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1. Introduction

Genetic information from DNA is expressed as proteins in a universal two-
step mechanism sketched in Fig. 1.1 [1]. During protein expression infor-
mation on DNA is transcribed to an RNA working copy, then translated to
proteins from this RNA working copy.

Replication, transcription, and translation are the general transfers of ge-
netic information. In contrast to the general transfers, special and so-called
undetected transfers were omitted from Fig. 1.1. Examples of these unde-
tected and special transfers are small interfering RNAs that inhibit translation
of sequence information on RNA [2] and proteins that silence genes on DNA
through methylation [3], further proteins that chemically modify other pro-
teins after translation [4] and proteins that post-transcriptionally modify RNA
[5].

Each general transfer has its catalyst. DNA polymerases replicate DNA.
RNA polymerases transcribe genetic information to the mediating informa-
tion carrier messenger RNA (mRNA). Ribosomes, the subject of this work,
catalyze translation of mRNA to proteins in an elongation cycle. During this
cycle amino-acids are sequentially added to a nascent peptide chain.

The ribosome is a huge macromolecular protein-RNA complex of a small
and large subunit, comprising more than two-hundred thousand atoms in
prokaryotes. Figure 1.2 shows representations of ribosomes, as resolved by
cryo electron-microscopy (cryo-EM) and X-ray crystallography.

Translation in ribosomes is performed through a hierarchy of chemical
steps, sketched in Fig. 1.3. Peptide elongation is primed by initiation and
brought to a controlled halt by elongation termination. Ribosome recycling
then provides the two subunits for new rounds of elongation.

Elongation itsself comprises the key kinetic steps decoding, peptide trans-
fer, and tRNA translocation. The small subunit catalyzes translation of genetic

Figure 1.1: The central dogma of molecular biology implies a canonical flow
of information (general transfers, indicated by arrows) from DNA to pro-
tein. The processes associated with the respective general transfers are shown
above the arrows, their catalysts below. Special and undetected information
transfers [1] are not shown.



6

Figure 1.2: The ribosome, as seen by cryo electron microscopy and X-ray
crystallography. Shown are the large (light blue) and small subunit (yellow)
and two tRNAs (purple, green). (a) Surface representation of a cryo-EM den-
sity of the ribosome at 12 Å resolution from [6]. (b) Surface, cartoon and
sphere representation of the heavy atoms of the ribosome as resolved by X-
ray crystallography at 2.8 Å resolution [7], represented with pymol [8]. Note
that the methods to define the resolution of cryo-EM densities and X-ray crys-
tallography densities differ.

Figure 1.3: The hierarchy of processes during translation. Translation con-
tains the elongation cycle. This work describes tRNA translocation, a sub-process
of the elongation cycle.
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Figure 1.4: The three tRNA binding sites span the small (30S) and large
(50S) ribosomal sub-unit. This schematic box-plot representation of the ribo-
some indicates the three ribosomal binding sites, the amino-acyl site (A site),
peptidyl site (P site), and exit site(E site). The tRNA is represented as a verti-
cal line, the amino-acid as disc, the mRNA codons as horizontal bars, and the
mRNA as horizontal line. Two discs indicate the nascent peptide chain.

code on the mRNA blueprint to cognate amino-acids by adaptor molecules
called transfer RNA (tRNA). Following this decoding step, the large subunit
catalyzes elongation of the nascent peptide chain by peptide bond formation
[9, 10]. After the ribosome catalyzed codon recognition and peptide transfer,
the tRNAs move through the ribosome to prime the ribosome for a new round
of elongation.

For efficient catalysis, three specific binding sites position the tRNAs dur-
ing elongation. Figure 1.4 shows these tRNA binding sites, amino-acyl site (A
site), peptidyl site (P site), and exit site (E site). Mechanisms and transition
rates for the movement of the tRNAs between their binding sites during elon-
gation were revealed by spectroscopic measurements [11]. The determined re-
action mechanism is sketched in Fig. 1.5, and will be laid out in greater detail,
with the additional involved factors, further below. During tRNA transloca-
tion, the two tRNAs move from the A to the P and from the P to the E site.
Fifty intermediate states of spontaneous tRNA movement in the absence of
additional factors and GTP hydrolysis have recently been observed using cryo
electron microscopy experiments [6].

Spontaneous tRNA translocation is an equilibrium process that consumes
no energy. Yet, the tRNAs diffuse more than seven nanometers through the
ribosome, despite the many involved interactions and the large size of the
ribosome. The energy from thermal fluctuations suffices to induce large-
scale, though undirected ribosome motions [6]. The very little energy gained
through hydrolysis of guanosine-triphosphate (GTP) by elongation factor G
suffices to drive tRNA translocation forward through a “Brownian ratchet”
mechanism by using these thermal fluctuations [12, 13].

By observing this Brownian machine through cryo-EM [6], the gap be-
tween static structures of the energy minima on the energy landscape and
dynamic information has been narrowed in two ways. First, the ensemble
of translocation intermediate structures was vastly extended and the free en-
ergy of each intermediate determined. A sketch of the resulting free energy
landscape is shown in Fig. 1.6. Second, the velocity of the major rate-limiting
step that separates so called pre-translocation and post-translocation states
was determined, and a rapid equilibrium between the pre-translocation and
post-translocation states was found.
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Figure 1.5: The elongation cycle in box-plot representation and tRNA
translocation as seen from cryo-EM. Panel (a) sketches the elongation cy-
cle (cf. Fig. 1.4). Panel (b) shows eight representative cyro-EM densities from
fifty intermediates of spontaneous tRNA translocation through the ribosome
[6]. The gray lines indicates the thick black box shown in (a) for reference.
Shown are the large (light blue) and small subunit (yellow) and two tRNAs
(purple, green). Resolutions of the respective cryo-EM densities are given
below them.
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Figure 1.6: the experimental data of tRNA translocation through the ribo-
some (a) resembles the Frauenfelder picture of a hierarchical energy land-
scape (b) Panel (a) shows the free energies of translocation intermediates of
ribosomal tRNA translocation in equilibrium (to scale). The free energies
of the pre- and post-translocation states fluctuate within a few kBT. They
are separated via a large barrier between, and smaller barriers within pre-
and post-translocation states, resembling the Frauenfelder picture. Confor-
mational substates are represented as ribosome (blue and yellow) and tRNA
(purple and green) surfaces. Data courtesy of Niels Fischer (unpublished and
[6]). Panel (b) depicts conformational substates that are separated by a hier-
archy of energy barriers that emerges when going from a coarse description
(top) to detailed reaction coordinates (bottom), modified from Frauenfelder et
al. [14].
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The many translocation intermediates differ only by a few kBT in energy
and are seperated by a hierarchy of barriers between the states as shown in
Fig. 1.6. Similarily, the study of Frauenfelder proposed a hierarchical energy
landscape for proteins using myoglobine as an example [14]. Fig. 1.6 shows
the close resemblance of the energy landscape determined by Fischer et al.
and the Frauenfelder picture [14, 15].

Yet unresolved are the barriers between the individual pre- and post-
translocation states and the dynamics within the resolved energy minima.
Further, the cryo-EM data lacks the atomic detail that would allow to name
the specific interactions responsible for the barriers.

Figure 1.2 shows an example of one of the high-resolution X-ray structures
that provide an atom-by-atom description of residue and nucleotide inter-
actions. The Nobel Prize winning crystal-structures of the ribosome were a
break-through in describing translation structurally [16]. They provide the
stereochemistry of the binding sites, the interacting ribosome residues and
nucleotides for stable, crystallizable states in the energy minima of the ribo-
some energy landscape.

In this work, we describe the ribosome energy landscape during translo-
cation by refining the cryo electron microscopy data by Fischer et al. [6] to
the structural information from X-ray crystallography [17], performing atom-
istic molecular dynamics (MD) simulations and testing their results against
biochemical information from spectroscopic measurements and evolutionary
analysis. Though the notion that the ribosome diffuses in a Frauenfelder-type
energy landscape has been expressed earlier by Whitford and Sanbonmatsu in
the ribosome field [18], we now provide quantitative evidence for that notion.
Overall, the statistical mechanics view on ribosomal translation in this work
aims to discuss tRNA translocation as proposed by Frauenfelder et al.,

“The taxonomic attitude is the conventional one of mechanistic
chemistry, but the statistical viewpoint requires new concepts. One
no longer talks about specific energy levels but about the statistics
of the energy landscape.” [14]

To estimate the heigth of the free energy barriers that hinder transition of
the ribosome from one state to another, we assess the diffusion of the ribo-
some on its high-dimensional energy landscape. We identify further kinetic
steps than the pre- to post-translocation transition and determine the interac-
tions between nucleotides and residues that make transitions between differ-
ent states so efficient for the ribosome.

Ribosomes evolved to be fast and accurate at little energy cost. They main-
tain a minute balance between speed of translation, error rate and energy con-
sumption [19]. We employ the working hypothesis that the ribosome is effi-
cient, because its energy landscape has been smoothened evolutionarily; speed
and accuracy of translocation are achieved by fine-tuning interactions between
ribosome parts, their residues and nucleotides to a near-constant level.

A prerequisite to analyze the fine-tuning of interaction energies on a near-
atomic level is a description of all atom contacts on the interface of ribosome
parts. Though finding contacting atoms of ribosome parts is conceptually
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simple, finding and implementing a fast algorithm for this task is not. For ex-
ample, between the large and the small subunit of the ribosome there are more
then ten billion possible atom-atom contacts. We devised and implemented
an efficient algorithm to find contacting atoms on the interface between ribo-
some parts, which proved to be useful for a variety of biomolecular ensemble
data [20].

Before laying out the underlying assumptions in statistical physics that are
necessary to bridge energetics and kinetics of translation, we will now detail
the biochemistry of protein synthesis in prokaryotes and summarize previous
computational approaches on translation.

Our research is published in “g_contacts: Fast contact search in bio-molecular
ensemble data” [21] and “Energy barriers and driving forces in tRNA translo-
cation through the ribosome” [22]. An essential part of the assumed research
is laid out in the supplementary note complementing the article “Energy barri-
ers and driving forces in tRNA translocation through the ribosome”. The data
analysis methods that extract interpretable information from the simulation
data are presented in this supplement in the context of ribosome simulations,
but are valuable in their own right.

1.1 Translation in Procaryotes

Translation

Translation of genetic information from mRNA to proteins occurs in all do-
mains of life in four distinct steps: initiation, elongation, termination, and
recycling.

In this work, we investigate translation of the prokaryote Escherichia coli (E.
coli, K-12 strain). This section will place prokaryotic elongation in the context
of translation by describing it along with initiation, termination and recycling.
In the next section we will give a more detailed description of the elongation
cycle, linking experimental and computational studies of elongation.

Initiation prepares ribosomes for the elongation cycle. The Shine-Dalgarno
sequence on prokaryotic messenger RNA recruites a small (30S) ribosomal
subunit, facilitated by initiation factor 3 (IF3) [23, 24, 25]. The aminoacyl-site
(A site) of the small subunit is kept empty by initiation factor 1 (IF1) while
initiation factor 2 (IF2) carries an initiator tRNA to the ribosomal peptidyl-site
(P site) carrying the amino acid formyl-methionine (fMet, cognate to the AUG
start codon) at its CCA-tail. When a large (50S) ribosomal subunit binds, all
initiation factors dissociate and the elongation cycle begins with a ribosome,
mRNA, and fMet-tRNAfMet complex as shown in Fig. 1.7I.

During the elongation cycle, sketched in Fig. 1.7, proteins are synthesized
by the ribosome one amino acid at a time according to the corresponding
mRNA template [26]. After initiation primes the ribosome with an initiator
tRNA in the P site (Fig. 1.7I), all decoding of genetic information on the mRNA
is performed in the A site through binding of a complex of aminoacyl tRNA
(aa-tRNA) and elongation factor thermo unstable (EF-Tu) sketched in Fig. 1.7II
and in Fig. 1.8. A site accommodation positions the substrates for the peptide
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Figure 1.7: The prokaryotic elongation cycle. The ribosome with its small
(30S) and large subunit (50S) and its three binding sites, the amino-acyl
site (A site), peptidyl site (P site) and exit-site (E site) is sketched in box-
representation. I fMet-tRNAfMet (green vertical line (tRNA) and ball (amino-
acid)) occupies the P site with the cognate start codon (green horizontal line).
II The A site is occupied with a cognate aminoacylated tRNA (purple line
(tRNA) and ball (amino-acid)) after elongation factor thermo unstable (EF-
Tu) dissociation.III Peptide transfer reaction occurs (indicated by the gray ar-
row). IV Upon EF-G·GTP promoted translocation, tRNAfMet leaves the exit
site (E site), preparing the ribosome for the next elongation cycle.
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transfer reaction in the peptide transfer center (PTC). After peptide transfer
is catalyzed in the PTC (Fig. 1.7III), the nascent peptide chain is bound to
the A site tRNA [10, 27]. Subsequent tRNA translocation of the A site tRNA
to the P site, and the P site tRNA to the E site, prepares the ribosome for
another of elongation cycle (Fig. 1.7IV). Binding of elongation factor GTPase
(EF-G) with GTP (EF-G·GTP) drives translocation through GTP hydrolysis
[28]. Translocation without EF-G still occurs, but is at least a thousand times
slower [29, 30].

An A site stop codon (UAA, UAG or UGA) initializes elongation termina-
tion through binding of class-I release factors, release factor 1 (RF1, cognate
to UAA and UAG codons) or release factor 2 (RF2, cognate to UAA and UGA
codons) [31]. The esther bond that binds the nascent peptide chain to the
P site tRNA is cleaved off by hydrolysis caused by the bound class-I release
factor. Subsequently class-II release factor 3 (RF3) binds in complex with GTP.
GTP hydrolysis at RF3 aids the release of tRNA, mRNA and class-I release
factors from the ribosome.

During ribosomal recycling, the small and the large ribosomal subunit
disscociate after binding of the ribosomal recycling factor (RRF) and subse-
quent EF-G·GTP binding, followed by GTP hydrolysis. Both subunits are then
re-used in other elongation cycles [32].

Elongation

While giving an overview of the elongation cycle, we will highlight computa-
tional studies of different aspects of the process [33]. Computer simulations of
ribosomes have been carried out for almost all sub-processes of the elongation
cycle [34].

The questions addressed by computer simulations of the ribosome reflect
the complexity of the fine-tuned elongation sub-processes and the complexity
of the ribosome itself, an asymmetric RNA-protein compound of more than
two hundred thousand atoms.

The first layer of complexity of nascent peptide chain elongation, and thus
the complexity of the simulation approaches, is reflected in the time-scales
its sub-processes span. They reach from pico-seconds for the proton shut-
tle mechanism of the peptide transfer reaction [35] to minutes required for
spontaneous tRNA translocation [29].

A second layer of complexity is encoded in the energetics of transloca-
tion. Subtle differences in free energies drastically alter the reaction pathway.
For example, a binding affinity difference between cognate and near-cognate
tRNA of a single hydrogen-bond regulates rejection or acceptance of an ac-
commodating tRNA at an error rate of one in ten thousand. Other examples
are provided by the fact that interaction of antibiotics with single ribosome nu-
cleotides inhibit bacterial growth or that single amino-acid mutations change
the translation speed by orders of magnitude.
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Figure 1.8: A site decoding, catalyzed by EF-Tu.(cf.Fig 1.7II) The sub-
processes of initial selection and proofreading. Initial binding and subsequent
codon reading (i) is followed by codon recognition (ii). Upon GTPase activa-
tion (iii), GTP hydrolysis (iv), leads to Pi release and EF-Tu rearrangements (v)
that allow for A site accommodation or, alternatively, tRNA release (vi). Once
the aa-tRNA is fully accommodated in the A site (vii), the nascent peptide
chain is transferred to the A site. Modified from Rodnina [36].

A site decoding

The first step of the elongation cycle is A site decoding (Fig. 1.7I). Simu-
lations of A site decoding and the factors involved were one of the first
and, to date, computationally most sampled aspects of translation, expe-
dited by the relatively small length-scales involved in A site decoding and
its paramount importance to translation. The key question to A site decoding
is, how minute free energy differences lead to discrimination between cognate
and non-cognate tRNAs, named “Pauling’s birthday party paradox” [37, 38].

The omnipresent kinetic and energetic fine-tuning, which we will inves-
tigate for the process of tRNA translocation, unravels itself here in the way
speed and accuracy of decoding are evolutionarily optimized [19]. Along
with tRNA aminoacylation, decoding is the key step in controlling translation
fidelity to an error rate of ≈ 10−3 [39]. A site decoding alone is more accurate
than 10−2 [40]. This readily implies a binding free energy difference between
cognate and near-cognate tRNA larger than 2 log 10 kBT ≈ 4.6 kBT in equi-
librium. This required energy difference is relatively large compared to the
expected free energy difference of the change of a single nucleotide base, e.g.
from cytosil to uracil. Two effects, both experimentally confirmed, explain this
behavior. First, codon reading is thermodynamically coupled to the whole
tRNA, not only its anti-codon [41]. Second, a non-reversible chemical step
allows to exploit the chemical difference between cognate and near-cognate
tRNA multiple times [19]. Indeed, GTP-hydrolysis separates two phases of
decoding, initial selection and proofreading (Fig. 1.8) [42, 43]. During each of
these, aa-tRNA can dissociate from the ribosome.
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Initial tRNA selection starts when, independent of the codon, the L7/L12-
stalk1 recruites complexes of aa-tRNA, EF-Tu, and GTP (aa-tRNA·EF-Tu·GTP)
to the empty A site (Fig. 1.8i).

The connection between residues to their evolutionary conservation was
used to classify contacts between tRNA and EF-Tu in the tRNA·EF-Tu complex
delivered to the ribosome [44]. We will observe the same connection between
tRNA-ribosome contacts and their conservation.

Though the first simulations of ribosomal proteins were carried out on
the C-terminal domain of L7/L12 [45, 46], initial tRNA recruitment by the
L7/L12-stalk outlines the bounds of simulation studies. Here, the lack of high-
resolution models of the complete stalk on the ribosome prevented further
investigation by computer experiments [47].

Codon recognition (Fig. 1.8ii) in the ribosomal A site is targeted in antibi-
otics development and has been studied along with antibiotic resistance in a
combination of structural and dynamic measurements [48, 49].

We will find that stochastic processes govern translation, in contrast to the
prevailing picture of a sequential progression from one static conformation to
another, as was found by in silico models of proposed stochastic gating at the
A site [50, 51, 52]. They reaffirm that codon recognition does not solely depend
on the local hydrogen bonding pattern between the three coding nucleotides,
but involves entropic contributions of the surrounding region. Further, single-
molecule Förster resonance energy transfer (sm-FRET) experiments suggested
that thermal fluctuations are crucial for cognate tRNA selection [53].

These studies used the region surrounding the A site for simulation. In
order to include the expected long-range coupling and the entropic contri-
butions from the ribosome surrounding in our simulations we use the whole
ribosome to model tRNA translocation. The significant role of these couplings
was confirmed by kinetic [54] and cryo-EM [55] measurements on the decod-
ing center.

A proposed long-range coupling mechanism in the ribosome is the al-
losteric threE site model of decoding, which proposed that an occupied E site
increases the fidelity during decoding. In consequence, we would expect that
the ribosome is transiently occupied by three tRNAs at the A, P and E site,
resepctively, as seen in crystal structures. This would render the exit of the
E site tRNA prior to decoding unlinkely, in contrast to the model of translo-
cation that we assume for our simulations (see Fig. 1.7). However, kinetic
measurements largely refuted the allosteric E site model [56, 57]. Further con-
troversies along the lines of structure-dynamics relationship were seen for a
new proposed mechanism on ribosomal decoding [58, 59].

