic interactions. We observe that the group structure of the
architecture is very similar to the case without self antigen, but organized such that the
neighbors of the self are only weakly occupied, thus providing self-tolerance. We also treat
this situation in mean-field theory, which give results in good agreement with data from
simulation. The model supports the view that autoreactive clones, which naturally occur
also in healthy organisms are controlled by anti-idiotypic interactions, and could be helpful
to understand network aspects of autoimmune disorders.

Keywords: idiotypic network, self-tolerance, control of autoreactive idiotypes, autoimmunity, bitstring model,
mean-field theory

1. INTRODUCTION
B-lymphocytes express Y-shaped receptor molecules, antibodies,
on their surface. These antibodies have specific binding sites which
determine their idiotype. All receptors of a given B-cell have
the same idiotype. B-cells with random idiotypes of remarkable
diversity are produced in the bone marrow.

A B-cell is stimulated to proliferate if its receptors are cross-
linked by complementary structures, unstimulated B-cells die.
Proliferation occurs if the concentration of complementary struc-
tures is not too low or not too high, see e.g., Ref. (1). The latter
condition refers to a steric hindrance for cross-linking if too many
complementary molecules are around. Stimulating complemen-
tary structures can be found on foreign antigens and on other,
so-called anti-idiotypic antibodies of complementary specificity.
Thus B-lymphocytes can stimulate each other and form a func-
tional network, the idiotypic network, as first proposed in Ref. (2),
see also Ref. (3, 4).

The potential repertoire includes idiotypes that can recog-
nize other complementary structures, e.g., on the active sites
of enzymes, hormones, and neurotransmitters. Further, there
are idiotypic interactions of B-lymphocytes with T-lymphocytes
and between T-cells (5). Thus, the idiotypic network is not an
autonomous entity of the adaptive immune system, but is coupled
to many other networks.

Even for a hypothetical autonomous B-lymphocyte system, we
have the requisites of evolution, random innovation, and selection.

So the architecture of the idiotypic network can be conceived
as the result of an evolution during the life time of an individ-
ual. In a revised version of the idiotypic network paradigm, the
second generation idiotypic network (6–8), it was suggested that
this architecture comprises a densely connected central part with
autonomous dynamics and a hereto disconnected (or only sparsely
connected) periphery. The periphery is able to clonal expansion
in (an adaptive) response to external antigen, and since it is dis-
connected to the central part, the stimulation does not percolate
through the network.

Already Jerne thought the idiotypic network to play an essen-
tial role in the control of autoreactive idiotypes (3). Today, the
concept of idiotypic networks is still popular in the research
on autoimmune diseases, both in theoretical studies and clini-
cal context. Indeed, autoreactive antibodies are regularly found
in healthy individuals though in low concentrations. Antibodies
which escape other regulatory mechanisms can be controlled by
the idiotypic network (9). Anti-idiotypic antibodies specific to
potentially autoreactive clones are found in healthy individuals
or in patients during remission, they are absent during periods
of active autoimmune disease (10). Autoimmune diseases can
be related to perturbations of the control of autoreactive clones
(10–17), as for example in Myasthenia gravis, a well known B-cell
associated autoimmune disease (18).

There are many alternative or complementary concepts to
explain self-tolerance and a multitude of possible mechanisms
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to cause autoimmune diseases. It is of course beyond the scope of
this paper to give an exhaustive review over this rapidly expanding
field. We can list only a necessarily subjective selection of a few
major concepts and mechanisms. Several theoretical concepts of
self-nonself discrimination are presented in a topical issue of Sem-
inars in Immunology (19), including the Two-signal theory (20),
the Danger model (21), the context dependent tuning of T-cell
antigen recognition (22), cf. also (23, 24), and the Immunological
homunculus (25), cf. also (26, 27). Zinkernagel (28) emphasizes
the importance of localization, dose, and time of antigens: anti-
gen that does not reach secondary lymphoid organs in minimum
doses or for sufficiently long times is immunologically ignored.

Regulatory T-cells have been identified to suppress a variety
of immune responses and playing a crucial role in self-tolerance
and in controlling the balance of T-helper cells such as Th1, Th2,
and Th17 (29, 30). Various mechanisms how infections can trigger
autoimmunity are reviewed in Ref. (31). Superantigens may cause
a polyclonal T-cell response with an excessive cytokine release,
which in turn can induce autoimmune disorders. Chronic tissue
damage can, regardless of the initial stimulus, lead to a spreading of
the specificity of the T-cell response (epitope spreading) including
self-epitopes (32). More recently, epigenetic mechanisms which
may cause a breakdown of immune tolerance have been identified
in the context of several autoimmune diseases, for a review see Ref.
(33), cf. also Ref. (34).

Recent progress in the understanding of autoimmune diseases
is reviewed in a topical section of Current Opinion in Immunol-
ogy edited by Wucherpfennig and Noel (35). The T-cell system and
the B-cell system interact in various ways at different stages of an
immune response and the distinction between B-cell mediated and
T-cell mediated autoimmune disorders appears to erode (36). For
T-independent features of B-cell response confer however (37).
Also idiotype driven interactions exist between B-cells and T-
cells, as reviewed in Ref. (38). Very recently, regulatory B-cells are
brought into discussion (36, 39).

There are early attempts to model self-tolerance and autoim-
munity mathematically within the network paradigm. We can
distinguish papers which consider networks with predefined archi-
tecture from work, which studies the (ontogenic) evolution of the
networks architecture.

In Ref. (40), based on experimental results (41), an idealized
architecture of 26 clones was proposed, which comprises four
groups of B-cell clones, a multi-affine group A, two mirror groups
B and C with mutual coupling but no intra-group affinity, and
a group D which couples with low affinity only to A. Based on
this ad hoc architecture, a set of non-linear ordinary differential
equations (ODEs) is proposed (42) that describes the continu-
ous dynamics of B-cells and antibodies in the presence of self. The
proliferation and maturation of by idiotypic interactions activated
B-cells is modeled by the non-linear terms of the ODEs. Computer
simulations of these ODEs reveal that the response of clones, which
couple to self antigen depends on their connectivity to other clones
of the network: the higher the connectivity the greater the degree
of tolerance; poorly connected clones show unlimited growth.

In Ref. (43), an analytical theory for the dynamics of clones in
the mirror groups B and C, which feel the mean-field exerted by
the clones of group A that couple to self antigen is considered. The

model describes a switching between tolerant and autoimmune
states and reverse, induced by infection with external antigen.

