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Models of cultural evolution demonstrate that the link between individual biases and population-
level phenomena can be obscured by the process of cultural transmission (Kirby, Dowman, &
Griffiths, 2007). However, recent extensions to these models predict that linguistic diversity
will not emerge and that learners should evolve to expect little linguistic variation in their input
(Smith & Thompson, 2012). We demonstrate that this result derives from assumptions that
privilege certain kinds of social interaction by exploring a range of alternative social models.
We find several evolutionary routes to linguistic diversity, and show that social interaction not
only influences the kinds of biases which could evolve to support language, but also the effects
those biases have on a linguistic system. Given the same starting situation, the evolution of
biases for language learning and the distribution of linguistic variation are affected by the kinds
of social interaction that a population privileges.

1. Introduction

The interaction between individual cognitive biases for learning, the amount of
linguistic diversity in a population and how that diversity is used to support social
interactions forms a complex, adaptive system. It’s clear that there is a genetic
basis for the ability to learn a language, but recent studies have demonstrated
that the structures and distributions of linguistic features are also affected by cul-
tural transmission (Kirby, Cornish, & Smith, 2008; Dunn, Greenhill, Levinson,
& Gray, 2011). This may obscure the relation between properties of individual
learners and population-level cultural phenomena (Kirby et al., 2007), making it
difficult to infer from linguistic structures the existence of isomorphic cognitive
biases. Consequently, in order to make predictions about the cognitive underpin-
nings of language, we must also understand the interactions between individual
cognition and cultural evolution in populations. Computational models have ad-



dressed this issue (e.g. Smith et al., 2003; Nowak et al., 2001; Niyogi, 2006; Smith
& Thompson, 2012, hereafter S&T). However, many assume a mature system of
communication is one where users have converged on monadic conventions, or
that the only relevant factors are properties of individual cognition.

Here we explore the consequences of relaxing that premise in favour of alter-
natives that better reflect the diversity of human social interaction. In particular
we are interested in scenarios that embody a high degree of socially conditioned
linguistic variation. Our focus is bilingualism, which we view as a socially con-
structed property of individuals: bilinguals learn to condition linguistic structures
on social variables determined by the constitution of a population. Scenarios such
as this may appear to be at odds with evolutionary reasoning. If communica-
tive coordination is associated with a fitness payoff, we might expect populations
to converge on monadic conventions, supported by innate biases to expect little
variation. Indeed, this expectation is borne out by existing models of cultural evo-
lution (S&T). However, in reality most humans are exposed to a large amount
of linguistic diversity and acquire communicative competence in multiple lan-
guages. Also, while it may be traditional to view second language acquisition as
a demanding task, empirical evidence shows that children are adept at learning
multiple languages simultaneously (Byers-Heinlein & Werker, 2009).We extend
S&T’s model to explore a range of social contexts, including ones that privilege
monolingualism, bilingualism, linguistic similarity (parity) and linguistic differ-
ence (exogamy). We find various conditions that lead to the evolution of biases
supporting bilingualism. We show that assumptions about social interaction not
only influence the kinds of cognitive biases that could evolve to support language,
but also the nature of their effects on population-level culture.

2. Model definition

We adopt as our framework the iterated learning model whereby learners acquire
a behaviour by observing similar behaviours in others who acquired their be-
haviours in the same way (Smith et al., 2003). We adopt and extend the Bayesian
model developed by Burkett and Griffiths (2010) and extended by S&T in which
learners can learn multiple languages from multiple teachers. The model involves
discrete generations, each with a finite population of N agents who receive input
from a previous generation, infer a hypothesis about how that data was produced,
and then use that hypothesis to produce data for a subsequent generation.

