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In recent years, interest in optogenetics as a 
means of studying neuronal circuitry and as a 
neuromodulatory therapy has moved beyond 
the brain to the peripheral nervous system8. The 
approach developed by Iyer et al.1 and Daou  
et al.2 should provide an exciting way of evalu-
ating the function of optogenetic tools in vivo 
because nocifensive behavior provides a robust 
readout. The number of tools for optical control 
of biological processes is quickly increasing, and 
each tool differs in properties such as activation 
spectra, light sensitivity, kinetics, cellular local-
ization and downstream effects9,10. For rapid 
evaluation of new optogenetic tools, the viral 
delivery approach established by Iyer et al.1 can 
be accomplished in a few weeks as opposed to 
the months needed to generate a new transgenic 
mouse line—a great advantage.

In the near term, the new optogenetic 
approaches will likely have the most impact 
in preclinical research aimed at understand-
ing the biology of pain, such as which fibers 
are responsible for maintaining different pain 
states and the specific contribution of periph-
eral input to ongoing pain. By shining light on 
peripheral pain pathways, we will now be able 
to unravel exactly how pain begins and how we 
might shut it off.
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neurons could also enable the study of cells and 
pathways involved in sensory modalities other 
than pain, such as temperature, touch and itch, 
and in the control of autonomic and somatic 
motor axons.

The therapeutic relevance of optogenet-
ics is difficult to gauge at this early stage of 
technology development. Neuromodulatory 
approaches that use electrical impulses are 
already widely used to treat disease, but all 
involve untargeted stimulation of nerves 
rather than selective modulation of particular 
neuronal subsets. The capacity to therapeuti-
cally hyperpolarize axons in a targeted fashion, 
thereby shutting down conduction of action 
potentials, is undeniably exciting. That said,  
clinical development of optogenetic proteins 
would face many technical, practical and 
regulatory barriers8. Iyer et al.1 did consider 
some of these challenges in their experimen-
tal design, and their study provides at least a 
proof of principle for optogenetic modulation 
as a pain therapy. In particular, they showed 
that optogenetic silencing of peripheral nerve 
terminals attenuated sensitivity to mechani-
cal and thermal stimuli in a model of chronic 
constriction injury. The viral vector they chose 
was AAV6, which is currently being used in 
clinical trials.

Nevertheless, establishing the efficacy and 
safety of an optogenetic gene therapy would 
surely encounter daunting obstacles. Some of 
these are common to gene therapy as a whole, 
such as achieving therapeutically relevant  
levels and duration of gene expression and  
circumventing the immunogenicity of the viral 
vector and exogenous proteins. Other impor-
tant considerations are whether non-native 
opsins have adverse effects in human cells and 
whether viral delivery is completely restricted 
to nociceptors, which would be necessary  
to avoid optogenetic interference with other 
sensory modalities and motor functions.

Daou et al.2 also showed that nocifensive 
behaviors could be reduced by treatment with 
the analgesics morphine and pregabalin, sug-
gesting that the strategy developed by the two 
groups will be useful for medium-throughput 
screening of compounds designed to modu-
late peripheral mechanisms of pain signaling 
and associated changes in the central nervous 
system. For drug screening applications, the 
relatively stable gene expression afforded by 
genetically engineered mice has advantages 
over viral delivery methods. Although viruses 
permit rapid introduction of a gene, the result-
ing expression levels are often variable between 
animals and over time. Indeed, Iyer et al.1 
observed transgene shutdown five weeks after 
virus injection.

The new strategy will also help researchers  
identify the particular neuronal subsets  
responsible for transmitting different pain 
signals. Many mouse strains expressing Cre 
recombinase under the control of promoters 
specific for particular neuronal subsets are 
available, and many more are under develop-
ment. By combining these Cre strains with 
the methods of Iyer et al.1 or Daou et al.2, one 
could conditionally express transgenic opsins 
in particular neuronal subsets and stimu-
late the subsets optogenetically to analyze 
their involvement in acute and chronic pain. 
A related area of investigation is the down-
stream circuitry of central pain pathways. For 
example, using c-Fos expression as a readout 
of activity, Daou et al.2 detected connectivity 
between NaV1.8+ neurons and second-order 
spinal neurons in the superficial lamina of the 
dorsal horn.

Looking beyond the use of microbial opsins, 
it should also be possible to confer optical con-
trol on endogenous proteins involved in pain 
signaling with other tools, such as light-gated 
P2X receptor ion channels or acid-sensing ion 
channels7. Optogenetic control of peripheral 
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with a study by Rajagopala et al.1 in this issue. 
Using yeast two-hybrid analysis, the authors 
construct a binary interaction network for  
E. coli that contains 2,234 protein-protein  
interactions between 1,850 proteins. These 
data, which include both transient interac-
tions and more stable interactions within 
protein complexes, are then integrated with 
previous data on protein complexes and protein  
structure to produce a high-resolution E. coli 
interactome map—the most detailed map of its 
kind for any organism.