Minute conformational changes in the decoding center upon successful
codon recognition on the small subunit of the ribosome lead to GTPase acti-
vation on the large subunit through a cascade of structural changes (Fig. 1.8iii).
The mechanism of GTPase activation in EF-Tu is disputed, explicit quantum
mechanical treatment of the chemically active region draws a diverse picture
[60, 61, 62]. Simulations show that this GTPase-associated center might pro-

1Ribosomal proteins of the large and small subunit are numbered sequentially and named L#
and S#, respectively.
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vide the necessary flexibility for the suggested large-scale L7/L12 movements
[63]. Similarily to our work, an all-atom model of the ribosome was refined
to cryo-EM data by Trabuco et al. [64]. From this model, a mechanism was
proposed on how ribosome induced conformational changes of the GTPase-
switch-region control GTP hydrolysis (Fig. 1.8iv) [65]. GTP hydrolysis is then
followed by phosphate (Pi) release and EF-Tu unbinding (Fig. 1.8v).

The second discriminatory kinetic step after the irreversible GTP hydrol-
ysis is proofreading (Fig. 1.8v). It ensures that binding of cognate tRNAs
is highly favoured over non- and near-cognate binding to the A site [66, 42]
(Fig 1.8vi). Only after aminoacyl-tRNA is fully accommodated in the A site,
the elongation cycle continues with the peptide transfer reaction (Fig. 1.8vii).

MD studies on A site accommodation upon proofreading showed that en-
tropic contributions together with conformational gating helps ribosomes sep-
arate cognate from near-cognate tRNAs during accommodation [67, 68]. The
recurring motif we will use also in our work is the relation computational
studies establish between conformation, dynamics and the statistics on the
underlying energy landscape and the connection of experimental rates with
simulation results [69].

After successfull A site decoding and accommodation, the CCA-ends of
both tRNAs are precisely positioned in the peptidyl transferase center, PTC.
Immediatly afterwards, the peptide transfer reaction transfers the nascent
peptide chain from the P site tRNA to the A site tRNA. By this reaction,
the nascent peptide chain is elongated by the one amino-acid carried by the
A site tRNA.

Peptide transfer

The peptide transfer center is the catalytic site of the large ribosomal subunit.
The interpretation of the role of the peptide transfer center experienced two
major paradigm shifts. The first paradigm-shifting discovery was that the
ribosome is a ribozyme [9]. The fact that its catalytic activity is performed by
RNA nucleotides, not protein, provides further evidence for the RNA-world
hypothesis [70]. The second shift occured upon the discovery of its general
catalytic activity, where it is now believed that the PTC is a versatile catalyst of
chemical reactions due to its ability to position substrates through electrostatic
and hydrogen-bonding interactions [35]. The ribosomes substrate catalysis
by entropy reduction [71] re-emphazises the importance of a combination of
structural and dynamical information to understand ribosome function.

Due to the bond-breaking and proton shuttle mechanism of the peptide
transfer reaction requires an explicit treatment of the involved quantum me-
chanics. Hybrid Quantum Mechanics / Molecular Mechanics simulations sug-
gested a variety of proton shuttle mechanisms [72, 73].

tRNA translocation

After the nascent peptide chain has been transferred to the A site tRNA, both
tRNAs translocate to their new binding sites as shown in Fig. 1.9. The mRNA
moves along with the tRNAs, thus exposing the next codon in the vacated
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Figure 1.9: Kinetic model of (a) EF-G catalyzed translocation (b) and hy-
brid state formation during tRNA translocation. (a) Upon peptide bond
formation (III, cf. Fig. 1.7), EF-G·GTP binding (i) promotes tRNA transloca-
tion through GTP hydrolysis (ii). After tRNA translocation and Phosphate
release (iii) the former A site tRNA now occupies the P site and the former
P site tRNA the E site (iv). EF-G·GDP (iv) and the E site tRNA (v) dissociate
from the ribosome, priming it for a next round of elongation (IV cf. Fig. 1.7).
(b) shows the proposed kinetic model of hybrid state formation.
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A site. This movement divides translocation in two steps, pre-translocation
and post-translocation. The concerted motion of mRNA and tRNA is acceler-
ated by EF-G binding and GTP-hydrolysis [28], but its details remain unclear
so far [74]. It is known however, that EF-G stabilizes the so-called hybrid states
[75, 76].

In contrast to the classic state, where both tRNAs are fully accomodatad in
the ribosomal A and P site on the small and large ribosomal subunit, hybrid
states as depicted in Fig. 1.9, are pre-translocation complexes, where the tR-
NAs moved towards their new respective binding sites on the large subunit,
but stay put on the small subunit [77, 75, 78]. Hybrid states are named A/P
for the tRNA bound to the A site on the small subunit and to the P site on the
large subunit and P/E, respectively. These hybrid states are rapidly occupied
after peptide bond formation. Peptidylation further increases the affinity of
tRNA for the A/P site and promotes EF-G binding [75]. Mutation studies
showed that A/P and P/E site movement are seperated events [79], which
suggests a kinetic model of hybrid state formation as depicted in Fig. 1.9,
where tRNAs fluctuate between classical and hybrid states [80, 78].

Earlier cryo-EM work visualized tRNAs in the A/P and P/E hybrid states
without bound factors [81, 82], and further found the P/E tRNA in flexible
conformation within the hybrid states [83]. The cryo-EM data we use in our
work, shows that pre-translocation classic and hybrid states comprise a con-
tinuum of ribosome conformations [6]. A sorting of these configurations ac-
cording to tRNA conformations lead to the categorization of pre-translocation
complexes into states pre1 through pre5, where the pre4 state corresponds to
the before-described hybrid state II.

The tRNA movement is coupled to the rotational movement of two small
subunit parts, the body and the head with respect to the large subunit [84,
85, 32]. Small subunit body rotation and head swiveling correlate with hybrid
state formation. This rotational movement occurs sponateously [86]. In our
study we will address whether tRNA movement or the small subunit head
and body movement dominate tRNA translocation.

Another movement that was found to correlate with P/E hybrid state for-
mation is the L1-stalk movement into a closed conformation into the ribosome,
where it contacts the P/E site tRNA [87, 88]. We will investigate the coupling
of the L1-stalk movement to tRNA motion and if, and in what way, the L1-
stalk drives the tRNA.

In contrast to the extensive computational studies on the A site, computa-
tional studies of translocation are scarce, due to the large scale of movement
and the unresolved role of EF-G in the process. The computational cost that
goes along with the large scale of the simulation system was partially circum-
vented using coarse-grained methods, based on shorter, thus less expensive,
all-atom simulations [89]. Another approach to reduce the computational cost
was to interpret cryo-EM maps using simulations of the movements of tRNA
in solution [83].

A ruggedness estimate of the free energy landscape for tRNA has been
given by a µs simulation of an intermediate state of translocation, based on the
difference between free and effective diffusion [90, 91]. The short time-scale
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diffusion in the energy landscape sees barriers of ≈ 1.7kBT. This indicates
that the necessary condition for using Kramers’ theory is fulfilled that the
free energy barriers exceed thermal flucutations for tRNA translocation in the
ribosome.

Elongation termination

Elongation is terminated by the recognition of a stop codon. This stop codon
recognition does not follow the established static base-pairing picture [92].
The binding free energy estimates from molecular dynamics simulations sug-
gest how the high specificity is achieved for binding of one protein to two dif-
ferent, cognate sequences [93]. This provides another example of a dynamic
picture complementing the static-picture, in this case the “tRNA-mimicry”
that emerged from previous studies based on X-ray data [94, 95, 96].
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2. Concepts and Methods

2.1 Energy Landscapes and Reaction Rates

To describe the rich dynamics of the ribosome and its parts, the tRNA and
L1-stalk movements as well as head and body rotations, we use statistical
mechanics and thereby describe tRNA translocation in terms of its macrostates
and the transitions between them.

During translation, the ribosome visits a series of metastable states, as
described by cryo electron microscopy and fluorescence measurements. We
connect computer simulation of biomolecules to biochemical measurements,
and make predictions of the dynamics between these states, not accessible to
experiments. Therefore, we derive relations between underlying statistical me-
chanics and the measurement of experimental observables. Numerous model
assumptions are neccessary to make this connection, which will be presented
along with the derivation.

We will conclude with an expression for the transition rates between meta-
stable states in the high friction limit under the assumption of memory-less
processes as an extension of Kramers’ transition rate theory to multiple di-
mensions. To arrive at an expression for the transition rates, we describe
diffusion on an energy landscape over a set of reaction coordinates. The free
energy landscape in turn is derived from the equilibrium properties of a ther-
modynamical system.

Generalized classical ensembles

An effective potential G, the free energy, for an equilibrium ensemble of ri-
bosomes in configuration x and momenta p is determined by its potential
energy E(x), its temperature T and given ensemble properties 〈Ai〉. The en-
semble properties are defined by the microstate occupation probability density
〈Ai〉 :=

∫
Ai(r)ρ(r)dr. An explicit expression for the microstate occupation

probability density ρ follows from the assumption of maximum entropy

ρ(x) = exp(−βE(x)−∑
i

λi Ai(x))/Z [97]. (2.1)

Here β = (kBT)−1 is used with the Boltzmann constant kB. Z normalizes
ρ, i.e. Z is the partition function for the given ensemble and the parameters
λi are chosen such that −∂ ln Z/∂λi = kB〈Ai〉. The effective potential over a
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Figure 2.1: Transition between two states described by reaction coordinates.
(a) Schematic contour plot of a free energy landscape. An appropriate choice
of a reaction coordinate well sepereates states A and B. The transition seam is
indicated by a gray line. (b) Free energy landscape after projection onto one
reaction coordinate.

configuration space subset Ω is then defined as

G(Ω) := −kBT ln
∫

Ω
ρ = −kBT ln ρΩ . (2.2)

Reaction coordinates

Figure 2.1 shows how the effective potential G provides a means to reduce the
system description to reaction coordinates X := f (x) by integrating over fast
degrees of freedom that are regarded noise,

G(X) = −kBT ln
∫

f (x)=X
ρ(x)dx . (2.3)

To reduce the vast conformational space of ribosome conformations, we de-
scribes the transitions between two states in the relevant subspace Ξ for this
transition.

For systems coupled to a heat-bath this time-scale seperation is valid when
the dynamics on the relevant subspace Ξ is governed by barriers in the ef-
fecitve potential that are larger than thermal fluctuations, min(GX∈Ξ)+ kBT �
max(GX∈Ξ) [98, 99].

To describe transitions by reaction coordinates X, we require that they
seperate the states i, j, i.e. each value of X can be assigned to either state. For
a correct treatment of the dynamics, we further require that the states are
not seperated in any subspace orthogonal to the reaction coordinates, ΩX =
{x| f (x) = X}.



2.1. ENERGY LANDSCAPES AND REACTION RATES 22

Probability density dynamics in an effective potential

Now that an effective equilibrium potential G(X) over reaction coordinates
is defined, a description for the dynamics of an arbitrary probability density
distribution p(X) in this potential is obtained, the Smoluchowski equation.

By discretization of the reaction coordainte space into states i, j the treat-
ment changes from probability densities ρ(X) to absolute probabilites Pi, Pj.
The time-dependent occupation probability of these states i, j is described by
the generalized Master-equation,

Ṗi = ∑
j

∫ t

0
wij(t− t′)Pj(t)− wji(t− t′)Pi(t)dt′ (2.4)

where wij(t) is the time-dependent transition probability for a transition from
j to i [100]. For future calculations we make the approximation of a memory-
less process in reaction coordinate space, which reduces the Master-equation
to Ṗi = ∑j wijPj − wjiPi.

The dynamics of the probability density distribution from the Master-
equation is obtained from the continuum limit. For our purpose we use
the high friction limit, where the momenta are described by a Maxwell ve-
locity distribution, i.e. p(X, Ẋ, t) = p(X, t) exp(−MẊ/2kBT) [101, 102]. We
further require that in the long-time limit, the obtained equation describes the
equilibrium probability distriubtion ρ(X) for all possible initial probability
distributions p(X). With these assumptions, the continuum limit yields the
Smoluchowski equation,

ṗ(X) = ξ−1∇ (∇+∇βG(X)) p(X), (2.5)

which describes the time dependent behaviour of the probability density with
a viscous drag ξ [103, 104].

Transition rates

Now dynamics of our biomolecular system will be described in terms of tran-
sition rates kAB between two meta-stable states A and B. For this we assume
that a single barrier X‡ seperates the two states which defines a first-order
saddle-point on the free-energy landscape G(X). Additionally we assume that
initially, all states in A are occupied according to the equilibrium occupation
probability and are unoccupied elsewhere.

With these assumptions, the rate of transition from A to B over the barrier
X‡ is given by the ratio between the populations in A and barrier X‡. The fur-
ther assumption of a harmonic well in A with a single minimum at X A

0 and a
quasi-harmonic barrier top eventually yields the transition rate approximation
used through the rest of this work [105, 106],

k ∝ ω
‡
1

∏d
i=1 ωA

i

∏d
i=2 ω

‡
i

exp(−∆G‡/kBT) , (2.6)

where ∆G‡ = G(X‡)− G(X A
0 ) and ωi denote the eigenvalues of the Hessian

of G, i.e. the curvature of the free energy surface at X A
0 and X‡, respectively.

ω
‡
1 is the curvature in along the transition direction over the barrier top.
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Table 2.1: Scope of molecular dynamics simulation. Adapted from van Gun-
steren [108].

Crystalline Solid State Liquid State Gas Phase
Macromolecules

Reduction to few degrees Essential Reduction to few
of freedom by symmetry many-particle system particles by dilution

Quantum possible hard possible
Mechanics

Classical easy Molecular dynamics trivial
Mechanics

Brownian dynamics

We change the treatment of our system from a probability density description
to the behaviour of a single system trajectory. From the requirement that
the ensemble limit of single system trajectories reproduces the Smoluchowsky
equation (2.5), the Brownian dynamics equation is obtained,

Ẋ = −ξ−1∇G(X) +
√

2β−1ξR, (2.7)

where R describes Gaussian white noise with zero mean and unit variance. 1

2.2 Computer simulation of biomolecules

Our goal is to understand the structure, dynamics and energtics i.e. the phys-
ical properties of the ribosome. When relativistic effects are neglected, the
most general treatment is to propagate its wave-function |ψ〉 via the time-
dependent Schroedinger equation,

H|ψ〉 = ih̄
d
dt
|ψ〉 , (2.8)

using its Hamiltonian H. By this equation all physical properties of the ri-
bosome are inherently described. Molecular dynamics simulations [109] is a
means to approximate the time-dependent Schroedinger equation to an extent
that allows for computationally feasable treatment of biomolecules.

Physical approximations

Three approximations of the Schroedinger equation make a numerical solu-
tion tactable for the simulation of biomolecules.

First, the Born-Oppenheimer approximation [110] seperates fast and slow
modes and thus reduces the dimensionality of the tensor-product space to

1Alternatively Brownian dynamics equations are derived as a simplification of the Langevin
equation [107]. We made the respective simplifying assumptions in deriving the Somuluchowsky
equation above.
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Table 2.2: Empirical terms that approximate the electron potential. The ki
denote the force constants, rij the distance between atoms i and j, Pn the
periodicity for the dihedral potential, γ its phase angle and Aij, Bij the van
der Waals interaction parameters.

Interaction Force Field Term Analogy

Bonded

bond stretching ∑bonds
1
2 kb

(
rij − r0

)2

bond angle vibrations ∑angles
1
2 kθ (θ − θ0)

2 kΘ

extraplanar motions ∑imp
1
2 kξ (ξ − ξ0)

2

dihedral torsions ∑dih
kφ

2 (1 + cos(Pnφ− γ))

Non-bonded
van-der-Waals ∑i,j−

Aij

r6
ij
+

Bij

r12
ij

Coulomb ∑i,j
qiqj

4πεrε0rij

that of the direct product of nuclei and electrons, |ψ〉 = |ψn〉|ψe〉 . Splitting the
Hamiltonian in a kinetic part of the nuclei and an electronic part, H = Tn + He,
the approximated Schroedinger equation for the wave function of the nuclei
|ψn〉 reads

(Tn + V (r)) |ψn〉 = ih̄
d
dt
|ψn〉 , (2.9)

where V(r) describes the dependence of the electronic part of the wave-
function on the positions of the nuclei r.

Second, force fields approximate the potential V (r) as a sum of interac-
tion functions as listed in Table 2.2. Additionally to non-bonded interactions
that describe interactions between all atoms, interactions between chemically
bound atoms are described with extra terms.

Third, instead of the time-development of the wave-function, only the
time-development of the expectation value of the nuclei positions is calcu-
lated. This approximation is performed through the Ehrenfest theorem. By
this approximation, the motion of the nuclei is described by Newtons equa-
tions of motion,

dr
dt

= v

dv
dt

= − 1
m
∇V (r) =

1
m

F (r) . (2.10)
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Figure 2.2: Periodic boundary conditions: A particle (red) in the unit cell
(black) and its periodic images (light red). When moving into one of the grey
cells it is shifted back to the black cell.

Numerical integration of the equations of motion

The leap-frog algorithm numerically integrates eq. (2.10) in a numerically sta-
ble, energy-conserving fashion. It uses the following Taylor expansion based
scheme2:

r(t + ∆t) = r(t) + ∆tv(t + ∆t/2) .

v(t + ∆t/2) = v(t− ∆t/2) +
∆t
m

F (r(t))

To ensure numerical stability the integration time step ∆t is chosen an order of
magnitude faster than the time-scale of the fastest motions in our simulations.
Since bond-stretching motions of hydrogen atoms are constrained with the
Lincs algorithm, and fast bond-angle vibrations with virtual sites, the next
fastest motions occur on a timescale of 40 fs. Thus we chose a 4 fs integration
time step.

Periodic boundary conditions

Surface effects due to the simulation of small systems are reduced by periodic
boundary conditions. As indicated in Fig. 2.2, all simulation particles remain
in a unit cell spanned by three linearly independent box vectors b1, b2, b3.
Periodic boundary conditions are implemented such that any time a particle
would leave the unit cell it will be shifted back by a linear combination of the
box vectors. Since all particles interact with their periodic images, a sufficient
distance between periodic images of the simulated biomolecule needs to be
maintained to avoid finite size effects. The number of simulated particles in-
creases with the simulation box size. Thus we chose a rhombic dodecahedron
as simulation box that minimizes the number of required solvent molecules
due to its near-spherical shape.

Electrostatics and Van-der Waals cut-offs

The number of non-bonded interaction terms scales quadratically with the
number of simulated particles, making this the computationally most expen-

2See [111] for how to cite this method.
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sive part of the MD simulation of large systems. Since the van-der-Waals-
interaction drops very fast with the distance, this interaction is cut-off at a
defined distance with no significant impact on the simulation results.

In contrast, cut-off approximations of long range electrostatic interactions
were found to significantly distort simulations of nucleic acids and proteins
[112, 113].

This limitation is overcome by Ewald summation that approximates elec-
trostatic interaction above a cut-off in reciprocal space, accounting for long-
range interactions while maintaining O(number of particles) run-time [114].

Pressure and Temperature coupling

To maintain pressure and temperature in our simulations, we use the Parinello-
Rahman [115] barostat and Nosé-Hoover thermostat [116], respectively, which
implement a weak coupling scheme. A friction term in pressure, respectively
temperature space ensures generation of the grand-canonical ensemble. In
contrast to the weak coupling schemes, the more robust Berendsen coupling
schemes [117] are used to drive systems to equilibium.

Set of starting coordinates

Our simulations rest on experimental data from X-ray diffraction experiments
(stored in the pdb-database [118]) and subsequent refinement against three-
dimensional cyro electron microscopy data as described below.

Limitations of Molecular Dynamics

Apart from the technical limitation of molecular dynamics to sampling lim-
ited phase space, molecular dynamics faces conceptual limitations from the
approximations made above.

The effective potentials in Molecular Dynamics simulations of biomolecules
are paretrized to reproduce their properties at standard conditions for tem-
perature and pressure. Simulations with parameters far from these conditions
will not match observations from other experiments.