Learning proceeds as follows: on the basis of a set of observations d =
{d1,d2, . . . ,db}, each learner infers the ambient frequencies of two possible lan-
guages l0 & l1, and induces an hypothesis, h = (P(l0),P(l1)), where P(li) rep-
resents the learner’s estimate of the frequency of language li. As shorthand
we can characterise h by h0 = P(l0), since P(l1) = 1− P(l0) (the mean dis-
tribution of h in the population is labelled θ). Learners make inferences in a
Bayesian rational framework, using Bayes’ rule to compute the posterior distri-



bution P(h|d) ∼ P(d|h)P(h). The likelihood computations are straightforward:
observations d are made up of b interchangeable utterances, each of which can
take one of two forms, u0 & u1. These forms are typically diagnostic of one or
the other language, so that P(ui|li) = 1− ε and P(ui|l j 6=i) = ε, where ε is small
and represents errors in production. The likelihood function is simply the prod-
uct of the probabilities for each utterance: P(d|h) = ∏di P(di|l0)h+P(di|l1)1−h.
Productions are based on these likelihoods: when a learner produces an utterance
for the next generation, it samples a language from its hypothesis, and samples an
utterance from that language according to the function above.

Each learner has a prior bias with two properties: One favours the use of each
language in a particular proportion (G0), and one controls the amount of varia-
tion they expect (α). During inference, hypotheses h are drawn from a Dirichlet
process prior with base distribution G0 and concentration parameter α. Compu-
tationally, we implement inference using a Gibbs sampler based on the Chinese
restaurant process representation of the DP. G0 specifies a distribution over the
two possible language types. The concentration parameter α is a positive real,
and regulates the influence of G0 during inductive inference: as α→ ∞, learn-
ers will induce hypotheses strongly determined by their prior preferences, so that
h ≈ G0; as α→ 0, h is determined largely by the learner’s experiences. In our
context we can interpret α as determining a learners expectations about linguistic
diversity. High α leads learners to expect a wide distribution of languages in the
population. Low α leads learners to expect homogeneity: linguistic variation is
discounted in favour of monolingual hypotheses.

Learners inherit their prior biases genetically from ‘parents’ in the previous
generation. The prior bias can mutate with probability µ, meaning that the dis-
tribution of priors evolves by natural selection. Reproductive success depends on
the agents hypothesis and the fitness function. We test several fitness functions
based on different conceptions of communicative success and social prestige.

S&T find that biological evolution via natural selection for communicative
coordination leads to the emergence of low α. S&T’s model rewards learners
who converge on a common language. Assumptions of this kind are common in
such models, and represent a sensible first pass at capturing the benefits of co-
ordination in communication. However, we show below that this fitness metric
directly privileges monolingualism, and so leads to linguistic homogeneity. In
contrast, we show that populations of individuals with the same prior biases over
languages, but with different fitness metrics, can lead to linguistic diversity.

Reproductive success is linked to the relationship between agents’ hypotheses.
We define this relationship using metric space notation (H ,ρ), with H = {(i,1−
i) : (i ∈ R),(0 ≤ i ≤ 1))} our set of possible hypotheses and ρ a metric on H
which determines the fitness payoff between any two h,h′ ∈H as ρ(h,h′), where
ρ reflects our various theoretical assumptions. The total fitness payoff for an agent
is the sum of payoffs for the whole population. Below we define 5 metrics, each
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Figure 1. How the relationship between the hypotheses of two agents A and B maps onto fitness
payoff for different metrics. Lighter shades represent better payoffs. This is part of the model input.