Also a paper by Calenbuhr et al. (44) studies the behavior
of idiotypic networks with predefined architecture in the pres-
ence of self. There, using a similar continuous dynamics as (42)
the interaction between N clones of different idiotypes is deter-
mined by an N ×N connectivity matrix (N = 2, . . . , 25) with
entries zero and one. The maximum number of interactions C
of a single clone with other clones is varied between 1 and N − 1
and open (chain like) and closed architectures are distinguished.
The autonomous system shows oscillatory or chaotic behavior
with parameter depending amplitudes. The response to a self-
antigen depends on its concentration, and on the parameters of
the autonomous system. The state of the system is called tolerant
(safe) if the clones which couple to the self have low concentration,
otherwise, for a large or even unbounded response, it is called dan-
gerous. The study confirms that more densely connected networks
tend to provide tolerant states.

Our work describing the evolution of the idiotypic network in
the presence of self antigens is similar in spirit to previous work by
De Boer and Perelson (45), Stewart and Varela (46), and Takumi
and De Boer (47).

De Boer and Perelson (45) investigated a model which describes
the population dynamics of antibodies and B-cells by a set of non-
linear ODEs. The idiotype is modeled in a discrete shape space
by bitstrings of length L (L= 32), two idiotypes match if the two
aligned bitstrings are complementary in at least T adjacent posi-
tions (T is varied from 6 to 11, mainly T = 8) which mimics the
presence of several idiotopes on an antibody with certain idio-
type. For exactly T complementary positions an affinity of 0.1 is
assigned, for more than T an affinity of 1. The stimulation of B-
cells is described by a bell-shaped activation function, and the pro-
duction of antibodies by stimulated B-cells by a gearing-up mecha-
nism. There is an input of 10 new clones per day. They are incorpo-
rated in the network if at least one other clone is complementary.
Clones with too high connectivity are suppressed. Simulations
show that the network reaches a stationary regime where the idio-
types that are incorporated in the network are more similar than to
be expected for a completely random choice. This gives an advan-
tage because the incorporated B-cells feel a similar stimulating field
and their (similar) antibodies do not form complexes. Among the
clones which do not expand there are about 25% which have no
sufficient stimulation. They are not incorporated in the network
and can be considered as the clonal (peripheral) component of the
immune system (similar to the singletons in our work, see below).
Self antigen is also modeled by bitstrings. In high concentration
it suppresses all clones which recognize the antigen, in stimula-
tive concentrations (i.e., if their field is in the stimulating region
of the bell-shaped activation function) it gives rise to unlimited
self aggression. The authors mention that some of the self-reactive
clones, especially those with a high connectivity, are controlled by
overstimulation, clones with few connections escape the control.

Stewart and Varela (46) considered a model, which describes
the presence or absence of clones of a given idiotype, not distin-
guishing B-cells and antibodies, using a discrete dynamics. A clone
of idiotype i survives if it receives a stimulus σi within an allowed
window, σL≤ σi≤ σU. If σi is outside the window, the clone does
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not survive the next step of a parallel update. The stimulus an
idiotype i receives from clones of complementary idiotype is cal-
culated in a double-sheeted two-dimensional continuous shape
space as σi =

∑
j mij where mij = exp {−aij/c}2. An idiotype is

represented by a point on one of the sheets (say, the white one)
while the perfectly complementary idiotype has the same coor-
dinates on the other (black) sheet. aij is the Euklidian distance
of two points at different sheets and c is a characteristic distance
below which idiotypic interactions are relevant. Simulations for
periodic boundary conditions show that stationary patterns on
the shape space emerge which consist of nested (concentric) black
and white ellipses. They can be conceived as mirror groups where
members of one group have only idiotypic interactions with the
other group but not within their own group. Idiotypes discon-
nected from these groups (clonal components) only occur before
saturation. The system needs a longer time to reach saturation
as smaller c is. Self antigen is represented as points on the two-
dimensional shape space. If located on the black (white) sheet it
is incorporated in the black (white) elliptic lines. So if the bone
marrow is able to produce idiotypes similar to the self, they buffer
the self against aggressive autoimmunity.

Takumi and De Boer (47) investigated the evolution of a
model network on a double-sheeted two-dimensional discrete
shape space in the presence of self-epitopes. Self-reactive clones
are deleted by hand assuming some not closer characterized
self-tolerance process. Each idiotype has several determinants
(idiotopes). New B-cell clones are generated randomly. The
dynamics of B-cells is described by a system of ODEs with a log-
bell-shaped activation function. A buffering term prohibits the
explosion of the clone size, clones are removed if their size falls
below an extinction threshold. Their main finding is that the net-
work organizes such that most self-epitopes are embedded in an
antibody repertoire of intermediate concentration. Without the
explicit deletion of self-reactive clones the authors were unable to
obtain robust self-tolerance.

The B-cell models mentioned above,describing the evolution of
the network,have in common that they do not show an appropriate
partitioning into network and disconnected fraction, and are not
reliably stable when coupled to permanently present self antigen.
Motivated by these drawbacks (48, 49) proposed to extend their
previous models to include the cooperation with T-lymphocytes.
Indeed, simulations of the ontogenic evolution of the network in
the presence of self antigens (“founder” antigens) show that the
system differentiates in several stages into two coexisting compart-
ments, the central immune system that couples to and tolerates self
antigens, and the peripheral immune system that could respond
to “late” antigen. In the first stage, T-cells which become activated
by the initial founding set of antigens, activate in turn B-cells.
This continues until the B-cell repertoire is complete and the B-
cells start to exert a regulatory feedback on the T-cells. In the
second stage, the B-cells compete for T-cell help and their reper-
toire shrinks to B-cells of an idiotype, which directly recognize
a T-cell receptor. After this, a single new antigen would elicit a
response only of clones, which are not mounted to the network.
However it turned out, that the peripheral system is too tolerant to
a later antigen. This motivated (50) to further modify this model
making the idiotypic connectivity an explicit function of time, and

introducing a log-bell-shaped activation function also for the T-
cells. Stewart and Coutinho (51) reviewed the state of modeling
and the development of the paradigm,and critically mentioned the
lack of experimental evidence supporting the physiological signifi-
cance of idiotypic interactions between B-cell and T-cell receptors.

For more detailed reviews on the history of the paradigm,math-
ematical modeling, and new immunological and clinical develop-
ments the reader is referred to Ref. (52, 53). For very interesting
personal accounts on the development of the network paradigm
and the concept of immunological self, see Ref. (8, 54–57).

In the present paper, we consider a model of the idiotypic B-
cell network proposed in Ref. (58) which describes the evolution
toward complex, functional architectures. The model uses a dis-
crete shape space spanned by bitstrings which represent idiotypes.
The discrete dynamics describes presence or absence of idiotypic
clones,which survive if their stimulus is within an allowed window.
In a sense, the model combines the simplest features of the models
previously proposed by De Boer and Perelson (45) and Stewart and
Varela (46) and therefore can be considered as a minimal model.