By the way the force-field is implemented, chemical bonds cannot break
and form. Since quantum effects are subsumed in an effective potential, phe-
nomena as quantum tunneling, excited states, photon absorption, ionization,
resonance energy transfer, adiabatic transitions, de-localized electrons cannot
be inherently described. Yet, these effect are modelled by MD simulations
using multiple effective potentials.

Further, polarization is not explicitly described by Molecular Dynamics.

Numerical description of the diffusion in an effective potential

To numerically estimate transition rates in an energy landscape we solve the
Smoluchowsky equation by changing to the single system picture and nu-
merically integrating the Browninan dynamics equation (2.7). The Brownian
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Figure 2.3: Electron microscopy micrograph of a ribosome. The ribosome is
visible as the central dark grey region. Note the small signal-to-noise ratio.
Data courtesy of Niels Fischer.

dynamics equation is a stochastic differential equation, which we discretize
following the Euler-Maruyama scheme [119],

Xn = Xn−1 − ∆tξ−1∇G(Xn−1) +
√

2βξ∆tR . (2.11)

2.3 Cryo-EM fitting

Structure reconstruction form cryo electron microscopy

Cryo electron microsopy (cryo-EM) is an experimental technique that deter-
mines the structure of biomolecules through electron scattering on thin layers
of cryogenic samples [120]. During the imaging process high energy electrons
(100-300 keV) are scattered on the electric field of the nuclei of the sample.

The reconstruction of the three dimensional electron density poses an in-
verse problem. A direct solution to this inverse problem would yield a prob-
ability density distribution for each of the model parameters that are used
to describe the observed scattering effects, e.g., voxel-values on a three di-
mensional grid. The low signal-to-noice ratio of the cryo-EM micrographs
as shown in Fig. 2.3 and the large number of these (typically � 10 000) ren-
ders this computationally prohibitive. Instead, an interative procedure is used
that refines a small set of model structures to best match the two-dimensional
micrographs.

From each model, two-dimensional reference images are calculated. The
micrographs are then classified according to their cross-correlation with the
reference images [121, 6]. Following the classification, the procedure is re-
iterated with new scattering-density models that are reconstructed from the
micrographs in the subclasses.

Cryo-EM works under the assumption that the rapid freezing (104K/s) is
fast enough to maintain the structural ensemble at the initial temperature.
Though radiation damage is reduced through vitrification, it needs to be as-
sumed that the radiation impact on the sample does not alter its conformation.
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Figure 2.4: Canonical cryo-EM refinement routine. From the model atom
positions a density is derived by the convolution of the atom positions with a
three dimensional Gaussian function with an amplitude proportional to their
atomic number. This density is projected on a voxel grid by integrating of
the grid cells. The density values at the voxel is then compared to the values
obtained by cryo-EM through cross-correlation.

Refinement of cryo-EM densities

To describe the dynamics of a biomolecule in a state described by cryo-EM we
obtained the best matching set of atom coordinates to the cryo-EM data via a
method called cryo-EM refinement. Similiarly as above a direct solution com-
prises probability distributions for the position of each atom obtained from
the raw cryo-EM data, i.e. the complete set of two-dimensional micrographs.

The technical limitiations to this approach are overcome by four approxi-
mations. First, the reconstructed three-dimensional cryo-EM density, instead
of the two-dimensional micrographs, is used for refinement, greatly reducing
the amount of data compare to the raw micrographs. Second, instead of an
ensemble of structures with occupation probabilities assigned each, the sin-
gle structure with the highest assigned probability is used. Figure 2.4 shows
how in a third approximation, the probability for a structural model to fit to
the cryo-EM density is assumed to be proportional to the real space corre-
lation between the structural model convoluted with a Gaussian kernel and
the cryo-EM density map. Fourth, a force-field is used to refine the ribosome
models. This additional information is needed, because the cryo-EM maps
alone do not carry enough information to uniquely determine atom positions
in a physically meaningful way.

As force-field in our refinement procedure we used a dynamic elastic net-
work model [122] with additional constraints on the secondary structure of
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Figure 2.5: PCA in two dimensions. The coordinate system is orthogonally
transformed (φ), such that the covariance between the projections onto the
new vectors eigenvector1 and eigenvector2 is minimized. After Pearson [123].

the ribosomal RNA. This empirical model greatly reduces the computational
cost compared to a standard force-field where all long-range interactions are
taken into account.

2.4 Ensemble analysis

Principal component analysis

We perform the seperation of time-scales of ribosome motions, i.e., the seper-
ation of fast, noisy modes of ribosome motion from slow, relevant modes of
motion, in two steps. First, we perform an orthogonal coordinate transfor-
mation that minimizes the covariance between the transformed coordinates as
depicted for the 2-dimensional case in Fig. 2.5. Second, we sort these coordi-
nates according to their variance and chose the ones with maximum variance.
Technically, the coordinate transformation is obtained from diagonalizing the
covariance matrix of the data. The obtained eigenvalues correspond to the
variance of the data [123].

Axis and center of rotation for the rotation of a flexible body

The movement of the ribosome small subunit has been approximated as rigid
body rotation since the discovery of its ratchet-like movement during translo-
cation [84]. Subsequent studies divided this movement into small subunit
body rotation as well as small subunit head rotation, swivel, and tilt. Despite
the fact that ribosmal protein and RNA are flexible, an approximate descrip-
tion of these movements as rigid body rotations yields a reaction coordinate
that captures most of the flexibility of the small ribosome sub-unit [6].

Determination of pivoting point and axis of rotation has usually been done
manually or through an arbitrary definition of “core” residues that have the
least flexibility and a subsequent rigid body fit [32, 90].

Figure 2.6 shows our method to determine center and axis of rotation,
extended after [124], for a movement of atoms from positions x to x′. We
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Figure 2.6: Best fitting center and axis of rotation for the the rotation of
a flexible body. From the flexible movement of a set of atoms (movement
indicated by arrows from black atom positions to grey atom positions), we
extract the center and axis of rotation through a non-linear least-squares fit.
Panel (a) depicts the constraint used for fitting the center of rotation, where we
require that the standard deviation for all atoms from orthogonality of dx =
x′− x and p = dx/2− c and is minimal. Panel (b) shows the fitting constraint
to determine the axis of rotation w that requires the standard deviation for all
atoms from orthogonality between dx and w is minimal. Panel (c) depicts the
obtained parameters from the fitting procedurs, center of rotation and three
axis of rotation: the axis of largest rotation, the axis of least rotation and an
axis perpendicular to the previous as well as the respective rotation angles.

define the flexible body rotation center with the respective shift vector dx =
x′ − x as

argmin
c

∑
i
(dxi(dxi − 2c))2 . (2.12)

Now the same diagonalization approach as in the principal components anal-
ysis described above yields the center of rotation. Similarly, the axis of rotation
is determined from the solution to the following eigenvalue problem,

argmin
w

∑
i
(dxiw)2 = argmin

w
w

(
∑

i
dxidxT

i

)
wT . (2.13)

Here, the other two eigenvectors describe the axis of minimum rotation as
well as an axis perpendicular to the axis of maximum and minimum rotation,
which are also used to characterize the rotational movement. Overall we ob-
tain a center of rotation as well as three axis of rotation and the respective
rotation angles from the movement of atoms from one position to another. To
average the determined rotations from the many movements between single
snapshots in ensemble data, we use a quaternion-based average [125]. A plain
average is used for the center of rotation.

Transition Rate estimates

We will now describe how we estimated the free energy barriers between ri-
bosome translocation intermediates and a global attempt rate A as well as a
global barrier calibration factor c. This estimate is also laid out in the Supple-
mentary Information in [22], due to the space limitations in the supplement, in
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Figure 2.7: From a sparse sampling of an energy landscape in states A (red),
B (black), and C (blue) we estimate the transition rates ki→jbetween all pairs
of states.

Figure 2.8: Harmonic approximation (black) to the underlying energy land-
scape (grey) and effect of the global parameters c and ∆G‡

0 to the energy
barrier estimate ∆G‡

est . The unknown energy landscape underlying trajecto-
ries starting in states A, B is approximated by two harmonic functions with
mean µA,B and standard deviation ΣA,B.
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a very condensed way that, for example, only implicitely states how the mini-
mum free energy intersection point of two n-dimensional quadratic forms was
calculated. Thus, we now expand on the points that were only mentioned in
passing in [22].

Fig. 2.7 shows the sparse sampling of an energy landscape states A, B,
and C with trajectories x(t)A, x(t)B, and x(t)C and the respective tansition
rates kA→B, kA→C, kB→C, . . . indicated by arrows. We aim at estimating these
transition rates, even though no overlap in sampling these states has been
observed (cf. Fig. 2.7, States A and C).

We estimate transition rates from ensembles of trajectories {x(t)i} in three
steps. First, we estimate the transition state energy ∆G‡

est for transitions be-
tween all individual pairs of trajectories from a harmonic approximation to
the energy landscape using the respective trajectory, as shown in Fig. 2.8.

Second, we combine all local transition energy barrier estimates to esti-
mate two global fitting parameters, a gauge parameter c and global attempt
frequency ν̃ using estimated transition probabilities from transitions observed
in the trajectory ensemble.

Third, we estimate the transition rate between all pairs of states, using the
gauged transition state energy ∆G‡ = c∆G‡

est and global attempt frequency ν̃
using Kramers’ theory.

Harmonic Approximation to the Energy Landscape

The set of coordinates from sampling two states allows us to estimate the
energy barrier between them through a harmonic approximation to the en-
ergy landscape. First we link the covariance and mean of a trajectory to the
Taylor expansion of the local energy landscape, second we use the harmonic
approximations to find the isocommiter surface and the saddle point on it.

The Taylor expansion of an energy landscape at a local energy minimum
x0 is

G (x) = G(x0) +
1
2
(x− x0)

T S (x− x0) +O((x− x0)
3). (2.14)

The projection of a trajectory to lower dimensions is approximated by a mul-
tivariate Gaussian with mean µ and covariance matrix Σ

p (x) = p0 exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.15)

From G(x) = −kbT log p(x) it follows that

G (x) = G (µ) +
1
2

kBT (x− µ)T Σ−1 (x− µ) . (2.16)

Comparing eqn. (2.14) with eqn. (2.16) shows that the local harmonic approx-
imation to the energy landscape is given by mean and variance of the under-
lying probability distribution.

Figure 2.9 shows the harmonic apprixmation to two trajectories starting
in states A,B with means µA and µB and covariances ΣA and ΣB. Under the
assumption that our system shows the same diffusion behaviour on the en-
ergy landscape everywhere, GA(x) = GB(x) defines the iso-commiter surface,
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Figure 2.9: Energy barrier estimate from a harmonic approximation to the
energy landscape. A randomly generated energy landscape depicted in (a)
was sampled using a Metropolis-Monte-Carlo algorithmm, starting from two
low energy configurations. Each of the sampled point clouds was approx-
imated by their mean and covariance as described in (2.4). The result of
this quasi-harmonic approximation to the underlying energy landscape is de-
picted in (b). The grey line depicts the iso-commiter surface, the grey dot the
saddle point.

starting from which it is equally likely to end in A and B. The lowest energy
value on the iso-commiter surface

min
GA(x)=GB(x)

GA (x) . (2.17)

dominates the transition timescales and is used to estimate the transition rate
in Kramers’ rate theory introduced above. For free energy potentials of form
(2.16) for states A and B, a Lagrange multiplier approach,

∇x,λ (GA(x) + λ(GB(x)− GA(x)) !
= 0,

yields the neccessary and sufficient conditions to fulfill 2.17.
(

Σ−1
B −

λ− 1
λ

Σ−1
A

)
x‡ − Σ−1

B µB = 0

x‡T
(

Σ−1
B − Σ−1

A

)
x‡T − 2x‡TΣ−1

B µB+

µT
BΣ−1

B µB + 2 (GB(µB)− GA(µA)) = 0, (2.18)

where, without loss of generality, µA = 0. Though we found no closed form
analytical expression for 2.18, a numerical search on λ is straightforward.

The transition state energy estimate ∆G‡
est for a transition from state A to

B is given by ∆G‡
est = GA(x‡)− GA(µA).

Global Parameters in Trajectory Ensembles

We calibrate the estimated free energy barrier by a linear model

∆G‡ = c∆G‡
est + ∆G‡

0 (2.19)

with calibration factor c as depicted in Fig. 2.8 and an off-set ∆G‡
0 .
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Figure 2.10: A transition occured, when the normalized distance between
two states is smaller than unity.

With ∆G‡ as the lowest saddle point energy on the energy landscape and
an attempt rate ν to cross the barrier at a temperature T, Kramers’ rate theory
gives the transition rate as

k = ν exp
(
−∆G‡

kBT

)
. (2.20)

The use of the linear model for the free energy barrier callibration yields
our model for the transition rate

k = ν exp

(
−∆G‡

0
kBT

)
exp

(
−c

∆G‡
est

kBT

)
= ν̃ exp

(
−c

∆G‡
est

kBT

)
(2.21)

where the free energy barrier offset is absorbed into the global attemt rate
ν̃. To avoid overfitting of sparse data, we assume that the diffusiveness and
the ruggedness of the energy landscape is similar in all sampled regions and
therefore use one global value for the gauge factor c and the attempt rate ν̃.
We now extract the model parameters c and ν̃ by comparing the probability
to observe a transition between two states in simulation time t, using our
rate estimates and the two model parameters c and ν̃ to the actually observed
transition frequencies.

Determination of gauge factor c and global attempt rate

To obtain the transition frequencies between states in our simulations, we first
define transitions between two states, given our ensemble data. To this aim we
introduce a normalized distance between two trajectories shown in Fig. 2.10.
It is given as the minimum distance between any a(t) ∈ A and b(t) ∈ B,
normalized by the average distance between subsequent points,

dAB(τ) =
mint<τ |a(t)− b(t)|

〈|r(t)− r(t + ∆t)|〉t,{A,B}
. (2.22)

We consider a transition if dAB(τ) < 1. Given our model parameters c, ν̃
and the estimated free energy barrier, we can now express the probability to
observe such a transition within simulation time p(t) from reaction kinetics as

p(t) = 1− exp (−kt). (2.23)
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We determined k above in eq. 2.21, so that we can write the transition proba-
bility as

p(t, ∆G‡
est) = 1− exp

[
−ν̃ exp

(
−c∆G‡

est
kBT

)
t

]
. (2.24)

Now, a fit of this model to transition frequencies that were observed in the
ensemble data to observed in the simulations, allows to obtain the model
parameters ν̃ and c.
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3. Publications

3.1 g_contacts: Fast contact search in bio-molecular
ensemble data

Of particular interest to the function of the ribosome are areas where its func-
tional parts, e.g. tRNAs, the small and the large subunit, contact each other.
Due to the detailed all-atom description of the ribosome, finding contacts be-
tween ribosome parts is computationally very expensive when following a
naive approach – checking all pairwise distances of atoms in the small and
the large subunit requires more than 1.3 · 1010(87 352 times 154 576) distance
calculations for one snapshot of the trajectory. In the following paper we im-
plemented an approach that drastically reduces the run-time that is needed to
find contacts in large systems.

This article, published in “Computer Physics Communications”, was con-
ceived and written by myself under supervision of Helmut Grubmüller.
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Short-range interatomic interactions govern many bio-molecular processes. Therefore, identifying close
interaction partners in ensemble data is an essential task in structural biology and computational
biophysics. A contact search can be cast as a typical range search problem for which efficient algorithms
have been developed. However, none of those has yet been adapted to the context of macromolecular
ensembles, particularly in a molecular dynamics (MD) framework. Here a set-decomposition algorithm
is implemented which detects all contacting atoms or residues in maximum O(N log(N)) run-time, in
contrast to the O(N2) complexity of a brute-force approach.

Program summary
Program title: g_contacts
Catalogue identifier: AEQA_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 8945
No. of bytes in distributed program, including test data, etc.: 981604
Distribution format: tar.gz
Programming language: C99.
Computer: PC.
Operating system: Linux.
RAM: ≈Size of input frame
Classification: 3, 4.14.
External routines: Gromacs 4.6[1]
Nature of problem: Finding atoms or residues that are closer to one another than a given cut-off.
Solution method: Excluding distant atoms from distance calculations by decomposing the given set of
atoms into disjoint subsets.
Running time: ≤ O(N log(N))
References:
[1] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J.C. Smith, P. M. Kasson,
D. van der Spoel, B. Hess and Erik Lindahl, Gromacs 4.5: a high-throughput and highly parallel open source
molecular simulation toolkit, Bioinformatics 29 (7) (2013).

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) integrators allow simulations of large
bio-molecular systems comprising millions of atoms on nanosec-
ond to millisecond time scales [1,2]. These simulations produce a

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
✩✩ This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.
∗ Corresponding author.

E-mail addresses: cblau@gwdg.de (C. Blau), hgrubmu@gwdg.de
(H. Grubmuller).

substantial amount of trajectory data, which typically consist of
104–106 structure ‘‘snapshots’’ (frames). The computational effort
to generate the trajectory data scales with O(N log(N)), where N
is the number of simulated particles. Efficient analysis tools to ex-
tract certain observables from these data are required that exhibit
a comparable scaling behavior to the algorithms that generate the
trajectory data.

Identifying all atoms of a solute molecule which interact
with the solvent, or all close atoms from different subunits of
a molecular complex, is a recurring task. From a computational
perspective, these tasks require one to identify all pairs of atoms
that are closer to one another than a defined minimum contact
distance. This task has been described as a spherical range search
problem [3].

0010-4655/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.07.018
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Fig. 1. Decomposition reduces the number of distance calculations during the contact
search between two sets of atoms. (a) The number of required distance calculations
(black lines) is reduced by decomposing the set of atomsA (left) into disjoint subsets
A1, A2 (right). The distances to b are only calculated if b lies within the bounding
box of the atoms in Ai or is closer to the bounding box than the minimum contact
distance d, indicated by the width of the yellow and gray frames. (b) Generalization
of (a) to an arbitrary set B. Another bounding box of the set B is determined and
checked for overlap with A. (c) In the next step, the biggest remaining subset is split
along the median. The resulting subsets of B are again checked for overlap with A.
(d) The implemented set-decomposition scheme given in pseudo-code.

Here, we describe the efficient implementation of an algorithm
to obtain contacting atom pairs of two sets of atoms and respective
trajectory contact frequencies. The modified k-dimensional tree
approach employed has a worst-case run-time of ∝ O(N log(N))
for two sets of sizeN comparedwith a run-time∝ O(N2)of a brute-
force approach. This high efficiency is achieved by excluding sets
of distant atoms from the distance calculation. Combined with the
excellent scaling properties of the method on parallel machines,
this advantage will be particularly pronounced in future exascale
computing applications.

The routine is implemented within gromacs [4]. Due to the
versatile implementation, it can also be applied to other three-
dimensional contact searches. Extension to higher dimensions is
straightforward.

2. Methods

2.1. Task

Given two sets of labeled atoms, A = {ai} and B = {bj}, and a
minimum contact distance d, the task of the algorithm described
here is to identify all contacting atom pairs, i.e., all pairs of atom
indices {(i, j)} with ∥ai − bj∥ < d. A brute-force approach would
require the calculation of the Euclidean distance between all pos-
sible pairs of atoms. The set decomposition scheme implemented
here drastically reduces the number of necessary distance calcula-
tions and therefore the run-time.

2.2. Algorithm

For simplicity of presentation, we first assume the special case
where one of the two sets, B, contains only one atom b (Fig. 1(a)).
This case will subsequently be generalized to arbitrary sets A, B
(Fig. 1(b), (c)).

As a first step, the minimum bounding box (bbox, yellow) of
set A with sides aligned to the x, y, and z axes is determined. If
the distance of b to the box boundary along the direction of the
three coordinates exceeds a given contact distance d, b is not in
contact with A, and the contact search terminates. Otherwise, A is
decomposed into two subsets A = A1 ∪A2 [3]. If the distance of the

two child bboxes (gray, yellow) of subset A1 to b or A2 to b exceeds
d, the respective subset is discarded. Alternatively, the child bbox is
further decomposed into two disjoint subsets (not shown), and so
on. Decomposition is terminatedwhen all subsets contain less than
a given minimum number of atoms. As a final step, the distances
of b to all atoms in the remaining subsets are determined, and the
indices i are stored for which ∥ai − b∥ < d.