There are two main techniques for systematic  
protein interaction mapping—yeast two-hybrid 
and affinity purification or co-fractionation 

phenotypes to the function of individual  
network components under specific conditions. 
High-quality, binary protein-protein inter-
action maps have been generated for human 
cells and for many model organisms, including  
yeast, worm, fly and Arabidopsis thaliana. 
Now, Escherichia coli has joined this group 

Protein interaction networks are crucial for 
understanding complex cellular systems, from 
how signals are processed and lead to cellular  
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interactome map. By feeding the binary 
interaction data into a computational tool, 
Interactome 3D10, they were able to propose 
three-dimensional structural models for some 
complexes lacking co-crystal structures. The 
result is the first high-resolution view of the  
E. coli interactome (Fig. 1).

The field of protein-protein interaction map-
ping has struggled with standardized quality 
measures for interaction data because of the 
different characteristics of the data generated 
by different approaches. The performance  
of a method can be assessed by measures of 
sensitivity (how many true interactions do you 
find?) and specificity (how many false inter
actions do you find?). Following a concept put 
forward by Vidal and colleagues11, sensitivity 
can be assessed empirically by examining a 
set of ‘true’ interactions (i.e., previously well-
characterized interactions) and specificity can 
be assessed by examining a set of randomly 
generated interactions (i.e., likely not genuine 
interactions). However, unlike ‘average’ inter-
actions, the interactions in the true reference 
set have been reported in the literature many 

they merged their yeast two-hybrid data with 
interactions from previous studies, including 
affinity purification–MS data sets (Fig. 1). The 
combined interactome contains 3,946 binary 
interactions, which they estimate is ~37% of 
the E. coli binary interactome.

Second, the authors exploited the comple-
mentary information that affinity purification– 
MS and yeast two-hybrid data provide about 
protein complexes. Affinity purification–MS 
data identify proteins bound together in  
complexes but usually do not resolve individ-
ual subunit-subunit interactions within these 
complexes. By contrast, binary interaction 
data from yeast two-hybrid analysis identi-
fies the subunit-subunit interactions but not 
necessarily all the members of a complex. By 
combining binary interactions (from their 
work and the literature) with information on 
complex composition from previous affinity 
purification–MS studies, the authors deduced 
at least part of the internal complex topology 
for more than 100 multiprotein complexes 
(Fig. 1). Finally, the authors incorporated  
existing protein structural data into their  

coupled to mass spectrometry (MS). The meth-
ods yield different types of information: yeast 
two-hybrid analysis reveals binary interactions, 
including transient interactions, whereas the 
purification–MS approaches report multiple 
interactions connecting all the proteins in fairly 
stable complexes. Because of these and other 
differences, data sets from the two methods 
may have little overlap. For example, in recent 
studies of human cells, a yeast two-hybrid 
study implicated methyltransferase proteins in 
several cytoplasmic functions2 whereas a large-
scale co-fractionation–MS analysis showed 
these proteins to be involved in transcription  
or chromatin-remodeling complexes3. Such 
discrepancies suggest that a more comprehen-
sive picture of cellular networks can be obtained 
by merging data from the two methods.

Protein-protein interaction networks have 
found application in both basic and transla-
tional research. In the study of disease, human 
protein-protein interaction data can be used to 
identify functionally important genetic variants 
because, for a particular phenotype, these tend 
to be found in proteins that are closely con-
nected to each other in an interaction network. 
Differential network analysis—that is, mea-
suring or inferring changes in networks—can 
reveal the effects of protein sequence variation 
or environmental changes. For model organ-
isms such as yeast, protein-protein interaction 
networks have led to insights into the prin-
ciples of molecular wiring and relationships 
among cellular processes. For bacteria, how-
ever, progress in developing interactome maps 
has been slower. Several groups have produced 
large-scale affinity purification–MS data for 
Mycoplasma pneumoniae 4 and E. coli 5–7, but 
apart from early yeast two-hybrid maps for 
Helicobacter pylori 8 and Campylobacter jejuni 9,  
there has been a lack of bacterial, binary  
protein-protein interaction networks.

Rajagopala et al.1 make several important 
advances. First, the authors screened 3,600 
E. coli proteins (~70% of the proteome) for 
pair-wise, protein-protein interactions, result-
ing in 2,234 interactions involving about half 
of the proteins screened. To obtain a more 
comprehensive binary interactome for E. coli, 

Structural annotation
with Interactome3D
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Figure 1  The path toward a detailed, high-
resolution E. coli interactome map starts by 
combining binary protein-protein interaction 
data from yeast two-hybrid analysis and data 
from affinity purification–MS5–7. This provides a 
combined set of E. coli interactions and internal 
topology for some of the complexes that had 
been identified by affinity purification–MS. The 
complexes are annotated with previous knowledge 
of protein structures, using Interactome3D10, 
and the annotated complexes are added to the 
combined interactome to provide a high-resolution 
E. coli interactome map.
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that are comprehensive and capture condition-
specific properties. It will be easier to test 
hypotheses based on this resource, thanks to 
the availability of three-dimensional models 
of protein-protein interfaces; interfaces can be  
targeted—for example, through mutation—
without affecting other functions of the inter-
acting proteins. As has been shown by structural 
annotation of human protein networks,  
assessing the function of interactions rather 
than of proteins is crucial for understanding 
specific phenotypes in health and disease.
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interactome coverage grows with increasing 
proteome complexity and dynamics in higher 
organisms.