The most interesting architecture emerging in this model com-
prises (i) densely linked core groups, (ii) peripheral groups without
intra-group linking, (iii) groups of suppressed clones, and (iv)
groups of singletons which potentially interact only with the sup-
pressed clones. The expressed clones of the core and periphery
groups build the actual network, the central part. The expressed
clones of the singleton groups are not mounted to the network and
can be considered as the peripheral or clonal component. This is
clearly very close to the architecture envisaged in the concept of
second generation idiotypic networks (6–8) and similar to the ide-
alized ad hoc architecture of (40) but in our model these properties
evolve from simple principles.

In the steady state, the size of these groups and their linking does
not change with time. The groups are built from clones of differ-
ent idiotypes, which have an individual dynamics but share certain
statistical properties. The building principles of these architectures
can be described analytically (59, 60), and the statistical properties
can be calculated within a mean-field theory in good agreement
with simulations (61).

Whereas the preceding work by Brede and Behn (58),
Schmidtchen and Behn (59), Schmidtchen et al. (60), and
Schmidtchen and Behn (61) considered the autonomous idiotypic
network, i.e., the network of B-lymphocytes and their antibodies
without foreign or self antigen, we investigate here the evolu-
tion of the idiotypic network, in the presence of self, toward an
architecture where the expansion of autoreactive clones is con-
trolled by idiotypic interactions. Self is modeled by permanently
present idiotypes which influence the evolution of the network but
are themselves not affected by idiotypic interactions. Our model
avoids the above reviewed drawbacks of previous attempts, and
the results clearly support the view that the idiotypic network is
instrumental in the control of autoreactive clones.

The paper is organized as follows. In Section 2, we describe
essential features of the model, its update rules, the general build-
ing principles which allow to understand the structural properties
of the expressed networks architecture, and a tool which allows
a real time identification of patterns in simulations. In Section 3,
we sketch the derivation of the mean-field theory which allows
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to compute statistical properties if the structural properties of the
pattern are known. In Section 4, we describe how the model should
be modified in the presence of self. We report on simulations where
the network in the presence of self evolves to an architecture such
that the self is linked only to groups with very low population.
Results of a modified mean-field theory are in good agreement
with simulations. Finally, we give some conclusions and discuss
problems for further research. There is a glossary where major key
terms are briefly explained in a logical order.

2. THE MODEL
In this paper, we consider a minimal model of the idiotypic net-
work (58), which is a coarse simplification of the real biological
system but retains most important features and reveals a surpris-
ing complexity. The model has only few parameters and allows an
analytical understanding of many of its properties.

2.1. POTENTIAL REPERTOIRE AND IDIOTYPIC INTERACTIONS
We model the repertoire of all possible idiotypes and their interac-
tions by an undirected network, where each node v of the network
represents a distinct clone of B-lymphocytes of a given idiotype
together with its antibodies. The idiotype is encoded by a bitstring
of length d with entries 0 or 1. The number of different bitstrings
2d is the size of the potential repertoire. Note that the bitstrings
are not thought to represent the genetic code or the sequence of
amino acids but are meant as a caricature of the phenotype allow-
ing an easy notion of complementarity. Interpreting the entries of
the bitstrings as coordinates in a d-dimensional space each node
can be conceived as a corner of a d-dimensional unit hypercube.

B-lymphocytes receive a stimulus to proliferate if their recep-
tors are cross-linked by complementary structures, which can be
situated on antigen but also on antibodies of complementary idio-
type. We represent possible idiotypic interactions by links between
nodes of nearly complementary idiotype. Assuming only per-
fect complementary receptor structures seems unrealistic and it
appears reasonable to allow small variations. Therefore, two nodes
v and u of our model are linked if their bitstrings are complemen-
tary allowing for up to m mismatches. We denote the undirected
graph with 2d nodes labeled by bitstrings of length d and links
between complementary nodes with up to m mismatches as base

graph G(m)

d . Each node of the graph is linked to κ =
∑m

k=0

(
d
k

)
nodes, which we will call the neighborhood of a node in the fol-
lowing. For example, consider in d = 12 the bitstring 1 1 1 1 1 1 1
1 1 1 1 1, which is perfect complementary to the bitstring 0 0 0 0 0
0 0 0 0 0 0 0. Replacing anyone of the zero’s in the latter by 1, we
obtain the 12 bitstrings which are complementary to the former
except for one mismatch.

We only account whether an idiotypic clone is present or not
and the corresponding node v is either occupied n(v)= 1 or empty
n(v)= 0. The subgraph of occupied nodes, the expressed reper-
toire, with its links represents the expressed idiotypic network at
a certain time. In the following subsection, we describe how the
expressed idiotypic repertoire is generated.

2.2. METADYNAMICS AND LOCAL DYNAMICS
There is a continuous influx of new B-lymphocytes from the bone
marrow. There, by somatic random reshuffling of the VDJ genes,

which are responsible for the binding sites of the variable regions of
an antibody, different idiotypes of an enormous diversity are gen-
erated. The potential repertoire is estimated to exceed the order of
1010 (62). We model this metadynamics by occupying, in each step
of an iteration procedure, empty nodes of the expressed network
with probability p.

The stimulation of a B lymphocyte to proliferate is a non-
monotonous, log-bell-shaped, function of the concentration of
complementary structures (63). The number of cross-linked
receptors increases with the concentration of complementary
structures. However, if their concentration is too high, cross-
linking becomes less likely due to a steric hindrance and the
stimulation decreases. An unstimulated B-lymphocyte dies. In our
model an occupied node, i.e., a clone of a certain idiotype only
survives if the number of its occupied neighbors is in an allowed
window between two thresholds, tL and tU. The survival of a clone
depends in a deterministic way on its local neighborhood in the
shape space.

The dynamics is described in discrete time, the time step should
be chosen such that an unstimulated cell will die within this time
span and a stimulated cell can proliferate. The temporal evolution
of the network is induced by the following update rules:

(i) Influx: occupy empty nodes with probability p.
(ii) Window rule: count the number of occupied neighbors n(∂v)

of node v. If n(∂v) is outside the window [tL,tU], set the node
v empty. This step is performed in parallel.

(iii) Iterate.

All three steps, the random global metadynamics, the determin-
istic local selection, and the iteration are of equal importance to
describe an evolution of the network toward a complex architec-
ture. Technically, our model can be categorized as a probabilistic
cellular automaton, and also as a Boolean network, see Ref. (60)
for a more detailed discussion.

Figure 1 illustrates the construction of the base graph and
the application of the update rules for the case d = 3, m= 1,
[tL, tU]= [1,3].