Fig. 1(b) generalizes the above decomposition procedure to a
set B comprising more than one atom. In this case, the bbox is also
determined for B (blue), and B is also recursively split into subsets.
For each subset Bq, all sets Ap overlappingwith Bq are stored.When
the decomposition terminates, only the distances for atompairs i, j
in stored pairs of sets Ap, Bq need to be calculated.

2.3. Application to ensemble data

The algorithm is applied to each frame of a given trajectory.
Atom pair contacts are counted each frame. From these, the con-
tact frequency is calculated by dividing the contact count by
the number of frames analyzed. In addition to atom contact fre-
quencies, residue contact frequencies are determined by defin-
ing two residues to be in contact if any of their respective atoms
are in contact.

2.4. Efficiency

Four particular properties of the implemented algorithm render
it efficient. First, subsets are decomposed along the median atom
coordinates, which allows for the application of the median sort
algorithm [5] such that the number of atoms in each subset is bal-
anced in minimum run-time. Second, the order of atoms is kept
from the previously analyzed frame. Thus the sorting effort is re-
duced if similar frames are analyzed. Third, after splitting a set Ap
into subsets Ap1 , Ap2 , overlap with subsets Bq ⊂ B only needs to be
checked if Bq overlapped with Ap in the previous step, thus saving
a large fraction of overlap checks for newly generated sets. Fourth,
decomposition is stopped as soon as the brute-force approach to
identify contacts between subsets Ap, Bq becomes on averagemore
efficient than further decomposition at an empirically determined
upper boundary for the minimum set size nmin.

3. Software structure

The contact search algorithm described here is implemented in
C99. It uses the gromacs application programming interface (API)
provided with the MD package gromacs 4.6 [4].

4. Run description

4.1. Data input

Input arguments are trajectory file names (flagged -f), a gro-
macs index file name that contains two index groups specifying
each set of atoms (-n), a floating-point number that holds themin-
imum contact distance in nm (-d, by default d = 0.3 nm), and the
threshold for the largest number of atoms in any node (-bsize).
If the option (-resndx) is chosen, a gromacs structure file (-s) is
read.

4.2. Optional switches

The optional switch -nopbc ignores periodic boundary condi-
tions, speeding up the calculation; -resndx calculates the con-
tacts between two groups of residues instead of two groups of
atoms.

4.3. Data output

Contact frequencies are written to an output file (name given
in -o). If the flag -resndx is set, an additional index file (name
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given in -on) is written, which contains one index group for each
contacting residue and its atom indices.

4.4. Example runs

We performed example runs on a typical test case as well as on
a worst-case scenario.

A typical case is provided by a simulation of adenosine triphos-
phate (ATP) molecules in solution which bind to ribonucleic acid
(RNA) [6]. We used an MD simulation of a solvated RNA molecule
comprising 1166 atoms and two ATP molecules in solution com-
prising 86 atoms. The atom pairs and contact frequencies of RNA
and ATP that are closer than d = 0.3 nm were determined for
20000 frames of the simulation. The index-file reads:
[ RNA ]
1 2 3 4 5 6 7 8 9 10 11 12 13
...
1161 1162 1163 1164 1165 1166
[ ATP ]
1167 1168 1169 1170 1171 1172
...
1248 1249 1250 1251 1252 1253 .

The command to analyze the given trajectory traj.xtc is:
g_contacts -f traj.xtc -n index.ndx .

A worst-case scenario is provided by two highly overlapping
sets of atoms, where many set decompositions are required, and
only a few subsets can be excluded from the contact search. The
example considered here is a contact search in trajectories of a 1 ns
simulation of TIP3P water in a periodic cubic water box of 5, 6, 7,
8 and 9 nm length (i.e., 12 426, 21483, 34251, 51393, and 72768
atoms, respectively), which were screened for contacts between
sets of N consecutively labeled atoms. Contacts were searched
between N = 1, 21, 41, . . . , 981 atoms. The default distance cut-
off of d = 0.3 nm was applied.

The respective index-file for N = 21 and a 12426 atom simu-
lation reads:
[ group_1 ]
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21
[ group_2 ]
6213 6214 6215 6216 6217 6218
...
6228 6229 6230 6231 6232 6233 .

The analysis of the trajectory stored in traj.xtc was per-
formed issuing the following command:
g_contacts -f traj.xtc -n index.ndx .

The residue-based contact search determines contacts between
water molecules, and was performed using
g_contacts -s traj.gro -f traj.xtc -resndx .

5. Comparison with other methods

To compare the set-decomposition algorithm and the brute-
force approach, the CPU clock cycles were counted that were
required for the respective contact search and the storage of the
contacts, excluding trajectory-file reading routines.

For the system containing ATP and RNA, the required CPU cycles
for contact search and storage were recorded for 101 analyzed
frames, which were analyzed every 0.2 ns in a 20 ns trajectory. A
speed-up of 9.1-fold was obtained for the implementation of the
set decomposition algorithm over the brute-force approach.

In the water box simulation, the required CPU cycles were
averaged over the analysis of 45 frames each. Fig. 2 illustrates that
our approach exhibits the expected N log(N) scaling, even in this

Fig. 2. Scaling for the set-decomposition approach versus a brute-force contact search
between two sets of N atoms for a cubic simulation box of 5 nm, 6 nm, . . ., 9 nm and
d = 0.3 nm containing water molecules. The number of CPU cycles (rescaled) used
exhibits an N log(N) scaling for the set-decomposition scheme (blue), while the
brute-force algorithm (red) scales with N2 . The gray inset shows the ‘‘cross-over’’
regionmagnified. The inset above shows the number of CPU cycles used normalized
to N log(N).

worst-case scenario. In contrast, the brute-force approach scales
quadratically. For smaller boxes, a deviation from the ideal scaling
behavior is observed. We attribute this deviation from N log(N)
scaling to the fact that the number of contacts increases with
decreasing box-size. The sorted list of lists approach employed for
book-keeping of the contact pairs found results in a slightly worse
overall complexity than N log(N) when very many contacts are
found. Further, set decomposition works more efficiently if the
subsets are less likely to overlap, which is the case for larger water
boxes, explaining the different scaling offsets.

In the current implementation, the ‘‘cross-over’’ in efficiency
between the set-decomposition algorithm and the brute-force
algorithm (Fig. 2) is seen at set sizes of ≈40 atoms each,
where the set-decomposition algorithm becomes faster. The set-
decomposition algorithm reaches a speed gain of about ten-fold at
≈900 atoms per set.
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3.2. ENERGY BARRIERS AND DRIVING FORCES IN TRNA

TRANSLOCATION THROUGH THE RIBOSOME

3.2 Energy barriers and driving forces in tRNA translo-
cation through the ribosome

In the following publication we describe how tRNA translocate through the
ribosome through a combination of MD simulations, cryo-EM, X-ray data,
spectroscopic measurements and bioinformatics analysis. In this publication I
share first authorship with Lars V Bock. For this publication I predominantly
contributed

• Transition rate estimates

• Determination of a kinetic sequence of states

• Check of stereochemical parameters of the models

• Quantification of 30S head and body rotation

I made essential contributions to

• Writing of the manuscript

• Figure preparation

• Refinement of the atomic models against cryo-EM maps

• Comparision to recent crystal structures

• Definition of reaction coordiantes for collective motions

• Check of conservation of contact residues

• Interaction enthalpy estimates

“The proposed manuscript comes across as a summary of a Magnum opus thesis
in which gaps are left in the foundations, even with a supplement that is over-
whelming in size. [. . . ] As it stands, it is impossible to know whether the plausible
conclusions are the result of robust ribosome physics shining through unsubstanti-
ated methodology, or a happy accident that might prove irreproducible.”
Anonymus
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Ribosomes are molecular machines that synthesize proteins from 
aminoacyl tRNAs, using mRNA as template. After formation of a 
peptide bond, the two tRNAs bound to the aminoacyl (A) and pep-
tidyl (P) sites on the small (30S) and large (50S) ribosomal subunits 
translocate by more than 7 nm to the P and exit (E) sites, respectively, 
while the next mRNA codon moves into the A site (Fig. 1a). During 
translocation, tRNAs move on the 50S subunit into the hybrid A/P 
and P/E positions1 with a concomitant rotation of the 30S subunit 
relative to the 50S subunit2–4. The rate-limiting step of translocation 
is the displacement of the codon-anticodon complexes on the 30S 
subunit; this, followed by the reversal of the subunit rotation, yields 
the post-translocation complex. Translocation is promoted by elonga-
tion factor G (EF-G) and is driven by GTP hydrolysis. In the absence 
of the factor, spontaneous, thermally driven tRNA translocation can 
occur5–8, and this seems to involve the same intersubunit interactions 
that occur in the presence of EF-G9. Spontaneous translocation is an 
equilibrium process, in which the tRNAs make rapid, spontaneous 
excursions in both forward and backward directions5,6,10. Preferential 
directionality is determined by the affinities of the tRNAs for their 
respective binding sites5,6. The process of translocation entails fluc-
tuations of tRNAs4,11–14 and of the components of the 50S subunit 
such as the L1 stalk3,15–17. A recent cryo-EM work revealed a large 
number of different conformational states for spontaneous, thermally 
driven tRNA movement through the ribosome10. However, precisely 
how the thermal fluctuations of tRNAs and of parts of the ribosome 

cooperatively drive the tRNA movement is unclear. It is also unclear 
whether and how synchronous movements—such as those involving 
intersubunit rotations, the L1 stalk and tRNAfMet—are coupled to one 
another. Furthermore, it is unknown how efficient tRNA handover 
from one binding site to another is achieved, despite the consider-
able structural changes along the translocation path. To address these 
questions, we combined data from X-ray crystallography and single-
particle cryo-EM with molecular dynamics (MD) simulations.

RESULTS
Structural	models	of	translocation	intermediates
We refined crystal structures of E. coli ribosomes18 against 13 
selected cryo-EM density maps10 of ribosomes assembled in the post- 
translocation state, with P-site fMet-Val-tRNAVal (P/P state) and 
deacylated tRNAfMet in the E site, and the tRNAs spontaneously moved 
into their A/A and P/P states, respectively5 (Supplementary Fig. 1,  
Supplementary Video 1 and Supplementary Table 1, models and 
refinement described in Supplementary Note 1). Several flexible 
structure-refinement methods have been developed19–23. In a recent 
independent benchmark study24 comparing four methods20–23, the 
DireX refinement method used here was shown to produce on average 
the most accurate results23. All four methods were shown to yield high-
quality atomic models from a combination of high-resolution crystal 
structures and low-resolution data. Indeed, an independent MD-
based refinement of the pretranslocation (pre) state pre1b cryo-EM  
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Energy barriers and driving forces in tRNA translocation 
through the ribosome
Lars V Bock1,8, Christian Blau1,8, Gunnar F Schröder2,3, Iakov I Davydov4, Niels Fischer5, Holger Stark5,6, 
Marina V Rodnina7, Andrea C Vaiana1 & Helmut Grubmüller1

During	protein	synthesis,	tRNAs	move	from	the	ribosome’s	aminoacyl	to	peptidyl	to	exit	sites.	Here	we	investigate	conformational	
motions	during	spontaneous	translocation,	using	molecular	dynamics	simulations	of	13	intermediate-translocation-state	models	
obtained	by	combining	Escherichia coli	ribosome	crystal	structures	with	cryo-EM	data.	Resolving	fast	transitions	between	states,	
we	find	that	tRNA	motions	govern	the	transition	rates	within	the	pre-	and	post-translocation	states.	Intersubunit	rotations	and	
L1-stalk	motion	exhibit	fast	intrinsic	submicrosecond	dynamics.	The	L1	stalk	drives	the	tRNA	from	the	peptidyl	site	and	links	
intersubunit	rotation	to	translocation.	Displacement	of	tRNAs	is	controlled	by	‘sliding’	and	‘stepping’	mechanisms	involving	
conserved	L16,	L5	and	L1	residues,	thus	ensuring	binding	to	the	ribosome	despite	large-scale	tRNA	movement.	Our	results	
complement	structural	data	with	a	time	axis,	intrinsic	transition	rates	and	molecular	forces,	revealing	correlated	functional	
motions	inaccessible	by	other	means.
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map by one of the alternative methods25 
resulted in a structure very similar to that 
obtained with DireX, with an r.m.s. deviation 
of 3.2 Å (Supplementary Notes 2 and 3).

Validation	of	the	models
We first assessed the quality of our structural models (Fig. 1b).  
The models of the pre1a state closely resemble the crystal struc-
ture of the ribosome trapped in the classical state26, with an r.m.s.  
deviation of 4.9 Å for the whole ribosome. The structural changes 
during translocation between the classical state26 and the other  
pretranslocation states are captured by r.m.s. deviations of up to  
11 Å. After the refinement was completed, the structure of one late-
pretranslocation state was reported26, with the P-site tRNA in the 
hybrid P/E position and the ribosomal subunits rotated to a high 
degree; this offered the possibility of testing the quality of one of 
our structure predictions. Comparison of the pre4 state with this 
crystal structure gave an r.m.s. deviation of 4.7 Å for the whole ribo-
some complex and 3.5 Å for the tRNA-binding region. Apparently,  
our refinement procedure yielded an accuracy of the pre4 model  
similar to that of the classical pre1 model directly derived from an  
X-ray structure in the classical state. All other states showed larger 
deviations, as expected for structurally distinct intermediates. 
The positions of the tRNAs were accurately predicted, particu-
larly in the functionally relevant anticodon and CCA-end regions 
(Supplementary Fig. 2a). These independent quality checks also sug-
gest that the models of the other pre- and post-translocation states, 
for which no crystal structures exist, are similarly accurate. The agree-
ment of the models’ local stereochemical parameters with those of 
available crystal structures (Supplementary Table 2) confirms their 
similar stereochemical quality.

Large-scale	conformational	motions	of	the	ribosome
The 13 structural models, grouped into nine major pre- and post- 
translocation (post) states on the basis of tRNA positions, revealed details 
of tRNA movement as well as large collective motions of the whole ribo-
some on slow timescales, of seconds to minutes, accessible to the cryo-EM 
experiments. Structural transitions and interactions along the transloca-
tion pathway are shown in Figure 1. Six selected motions are indicated 
(Fig. 1a) and characterized (Fig. 1c,e). The movement of tRNAVal between 
the A and P sites and of tRNAfMet between the P and E sites as well as the 
concomitant movement of the L1 stalk (comprising L1 protein bound to 
nucleotides 2084–2206 of 23S rRNA) are quantified (Fig. 1c).

Understanding of how the ribosome controls tRNA translocation 
requires (i) resolution of its fast conformational motions, (ii) determi-
nation of the rates of these motions and (iii) uncovering of the under-
lying molecular driving forces. To this end, we carried out all-atom 
explicit-solvent MD simulations of the entire ribosome for the 13 pre- 
and post-translocational models ( Supplementary Video 2, MD setup 
and simulations described in Supplementary Note 1). The system 
comprised ~2.2 million atoms, and the simulations spanned a total of 
>1.8 µs. The r.m.s. deviation during the equilibration simulations of 
each of the 13 structural models served as a third independent control 
(Supplementary Fig. 2b). Large r.m.s. deviations have been shown to 
point to inaccurate structures27. For all simulations, the r.m.s. deviations 
from the respective starting structure remained small and comparable 
to the deviations in the simulation started from the crystal structure.

We first analyzed the global swiveling and tilting motions of the 
30S head10,28 and asked how quickly their intermediate translocation  
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Figure 1 Structural transitions and interactions 
along the translocation pathway. (a) Left, 
schematic of tRNAVal, tRNAfMet and L1-stalk 
motions (indicated by arrows). Right, schematic 
of 30S head and body rotations. (b) Backbone 
r.m.s. deviation (r.m.s.d.) between the MD 
structural models of 13 intermediate states  
of translocation (substates are denoted by a  
and b) and two crystal structures26 (solid,  
whole ribosome; dashed, tRNA-binding region).  
(c) Motions of tRNAs and L1 stalk quantified  
by reaction coordinates (R. c.) for the 13 states. 
Arrows denote directionality of motions as  
in a; black bars indicate the fluctuation range 
covered by each simulation; colored bands 
denote interaction enthalpies. (d) Estimated 
intrinsic transition rates (denoted by line 
thickness) between intermediate states of 
translocation (circles) for motions identified  
in a. (e) Changes in the angles of the 30S head 
tilting, swiveling and 30S body rotation. Black 
bars indicate the fluctuation range covered by 
each simulation. (f) Molecular driving forces 
between L1 stalk and tRNA. Two structures 
representing the range of distances from 
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conformations. Distance dependence of the 
potential of mean force (PMF, black line, with 
errors in gray) and interaction enthalpy (circles, 
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and L1 stalk. A mechanical analog of the 
repulsive (sketched gray line, red region) and 
attractive (green region) regimes is shown below.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1392	 VOLUME 20 NUMBER 12 DECEMBER 2013 nature structural & molecular biology

a r t i c l e s

states interconvert. To this end, we deter-
mined pivot points, rotation axes and angles 
for 30S head and body motion (Fig. 1e; reac-
tion coordinates described in Supplementary 
Note 2). During the transition from pre1 to 
pre5, the angles of 30S head tilting and body 
rotation gradually increase before returning to low values in the pre5-
post1 transition. In the post3 state, the rotation angles are even lower 
than in pre1 or post1, and they finally return to their initial value in 
post4, thus closing the conformational cycle of the 30S subunit due 
to tRNA release from the E site. As can be seen from the amplitude of 
rapid (>107/s) fluctuations extracted from the simulations, large-scale 
motions occur not only on the millisecond time scale accessible to 
single-molecule experiments29 but also on the submicrosecond time 
scale. Moreover, the large overlaps between the fluctuation ampli-
tudes of several adjacent states suggest fast transitions between these 
states, in particular for 30S head swiveling. Conversely, lack of an 
overlap between adjacent states (for example, between pre4 and pre5 
or between pre5 and post1 for tRNAVal) indicates transitions between 
states that are slower than 100 ns.

Slow	tRNA	movement	governs	overall	transition	rates
To determine which of the observed motions limit the overall intercon-
version rates between the states, we quantified the overlaps between 
all states and translated them into free-energy barriers and intrin-
sic (order of magnitude) transition times of the individual collective 
motions (Fig. 1d, Supplementary Note 2 and Supplementary Fig. 3).  
Whereas individual motions may be intrinsically fast in isolation, their 
coupling to slower motions limits the respective overall transition 
rates. Accordingly, we used the slowest transition between each pair 
of states in Figure 1d to estimate the overall transition rates. For all 
transitions between states with the exception of post1-post2, the slow-
est estimated rate is markedly slower than microseconds. This result 
agrees with rates determined by bulk kinetics30,31 and single-molecule 
studies32–34 for tRNA translocation (milliseconds) as well as with 
those for L1 stalk–tRNA interactions12 and intersubunit rotation29 
(seconds). A cluster of high free-energy barriers (i.e., slow transition 
times) is found at the transition from pre to post states, thus support-
ing the notion that the pre-to-post transition is the rate-limiting step of 
spontaneous translocation5,10. For the tRNA transitions, low transition 
barriers for tRNAVal within the pre and post states mostly correlate 
with high barriers for tRNAfMet and vice versa. Together with the fact 
that the movements of the two tRNAs are coupled by base-pairing to 
the mRNA (Supplementary Fig. 4), this finding implies that, although 
intrinsically rapid, the excursions of tRNAfMet between adjacent states 
(for example, pre5b and post2a) are governed by the slow movement 
of tRNAVal. Therefore, tRNA motion governs not only the overall rate 

of translocation35 but also, to a large extent, the dynamics within the 
pre and post states. In contrast, intrinsic rates for L1-stalk dynamics 
were present in the submicrosecond range, except for the slower move-
ment from pre to post and from pre2 to pre3. Notably, our simulations 
revealed a large number of alternative microsecond and submicrosec-
ond transitions of the tRNAs and the L1 stalk (Fig. 1d).