The new data from Rajagopala et al.1 will sup-
port attempts to delineate detailed molecular 
mechanisms for core biological machines that 
are typically studied in E. coli. Notably, a large 
number of E. coli proteins remain uncharacter-
ized, and protein-protein interaction data can 
assist in linking them to fundamental cellular  
processes. For example, systematically generated 
interaction data implicated RsfA in ribosomal 
protein translation, leading to its subsequent 
characterization as a nutrition-dependent ribo-
somal silencing factor12. Furthermore, E. coli is  
crucial in synthetic biology, both as a host to 
test novel circuitries and as a source for recon-
stituting minimal systems that reproduce 
essential functions. Information from the 
protein-protein interaction network might 
help system design to avoid side reactions or 
suggest novel connections for new synthetic 
systems. The E. coli network upgrade may also 
stimulate large-scale modeling approaches for 
this model organism, providing a chance to 
link genome-scale models of metabolism to 
other cellular processes.

Three-dimensional high-resolution network  
views, as presented here for E. coli, are an 
important step on the way to interactome maps 

times; because these interactions are relatively 
easy to find, the sensitivity of a method is likely 
to be overestimated. A potential pitfall of test-
ing random interactions is related to the fact 
that biological networks are scale free—that 
is, many proteins have one or few interactions, 
and few proteins are ‘hubs’ with many inter
actions. A protein that has a very large num-
ber of interactors might have a much higher 
probability of giving an interaction in a set of 
randomly selected set of proteins.

Rajagopala et al.1 were able to overcome 
some of these limitations by testing sensitivity 
and specificity in their full interactome data 
set in addition to doing smaller benchmarking 
experiments. None of 500 random interactions 
ended up in the final data, so the false-positive 
rate was below 0.2%, and the sensitivity was 
estimated as <21%. These numbers are typical 
for current interactome mapping approaches. 
Sensitivities below 20% emphasize the need to 
develop more efficient methods and highlight 
why large-scale interaction screens should 
combine different experimental methods.  
Such methods might include luciferase-
based co-immunoprecipitation (LUMIER) 
approaches and mammalian interaction trap 
assays (MAPPIT) or the development of large-
scale cross-linking mass spectrometry. Clearly, 
the problem of obtaining comprehensive 
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and butyrate acts as an energy substrate for 
enterocytes lining the colon. Propionate and 
butyrate also act as signaling molecules by  
binding to and activating the G protein– 
coupled receptors FFAR2 and FFAR3 (free fatty 
acid receptors).

It is well established that changing the diet 
changes the composition of the gut microbiota3.  
David et al.1 explored this phenomenon by 
measuring the rates at which changes in dietary 
fiber intake translate into changes in the com-
position and transcriptional profile of the gut 
microbiota in humans. To this end they fed 
ten healthy human volunteers either a plant-
based or an animal-based diet for five days. At 
various points in the study, they analyzed fecal 
samples by sequencing 16S ribosomal RNA (to 
determine the relative abundance of different 
microbes) and by RNA-seq (to determine the 
relative expression of microbial genes). 

Changes in microbial gene expression and 
community structure were seen within days of 
starting the diets. In subjects fed the animal-
based diet, these changes correlated with a 
reversible physiological response (weight loss)  
and an increase in the abundance of bile-
tolerant bacteria and of short-chain fatty 
acids indicative of amino acid fermentation. 

that ingestion of plant fiber induces rapid 
shifts in the composition and function of the 
gut microbiota and that metabolites produced 
by the microbiota support metabolic health by 
regulating glucose control in the host. These 
findings may guide efforts to design ‘prebiot-
ics’—dietary supplements capable of manipu-
lating the gut microbiota to improve human 
health.

Fermentation of soluble fibers such as fructo- 
oligosaccharides and galacto-oligosaccharides  
by gut bacteria produce the short-chain 
fatty acids acetate, propionate and butyrate. 
Although chemically similar, short-chain fatty 
acids are metabolized differently and exert very 
different effects on host physiology (Fig. 1).  
Acetate (the most abundant short-chain fatty 
acid) is a substrate for hepatic de novo lipogen-
esis and cholesterol biosynthesis, propionate  
is a substrate for hepatic gluconeogenesis  

The health benefits of eating plant fiber have 
long been appreciated. Epidemiological studies  
show an inverse relationship between dietary 
plant fiber and the risk of heart disease, obe-
sity and type-2 diabetes, and consumption of 
dietary fiber is recommended by the American 
Dietetic Association and other health organiza-
tions. But the biological mechanisms underly-
ing the health effects of dietary fiber have been 
hard to pin down. Gut microbes are presumed 
to be involved because they contribute to fiber 
digestion. Two recent papers in Nature1 and 
Cell2 shed light on their roles, demonstrating  

You are what you eat
Harald Brüssow & Scott J Parkinson

Eating foods rich in plant fiber promotes health by changing the composition  
and metabolic products of gut bacteria.
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