Here, we report mainly on results for the following parameter
setting, which is best investigated. The length of the bitstring is
d = 12, then the network has 212

= 4096 nodes. We allow m= 2
mismatches, which make the linking neither too sparse nor too
dense, each node has κ= 79 neighbors. The lower threshold tL

of the window rule has its minimal non-trivial value tL= 1: for
survival of a clone the stimulation by at least one anti-idiotypic
clone is required. The upper threshold of the window rule is cho-
sen as tU= 10 that excludes very regular static patterns, which
are in our context not interesting, for more details, see Ref. (60).
Given these values, the influx probability p remains as main con-
trol parameter. In previous work (60, 61), we have studied a range
for p from 0 to 0.1 and found that the architecture, which is of
interest here evolves for p from 0.026 to 0.078. The results pre-
sented here explicitly are for p close to 0.078, where it is easier to
initiate a reorganization of the pattern, but we have also studied a
broader range of p. Simulations for longer bitstrings up to d = 22
have shown that many features are also found in larger networks
and the major concepts of structural analysis are still applicable
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FIGURE 1 | Potential and expressed idiotypic repertoire. The figure
shows all nodes whose idiotypes are encoded by bitstrings of length d = 3.
The nodes can be thought as the corners of a 3-dimensional cube. Also
shown are the links of node 010 (filled circle) to the node with perfect
complementary idiotype 101 (red line), and to the nodes with idiotypes 100,
001, and 111, which are complementary allowing for one mismatch (blue
lines). The dotted lines are only to visualize the edges of the cube. The base
graph G(m)

d for d =3 and m=1 consists of these 2d
= 8 nodes and all links

connecting complementary nodes allowing for up to one mismatch. It
represents the potential idiotypic repertoire and the possible idiotypic
interactions. The influx of B cells from the bone marrow is modeled
occupying empty nodes with probability p. Assume that node 010 is
occupied. If the neighboring nodes representing clones of complementary
idiotypes are empty, it receives no stimulation and will die. It will also die if
there are too many, say all 4, nodes of complementary idiotype occupied.
So the node 010 survives the update only if the number of occupied
neighbor nodes is within a window [tL,tU]= [1,3]. These steps, random influx
and parallel application of the window rule for all nodes, are repeated and
lead for larger dimensions d and appropriate parameters to a steady state
with a complex architecture of the expressed idiotypic network, see text.

(64). The program code is implemented in C++. For small base
graphs (d ≈ 12) optimization is not necessary. Larger base graphs
(d ≈ 20) require optimization and parallel computing.

2.3. BUILDING PRINCIPLES OF THE NETWORK ARCHITECTURE
Extensive simulations have shown that the network evolves,
depending on the parameter choice, toward quasistationary states
of possibly complex architecture (58). This architecture is charac-
terized by groups of nodes that share statistical properties such as
the mean occupation 〈n(v)〉 and the mean occupation of neigh-
bors 〈n(∂v)〉. The mean occupation of the nodes, the groups,
and of the whole base graph, i.e., the size of the expressed idio-
typic repertoire, all are stationary – which implies homeostasis.
Although, the mean occupation of a single node is stationary, its
actual occupation switches in time between 0 and 1. These switches
are induced by both the random influx from the bone marrow and
the deterministic window rule. A statistical characteristics of this
behavior is the mean life time, which is also stationary and the
same for all nodes of a group.

There are general building principles of the network’s archi-
tecture which have been found by observing regularities in the
bitstrings of nodes, which belong to the same group (59, 60). These
principles make it possible to calculate the number of groups, their
size, and the linkage between groups. Here, we only introduce the
key terms and describe the essential results which are used in the

following. For a deeper understanding of the derivation the reader
should consult the original papers.

For a given architecture, the nodes can be classified accord-
ing to their entries in the so-called determinant positions of the
bitstrings. Different architectures have a different number dM≤ d
of determinant positions. The group S1 is defined as the set of
all nodes with the same entries in all determinant positions, the
entries in the non-determinant positions run through all 2d−dM

possible combinations. Nodes in group S2 differ in one determi-
nant position compared to nodes in S1, nodes in group S3 in two
determinant positions, and so on. Consequently we have dM+ 1
groups of size

|Sg | = 2d−dM

(
dM

g − 1

)
(1)

for g = 1, . . . , dM+ 1 and we can immediately observe that groups
Sg and SdM+2−g have the same size.

The whole architecture can be build from smaller units, so-
called pattern modules. These modules are the corners of a dM-
dimensional hypercube labeled by the determinant bits, together
with the allowed links. Since the number of non-determinant bits
is d − dM, the whole architecture is obtained by arranging 2d−dM

identical pattern modules and adding the allowed links between
the nodes of these modules.

Next, we discuss the linkage of our idiotypic network in a

pattern with dM determinant bits on a base graph G(m)

d . Each
node in group Si has a fixed number Lij of links to nodes in
group Sj. The Lij are the elements of the link matrix L. Since
the update rule counts the number of occupied neighbors and
all nodes of a group have the same mean occupation these data
are of obvious interest to formulate a mean-field theory. A careful
analysis of the bitstrings which encode the nodes of groups Si and
Sj allows to derive an explicit expression (59, 60) which can be
written as

Lij =

m∑
k=0

k∑
r=0

(
i − 1

r

)(
dM − i + 1
j − 1− r

)

×

(
d − dM

k + j − 1− 2r − (dM − i + 1)

)
. (2)

Given a pattern with dM determinant bits there are dM+ 1
groups, therefore in equation (2) both i and j run from 1 to dM+ 1.
As every node has κ neighbors, the row sum of L yields κ. Since
Lij = LdM+2−i,dM+2−j the link matrix is centrosymmetric, i.e.,
it fulfills the identity LJ = JL where the exchange matrix J has
entries 1 on the counterdiagonal and 0 elsewhere. L describes a
directed graph.

2.4. REAL TIME PATTERN IDENTIFICATION
In simulations, huge amounts of data are produced describing the
occupation of each of the 2d nodes of the network in every single
time step. An enormous, namely logarithmic reduction of infor-
mation can be reached by introducing a center of mass vector R
in dimension d which allows a real time identification of patterns
and detection of pattern changes (60). Instead of monitoring 2d
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Schulz et al. Self-tolerance and idiotypic network

data per time step it is enough to observe the d components of R.
The center of mass vector is defined as

R =
1

n(G)

∑
v

n(v)r(v), (3)

where the position vector r(v) of a node v, which is encoded
by the bitstring bd bd−1 · · · b1 with bi ∈ {0, 1} has components
ri(v)= 2bi− 1. n(G) is the total occupation of the basegraph G.
By definition, for a symmetrically occupied base graph, we have
R= 0, a symmetry breaking pattern is easy to identify.