Rapid	intersubunit	rotations	couple	to	slow	tRNA	movement
All individual transition barriers for 30S motions turned out to be 
remarkably low, such that the intrinsic motions of the 30S subunit, 
despite its large size, take place in the submicrosecond range, similarly 
to the movements of the L1 stalk. The slowest 30S head transitions 
were found between states pre2 and pre3 as well as between pre5 and 
post1, consistent with barriers inferred from cryo-EM and biochemi-
cal experiments5,10. The abundance of low barriers for motions of 
individual components seems to be a general feature of ribosome 
dynamics, and this underscores the important role of coupling 
between collective motions of both tRNAs and the ribosome3.

One example of such coupling is the stabilization of high inter-
subunit rotation by tRNAs, which has been previously observed29. 
Our simulations showed that, in state pre5b, the large head tilting 
and body rotation (angles at ~20° and ~15°, Fig. 1e) are stabilized by 
strong interactions involving the tRNAs and a network of contacts 
between the two subunits, comprising L5 on the 50S subunit and S13 
and S19 on the 30S subunit (Figs. 1c and 2b). In the classical state, 
these interactions form bridge B1b13 (sketched in Fig. 2a). Removal 
of the tRNAs in state pre5b should thus weaken these intersubunit  
interactions with respect to the pre1 state. As a consequence, the 
highly rotated states should also be destabilized, and a smaller  
population of large rotation angles should thus be observed. To 
test this hypothesis, we carried out additional MD simulations of  
ribosomes in the pre5b state from which the tRNAs were removed 
(Fig. 2b,c; rapid angular rearrangement described in Supplementary 
Note 3). These simulations indeed showed weakened interactions 
between the B1b residues (Fig. 2a,b) as well as decreased 30S  
body-rotation angles (Fig. 2c and Supplementary Fig. 5). Indeed, 
additional cryo-EM data of vacant ribosomes (Supplementary  
Note 1) revealed a markedly reduced population of high body- 
rotation angles (~50% for angles of 10° and above, Fig. 2d). Apparently, 
our structural models and simulations are sufficiently accurate to  
capture the underlying small energy differences. A similar effect 
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on body rotation should be seen for weakened intersubunit inter-
actions, for example, in mutation of the charged L5 residues R109, 
R111, D143 and D146 to uncharged residues. Indeed, mutation of the 
corresponding residues in yeast affects translational fidelity36. Taken 
together, these results indicate that previously observed correlated 
motions29 are causally connected and explain this coupling in terms of  
molecular interactions.

Kinetic	sequence	of	translocation	intermediate	states
The transition-rate estimates determined from the simulations  
(Fig. 1d and Supplementary Fig. 6a) enabled us to add time infor-
mation to the sequence of states that was previously determined 
by Fischer et al.10 from structural similarity only. To single out the 
sequence of states that best reflects the motion of the ribosome along 
the translocation pathway from all (13 – 1)! = 479,001,600 possible 
linear kinetic sequences that can be formed from permutations of the 
12 available conformational states with two tRNAs, we calculated for 
each of these sequences the overall progression rate from the barrier 
heights for all five ribosomal components shown in Figure 1a. The 
sequences with the fastest progression rates turned out to be very sim-
ilar to the one obtained purely from structural similarity of the tRNAs, 
thus showing that this sequence reflects the kinetics of the system 
(kinetic sequence of states in Supplementary Note 2). Interestingly, 
removal of any state from this sequence (except pre5b) slows down 
the progression rate, a result underscoring the kinetic relevance of 
all states (with the possible exception of pre5b). A systematic scan 
through all 31 possible subsets of the five conformational motions 
considered in Figure 1 (Supplementary Note 2 and Supplementary 
Fig. 6b) confirms the initial suggestion (based on Fig. 1d) that trans-
location is limited by the motion of the tRNAs. We note that although 
the preferential overall direction of movement in our experiment is 
backwards, Fischer et al.10 found that different substates within the 
ensembles of pre or post states were in rapid equilibrium, and thus 
at any given time the ribosomes were undergoing transitions in both 
directions, such that forward and backward directions were equiva-
lent. Similarly, detailed balance also holds for our simulations.

L1	stalk	links	30S	rotation	to	translocation	by	‘pulling’	tRNA
Having identified the tRNA motions as the main determinant for 
translocation efficiency, we expected to find mechanisms that acceler-
ate the rates of these translocation motions. One obvious candidate 
involves the L1 stalk, which has been suggested to be important for 
translocation3,4. The L1 stalk forms contacts to the tRNA4,11–13,15,16 
as well as to proteins S7 (30S head) and S11 (30S body) (Figs. 1c,  
3 and 4). In the pre1 and pre2 states, the L1 stalk is found in an open 
conformation. In the pre3 state, interactions with S11 are weakened, 
and the 30S head tilts (Fig. 1e), moving S7 into a position that allows 
it to contact the L1 stalk in the closed conformation. This presumably 
shifts the L1-stalk equilibrium toward the E site, where it forms strong 
contacts to tRNAfMet (Fig. 1c). Upon decreasing of the tilting angle in 
post1, contact to S7 is lost, and the L1 stalk moves toward the open 
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conformation, maintaining its contact to the tRNAfMet throughout 
the post states.

Because structural analyses alone do not provide evidence on 
whether the L1 stalk accelerates tRNA translocation, we needed to 
establish that the concerted motion is actually driven by the L1 stalk 
and not by the tRNA. We calculated the underlying molecular driv-
ing forces from our equilibrium simulations of each state (interaction 
enthalpy) as well as from additional umbrella-sampling simulations 
(L1 stalk–tRNAfMet potential of mean force, Supplementary Note 2). 
The interaction enthalpy and binding free energy changed with the 
distance between the L1 stalk and tRNAfMet (Fig. 1f). The positive 
slopes imply that both the interaction enthalpy and free energy are 
attractive. These two independent data sets suggest that the L1 stalk 
actively pulls the tRNA after contact is established in the pre3 state, 
thereby accelerating tRNA barrier crossing. The opposite repulsive 
scenario, i.e., the tRNA pushing the L1 stalk, which would slow down 
barrier crossing, is incompatible with the observed free-energy curve. 
This result explains both the lower translation rates37 and the higher 
stability of the classical tRNA states14 observed for L1-depleted ribo-
somes, and it links 30S body and head rotation through the L1 stalk to 
the motion of the tRNA. That the total interaction enthalpy (Fig. 1f)  
shows the same distance dependency as the binding free energy (albeit 
with larger values due to partial enthalpy-entropy compensation)  
suggests that the analysis of interaction enthalpies, to a good approxi-
mation, can be used to reveal main interaction sites.

A closer analysis of the interaction enthalpies seen between L1  
and the tRNA suggests residues R53, K54, R60 and R164 of L1, 
which are highly conserved (Fig. 3b), as the main interaction  
sites. L1 residues R53, R60 and R164 contacted residue Ψ55 of the 
tRNAfMet (Supplementary Table 3). Mutations of the Ψ55•G18 
base pair are known to decrease translocation rates by 80-fold38, 
thus supporting the notion that attractive interactions with the L1 
stalk actively decrease the barrier for tRNA translocation. A similar  
effect would be expected from a complementary mutation of the  
identified L1 residues.

L5	and	L16	facilitate	tRNA	translocation
During translocation, the two tRNAs are handed over from protein 
L16 to L5 and then to L1. We identified the strong tRNA interac-
tions (identified by enthalpy contributions, Fig. 1c) with these large- 
subunit proteins and analyzed how the position, structure and  
contact sites of these proteins change from the perspective of the 
tRNAs in each state along the tRNA pathway from the A to the E site 
(Fig. 3a). Notably, more state-specific contacts to the tRNAs were 
generally seen for ribosomal proteins than for rRNA (Supplementary 
Note 3). Considerable motions of all involved components are 
observed; nevertheless, the tRNA remains tightly bound to these 
proteins, thus enabling accurate adjustment of the tRNA binding free 
energy. The continuous sequence of interactions might serve to lower 
free-energy barriers that otherwise would impede tRNA transloca-
tion. Indeed, sequence analysis of proteins L1, L5 and L16 revealed 
significantly higher conservation of the residues identified by contact 
analysis (overall P value = 6.62 × 10−8 obtained from a one-sided 
permutation test in which the sample comprised n = 550 individual 
amino acids from the proteins), thus corroborating their functional 
relevance (Fig. 3b; conservation of contact residues described in 
Supplementary Note 2).

How are the large structural motions reconciled with the main-
tained interactions between the tRNA and the ribosome along the 
translocation path? Closer inspection of interactions revealed two 
main mechanisms: stepping and sliding. During the A/A-to-P/P 

transition, tRNAVal remained in contact with L16 (Figs. 3a and 5). 
We used two adjacent interaction patches on L16 (R50, R51, R55 
and R59; R6, R10 and R81), each involving positively charged, highly 
conserved arginines (Fig. 3b) that interacted with different parts of 
the negatively charged tRNA backbone. Upon hybrid-state forma-
tion (pre4 to pre5)—when the acceptor stem of tRNAVal moved into 
the P site of the 50S subunit while the L16 conformation remained 
unchanged—the contact region on tRNAVal switched from the first to 
the second patch. We observed similar interactions with the second 
patch on L16 for the tRNAfMet in its P/P configuration, suggesting 
that these contacts can stabilize any tRNA in the P site. During the 
tRNA handover from L16 to L5, the binding of tRNAVal to L16 became 
weaker (Fig. 1c), whereas the binding to L5 remained strong in pre5b 
and throughout the post states. Strong contacts between the tRNAVal 
C56 and the highly conserved P-site loop of L5 (ref. 39) (A74–I78,  
Fig. 3b) were also present in the pre5b state. This finding, together 
with the large intersubunit rotation angle in the pre5b state, suggests 
that the tRNA movement is coupled to the intersubunit rotation 
through L5. In the subsequent post states, the contacts of the L5 P-site  
loop shifted down the D loop of the tRNAVal (Fig. 3a), additionally 
involving nucleotide G19.

In contrast to interactions involved in the stepping motion of  
the rather rigid protein L16, interactions between tRNAfMet and L5 
(Fig. 3a) were much less localized and were more dynamic. In the 
pre1 and pre2 states, tRNAfMet-L5 contacts shifted from the D loop 
to the T loop of the tRNA. Upon handover to the L1 stalk in the pre3 
state, these contacts to L5 were lost, but new contacts between L5 
and the anticodon stem-loop were formed just before the tRNA left 
the ribosome (in post4). Here, the P-site loop of L5 slides smoothly 
over the tRNA, thereby flexibly adapting to the changing tRNA 
position and orientation. Mutations of the P-site loop of L5 in yeast  
ribosomes impair tRNA binding39, underscoring the importance of 
L5 as a guide for the movement of the P-site tRNA. The L1 stalk pro-
vides the final contact for tRNAfMet after being handed over from L5 
and L16. Interactions of L1 with tRNAfMet, involving the tRNA back-
bone and the highly conserved, positively charged L1 residues (R53, 
K54, R60 and R164), were established in the pre3 state and remained 
unchanged from pre3 to post2.

DISCUSSION
Each of the three different mechanisms facilitating tRNA transloca-
tion (summarized in Fig. 5) rests on mutual couplings between the 
tRNAs and parts of their binding region. First, the precise positioning 
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Figure 5 Three mechanisms facilitating tRNA translocation. (a) Two 
distinct contact patches of L16 stabilize A- and P-site positioning of 
the tRNA (here tRNAVal, purple) on the 50S subunit. Moving from A to 
P site, the tRNA steps from patch 1 to patch 2. (b) As the tRNA moves 
into the hybrid P/E conformation (here tRNAfMet, green), the P loop of L5 
maintains a flexible contact (magenta) by sliding along the tRNA (green). 
(c) In pre3, high intersubunit rotations stabilize the closed L1-stalk 
conformation through S7. After back rotation (post1), this interaction is 
lost, and the L1 stalk moves into the open conformation, thereby pulling 
the tRNA into the E site.
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of the tRNAs in A and P sites is achieved by interactions with L16.  
To accommodate tRNA motions, L16 ‘steps’ through discontinu-
ous contact patches. Second, the flexible P-site loop of L5 facilitates  
seamless tRNA sliding across the P site. Third, L1 exerts force to 
pull the tRNA out of the P site and hence requires internal rigid-
ity. From real-time single-molecule fluorescence resonance energy 
transfer experiments, the L1 stalk is known to remain associated  
with the tRNA throughout translocation12. Our analysis suggests that 
L1 forms only one stable, highly conserved contact patch with the 
tRNA and moves with it as a rather rigid body. The L1 stalk trans-
mits the intersubunit rotation through S7–L1 stalk interactions and  
promotes tRNA translocation by reducing free-energy barriers 
between adjacent binding sites. The abundance of interactions 
between charged, highly conserved residues of ribosomal proteins 
and the tRNA backbone may provide a general means for the trans-
port of different tRNA species, independently of their sequence,  
through the ribosome.

Although translocation is a function inherent to the ribosome 
itself7,8, the movement, particularly on the 30S subunit, is dra-
matically facilitated by EF-G. Although the full description of  
EF-G–dependent translocation is currently not feasible, owing to  
the lack of structural information, the present work provides  
insights into the reaction landscape underlying the movement. The 
simulations provide a view of the energy ‘valley’ of spontaneous 
translocation, which allows the tRNAs to move by large distances  
while maintaining sufficient binding with the ribosome components. 
Gross deviations from this overall pathway would require a very  
large energy input and thus seem unlikely even in the presence of  
EF-G. Rather, EF-G might use the energy of binding and GTP hydro-
lysis to flatten the energy barriers of the rate-limiting step(s) and to 
provide the directional bias for forward movement. Understanding 
the way by which EF-G remodels the free-energy landscape into  
efficient tRNA translocation is one of the most important future  
challenges in the field.

Our combined crystallography–cryo-EM–simulation approach 
reveals fast, large-scale motions of the ribosome, on microsecond 
time scales, that govern tRNA translocation. Where the small over-
lap between the fast time scales accessible here and the slower ones 
observable by bulk kinetics30,31 and single-molecule studies12,29,32–34 
allows a direct comparison, the obtained transition rates agree within 
the respective error bounds. Our approach quantifies, from first prin-
ciples, the picture of a stochastic molecular machine10,30,33, which 
fluctuates12,14,15,29,35 between nearly isoenergetic Frauenfelder-type 
conformational states through collective and coupled structural tran-
sitions40 (Supplementary Video 3). Of all the movements described 
above, the highest intrinsic barriers are found for tRNA movement 
throughout the whole translocation pathway. This finding suggests a 
possible explanation for the strong effect of different tRNA species5,6 
on the rate of spontaneous translocation. Our picture shows how the 
30S head and body rotations, through coordinated L1-stalk, S7 and S11 
motions, promote and control tRNA translocation. This complements 
structural1,3,4,10,11,13,18,26,28,36,39,41–43 and single-molecule data12,14,15  
with intrinsic transition rates of functionally relevant and coupled 
motions, interaction energies and the underlying molecular driving 
forces. We begin to uncover the ‘gears and wheels’ of tRNA trans-
location through the ribosome from first principles, in terms of a 
stochastic molecular machine.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Three-dimensional density maps have been 
deposited at the Electron Microscopy Data Bank, under accession 
codes EMD-2472 (pre1b), EMD-2473 (pre5a), EMD-2474 (post2b),  
EMD-2475 (post3a). The atomic coordinates have been deposited 
at the Protein Data Bank under accession codes 3J4V, 3J52 (pre1a); 
3J4W, 3J4X (pre1b); 3J4Z, 3J50 (pre2); 3J4Y, 3J51 (pre3); 3J53, 3J54 
(pre4); 3J55, 3J56 (pre5a); 3J57, 3J58 (pre5b); 3J59, 3J5A (post1); 
3J5B, 3J5C (post2a); 3J5D, 3J5E (post2b); 3J5F, 3J5G (post3a); 
3J5H, 3J5I (post3b); and 3J5J, 3J5K (post4). Details can be found in 
Supplementary Table 4.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE	METHODS
The ribosome model was based on a crystal structure by Zhang et al. (PDB 3I1P 
and 3I1O)18; the crystal structure by Gao et al. (PDB 2WRI)42 was used to model 
the L1 stalk. To match the cryo-EM setup10, tRNA structures42,44 were incorpo-
rated into the model. Models were then refined against 13 cryo-EM maps10 with 
the real-space refinement program DireX23. Explicit-solvent all-atom molecular 
dynamics simulations were carried out with GROMACS45 using the amber99sb 
force field46. R.m.s. deviations of refined models relative to crystal structures of 
the ground-state and rotated structure26 were calculated after rigid-body fitting, 
using (i) all 70S Cα and P atoms, except L9 protein atoms, and (ii) all atoms 
within a 2-nm distance from the two tRNAs. To obtain reaction coordinates for 
the tRNAs and the L1 stalk, principal component analysis (PCA) was performed 
on the trajectories. Axes and rotation angles of 30S head and body rotations were 
obtained from each frame of the trajectories by nonlinear least-squares fitting and 
then averaged. Initial free energy–barrier heights between different states were 
estimated with multidimensional transition-state theory, on the basis of atomic 
fluctuations obtained from the simulations. All barrier heights and transition-
rate prefactors were calibrated with barrier crossings that were fast enough to be 

observed in the simulations. Interaction enthalpies were obtained directly from 
the force field. The potential of mean force between the L1 stalk and the tRNA 
was obtained by umbrella-sampling simulations.

Vacant E. coli ribosomes were prepared for cryo-EM at 18 °C and imaged with a 
Titan Krios electron microscope (FEI Company) on a 4,000 × 4,000 CCD camera 
(FEI company) using two-fold pixel binning (3.2 Å per pixel). The resulting 9,814 
ribosome particles and 315,108 pretranslocation-state E. coli ribosome parti-
cles from an existing cryo-EM data set10 were analyzed and classified according  
to 30S body rotation as described. A detailed description of experimental and 
computational methods is provided in Supplementary Note 1.

44. Grishaev, A., Ying, J., Canny, M., Pardi, A. & Bax, A. Solution structure of tRNA 
Val from refinement of homology model against residual dipolar coupling and SAXS 
data. J. Biomol. NMR 42, 99–109 (2008).

45. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms  
for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. 
Theory Comput. 4, 435–447 (2008).

46. Hornak, V. et al. Comparison of multiple Amber force fields and development of 
improved protein backbone parameters. Proteins 65, 712–725 (2006).
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Supplementary Figure 1: All-atom models of pre1a–post4 states obtained from refinement of atomic models
against cryo-EM maps1. For each state, the refined structure and an isosurface of the cryo-EM map (grey
surface) are shown. The ribosomal subunits (50S and 30S) are shown in ribbon representation; tRNAfMet and
tRNAVal atoms are depicted by magenta and green spheres, respectively.
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Supplementary Figure 2: Validation of models. (a) Comparison of tRNA positions between models and
crystal structures in the P-site and P/E hybrid state. The tRNAs from crystal structures2 and our models
(left: pre1a, right: pre4) are shown as red and green ribbons, respectively, after rigid-body fitting of the
binding region only (grey ribbons). Cff and P atoms used for fitting are depicted as grey spheres and CCA-
tail and acceptor stem regions are indicated by black and blue circles, respectively. (b) Structural deviations
during the simulations. For each ribosome simulation, started either from the model refined against the
cryo-EM map or from the PE-model, the RMSD relative to the starting structure is shown for the different
simulation steps (red, green, blue, and magenta curves), and relative to the structure at 20 ns (cyan curve).