of which constructs a fitness landscape depicted in figure 1.
Type 1: Monolingual S&T’s regime simply rewards convergence: fitness payoff
is linked to communicative success, defined as being proportional to the probabil-
ity that during a given encounter two learners use the same language. For S&T,
then ρm(h,h′) = h ·h′. We can visualise the fitness landscape defined by this metric
as a heat map (see figure 1). As this shows, this assumptions strongly privileges
monolingualism: the fittest pair of learners both speak only language l0 or only
language l1 (i.e. h0 ≈ h′0 ≈ 0 and h0 ≈ h′0 ≈ 1), since these learners will tend over-
whelmingly to converge on the same language. For some aspects of language, this
kind of assumption is natural: coordination is at the heart of successful commu-
nication in many domains. However, the assumption means that it’s impossible to
be fully competent in both languages. This means that an agent with h = 0.5 is
an analogue of a ‘semilingual’ individual who does not have native competence
in any language (Bloomfield, 1927).This view of competence has been criticised,
and is not wholly supported by the linguistic evidence (Martin-Jones & Romaine,
1986). More generally, the monolingual assumption may be appropriate for some
scenarios, but does not reflect the diversity of human social interaction: many
communities and societies privilege bilingualism and linguistic diversity, and in
those cases fitness payoffs should reflect those systems.
Type 2: Bilingual Our first alternative is to explicitly privilege bilingualism: here
the biggest fitness payoff goes to a pair of learners who both have command of
both languages in equal proportion. Prestigious bilingualism is attested in many
communities, and is often linked with the power to communicate between groups
(De Mejı́a, 2002). Formally, we define our metric to be: ρb(h,h′) = 2(h ·h′)(1−
|h0−0.5|)(1−|h′0−0.5|). Here we are simply weighting the fitness payoff by the
learners’ combined distance from the entirely bilingual state (h0 = h′0 = 0.5). As in
the ‘monolingual’ case, it pays to converge, but here there is only one hypothesis
that yields the highest fitness payoff.
Type 3: Parity The monolingual and Bilingual regimes each privilege a partic-
ular subset of hypotheses on theoretical grounds, and so make reasonably trans-
parent evolutionary predictions (ρm → low α, ρb → high α) . We can relax this
premise and focus only on coordination by rewarding arbitrary parity. Under this
regime maximum fitness payoff requires only that learners share a hypothesis:



any hypothesis is as good as any other, so long as the learners’ hypotheses are
matched. Here our metric is simply: ρp(h,h′) = 1−|h0−h′0|.. This removes any
obvious bias towards homogeneity or heterogeneity in the linguistic community.
Human learners are highly sensitive to the distribution of linguistic variants they
experience, and often try to match the behaviour of their interlocutor (Smith &
Wonnacott, 2010).
Type 4: Linguistic Exogamy Some societies restrict marriage to members of
different linguistic communities (e.g. Jackson, 1983), and these communities are
often multilingual (Hill, 1978). In simple terms, learners receive higher fitness
payoffs from interactions with linguistically foreign individuals, which is the in-
verse of the monolingual function: ρex(h,h′) = 1− (h ·h′). As figure 1 shows, ρex
privileges interactions between maximally divergent hypotheses. However, the
hypothesis with the best unilateral payoff (0.5) is not the optimal for an individ-
ual (0 or 1). The evolutionary predictions for this regime are unclear: we might
expect populations to eventually contain monolingual speakers of both languages
in roughly equal number. For this to happen in well-mixed cultural populations,
learners may require a strong expectation for linguistic homogeneity (low values
of α). However, previous models suggest that populations of learners with homo-
geneity biases tend to end up speaking only one language.
Type 5: Dominant Language Finally, we model the situation where learners can
know a second language without detriment to their knowledge of their first lan-
guage. The ‘dominant language’ metric assumes that fitness is proportional to
communicative success, but a speaker always understands its dominant language,
and understands its non-dominant language in proportion to the balance of its hy-
pothesis. ρd(h,h′) = 1 if h > 0.5 and h′ > 0.5; ρd(h,h′) = 1 if h <= 0.5 and
h′ <= 0.5; otherwise ρd(h,h′) = |h− h′|γ. This means that a learner will always
get the maximum payoff for interacting with another learner who has a hypothesis
with a tendency towards the same language. That is, they always understand their
‘stronger’ language. However, if their partner has a hypothesis with a tendency
towards the opposite language, then the payoff is related to the difference between
the hypotheses according to γ. When γ = 1, then the relationship is linear. Lower
values of γ make the relationship exponential. The variable γ, therefore, spec-
ifies how much competence is required in a second language to receive a good
fitness payoff from interacting with any other speaker. An individual with a hy-
pothesis in the middle of the range can receive the maximum payoff from all other
hypotheses. However, as γ decreases, the range where this is effective becomes
increasingly narrower, making it a fragile state.