In Figure 2, we see the time series of the components of R for
the evolution toward a stationary 12-group pattern. The trajectory
of R2 fluctuates around zero. Since, the entries of non-determinant
bits take for every group all possible values, and supposing that all
nodes of a group are occupied with the same probability, the cor-
responding bit position can be identified as non-determinant. The
trajectories of the five components R7, R9, R10, R11, R12 fluctuate
around 0.4 and those of the 6 components R1, R3, R4, R5, R6,

R8 around −0.4, The corresponding 11 bit positions are determi-
nant. The dimension of the pattern module is dM= 11, thus we
have a 12-group architecture. Furthermore, we can readily identify
the determinant bits of the group S1. As explained below, S1 is a
peripheral group with high occupation. The observation that five
components of R fluctuate around a positive value indicates that
the five determinant bits at the corresponding positions should
have entry 1, and the other six should have entry 0. Thus, the
nodes of group S1 have a bitstring 1 1 1 1 0 1 0 0 0 0 · 0, where
the · represents the only non-determinant bit. The determinant
bits of S12 are complementary, and also nodes of the other groups
are easily identified knowing their bitstrings. The reader who is
interested in further technical details should consult (60).

The procedure is fast, robust against defects of patterns, and
allows to identify pattern changes. Needless to say, the method
hinges by construction on the encoding of the idiotype by bit-
strings, which is only a gross caricature of the phenotype. Here,
we use this tool to characterize the behavior of the network if sev-
eral nodes become permanently occupied to mimic the presence
of self.

3. MEAN-FIELD THEORY
Once established, an architecture, characterized by the number of
groups, their size, and their linking remains stationary for long
periods of time and over some range of the main control para-
meter p. As shortly sketched above, for most architectures found
in simulations their characteristics can be computed knowing the
number of determinant bits dM, which can be inferred from the
time series of the center of mass coordinates.

The statistical properties of the nodes, which belong to the
same group, such as the mean occupation and the mean life time,
depend however on the actual value of p. They can be calculated
(61) adopting the concept of mean-field theories, which was devel-
oped in statistical physics to describe phase transitions and has
been transferred to many other problems in different fields. The
main argument goes as follows.

The window rule (ii) for update of the occupation of a node
counts only the total of the occupied neighbors. All nodes of a

FIGURE 2 | Real time pattern identification. Time series of the
components of the center of mass vector R given by equation (3), here on
the base graph G(2)

12 for a window [tL,tU]= [1,10] and influx probability
p=0.074. Every color corresponds to one component of the center of
mass vector. We start from an empty base graph, which is gradually
occupied. A stationary state has evolved after about 200 time steps. The
trajectory of R2 (green) fluctuates around zero. The corresponding bit
position is non-determinant, see text. The trajectories of the five
components R7, R9, R10, R11, R12 fluctuate around 0.4 and those of the 6
components R1, R3, R4, R5, R6, R8 around −0.4, The corresponding bit
positions are determinant. Together there are 11 determinant bits, hence
the dimension of the pattern module is dM =11, and we can infer that the
system has evolved toward a stationary 12-group architecture.

group have the same number of neighbors in the other groups
given by the elements of the link matrix. The occupation of these
neighbors typically fluctuates in time, and if they are many, it
appears natural to replace the actual occupation of the neigh-
bors by the average occupation. This works the better, the more
neighbors are involved. In this view, a node feels only the differ-
ent mean-fields, the modular mean-fields, exerted by the occupied
neighboring nodes belonging to the different groups.

We now shortly describe the derivation in a more formal way to
make the modifications understandable which are necessary when
modeling the presence of self. Consider an architecture, which
can be described by pattern modules of dimension dM. Then, we
have dM+ 1 groups of nodes Sg which share the mean occupation
〈n(vg )〉 = ng where vg ∈ Sg, their linking is described by the link

matrix L. The set of mean occupations n = (n1, · · · , ndM+1)
T

defines the state of the network in the reduced mean-field descrip-
tion at a certain time. Application of the update rules to n leads to
a new state n′ given by

n′ = f(n), (4)

where the non-linear function f depends on the update rules and
on the pattern we want to describe. We know that a node vg of
group Sg has Lg1 neighbors in Sl. If the mean occupation in Sl

is nl, the new mean occupation after the influx with probability
p is ñl = nl + p(1 − nl). The probability that kl nodes of the
neighborhood in Sl are occupied after the influx is(

Lgl

kl

)
ñ kl

l (1− ñl)
Lgl−kl . (5)
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Schulz et al. Self-tolerance and idiotypic network

Supposing that the groups are independent, the probability that
for a micro-configuration with fixed kl, l = 1, . . . , dM+ 1, a total of∑dM+1

l=1 kl neighbors is occupied is simply the product of factors
(5) for each group. Summing over all micro-configurations and
taking into account the window rule leads to Lgl∑

kl=0

dM+1

l=1

(tL ≤

dM+1∑
l=1

kl ≤ tU )

dM+1∏
l=1

(
Lgl

kl

)
ñkl

l (1− ñl)
Lgl−kl ,

(6)

where the indicator function (·) gives one, when the window
rule in the parameters is fulfilled, otherwise zero. The last result
should be multiplied with the mean occupation of a node of the
considered group after the influx ñg = ng +p(1−ng ) which gives

n′g = ñg

 Lgl∑
kl=0

dM+1

l=1

(tL ≤

dM+1∑
l=1

kl ≤ tU )

×

dM+1∏
l=1

(
Lgl

kl

)
ñkl

l (1− ñl)
Lgl−kl . (7)

Iterating equation (7), for g = 1, . . . , dM+ 1, the n′ converge
to a fixed point n*. Since f (n) is a non-linear function, several
fixed points may exist. As a thumb rule, initial values close to the
stationary average values seen in simulations are in the basin of
attraction of fixed points of equation (7), which reproduce the
simulation results. There may exist other fixed points, which were
not found in simulations, for details see Ref. (61).

4. IDIOTYPIC NETWORK AND SELF
The 12-group architecture is of particular interest, as it strongly
resembles the central and peripheral parts of the second gener-
ation idiotypic network. A scheme of these architecture is given
in Figure 3. The 12-group architecture evolves on the base graph

G(2)
12 for [tL,tU]= [1,10] and a range of p from 0.026 to 0.078.

The groups comprise two self coupled core groups, two peripheral
groups, which couple only to the core and five groups of stable
holes. Stable holes are typically unoccupied since their occupied
neighbors exceed tU. Finally, there are three groups of singletons
which are neighbored only by stable holes. Nodes of the singleton
groups have an average occupation of 0.2–0.8, nodes of the periph-
ery groups have 0.4–0.8 depending on p. The average occupation
of the densely linked core groups is kept below 0.07, and the holes
are almost empty, for details see Figure 8 in Ref. (61). Note that
the singletons have no links to the connected part of the occupied
network, which is built of the core and periphery groups. In terms
of the second generation idiotypic networks, core, and periphery
groups form the central part. The singletons, disconnected from
the central part, form the clonal component (the peripheral part)
of the second generation network.