Supplementary Figure 3: Estimation of transition rates. (a) Attempt rate and free energy calibration factor.
The upper panel shows an excerpt of the normalized distance between the ensembles for each pair of states
versus the uncalibrated free energy estimate. This is done for each of the ribosome components (colored
circles). A barrier between two states is considered crossed if this distance is smaller than one. The lower
panel shows the frequency of barrier crossings psim

A→B = (nA→B)/n calculated for free energy intervals of
1 kbT (colored lines). The probability of barrier crossing pA→B fitted to psim

A→B is shown as a black line. (b)
Statistical uncertainty of the attempt rate of the movement of individual ribosome components. Shown are
the medium value of the distribution of the attempt rates A (circles) and standard deviation (bars). The
overall attempt rate is shown as reference (black line).
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Supplementary Figure 4: Quality of tRNA-mRNA base-paring. For each state, histograms of the distances
between codon residues of the mRNA and the corresponding anticodon residues of the two tRNAs are shown.

Supplementary Figure 5: Fast relaxation motions of the ribosome after tRNA removal during the simulations.
Shown are time-traces of 30S head tilting, head swiveling, and body rotation angles (left panel), as well as of
interaction enthalpies (right panel) for intersubunit bridge B1b, derived from four independent simulations.
Blue curves refer to the two simulations started from the refined structure of the pre5b state with bound
tRNAs, the green ones refer to simulations started from the same structure after removal of the tRNAs.
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Supplementary Figure 6: Transiton Rates. (a) Schematic representation of the translocation intermediate
states as a Markov model. Circles denote states, connecting lines encode the transition time estimates for
L1-stalk, tRNAfMet, tRNAVal motion as well as body and head rotation. We thank Benoit Roux for providing
the idea. (b) Fastest progression sequences of translocation intermediate states ranked according to similarity
to the sequence proposed by Fischer et al.1 For all 31 possible combinations of ribosome components (top,
color scheme as in Fig. 1a,d), the fastest progression sequence was determined as in 2.10. The similarity of
each of the identified sequences (mid, columns) to the sequence given by Fischer et al.1 was described using
the absolute Kendall rank correlation coefficient τ (bottom). As a reference the mean τ value for random
sequences (0.23) and their probability distribution p(τ) is shown.

Supplementary Table 1: Sequence of structure refinements against cryo-EM maps. For each state the starting
model which was used for refinement against the corresponding map is shown. The pre5c structure was not
used for simulations.

AP-states PE-states P-state
state of
refined
structure

starting
model

state of
refined
structure

starting
model

state of
refined
structure

starting
model

pre1b AP-model post1 PE-model post4 P-model
pre1a pre1b post2a post1
pre2 pre1b post2b post2a
pre4 pre1b post3b post2a
pre3 pre4 post3a post3b
pre5a pre1b
pre5c pre5a
pre5b pre5c
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Supplementary Table 2: Stereochemical parameters of our models compared to those of crystal structures.
Shown are deviation of the distributions of key stereochemical parameters from distributions found in the
protein data bank (PDB) for the 50S and 30S subunits. The upper part of each table shows deviations from
the mean values in standard deviations σ. The relative width of the distribution compared to the standard
distribution is shown in the lower part.

(a) 30S

Models(pre1a–post4) Dunkle et al.2 Zhang et al.3

PDB id 100ns refined 3R8N 3R8O 3I1Q 3I1Z
Ramachandran -3.12 -7.62 -7.44 -7.52 -6.73 -6.96
χ1-χ2-rotamers -2.04 -5.97 -6.97 -7.10 -6.26 -6.25
Backbone -2.23 -4.66 -3.27 -3.47 -2.41 -2.39
Bond length 1.40 1.57 0.85 0.85 0.59 0.57
Bond angles 1.91 2.24 1.20 1.22 1.20 1.15
Omega angles 1.15 2.17 1.62 1.66 0.93 0.87
Side chain planarity 0.96 2.30 0.39 0.38 0.23 0.21
Improper dihedrals 1.04 1.90 0.75 0.72 0.53 0.46
Inside-Outside dist. 0.99 1.03 1.01 1.02 1.02 1.03

(b) 50S

Models(pre1a–post4) Dunkle et al.2 Zhang et al.3

PDB id 100ns refined 3R8S 3R8T 3I1R 3I20
Ramachandran -3.05 -7.67 -5.75 -6.52 -6.01 -7.15
χ1-χ2-rotamers -2.00 -5.95 -5.89 -6.23 -6.05 -5.78
Backbone -1.98 -5.13 -1.92 -2.04 -2.78 -3.64
Bond length 1.33 1.48 1.49 1.04 0.77 0.61
Bond angles 1.98 2.34 1.53 1.38 1.40 1.21
Omega angles 1.14 2.22 1.52 1.47 1.20 0.87
Side chain planarity 1.00 2.32 0.50 0.41 0.31 0.20
Improper dihedrals 1.05 1.95 0.92 0.79 0.72 0.44
Inside-Outside dist. 0.99 1.02 0.99 0.99 1.00 1.03

Supplementary Table 3: Accession codes for models of spontaneous tRNA translocation. Shown are the EM-
DataBank accession codes for the cryo-EM densities used for refinement and the resolution of the respective
cryo-EM maps. PDB-id codes are given for the 30S and 50S ribosomal subunit.

state EMDB id resolution [Å] PDB id 30S PDB id 50S
pre1a 1716 12 3J4V 3J52
pre1b 2472 12 3J4W 3J4X
pre2 1717 20 3J4Z 3J50
pre3 1718 17 3J4Y 3J51
pre4 1719 13 3J53 3J54
pre5a 2473 15 3J55 3J56
pre5b 1720 17 3J57 3J58
post1 1721 12 3J59 3J5A
post2a 1722 17 3J5B 3J5C
post2b 2474 17 3J5D 3J5E
post3a 2475 20 3J5F 3J5G
post3b 1723 15 3J5H 3J5J
post4 1724 9 3J5J 3J5K
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Supplementary Table 4a: Contacting residues be-
tween tRNAVal and 23S.
tRNAVal 23S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C56 H38 A896
G57 H38 A896
Ψ55 H38 A896
U17 H38 G882
G19 H38 A896
U17 H38 G881
G18 H38 G882
G19 H38 G882
G19 H38 G883
C56 H38 U895
C56 H38 U894
G20 H38 G883
C56 H38 G882
G18 H38 C897
U17 H38 C898
G18 H38 A896
U17 H38 C897
U17 H38 G880
C56 H38 C897
C56 H38 G881
G20 H38 G882
G19 H38 G881
C56 H38 G880
G57 H38 G880
G57 H38 G881
C25 H69 C1914
U12 H69 U1915
A38 H69 A1913
G24 H69 C1914
C11 H69 U1915
U12 H69 A1916
h6m1A37 H69 A1913
C25 H69 A1913
G39 H69 A1913
C11 H69 C1914
A26 H69 C1914
G24 H69 U1915
G10 H69 C1914
G10 H69 U1915
C27 H69 A1913
C36 H69 A1913
C27 H69 C1914
U12 H69 G1910
C13 H69 G1910
C13 H69 C1909
U12 H69 C1924
U12 H69 U1923
C11 H69 U1923
C13 H69 C1924
A69 H69 C1908
A69 H69 G1907
C70 H69 G1907
C11 H69 C1909
C72 H71 C1942
A73 H71 U1943
C71 H71 C1942
C74 H71 U1943
C74 H71 U1944
C71 H71 C1941
C72 H71 A1966
C71 H71 A1966
C71 H71 C1965
V77 H74 A2451
fMet78 H74 C2063
fMet78 H74 A2439
fMet78 H74 A2062
fMet78 H74 A2451
V77 H74 C2064
V77 H74 A2450
fMet78 H74 A2450
fMet78 H74 C2064
fMet78 H74 G2061
C75 H74 A2451
A76 H74 A2450
A76 H74 C2064
A76 H74 C2065
C75 H74 A2450
A76 H74 A2451
V77 H74 C2063
C75 H74 C2065
A76 H74 C2063
V77 H74 A2439
fMet78 H74 U2441
C75 H74 C2064
V77 H74 A2062
A76 H80 G2252
A76 H80 G2253
C75 H80 G2252
A76 H80 C2254
C75 H80 G2251
A76 H80 G2251
C74 H80 G2253
C75 H80 G2253
G3 H80 C2254
G3 H80 G2255
G2 H80 C2254
C74 H80 G2252
U4 H80 G2255

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal 23S pre post

continued on next page

continued from last page
tRNAVal 23S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A73 H80 G2251
C72 H80 G2253
A73 H80 G2252
A73 H80 G2253
G2 H80 G2255
C74 H80 C2254
G63 H81 G2279
C56 H84 A2309
C56 H84 G2308
G19 H84 G2308
G19 H84 A2309
C56 H84 C2310
G57 H84 A2309
G57 H84 C2310
A58 H84 A2309
m5U54 H85 A2327
Ψ55 H85 C2326
G52 H89 A2469
U64 H89 C2483
G52 H89 G2470
U64 H89 A2482
C51 H89 G2470
G63 H89 C2483
A76 H89 C2452
G63 H89 A2482
G52 H89 A2482
G1 H89 C2462
G63 H89 G2484
fMet78 H89 C2452
C51 H89 A2469
V77 H89 C2452
G53 H89 A2469
V77 H89 U2506
fMet78 H89 U2506
A76 H89 U2506
fMet78 H89 G2505
C75 H89 C2452
C74 H89 G2494
C75 H90 C2507
C74 H90 C2573
A76 H90 C2507
A76 H90 C2573
C75 H92 G2553
C74 H92 U2555
C75 H92 U2554
A73 H92 C2556
C75 H92 U2555
C74 H92 C2556
A76 H92 G2553
A76 H93 U2584
A76 H93 A2602
fMet78 H93 U2585
A76 H93 G2583
A76 H93 U2585
C75 H93 G2583
C75 H93 U2584
V77 H93 U2585
fMet78 H93 U2586
C74 H93 A2602
A73 H93 A2602
fMet78 H93 U2584
C75 H93 A2602
A76 H93 U2604
V77 H93 A2602
V77 H93 U2584
A76 H93 C2601
A76 H93 A2600
fMet78 H93 G2583
A76 H93 U2586
C74 H93 A2600
C74 H93 C2601
C72 H93 C2594

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal 23S pre post

Supplementary Table 4b: Contacting residues be-
tween tRNAVal and L5.
tRNAVal L5 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C56 A74
C56 V73
C56 G75
Ψ55 A74
C56 S72
G20 K77
C56 R79
G19 A74
G57 A74
G19 R79
G19 K77
G57 V73
G57 K77
A58 K77
C56 I78
C56 K77
C56 Q80
G19 G75
G19 V73
G20 V73
G19 F76
G57 G75
C56 K71
G57 S72
G20 F76

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal L5 pre post

Supplementary Table 4c: Contacting residues be-
tween tRNAVal and L16.
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tRNAVal L16 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G53 R51
m5U54 R51
G52 R55
G53 R55
G63 M1
C62 M1
m5U54 R50
C62 R44
G63 R51
m5U54 T54
G53 T54
C62 R51
G63 R44
m5U54 R59
G53 R59
U64 R44
G53 R50
A73 R81
G1 N88
G1 P77
G1 R81
G52 M1
G63 Q3
C62 R6
m5U54 K5
G63 R10
C72 R81
A73 V80
C74 V80
U64 R10
U64 Q3
C75 R81
G53 K5
G63 R6
G1 K76
G2 N88
G1 G87
C51 M1
C74 R81
G1 E90
G1 T74
C65 Q3
C65 R10
G1 E75
G2 G87
A73 P77
G52 R6
G52 K5
G53 R6
C65 M1
C51 K5
A66 M1
A66 Q3
G2 K84
G3 K84
U64 R6
U64 N88
G53 K8
G63 K8
C65 R6
G1 L78
G52 K8
m5U54 K8
C62 K8
G1 G85
G1 K86
G2 K86
G1 K84
G1 V80
G2 R81
C65 K86

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal L16 pre post

Supplementary Table 4d: Contacting residues be-
tween tRNAVal and L27.
tRNAVal L27 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G3 ACE5

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal L27 pre post

Supplementary Table 4e: Contacting residues be-
tween tRNAVal and L33.
tRNAVal L33 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
U17 ACE2
U17 I4
U17 G3
U17 R27
G19 R27
C56 ACE2
C56 R27

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal L33 pre post

Supplementary Table 4f: Contacting residues be-
tween tRNAVal and 16S.
tRNAVal 16S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A35 h18 G530
cmo5U34 h18 G530
C36 h18 G530
C36 h18 C518
A35 h18 C518
A38 h24 A790
G39 h24 A790
h6m1A37 h24 A790

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal 16S pre post

continued on next page

continued from last page
tRNAVal 16S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C31 h29 A1339
G40 h29 A1339
A41 h29 G1338
C30 h29 A1339
A41 h29 A1339
C31 h29 A1340
C32 h29 A1340
C32 h29 U1341
G39 h29 A1339
G42 h29 G1338
G40 h29 G1338
C30 h29 G1338
U29 h30 A1229
C30 h30 C1230
C30 h30 A1229
C31 h30 C1230
U29 h30 C1230
C30 h30 G1231
U29 h30 C1228
cmo5U34 h31 G966
cmo5U34 h34 C1054
cmo5U34 h34 A1196
cmo5U34 h34 A1197
h6m1A37 h44 A1493
A38 h44 A1493
A35 h44 A1493
C36 h44 A1493
A38 h44 G1494
cmo5U34 h44 C1400

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal 16S pre post

Supplementary Table 4g: Contacting residues be-
tween tRNAVal and S9.
tRNAVal S9 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
cmo5U34 R129
C32 K128
C31 K128
C31 R129
U33 K128
cmo5U34 K128
A35 K128

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal S9 pre post

Supplementary Table 4h: Contacting residues be-
tween tRNAVal and S13.
tRNAVal S13 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G44 K113
G44 NH2114
G45 K113
G43 K113
G42 K113
G44 P111
G42 NH2114
G43 R112
C28 K113
G43 P111
G43 NH2114

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAVal S13 pre post

Supplementary Table 4i: Contacting residues be-
tween tRNAfMet and 23S.
tRNAfMet 23S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A76 H13 C249
G52 H38 G880
G52 H38 G881
G4 H68 G1850
G4 H68 U1851
C71 H68 C1893
G70 H68 C1893
C3 H68 U1851
C71 H68 C1892
C71 H68 U1851
G70 H68 U1851
C71 H68 U1852
C71 H68 G1850
A72 H68 G1891
G70 H68 G1850
G70 H68 C1892
G4 H68 U1852
G5 H68 U1851
A76 H68 C1870
A76 H68 A1871
C75 H68 A1871
C13 H69 C1924
G12 H69 U1923
G12 H69 C1924
G12 H69 C1909
C13 H69 C1909
G12 H69 G1910
U24 H69 U1923
A11 H69 G1910
U24 H69 G1922
C25 H69 G1922
A14 H69 C1925
C13 H69 C1925
C13 H69 G1907

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet 23S pre post

continued on next page
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continued from last page
tRNAfMet 23S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
U36 H69 G1921
U36 H69 G1922
A37 H69 G1922
A37 H69 U1923
A76 H74 A2450
C75 H74 C2064
A76 H74 A2451
A76 H74 C2064
C75 H74 A2451
A76 H74 C2065
C75 H74 A2432
A76 H74 A2432
C75 H74 A2433
C74 H74 A2433
C74 H74 A2432
U17A H76 G2112
G19 H76 G2112
G19 H76 U2113
G18 H76 G2112
U17A H76 U2111
D20 H76 U2113
D20 H76 G2112
U17A H76 U2180
A21 H76 G2112
U17A H76 G2110
A59 H76 G2112
C17 H76 U2180
C17 H76 U2181
C56 H77 A2169
G19 H77 A2169
C56 H77 A2170
C56 H77 U2122
Ψ55 H77 A2169
U17A H78 C2145
C3 H80 G2255
C75 H80 G2251
G2 H80 G2255
G2 H80 C2254
C1 H80 C2254
C1 H80 G2253
A76 H80 G2251
C75 H80 G2252
C3 H80 C2254
C74 H80 G2252
C74 H80 G2253
C1 H80 G2255
A76 H80 G2252
C75 H80 G2253
A76 H80 G2253
C3 H80 G2256
C74 H80 C2254
C51 H84 A2309
G52 H84 C2310
G52 H84 A2309
A76 H88 C2395
A76 H88 C2394
A76 H88 C2422
C74 H88 C2422
A76 H88 G2421
C75 H88 C2422
C75 H88 G2421
A76 H88 G2396
A76 H88 G2397
C75 H88 G2397
C75 H88 G2396
C1 H88 G2397
A76 H88 C2424
A76 H88 U2423
C74 H93 C2594
A76 H93 A2602
C74 H93 A2600
C74 H93 A2602
C75 H93 A2602
A76 H93 C2601

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet 23S pre post

Supplementary Table 4j: Contacting residues be-
tween tRNAfMet and L1.
tRNAfMet L1 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
Ψ55 R60
m5U54 R60
C62 K54
G63 K54
C62 R53
C62 S55
G63 R53
C56 Q129
Ψ56 R164
C56 P133
C56 G132
G53 S55
G63 D56
G52 S55
G63 S55
G64 K54
m5U54 R164
m5U54 K141
C56 G128
G64 Q203
m5U54 N58
G4 R53
C56 R164
G53 K141
m5U54 S55
m5U54 N139
C62 D56
C61 R53

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L1 pre post

continued on next page

continued from last page
tRNAfMet L1 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G18 K167
A58 R53
G18 R53
G53 R53
A57 K167
C56 R134
Ψ55 P133
C62 D51
G53 D56
m5U54 D56
Ψ55 R53
m5U54 R53
A72 R122
A73 M121
A72 G125
A72 Q126
A73 R122
A76 K141
C75 V123
A76 E98
C74 Q80
C74 G81
C75 Q80
C75 R122
C75 Q126
A76 Q80
A76 M97
A76 K105
A76 Q126

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L1 pre post

Supplementary Table 4k: Contacting residues be-
tween tRNAfMet and L5.
tRNAfMet L5 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C56 V73
G19 G75
C56 S72
G19 K77
C56 A74
G18 K77
C56 G75
C56 R79
A57 V73
A57 A74
Ψ55 V73
C56 K77
A57 G75
A57 K77
C56 I78
G53 S72
G53 R79
m5U54 R79
Ψ55 R79
G52 V73
G52 A74
G52 S72
A59 K77
G30 K46
G42 K47
G29 K47
G31 K46
C34 R79
A35 R79
A43 K47
G30 A44
G31 I43
G31 A44
G31 Y82
Cm32 K77
C41 D45
C41 K47
G30 Y82
U33 K77
G30 I43
G30 R79
G31 K77
G31 R79

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L5 pre post

Supplementary Table 4l: Contacting residues be-
tween tRNAfMet and L16.
tRNAfMet L16 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C65 R6
C75 R81
G64 R6
A76 R81
C51 R6
G64 R10
C1 K76
C1 V80
C1 G85
G52 R6
C1 N88
C1 P77
C1 K84
C1 K86
C1 G87
C74 K84
C1 R6
C66 R6
G2 R6

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L16 pre post

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L16 pre post

continued on next page
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continued from last page
tRNAfMet L16 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4

Supplementary Table 4m: Contacting residues be-
tween tRNAfMet and L27.
tRNAfMet L27 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G2 G6
G2 ACE5
C1 ACE5

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L27 pre post

Supplementary Table 4n: Contacting residues be-
tween tRNAfMet and L28.
tRNAfMet L28 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
C75 H19