3. Results

We ran agent-based simulations to explore the co-evolution of cognitive biases (α)
and linguistic systems (h) under our social models. In these simulations: N = 100;
ε = .05; each learner is exposed to b = 4 utterances; Gibbs sampling was run for
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Figure 2. Emergent values of h0 (left) and α (right) for different fitness metrics when the prior bias
over hypotheses G0 is weak (0.6) or strong (0.9). The background of the h0 graph is shaded to indicate
the maximum fitness payoff to an individual given that hypothesis (lighter shades = better payoff).

5 cycles at each learning event; simulations were run for 500 generations (α and
h0 converged after about 200). α mutates with probability µ = 0.01. If a mutation
occurs, α is drawn from a Gaussian distribution with the parent α as its mean and
variance σ2 = 0.1. We explored two settings for the prior bias over languages: a
weak bias for l0 (G0 = (0.6,0.4)) and a strong bias for l0(G0 = (0.9,0.1)).

The results are shown in figure 2. As in S&T, under the Monolingual metric
α remains low (agents expect little diversity) and h0 reflects an amplified prior
over languages G0 (agents use only l0), regardless of the strength of the prior. h0
also reflects the optimal fitness payoff. However, the alternative metrics behave
differently. The Bilingual metric leads to high α (agents expect high diversity)
and h0 converges to G0. h0 does not reflect the optimal fitness payoff. The results
for the Exogamy metric are the same, even though the payoff landscape is very
different. Under the Parity metric, the value of α is high, but affected by the
prior over languages (stronger bias leads to lower α). h0 converges to the prior
over languages, though is slightly amplified under the stronger prior. There was
more variation in the emergent values of α under the alternative metrics than the
monolingual metrics.

Figure 3 shows the results of manipulating the ease of comprehending a sec-
ond language. As γ increases, there is a qualitative shift in the results of the
simulations. With γ > 0.7 (comprehending a second language is easy), high α

evolves (a ‘bilingual’ expectation) and the distribution of languages converges to
the prior. However, with γ < 0.7 (comprehending a second language is harder),
low α evolves and the distribution of languages is exaggerated (l1 comes to dom-
inate, non-convergence).

4. Conclusion

Our model demonstrated that linguistic diversity is dependent on individual cog-
nitive biases, individual learning, social interaction and cultural evolution.

Under the monolingual social model, there are only two hypotheses that give
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Figure 3. Results under the dominant language metric. The prior over hypotheses was 0.6. Gray areas
indicate hypotheses that allow bigger fitness payoffs. There is a qualitative change around γ = 0.7.

unilateral optimal fitness (h=0 and h=1). This makes it easier for individuals to
converge on a hypothesis, meaning there is less variation. This allows a low α to
emerge, which leads to the agents’ inference being more influenced by the data.
In this case, the distribution of hypotheses climbs the fitness landscape until ev-
eryone has the same hypothesis. The alternative types of social interaction favour
diversity (some transparently - e.g. bilingualism - others indirectly - e.g. ex-
ogamy). These regimes will always lead to learners that preserve diversity (high
α). Therefore, the agent’s inference is more affected by their prior. The resulting
distribution reflects the prior, even when this does not reflect the optimal fitness
payoff. That is, the social interactions select against rich-get-richer type learning
that kills variation (even when a heavily biased prior means there isn’t much to be
gained, in fitness terms, by maintaining diversity), which is normally assumed in
these kinds of evolutionary models.

Under the ‘dominant language’ model, we manipulated the amount of com-
petence in a second language required to receive a fitness payoff. This variable
interpolated between the two types of result. Even when moderately high compe-
tence was required for a fitness payoff, bilingualism emerged and learners evolved
to expect variation in their input.

These results differ from the results of other models. First, bilingual biases
can evolve and linguistic diversity can be stable. Secondly, our model shows that
the constraints of social interaction, as well as individual learning biases and cul-
tural evolution, can shape the emergent properties of linguistic populations. This
suggests that a full explanation of language evolution must involve how language
is used in interaction to shape social relationships. Future work could allow the
relationship between social interaction and fitness to change over time.
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