The simplest possible way we can imagine to mimic the pres-
ence of self is to permanently occupy one or several nodes of
the base graph and investigate their influence on the network
architecture. The self nodes contribute to the number of occu-
pied neighbors counted in the window rule but are themselves

FIGURE 3 | 12-group architecture. (A) The entries Lij of the link matrix,
given by equation (2), show the number of neighbors a node vi of group Si

has in group Sj. For example, the first row of the matrix tells that every
node of the singleton group S1 (denoted by v 1) is linked only to nodes of
the hole groups S10, S11, and S12, namely to 55, 22, and 2 nodes,
respectively. Only nodes of S6 and S7 (red box) have links to other nodes of
the own group. (B) The architecture generated by this link matrix together
with a phenomenological classification into singletons (green), periphery
(blue), core (red), and stable holes (black). The lines symbolize the existence
of links between nodes of the connected groups, i.e., possible idiotypic
interactions between the corresponding clones. The number of links which
a node in Si has to nodes in Sj is given by the element Lij of the link matrix
shown in (A). The weakly occupied core groups have links within the own
groups (open circles). The periphery groups are highly occupied and couple
to the core and to the group of stable holes. The group of singletons is
highly occupied and couples only to the stable holes. This architecture
evolves on the base graph G(2)

12 for a window [tL,tU]= [1,10] and a range of
the influx probability p from 0.026 to 0.078. See also Glossary.

not affected by idiotypic interactions. The window rule does not
apply to self nodes. We performed two types of computer experi-
ments, inserting permanently occupied nodes in a fully developed
12-group architecture and monitoring the induced changes, or in
an empty base graph and observing from scratch the evolution of
the networks architecture.

Naturally, the influence of the permanently occupied nodes
increases with their number. Their impact also depends on the
influx rate p since the 12-group architecture becomes unstable for
p ' 0.08. Inserting self nodes in the established architecture, close
to this threshold the strongest impact is to be expected.

4.1. SIMULATIONS
We performed extensive simulations for different protocols. Here,
we describe only few most instructive cases.

We permanently occupy one node of the hole group S10 of an
established 12-group pattern for p= 0.076, i.e., close but below the
upper threshold of stability of the pattern. The hole groups have
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Schulz et al. Self-tolerance and idiotypic network

many occupied neighbors and a self node staying there would be
subject of a heavy autoimmune response. After few iterations, the
former stable pattern destabilizes under the presence of the self and
collapses. Thereafter, a new 12-group architecture evolves where
the self node is now located in a group with only weakly occu-
pied neighbors, which could be one of the singleton or periphery
groups. Figure 4A shows the time series of the center of mass
components for an example where the permanent occupied node
(the self) is after a reorganization of the architecture finally in the
periphery group S5.

If we permanently occupy more than one node the scenario
is similar. Figure 4B shows an example where we have perma-
nently occupied 10 nodes of the hole group S10 of an established
12-group pattern for p= 0.076. The reorganization of the archi-
tecture is faster and in the new steady state the self nodes are found
in singleton and periphery groups.

We also performed simulations where for a stationary 12-group
pattern all members of the hole group S10 are permanently occu-
pied. After reorganization of the architecture, in the steady state
all self nodes belong to singletons and periphery groups and are
never seen in a core or a hole group. If we start from an established
12-group pattern and permanently occupy one of the singletons
or periphery groups this state will be stable for very long periods
of time.

Starting from an empty base graph with several permanently
occupied nodes, one observes that the architecture evolves from
the very beginning such that the self nodes have only weakly

FIGURE 4 | Reorganization of the 12-group architecture with self. The
figures displays the time series of the components of the center of mass
vector obtained from simulations for an influx probability p=0.076 when at
t = 0 one node (A) or 10 nodes (B) of the hole group S10 are permanently
occupied. Each of the 12 components is drawn with a different color. They
are plotted one after another, only the last printed color is visible. The
trajectories mainly fluctuate around ±0.4 and zero. Jumps between these
values indicate changes of the determinant bits associated with a
reorganization of the architecture. For one self node (A) we see five jumps
and for t '2×104 a stationary state is reached. For 10 self nodes (B), after
a few jumps, the stationary state is already reached for t '104, obviously
the impact of 10 self nodes is stronger than the impact of one. A closer look
at the data (not discussed here) shows that the new stationary pattern has
indeed a 12-group architecture where the self node in case (A) belongs to
periphery group S5 and in case (B) four self nodes belong to the singleton
group S3 and the remaining six self nodes belong to the periphery group S5.

occupied neighbors and thus are tolerated. This evolution from
scratch toward a tolerant architecture occurs for a much broader
range of p than the reorganization of an established architecture.

4.2. MEAN-FIELD THEORY WITH SELF
It is possible to modify the mean-field theory to describe a sta-
tionary architecture in the presence of self. We thus can describe
situations where in an established pattern nodes are permanently
occupied and the impact is so small that no reorganization sets in.
If the impact is strong enough that a reorganization occurs and a
new steady state emerges, we also can describe statistical properties
of this steady state, such as the mean occupation of nodes and its
neighbors, provided that we know its architecture.

We first consider one permanently occupied node of group Ss.
It is linked to nodes of group Sg if Lsg > 0. The group Sg contains
Lsg nodes that see the self. For these nodes we should modify the
mean-field mapping, equation (7). The node of Ss which is per-
manently occupied should be exempted from the combinatorics
of possible and allowed micro-configurations. Thus, we need to

replace Lgs by Lgs− 1. Observe that

(
Lgs − 1

ks

)
in the modified

equation (7) is zero if Lgs− 1 is smaller than zero or ks. To account
for the permanently occupied self node, we should decrease both
thresholds of the window condition by 1. For the |Sg |−Lsg nodes of
Sg which do not see the self node, the mapping is not modified. For
example, for an influx with p= 0.07 and one permanently occu-
pied node in a hole group or in a core group, 〈n(∂v)〉 increases
by about 1 and 〈n(v)〉 decreases by about 20% if v is linked to
the self node. The mean-field theory agrees with the simulation
within 3–5%.

The case that all nodes of a group Ss are permanently occupied
is even simpler because all nodes in group Sg see the same number
Lsg of self nodes. We only have to modify the window condition
decreasing both thresholds by Lsg. Note that if tU− Lsg < 0 the
modified window condition cannot be fulfilled and the indicator
function (·) in the modified equation (7) returns 0. Table 1 gives
a detailed comparison of simulation and mean-field theory for the
case that all 110 nodes of the singleton group S10, cf. equation (1)
for d = 12, dM= 11, are occupied for p= 0.074.

For Ns self nodes with 1 < Ns < |Ss| the modification is also
possible but more intricate and will not be reported here.