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L28 pre post

Supplementary Table 4o: Contacting residues be-
tween tRNAfMet and L33.
tRNAfMet L33 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
Ψ55 R27
Ψ55 T28
C56 R27
C56 T28
C65 R27
C65 K26
C66 K26
C51 K29
G52 K29
C66 R27
G52 P30
G64 R27
C65 I4
C66 I4
C1 I4
C1 E6
C74 G3
A73 ACE2
A73 G3
C74 ACE2
C74 I4
C67 R27
G64 K52
C65 K52
A37 P30
A38 P30
U36 P30
G29 K29
U36 T28
U36 K29
C28 K29
C34 R27
A35 R27
A35 T28

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet L33 pre post

Supplementary Table 4p: Contacting residues be-
tween tRNAfMet and 16S.
tRNAfMet 16S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A37 h23 G693
A38 h23 A694
A37 h23 A694
A38 h23 A695
U36 h23 G693
C39 h23 A694
A38 h23 G693
C39 h23 G693
C39 h24 A790
A38 h24 A790
A37 h24 A790
U36 h24 A790
U36 h24 U789
A37 h24 U789
U33 h28 C1383
C34 h28 C1383
C41 h29 A1339
G30 h29 A1339
G31 h29 A1340
C40 h29 A1339
Cm32 h29 U1341
G31 h29 A1339
C41 h29 G1338
Cm32 h29 A1340
G29 h29 G1338
G42 h29 G1338
G31 h29 U1341
G42 h29 A1339
A43 h29 G1338
G29 h29 A1339
G30 h29 A1340
C41 h29 A1340
G30 h29 G1338
U36 h29 A1339
G29 h30 A1229
G30 h30 C1230
G42 h30 A1229
A44 h30 C1228

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet 16S pre post

continued on next page

continued from last page
tRNAfMet 16S pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
G30 h30 A1229
G29 h30 C1230
A43 h30 C1228
A43 h30 A1229
G31 h30 C1230
G29 h30 C1228
C28 h30 C1228
C34 h31 G966
A35 h31 G966
C34 h44 C1400

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet 16S pre post

Supplementary Table 4q: Contacting residues be-
tween tRNAfMet and S7.
tRNAfMet S7 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
Cm32 Q85
U33 S82
U33 T83
A38 T83
C40 A146
C41 R142
G42 R142
Cm32 T83
Cm32 Y84
C40 M143
C41 K135
G29 K135
U33 Q85
C34 R78
C40 N147
C41 A146
Cm32 R78
U33 R78

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet S7 pre post

Supplementary Table 4r: Contacting residues be-
tween tRNAfMet and S9.
tRNAfMet S9 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
U33 R129
C34 R129
Cm32 R129
A35 R129
Cm32 K128
G31 R129
G30 R129
G31 K128

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet S9 pre post

Supplementary Table 4s: Contacting residues be-
tween tRNAfMet and S11.
tRNAfMet S11 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A38 R52
C39 R55
C39 R52

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet S11 pre post

Supplementary Table 4t: Contacting residues be-
tween tRNAfMet and S13.
tRNAfMet S13 pre post
residue residue 1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
A44 K109
A43 K109
A44 R112
G45 R112
A44 P111
G29 R112
C28 K113
A44 K113
C28 R112
C28 NH2114
A43 K113
A43 NH2114
U27 K113
G42 NH2114
A43 R112
G42 K113
U27 NH2114
A44 NH2114
G45 K113
G29 NH2114

1a 1b 2 3 4 5a 5b 1 2a 2b 3a 3b 4
tRNAfMet S13 pre post
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11 1.1 General molecular dynamics setup

Supplementary Note 1 (Methods)

1.1 General molecular dynamics setup

All molecular dynamics (MD) simulations were carried out with GROMACS 44

using the amber99sb force field5, and the SPC/E water model6. Each sim-
ulated model was first solvated in a dodecahedron box keeping a minimum
distance of 1.5 nm between the model atoms and the box boundaries. K+ and
Cl− forcefield parameters were taken from Joung and Cheatham7. Long-
range electrostatic interactions, beyond 0.9 nm were calculated by particle-
mesh Ewald summation8 with a grid spacing of 0.12 nm. Lennard-Jones
qinteractions were calculated within a distance of 1.4 nm. Coordinates were
recorded for analysis every 2 ps. Unless stated otherwise, an integration time
step of 4 fs was used, applying virtual site constraints9. All bond lengths
were constrained with the LINCS algorithm10. The system temperature was
kept constant at T = 300 K using velocity rescaling11 with a coupling time
constant of τT = 0.1 ps. Protonation states of amino acids were determined
with WHATIF12.

1.2 Models of the ribosome including tRNAs

Three initial atomic models of the E.coli ribosome were built, which were sub-
sequently refined against the cryo-EM maps provided by Fischer et. al1: First,
a model of the ribosome with a P-site fMetVal-tRNAVal (P-model), second, a
model with a P-site fMetVal-tRNAVal and an E-site tRNAfMet (PE-model),
and third, a model with an A-site fMetVal-tRNAVal and P-site tRNAfMet (AP-
model).

All models were constructed from the crystal structure by Zhang et al.3.
This was the best resolved (resolution: 3.19 Å) and most complete E.coli ri-
bosome structure at the time of modeling. All structural information (pdb
ids: 3I1P, 3I1O), including the crystallographic water molecules and ions,
was used.

For the L1 protein and the parts of the L1-stalk rRNA which are not re-
solved in the structure of Zhang et al., the T.thermophilus ribosome structure
of Gao et al.13 (pdb id: 2WRI) was used. A homology model of the L1 pro-
tein was built using the swissmodel server (swissmodel.expasy.org ) with the
E.coli sequence and the T.thermophilus structure as a template (44% sequence
identity).

In the E.coli structure, 68 nucleotides (2111–2179) are not resolved in
the L1-stalk rRNA. These were also modeled using the T.thermophilus struc-
ture. The corresponding structurally aligned nucleotides13 as well as ten nu-
cleotides upstream and downstream, which form ten base pairs at the stem of
the L1-stalk, were extracted from the T.thermophilus structure. The extracted
nucleotides were mutated to match the E.coli sequence using WHATIF12 (58%
sequence identity).

The whole L1-stalk, comprising the mutated rRNA and the homology
model of the L1 protein, was energy minimized in vacuum with position re-
straints on the P and Cff atoms (position restraints force constant: 1000 kJ mol−1 nm−2).
Next, water and K+Cl− ions at a concentration of 0.154 mol was added. This
system was energy minimized and subsequently equilibrated for 1 ns, main-
taining position restraints. After that, the stem base pairs were superimposed
to the matching nucleotides in the E.coli structure. Finally, an MD simulation
of the L1-stalk was carried out, restraining the positions of heavy atoms of the
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stem to those of the target E.coli structure. The force constant of the restrain-
ing potential was linearly increased from 0 to 500 kJ mol−1 nm−2 within 5 ns.
The resulting L1-stalk structure was finally incorporated into the model.

Helix 38 (H38) of the large ribosomal subunit forms contacts to the small
subunit via intersubunit bridge B1a14. Nucleotides G879–C897 of this helix
are not resolved in the E.coli structure. Secondary structure prediction soft-
ware S2S15 predicted a pentaloop for the tip of the helix. The nucleotides
of a pentaloop from an NMR structure16 (pdb id: 1NA2) were mutated to
match H38 sequence using WHATIF. To fit this rRNA structural motif into
the model of the ribosome, the same protocol as for the L1-stalk rRNA was
used.

The ribosomes used for the cryo-EM experiments contained an fMetVal-
tRNAVal. Since no high resolution structure was available, a solution struc-
ture of tRNAVal from a refinement of a homology model against residual
dipolar coupling and SAXS data (pdb id: 2K4C)17 was used for the models.

The T.thermophilus structure by Yusupova et al.18 (pdb id: 2HGP) contains
a P-site tRNAPhe and a 50 nucleotide long mRNA. This structure was rigid-
body fitted to our model using structurally aligned nucleotides18 from 16S
rRNA of the small subunit. The fitted coordinates of the tRNA phosphates
and of the mRNA were stored for later use. From this mRNA structure,
the A-, P-, and E-site codons as well as three upstream and downstream nu-
cleotides were extracted. These nucleotides were mutated with WHATIF to
match the sequence of the mRNA used in the cryo-EM experiments. Appro-
priate tRNA modifications and the dipeptide were added to match experi-
mental conditions1. Atom types for fMet were obtained with ANTECHAM-
BER19, partial charges were determined using DFT-b3lyp with a 6-31/G*
basis set. Side chain charges are the same as in Met. On the backbone, only
the charges of the formylamino cap changed more than 5 %. The modified
fMetVal-tRNAVal structure was then fitted as a rigid body to the P atoms
obtained from the fitted Yusupova structure. Next, a 1 ns simulation of the
tRNA and the mRNA in solvent with position restraints on the P and C1’
atoms was carried out. In the subsequent 5 ns simulation, positions of P and
C1’ atoms were restrained to those of the fitted Yusupova structure, thereby
linearly increasing the force constant from 0 to 1000 kJ mol−1 nm−2 during
the simulation. The resulting tRNA structure was then included into the
ribosome model, yielding the P-model.

The T.thermophilus structure by Gao et al.13 (pdb id: 2WRI) contains an E-
site tRNAfMet. The 30S subunit structure was rigid body fitted to our model
using structurally aligned nucleotides13 from 16S rRNA. Nucleotide modifi-
cations were added to the tRNA to match the modifications of the tRNAs in
the cryo-EM experiments and a 1 ns simulation of the tRNA in solvent with
position restraints on the P and C1’ atoms was performed. The resulting
tRNA structure was then included into the P-model, yielding the PE-model.

For the AP-model, the same tRNA structures were used as for the PE-
model, but the tRNAVal was fitted into the A- and the tRNAfMet into the
P-site. Almost the same protocol as for the addition of the P-site tRNAVal

was used, except that the tRNAVal has 77 nucleotides and the tRNAPhe from
the Yusupova structure which was used for fitting has 76 nucleotides. All
the nucleotides, except for 5 nucleotides upstream and 5 nucleotides down-
stream of the insertion, were used for the rigid body fitting and the position
restraints in the simulation.
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1.3 Refinement of the atomic models against cryo-EM maps*

The three ribosome models obtained from crystal structures as described in
the previous paragraph were used as starting structures for subsequent re-
finement against the 13 different cryo-EM density maps, to provide an all-
atom interpretation of each individual conformational state. Initial place-
ment of a starting model into a density map was done using the rigid-body
fit feature of the program Chimera20. The real-space refinement program
DireX21 was then used for all refinements. DireX computes a density map
from an atomic model and refines the atomic coordinates to maximize the
overlap between this model map and the cryo-EM density map. The quality
of the refinement by DireX has been found to be similar or better than that
of other established methods in a comparative study22. The model density
maps were generated using a Gaussian kernel with a width adapted to the
resolution of the corresponding cryo-EM density map.

For each refinement, 2000 steps were performed which took 36 hours on
average on one core of an Intel Core 2 Quad Processor Q9300 (2.5 GHz).

The initial AP-, PE-, and P-models were refined against the map which
most closely resembled the state of the model (respectively: pre1b, post1,
and post4). Subsequently, fitted structures were used as starting models for
refinement against the remaining 10 maps in the sequence described in Sup-
plementary Table 1.

Due to a program bug during the refinement process with DireX, in the
30S subunit, the tRNAs and the mRNA, several amino acids and nucleotides
had wrong chiralities. In the structures extracted after 20 ns pre-equilibration,
the errors were corrected by placing the chiral center atom on the oppo-
site side of the plane defined by the three chiral neighbor heavy atoms. To
that goal, the bond vector between the chiral center atom and the respective
bound hydrogen atom was used for shifting the chiral center and the bound
hydrogen atom. Subsequently, the bound hydrogen atom was flipped to the
other side of the chiral center atom using the same bond vector. Alternatively,
for the C2’ in nucleotide sugars, chiral errors were corrected by swapping
the positions of the O2’ and H2’ atoms. All corrected structures were again
energy-minimized. Since all the simulations were started from the structures
containing these errors, we performed a 60 ns simulation from the energy-
minimized corrected pre5b structure at 20 ns to make sure that these errors
do not influence our results and conclusions. The pre5b state was chosen, be-
cause the refined structure contained the highest number of errors of all the
structures. The root mean square deviation (RMSD) relative to the structure
at 20 ns was calculated, a Principal Component Analysis (PCA) of tRNAVal,
tRNAfMet, and L1-stalk motions was carried out and the intersubunit rotation
angles were calculated as described in 2.3. The results were compared to the
two independent pre5b simulations which started from different structures at
20 ns in order to see the effect of different starting structures (representing the
same state) compared to the effect of changed chiralities in two simulations
starting from the same structure. The PCAs of the tRNAs and the L1-stalk
motions as well as the intersubunit rotation angles showed larger differences
between the simulations starting from different structures than the difference
due to the changed chiralities. The RMSD of the simulation started from the
corrected structure was not markedly different from that of the other two sim-
ulations of the pre5b state. Hence, possible inaccuracies due to changed chi-
ralities are found to be smaller than the statistical uncertainty due to limited
sampling and, therefore, not significant. Next, we investigated the effect the
changed chiralities have on our identification of residues involved in contacts
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between the tRNAs and proteins L1, L5 and L16. Each of these residues was
characterized by the maximum of all its contact frequencies. To measure the
similarity of contacting patterns in two simulations, we calculated the ratio of
the number residues with the same level of contact frequency (12.5–25%, 25–
50%, 50%–100%) in both simulations to the number of residues with different
levels. The ratio extracted from the simulations with wrong chiralities and
different starting structures was 0.56 and the ratio for the two simulations
with the same starting structure but different chiralities was 1.16. Again,
the possible inaccuracies due to changed chiralities are smaller than the esti-
mated error range due to limited sampling. The energy-minimized corrected
structures were submitted to the pdb-database under pdb-ids shown in Sup-
plementary Table 3. Amino acids and nucleotides which were corrected for
chirality are listed in the header of the pdb-files.

1.4 Choice of models for simulation

For each of the major states of spontaneous retro-translocation (pre1 to post4),
the fit to the one or two cryo-EM maps with the highest resolution were used
as starting structures for MD simulations: pre1a (12 Å), pre1b (12 Å), pre2
(15 Å), pre3 (17 Å), pre4 (13 Å), pre5a (15 Å), post1 (12 Å), post2a (17 Å),
post2b (17 Å), post3b (15 Å), and post4 (9 Å). Two additional structures
were chosen for simulations, because of extreme intersubunit rotation angles
(pre5b) and an extreme tRNAfMet conformation (post3a), to capture a large
range of conformations accessible by the ribosome and the tRNAs. To esti-
mate the effect of refinement accuracy on our conclusions, the refined struc-
ture of the pre3 state was perturbed such that the conformation of tRNAfMet

was closer to the pre2 state, but within the resolution limits set by the cryo-
EM density.

1.5 MD simulations of the refined models

Atomic models, including the crystallographic resolved ions, obtained from
the flexible fitting to 13 cryo-EM maps were solvated, and the system was
neutralized with K+ ions before adding additional explicit salt (7 mM MgCl2
and 150 mM KCl) using the GENION program from the GROMACS suite4

to mimic the conditions used for the cryo-EM experiments1. The system was
then equilibrated in four steps:

• 0–5 ns: Constant volume and position restraints on all ribosomal heavy
atoms with a force constant of 1000 kJ mol−1 nm−2, 2 fs time step.

• 5–10 ns: Constant volume and linearly decreasing the position re straints
force constant to zero.

• 10–20 ns: The pressure was coupled to a Berendsen barostat23 with a
coupling constant τp = 1 ps and an isotropic compressibility of 4.5 ·
10−5 bar−1.

• 20–120 ns: The pressure was coupled to a Parrinello-Rahman barostat24

with a coupling constant τp = 1 ps and an isotropic compressibility of
4.5 · 10−5 bar−1.

For each state as well for the initial PE-model, one simulation was carried
out except for state pre5b where two independent simulations were carried
out. Additionally, two simulations of the pre5b state without tRNAs were
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completed. Here, the tRNAs were removed from the structure refined against
the pre5b state and the ribosome structure was subsequently solvated and
equilibrated in the same way as the other structures.

1.6 Cryo-EM analysis of global ribosome conformation

Cryo-EM grids of vacant E.coli ribosomes were prepared at 18◦C under con-
trolled environmental conditions25 and imaged under cryo conditions with
a Titan Krios electron microscope (FEI Company, the Netherlands) at 300 kV
and defoci ranging from 1 µm to 2.5 µm on a Eagle 4k x 4k CCD camera
(FEI Company, the Netherlands) using 2fold pixel binning, resulting in a fi-
nal pixel size of 3.2 Å. Ribosome particles were selected semi-atomically with
Boxer26 and corrected locally for the CTF27. The resulting 9814 ribosome
particles were coarsened twofold to a pixel size of 6.4 Å and classified ac-
cording to 30S body rotation in 2.5◦ steps as described1. Pre-translocation
state ribosome particles (315108 in total) were obtained from an existing
dataset of E.coli ribosome complexes prepared for cryo-EM at different time-
points of the retro-translocation reaction, using the same buffer and tem-
perature of 18◦C as for the vacant ribosomes28;1. Hierarchical classification
resulted in 34 groups of ribosome particles representing structurally distinct
pre-translocation states1. For each population of pre-translocation ribosomes,
the 30S body rotation of the corresponding cryo-EM reconstruction was de-
termined. In Fig. 2, the fraction of particles as a function of 30S body rotation
was plotted in 2.5◦ steps for all pre-translocation state ribosomes and vacant
ribosomes, respectively. Image processing was generally performed using
IMAGIC-529 and exhaustive alignment30.

Supplementary Note 2 (Analysis)

2.1 Comparison to recent crystal structures*

To compare our models to existing crystal structures for each state, an average
structure was calculated from the last 10 ns of each trajectory. The root mean
square deviations (RMSD) of these structures relative to two E.coli ribosome
crystal structures (pdb ids: 3R8S, 3R8T2) were calculated after rigid-body fit-
ting using all resolved 70S Cff and P atoms, except L9 protein atoms (Fig. 1b).

Of particular importance for our analysis is the quality of our models in
the tRNA binding region. To assess the accuracy of the models in this region,
the RMSD of the Cff and P atoms which are within a 2-nm distance to the two
tRNAs in any of the models was calculated after rigid-body fitting (Fig. 1b).

2.2 Independent MD based refinement

In order to provide an independent test of our refinement procedure, we
performed an additional refinement of the AP-model against the pre1b cryo-
EM map using an all-atom explicit solvent MD simulation with an additional
biasing potential and no further restraints. This biasing potential maximizes
correlation between the atomic model, using an adapted Gaussian kernel as
described above, and the cryo-EM map31;32. The model density maps were
calculated for each simulation time step, an effective potential constant31 of
k = 106 kJ/mol and a total simulation time of 2.7 ns were used. The AP-
model was solvated in a cubic simulation box which matches the geometry
of the cryo-EM map.



2.3 Definition of reaction coordinates for collective motions* 16

2.3 Definition of reaction coordinates for collective motions*

Principal component analysis*

Principal component analysis (PCA)33 was carried out for tRNAVal, tRNAfMet,
and the L1-stalk using all the simulations of the whole ribosome. To define
common sub-spaces, all trajectories were first superimposed by least square
fit, using Cff and P atoms of the 50S subunit excluding the L1-stalk. Next,
the Cff and P atoms of the tRNAs and the L1-stalk were extracted from the
trajectories. For each of the three ribosomal components the extracted trajec-
tories of all states were concatenated, and the atomic displacement covariance
matrix was calculated. The trajectories of each state were then projected on
the first eigenvector of this matrix. The projections divided by

√
N, where

N is the number of atoms used to construct the covariance matrix, yielded
the reaction coordinates (r.c.). The minimum and maximum of this reaction
coordinate for each state are shown in Fig. 1c. The projections on the first
three eigenvectors were used to estimate transition rates (see below).