Encouraged by the good quantitative agreement between the
steady states obtained in simulations and mean-field theory, we
also looked at the time series of n generated by the mean-field map-
ping for a dM= 11 pattern at p= 0.074 to see the effect induced by
permanently occupying a group of nodes. We start with the fixed
point n*, which describes a 12-group pattern where the groups
are ordered as in Figure 5A. In the steady state, at an arbitrary
iteration step, we permanently occupy the hole group S10. The
time series, cf. Figure 6, shows that this state immediately desta-
bilizes and that a reorganization sets in. The pattern converges
to a new state where the self belongs to the new singleton group
S10. These singletons have only neighbors in the new unoccupied
hole groups, see Figure 5B. The network controls the expansion
of the autoreactive idiotypes in the hole groups – thus providing
self-tolerance. Analogous results (not shown here) are obtained
if we permanently occupy the hole group S9, after reorganization
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Schulz et al. Self-tolerance and idiotypic network

Table 1 | 12-Group architecture with self after reorganization.

Group 〈n(v )〉 〈n(∂v )〉

Simulation MFT Simulation MFT

S1 0.0 0.0 71.75 (54.01) 71.40 (53.99)

S2 0.0 0.0 60.34 (53.86) 60.29 (53.96)

S3 0.0 0.0 59.62 (53.50) 59.85 (53.52)

S4 0.0 0.0 36.70 (34.86) 36.62 (34.72)

S5 0.0 0.0 31.5 (29.62) 31.63 (29.73)

S6 0.002 (0.001) 0.0 13.52 (13.53) 13.63 (13.63)

S7 0.01 0.003 10.12 (10.09) 10.10

S8 0.677 (0.661) 0.6708 0.15 (0.14) 0.07

S9 0.706 (0.681) 0.6827 0.025 (0.018) 0.01

S10 1.0 (0.685) 1.0 (0.685) 0.02 (0.0) 0.0

S11 0.685 (0.684) 0.6835 (0.685) 0.001 (0.0) 0.0

S12 0.685 (0.682) 0.6835 (0.685) 0.001 (0.0) 0.0

The 110 nodes of the singleton group S10 are permanently occupied to mimic the

presence of self antigen, see Figure 5B. The table shows the mean occupation

〈n(v)〉 and the mean occupation of neighbors 〈n(∂v)〉 for all groups as obtained

for p=0.074 from simulations and from mean-field theory (MFT) with a dM = 11

module. When deviating, the data for the case without self are given in parenthe-

ses. The groups S1, . . . , S5 have direct neighbors in S10, where S1 has the most

ones. Therefore, the change in 〈n(∂v)〉 due to self is largest for S1. Results from

simulation and mean-field theory are in good agreement.The simulation data are

obtained as follows.We first computed the temporal average of each node’s occu-

pation from 30,000 time steps.Then the mean of these data over all nodes of the

same group is calculated. The variance of the mean over the group members is

of the order 10−3.

group S9 is a periphery group coupling only to the holes and to
the weakly occupied core.

We note in this context that due to the centrosymmetry of
the link matrix of the autonomous network without self, given a
fixed point n∗ = (n∗1 , n∗2 , . . . , n∗dM+1)

T, there exists always a mir-

rored fixed point n∗mirror = (n∗dM+1, . . . , n∗2 , n∗1 )T. Obviously this
symmetry is broken if self is present.

5. CONCLUSION AND OUTLOOK
We have extended a minimal model of the idiotypic network (58,
60, 61) to study the evolution of the network in the presence of
self. Self is represented by permanently occupied nodes of certain
idiotypes. These self nodes can stimulate autoreactive clones and
thus influence the evolution of the network but are themselves not
affected by the idiotypic interactions. We report on simulation
results for the case that the self nodes are permanently occu-
pied already at the initial state. Then, the network evolves toward
an architecture where the permanently occupied self nodes are
incorporated into groups of nodes which have, in a sense, a sim-
ilar idiotype. These groups can idiotypically interact only with
other groups that are either completely suppressed by the network
(stable holes) or only weakly occupied. The network controls the
expansion of self-reactive clones thus providing self-tolerance.

We also studied the response of a network with an already
established architecture to a sudden appearance of self antigen.
Nodes of the hole groups were permanently occupied, which is

FIGURE 5 | 12-group architecture with self. (A) We permanently occupy
one of the hole groups, group 10 (cyan), thus mimicking the permanent
presence of self. This state is not favorable since the self couples to
singletons and periphery, which have a high occupation. (B) Letting the thus
prepared system evolve, it soon reaches a new steady state, still a 12-group
architecture, but organized such that the self now belongs to the singletons
and thus couples only to the almost empty stable holes. The
self-recognizing idiotypes are controlled by the network, thus providing
self-tolerance.

most unfavorable since these groups are linked to highly occupied
clones. Provided that the influx from the bone marrow is suffi-
ciently high the network reorganizes its architecture such that in
the end the self nodes belong to groups, which have only empty
ore weakly occupied neighbors, as in the previous case.

For the simplest cases that only one node or all nodes of a
group are permanently occupied, we have modified the mean-field
theory and found good agreement of analytical and simulation
results.

As discussed in the introduction to some extent, there are pre-
ceding attempts in the literature, which aim in the same direction
but were not really satisfying. Our results strongly support the
view that idiotypic interactions can be instrumental in the control
of autoreactive clones.

The network in the presence of self has been previously studied
by one of us in simulations for one self node on the base graph

G(3)
12 with weighted links. The weights were given according to the

number of mismatches of the linked nodes and the window con-
dition was modified accordingly. The patterns are slightly easier to
destabilize which explains why the phenomenon of self-tolerance
was first observed in that version of the model (65).

Further studies should systematically explore the system’s
behavior for other protocols, e.g., for arbitrary numbers of self
nodes possibly distributed over the whole base graph, desir-
ably in both simulations and an accordingly extended mean-field
approach.

It is of obvious interest to investigate in the frame of the
model possible reasons for failure of self-tolerance. Transitions
from a healthy self-tolerant state to an autoimmune state by a
perturbation, possibly an ordinary infection, of the clones that
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Schulz et al. Self-tolerance and idiotypic network

FIGURE 6 | Mean-field theory of a 12-group architecture with self. The
figure shows the time series of the mean occupation per node of the 12
groups as obtained from iterating equation (7) for an influx probability
p=0.074. We start with the autonomous system in the steady state where
singletons (green) and periphery (blue) have a mean occupation per node
〈n〉≈0.68, whereas core (red) and stable holes (black) have 〈n〉≈0. The
color code is the same as in Figure 5A. At some arbitrary iteration step
(here 500), we permanently occupy the 110 nodes of the hole group S10

(dashed cyan line). The fixed point of equation (7) looses its stability and a
new mirrored architecture emerges where the permanently occupied
nodes, the self, now belong to the singletons, which have neighbors only in
the empty hole groups, cf. Figure 5B. The occupation of the previous
singleton (green line) and periphery (blue line) groups drops down to almost
zero, whereas the previous hole groups (black lines) become occupied as
typical for singletons and periphery. (The light blue line of the periphery
group S4 is not visible here since it is covered by the green line up to
iteration step 500, and thereafter by the blue line.) After an temporary
increase the core groups (red lines) return to its previous occupation. For a
detailed comparison of steady state results of mean-field theory and
simulation seeTable 1.

control the autoreactive idiotypes should be considered, together
with the reverse phenomenon of ’spontaneous’ remission from
an autoimmune to a healthy state. Therapeutic strategies adopt-
ing the network paradigm (66), which consist in stimulating the
protective clones that control the autoreactive clones, instead of
applying immunosuppressive drugs, could be modeled.

To study age induced effects, it would be very interesting to
consider an influx rate p from the bone marrow, which decreases
over the lifespan of an individual. The architecture which controls
autoreactive clones is found for a certain range of p. However, if
we suddenly stop the influx at all, the group of singletons, which is
only sustained by the influx would be depopulated, and the other,
connected part of the network would, in a sense, freeze. Since
the singletons play an important part in controlling the autore-
active clones this should have consequences for maintaining self-
tolerance. A small influx outside the range mentioned above would
lead to less complex architectures which may be not functional.

The renewal rate of the expressed idiotypic repertoire is cer-
tainly relevant in the physiological context. Therefore, it would be
interesting to determine this characteristics in the frame of our
model. It is of course related to the influx from the bone mar-
row but also depending on the population dynamics of the B-cell

clones. It would be collective characteristics of a group and is more
difficult to determine than the mean life of a single clone.

Motivation to develop our mathematical model further comes
also from experimental and clinical medicine and from the
progress of microarray technologies.

Hampe (10) reviewed the role of anti-idiotypic antibodies in
autoimmunity, including Type 1 Diabetes. There is experimen-
tal evidence of anti-Id mediated neutralization of autoantibodies,
e.g., in Myasthenia gravis, or suppression of autoantibody secre-
tion, e.g., in Idiopathic thrombocytopenic purpura. For a number
of autoimmune diseases including systemic lupus erythematosus
and autoimmune thyroid diseases it has been shown that anti-Id
specific to autoantibodies are present in patients during remission
and/or in healthy individuals,whereas it is absent during periods of
active disease. The formation of anti-Id-autoantibody complexes
makes it difficult to detect the single constituents by conventional
assays, but several methods have been developed to overcome this
problem.

Monoclonal antibodies become rapidly important in clinical
therapies of autoimmune and inflammatory diseases, see e.g., Ref.
(67). This gives a strong motivation to improve our understanding
of systemic consequences of immunomanipulation.

The rapid technological progress makes large scale studies of the
expressed idiotypic repertoire feasible. The use of antigen microar-
rays to profile the autoantibody repertoire in health and disease
is reviewed in Ref. (68), for an application of network theory to
detect antibody trees associated with antigen see (69). Immunosig-
naturing, reviewed in Ref. (70) uses random-sequence peptide
microarrays. Microarrays using antibodies or proteins are how-
ever still expensive and complicated (70). In addition, inferring
the network architecture from a sample, which is only a snap-
shot of a subset of the expressed idiotypic repertoire is a very
demanding task.

Our model, which provides an analytical understanding of the
network architecture, could be helpful to formulate conditions for
a new generation of experiments with the aim to infer the networks
architecture and to elucidate its role in healthy conditions and dis-
ease. From the viewpoint of statistical physics or systems biology,
the question appears natural and most interesting whether there
is a general principle which guides the evolution of the idiotypic
network.

6. GLOSSARY
• Nodes: A node of the network represents a clone of B-

lymphocytes of a certain idiotype together with its antibodies.
At a given time a node can be either occupied or empty, the
corresponding clone is present or absent, respectively.
• Bitstrings: An idiotype is encoded by a bitstring of length d

with entries 0 or 1. There is a total of 2d different bitstrings,
which is the size of the potential idiotypic repertoire.
• Links: A link of the network connects two nodes with comple-

mentary idiotype, i.e., with complementary bitstrings. We do
not require perfect complementarity but allow for up to m mis-
matches. The links represent the possible idiotypic interactions
between the clones of the potential idiotypic repertoire.
• Base graph: The base graph consists of all nodes and their links

for a given choice of d and m. It represents the potential idiotypic
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repertoire and the possible idiotypic interactions, which take
place if the linked nodes are occupied.
• Influx: The influx of new B-lymphocytes with random idio-

type from the bone marrow is modeled by occupying empty
nodes with a certain probability p in each iteration of an update
procedure.
• Window rule: The window rule decides whether an occupied

node will survive the update or not. It will only remain occu-
pied if the number of its occupied neighbors is neither too small
nor too high but lies within an allowed window with lower and
upper thresholds, tL and tU. The window rule is applied in par-
allel for all nodes of the network in each iteration of an update.
• Evolution: Iterating the steps of random innovation (influx)

and deterministic selection (window rule) induces an evolution
which leads, after a transient period, toward a quasistation-
ary state of the network which may have, depending on the
parameter setting, a very complex architecture.
• Architecture: In the steady state, groups of nodes can be identi-

fied which share statistical properties such as mean occupation
and mean occupation of neighbors. The number of groups,
their size, and their linking remain constant and characterize
the architecture. The most interesting architecture, considered
in this paper, comprises a connected part (core and periphery), a
hereof disconnected part (singletons), and groups of suppressed
clones (stable holes).
• Pattern modules: The architecture can be build by arranging

identical smaller units, the pattern modules which are con-
structed like the base graph but have a smaller dimension dM.
A pattern module contains at least one node from every group.
Given dM, the number of groups, their size, and their linking
can be calculated.
• Stable Holes: Group of nodes that are mainly unoccupied

because the number of their occupied neighbors typically
exceeds by far the upper threshold of the window rule, there-
fore we call this group stable holes. The mean occupation is
close to zero.
• Core: Groups consisting of nodes with links to nodes in the

same group build the core. The mean occupation is very low.
• Periphery: Groups consisting of nodes linked to the core and

to stable holes, but not to nodes in its own group. The core and
periphery correspond to the central part of the network. The
mean occupation is high.
• Singletons: Groups of nodes that are only connected to stable

holes. An occupied singleton can survive if it has, after the influx
step, an occupied neighbor (in the group of stable holes) which
typically does not survive applying the window rule. The mean
occupation is high.
• Mean-field theory: The mean-field theory allows for a given

architecture to calculate statistical properties of the groups,
independent of simulations. The main simplification is that the
actual occupation of neighboring nodes is replaced by their
mean occupation which works the better the more neighbors
are involved.
• Self: In the extended version of the model, self is represented by

permanently occupied nodes of the network that exert influence
on the linked neighbor nodes but are themselves not affected by
idiotypic interactions. The window rule does not apply to self
nodes.
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