In order to calculate the distance dependence of the interaction enthalpies,
i.e. the sum of electrostatic and Lennard-Jones interactions, between tRNAfMet

and the L1 protein, a distance coordinate was obtained from a PCA using Cff

and P atoms of the tRNA and the L1-stalk. The atomic displacement covari-
ance matrix was constructed from the trajectories of those states in which the
tRNA and the L1 were in contact (pre3–pre2b). The projection on the first
eigenvector of this matrix, divided by

√
N, where N is the number of atoms

used to construct the covariance matrix, was used as the distance coordinate,
where the smallest value observed in the simulations was set to zero.

30S head and body rotation**

Head and body rotations were quantified by comparing structures of each
state, extracted from the respective trajectories at 200 ps intervals, to the
post1a structure at 20 ns. The post1a structure was used to define zero degree
body and head rotations. To define the axes of rotation and pivoting points,
we extended a non-linear least squares fitting method34 to also include the
axis of minimal and median rotation. Final mean pivoting point and axes of
rotation for head and body movement were determined by quaternion-based
averaging35 over all rotations obtained from all structures of all states. Ro-
tation angles were then calculated relative to the mean axes of rotation and
pivoting points.

2.4 Transition rate estimates**

Transition rates were estimated in two steps. Firstly, initial estimates for the
free energy barrier heights ∆G‡

est were obtained from a fluctuation analysis of
the trajectories of all states. Secondly, these barrier estimates were calibrated
by comparing passage frequencies obtained from the initial barrier estimates
to passage frequencies actually observed in the simulations, to yield the free
energy barriers ∆G‡. The calibrated free energy barrier heights ∆G‡ were
then used to calculate the transition rates shown in Fig. 1d.

Free energy barrier estimates**

The initial free energy barrier estimates ∆G‡
est for the transitions between all

states for the motions of the L1-stalk, both tRNAs, and 30S head and body
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rotations were obtained as follows. Each trajectory (state) was projected onto
3-dimensions spanned by the dominant PCA eigenvectors for the L1-stalk
and tRNA motions and by the three rotation angles for the 30S head and
body rotation. The mean µ and the 3× 3 covariance matrix Σ of each pro-
jected trajectory define a three-dimensional multivariate Gaussian probability
distribution function,

p(x) =
wexp√
2π3‖Σ‖

e−
1
2 (x−µ)′Σ−1(x−µ), (1)

for the corresponding state, where the weighting factor wexp accounts for the
experimentally measured population of the state1. The free energy landscape

G(x) = −kBT ln p(x) (2)

arising from such a distribution p(x) describes a three-dimensional quasi-
harmonic approximation to the underlying free energy landscape. For each
pair of states, the intersection of the two quasi-harmonic approximations ob-
tained for a given motion defines a hypersurface, the free energy minimum
of which was used as an estimate for the barrier height ∆G‡

est between the
two states. To test whether barrier estimates change with the number of
dimensions used for the analysis in PCA space, up to 20 dimensions were
used for the L1-stalk and tRNA trajectory projections. Even though the ab-
solute values for the free energy barrier estimates increased, their ratios to
the respective mean value did not change markedly. Therefore, we assume
∆G‡ = c∆G‡

est with a constant calibration factor c.
To determine the statistical uncertainty of the free energy barrier estimate

we randomly drew N points from distributions with given mean µ and co-
variance matrix Σ and recalculated mean µ′ and covariance matrix Σ′ from
the drawn samples. The number of stochastically independent data points
that define the distributions was set to N = Ntotal

tac
t , where tac denotes

the autocorrelation time of the data points and t the total simulation time.
This was repeated until the standard deviation of the free energy estimates
for each transition with these newly defined harmonic potentials converged.
The statistical uncertainty of the free energy barriers for each transition is the
converged standard deviation of the free energy estimates.

Calibration of Arrhenius transition rates**

Several conformational transitions between the 13 conformation states de-
fined in Fig. 1c were actually observed during our 100 ns simulations. Com-
parison of the statistics of the observed transitions with transition rates ob-
tained from the above barrier height estimates using Arrhenius’ law therefore
allowed to refine all barrier heights and transition rates by a common factor.
To this aim, the barrier height estimates were grouped into height intervals
of 2.494 kJ/mol width. For each interval, the fraction psim

A→B of trajectories for
which conformational transitions were observed was determined (cf. Sup-
plementary Fig. 3a) as follows. The trajectories were projected onto the reac-
tion coordinates for the six collective motions defined above and analyzed in
200 ps intervals for the rotational movements and 10 ps intervals for the pro-
jections in PCA space. The distance dA,B between two state ensembles A and
B was defined as the minimum distance of all projections onto the reaction
coordinates. A barrier between A and B states was considered to be crossed
if the average distance within an ensemble was found to be larger than the
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distance dA,B. For each motion, the frequency of barrier crossing psim
A→B in an

energy interval I = [∆G‡
est − ∆G, ∆G‡

est + ∆G] was defined as

psim
A→B

(
∆G‡

est

)
=

nA→B

n
, (3)

where nA→B is the number of observed barrier crossing from ensemble A to B
with estimated free energy barriers in I, and n is the total number of barriers
in the same energy interval. The probability of observing a transition from a
state A to a state B in a time interval [0, t] is also known from reaction kinetics
to be

pA→B = 1− exp (−kt), (4)

where k is the transition rate from A to B. Transition rates k are estimated by
Arrhenius’ law

k = A exp
(
−∆G‡/kBT

)
, (5)

where kB is the Boltzmann constant, and T is the temperature. Assuming the
same linear calibration ∆G‡ = a + c∆G‡

est, of all barrier heights and attempt
rates, respectively, the calibration factors A and c were determined from a
least square fit of the Arrhenius transition probability

pA→B = 1− exp

[
−A exp

(
−c∆G‡

est
kBT

)
t

]
(6)

to the respective fraction psim
A→B observed in the simulations. From the refined

energy barrier heights, transition time estimates τ = 1/k were obtained from
Arrhenius’ law, Eq. (5).

The statistical uncertainty of attempt rate A and calibration factor c were
determined by reconstructing psim

A→B from the free energy barrier estimate for
a given transition. We randomly determined whether this transition would
occur within a 100 ns simulation time using Eq. (6) with a random shift
in ∆G‡

est, that accounts for the error estimated for ∆G‡
est. Fitting the recon-

structed psim
A→B to Eq. (6) yields a new calibration factor and attempt rate.

When this procedure is repeated, the standard deviation of the redetermined
calibration factors and attempt rates converges to the statistical uncertainty
of the calibration factor and attempt rate.

2.5 tRNA contacts with the ribosome and mRNA*

To assess the residue-residue contacts and the interaction enthalpy between
the tRNAs and the ribosome, for each simulation, all pairs of atoms, respec-
tively from the tRNAs and the ribosome, whose distances were below 3 Å
were identified using g_contacts36. A residue pair was considered to be in
contact if the distance between any two atoms (one from each residue) was
found to be below 3 Å in at least one frame of the 100 ns trajectory. Inter-
action enthalpies between tRNA residues and contacting residues of L1, L5,
or L16 proteins were calculated from the MD force field as the sum of elec-
trostatic and Lennard-Jones interactions and averaged over the trajectory of
each state (Fig. 1c).

In order to show the distance dependence of the L1-tRNAfMet interaction
enthalpy, the interaction enthalpy and the L1-tRNAfMet distance (see section
2.3) were extracted from each simulation at intervals of 1 ns. For this, only
simulations of the pre3–post2b states were taken into account (Fig. 1f).
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To monitor tRNA-mRNA base-pairing, the minimal distance between the
atoms from each codon nucleotide on the mRNA and the corresponding an-
ticodon residue on the tRNA was calculated from each simulation.

Contacts between tRNA nucleosides and residues of the ribosomal pro-
teins as well as the rRNA were found to have different levels of state-specifity,
e.g some contacts are only present in a single state and others are present
in several states. To asses the level of state-specifity, a contact entropy was
calculated as follows: ∑13

i=1− fi ln( fi), where fi is the normalized contact fre-
quency in state i. With this definition, contacts that are more state-specific
have a smaller contact entropy than less specific ones.

2.6 Conservation of contact residues in L1, L5, and L16*
Protein sequences of L1, L5 and L16 proteins were retrieved from the UniProt
database37. 6,029 individual sequences of L1; 6,125 sequences of L5; and
6,031 sequences of L16 protein were used. To reduce computational com-
plexity, sequences that had more than 90% identity were combined to a sin-
gle cluster, each cluster represented by a single characteristic sequence. 1,174
characteristic sequences for L1; 1,106 sequences for L5; and 859 sequences for
L16 protein were analyzed. Individual sequences were manually curated in
order to exclude incomplete sequences leaving 1,153 sequences of L1, 1,079
sequences of L5 and 852 sequences of L16 protein.

Multiple sequence alignments were performed using Muscle software38.
To construct a phylogenetic tree, incomplete positions of multiple sequence
alignments were eliminated using Gblocks39 software. Phylogenetic trees
were constructed based on maximum-likelihood with JTT40 model using
PhyML41. Rate4Site software with JTT model was used to calculate conserva-
tion42. Calculation was performed using empirical Bayesian approach, which
was shown to be superior to the maximum-likelihood method for site-specific
conservation scores42. Conservation score was calculated for each individual
position of the complete multiple sequence alignment. E. coli sequences were
used as a reference. The conservation scores calculated by Rate4Site were in-
verted such that values higher than zero indicate conservation degree which
is higher than for the protein in general, whereas values lower than zero
indicate less than average conservation.

In order to calculate the contact score, frequencies of contacts between
tRNA and protein in every substate were used. For each pair of tRNA-protein
contacts, the maximum contact frequency over all substates was determined.
For every protein residue, the contact score was calculated as a sum of fre-
quencies from all of its contact frequencies of different interactions. Residues
that had a contact score of > 0.8 were considered contacting.

2.7 L1-stalk interaction with the 30S subunit
To monitor the interaction between the L1-stalk and the 30S subunit, the in-
teraction enthalpy between the L1-stalk rRNA and proteins S7 and S11 was
calculated. To that aim, the sum of electrostatic and Lennard-Jones interac-
tions were averaged over the trajectory of each state (Fig. 1c).

2.8 L1-tRNAfMet potential of mean force

The potential of mean force (PMF) between the L1-stalk and the tRNAfMet

was calculated using the extended umbrella sampling simulations43. The
motion of the system was restricted at selected positions along the vector
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describing the distance between L1-stalk and tRNA (see section 2.3). First,
20 equally spaced positions xi (i = 1, · · · , 20) were chosen between the mini-
mum and maximum value of the projection onto the distance vector observed
in the simulations (pre3–post2b). For each i, the structure of the L1-stalk and
the tRNA whose projection onto the vector was closest to xi was then ex-
tracted from the trajectories. Next, the obtained structures were solvated (as
described in section 1.1) and subsequently energy minimized. An additional
harmonic umbrella potential with a force constant of kU = 100 kJ/mol/nm2

and centered at xi was applied to the Cff and P atoms of the tRNA and the
L1-stalk to restrain the movement along the distance vector.

Next, the solvent was equilibrated for 5 ns using position restraints on
tRNA and the L1-stalk heavy atoms with a force constant of k = 1000 kJ/mol/nm2.
Subsequently, the system was simulated for 20 ns with the umbrella potential,
but without position restraints.

The distances extracted from the 20 20-ns simulations were used to con-
struct the free energy landscape (Fig. 1f) using the weighted histogram anal-
ysis method (WHAM)44. The WHAM implementation g_wham45 was used
and the statistical errors were calculated by bootstrapping new trajectories
based on the umbrella histograms.

2.9 Bridge B1b interaction enthalpy*

The 50S part of intersubunit bridge B1b14 was defined as the set of residues
of protein L5 that are in contact (see section 2.5) with the 30S residues in
at least one of the states. The 30S part was defined as the set of all the
30S residues that are in contact with L5 in at least one of the states. The
interaction enthalpy between 50S and 30S part of the intersubunit bridge was
extracted as in section 2.5 from the pre5b simulation at intervals of 2 ps.

2.10 Kinetic sequence of states**

From all reaction sequences (i.e. one permutation of all states, {pre1a, pre1b,
pre2a, . . ., post3b}), we determined the one which best matches the observed
set of transition rates as follows. We assume the best matching reaction
sequence to be the one that yields the shortest overall half-time τ. This
overall half-time is proportional to the sum of the half-times of the state
transitions τA→B ∝ exp

(
∆G‡

A→B

)
. The highest transition barrier estimates

dominate the overall half-time, so only the barrier for the ribosomal com-
ponent governing the transition for a given pair of states was taken into ac-
count. The sequence with the shortest overall half-time of states minimizes

∑transitions
i exp

(
∆G‡max

i

)
, where ∆G‡max

i is the highest barrier of all the bar-
riers estimated for the individual ribosome components for transition i. To
avoid that only very high barrier estimates with large errors dominate the
calculation, barrier estimates higher than 50 kT were set to 50 kT.

To check whether the omission of possible “off-track” states allows for
a faster reaction sequence, we performed the above analysis for the fastest
progression sequences with single states omitted. Two cases have been ex-
cluded here, which trivially enhance the progression rate. First, if end-states
are omitted, the reaction sequence trivially becomes faster (e.g. choosing the
simple sequence “pre3 pre4”). Second, if two barriers that include at least
one capped barrier are replaced by just one capped barrier (e.g. replacing
“pre2 pre3 pre4” by “pre2 pre4”). Excluding the two above trivial acceler-
ations of the overall rate, we calculated the fastest progression rate for all
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left non-trivial combinations of omitting states from the fastest progression
sequences.

2.11 Kinetic sequence of states for subsets of ribosome com-
ponent movements**

To assess which movements of individual ribosome components dominate
the kinetic sequence of tRNA translocation, we calculated the fastest progres-
sion sequence using the movements of all ribosome components, of individ-
ual ribosome components, or of a combination of them. To that aim, only
the maximum free energy barriers from the respective subsets of ribosome
components were used for calculating the fastest progression sequences. To
quantify the similarity of these sequences to the sequence introduced by Fis-
cher et al.1, the Kendall rank correlation coefficient τ was used, which reflects
the minimum number of swaps of neighbouring states that are required to
yield the desired sequence. Because a fully reversed sequence with negative
τ leaves the progression rate unchanged, the absolute value of τ was used.
Further, to account for the cases where the sequence presented by Fischer et
al.1 contains multiple substates for single states that have no specific order
assigned (pre1a, pre1b, etc.) the maximum absolute τ for comparison to any
permutation of substates was used.

After translocation, the tRNAs occupy other positions than before translo-
cation, while body, head and L1-stalk return to their initial positions. To
quantify how the derived sequences are affected by this fact, we determined
a second set of reaction sequences with the first position fixed to a pre1 state.
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Supplementary Note 3 (Results)

3.1 Refinement of atomic models

The AP-, PE-, and E-model were refined against 13 cryo-EM maps using
DireX21. The complete set of all-atom ribosome models for the different
states is depicted in Supplementary Fig. 1.

3.2 Comparison to recent crystal structures*

Supplementary Figure 2a compares tRNA positions in our models with tRNA
positions in two crystal structures2 after aligning the binding site regions.
For the comparison the pre1a and pre4 models were used which have the
lowest RMSDs to these crystal structures (Fig. 1b). Even though the tRNAs
used in our simulations and the tRNAs from the crystal structure represent
different tRNA-species, they adopt almost the same position, especially in
the functionally important anticodon and CCA-tail regions.

3.3 Structural deviation during the simulations

For each simulation, the root mean square deviations (RMSD) relative to the
respective starting structure and relative to the structure at 20 ns are shown
in Supplementary Fig. 2b. In all simulations an RMSD of less than 8 Å was
obtained, which is very low for a system of this size. Typical values obtained
by other authors are ∼10 Å46. Note that the PE-model simulation started
from a crystal structure and thus can serve as a benchmark for the quality of
the EM-fitted structures47. Notably, the RMSD values for the fitted structures
are similar or only slightly larger, thus underscoring the quality of these
structures.

3.4 Independent MD based refinement

The independent MD based refinement against the pre1b cryo-EM map re-
sulted in an RMSD of 3.26 Å relative to the corresponding structure obtained
using DireX. Further, an RMSD of 4.54 Å was observed between the MD re-
fined structure and the above mentioned crystal structure with a ribosome
including a P-site tRNA2. A comparable RMSD of 5.31 Å was found for the
DireX refined pre1b structure (cf. Fig. 1b, solid green line).

The fact that the two structures obtained by the two refinement methods
are more similar to each other than to the reference crystal structure suggests
that the refinement quality is independent of the choice of an elastic network
based or an MD based refinement method.

3.5 Stereochemical parameters of the models**

To further assess the quality of our models, we have carried out a statistical
analysis of various stereochemical quantities. Supplementary Table 2 shows
the deviation of the distributions of our models from those obtained from the
protein data bank (PDB). To fully incorporate the additional effect of the sim-
ulations, the energy-minimzed refined structures and the energy-minimized
structures after 100 ns of free MD simulation were used. Stereochemical pa-
rameters were calculated using WHATCHECK48 and then averaged over all
models (pre1a–post4). The ribosomal environment provides different con-
ditions for protein and RNA folds than for most of the protein and RNA
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structures in the PDB. For this reason, we also checked ribosome crystal
structures2;3. Supplementary Table 2 shows that upon initial refinement and
energy-minimization through the force-field, the stereochemical parameters
of our models are comparable to these of recent crystal strucutures. The
stereochemical parameters of the models after 100 ns of free MD simulation,
and subsequent energy-minimization further approached the parameters ex-
pected from an extensive analysis of the pdb-database48. Overall our results
suggest that the stereochemical quality of our models is similar to that of
crystal structures of comparable complexes.

3.6 30S head and body rotation**

The 30S body rotation pivot point was found to be close to the 16S RNA
residues G242 and U562, and the 30S head rotation pivot point is close to the
16S RNA residues A923, U1194, and G1386.

3.7 Transition rates**

The fit of the probability of barrier crossing pA→B to the frequency of barrier
crossings psim

A→B obtained from the simulations (see Supplementary Fig. 3a),
yielded an attempt rate of A = (22.4ns)−1 with an error interval from (15.95ns)−1

to (30.72ns)−1 and a calibration factor c = 0.601± 0.069 at t = 100 ns. The
relative statistical uncertainty of the free energy barrier estimates is 57%. To-
gether these errors affect the statistical uncertainty of the transition rates by
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The relative statistical uncertainty of the transition rate estimates ranges from
52% for fast transitions to 35% for slow transitions. The attempt rates and
error estimates for the individual ribosome components are shown in Sup-
plementary Fig. 3b. Notably, the attempt rates for the individual ribosome
components do not differ markedly from the overall attempt rate, which was
determined by combining the data from all transitions of all ribosome com-
ponents.

3.8 tRNA-mRNA base-pairing

For tRNAVal the base-pairing to the anticodon is maintained in all the simula-
tions with minimal distances around 0.19 nm (Supplementary Fig. 4), except
for the wobble base pair cmo5U35-U which shows larger minimal distances
in states pre5b, post3a and post3b. For tRNAfMet the base-pairing is partially
disrupted in the simulations of the pre2 and pre3 states and, as expected,
when the tRNA is moving out of the E site (post1–post4).

3.9 Rapid angular rearrangement after tRNA removal

The rotation angle between the 50S and 30S subunits changes quickly af-
ter tRNA removal (Supplementary Fig. 5). Compared to the simulations
with bound tRNA (red curves), consistently lower body rotation angles are
observed for the two simulations of the tRNA depleted ribosome structure
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(green). The interaction enthalpies of intersubunit bridge B1b between residues
of the 50S protein L5 (109–111, 114, 135, 141, 143, 145–146, 177) and 30S pro-
teins S13 (2, 6, 8, 56-57, 60, 63–65, 69–70) and S19 (26) were calculated. The
interaction enthalpies were found to be weaker for simulations without tR-
NAs, indicating that the presence of tRNAs leads to a stabilization of large
rotation angles by bridge B1b in the pre5b state. Figure 2b,c show histograms
of B1b interaction enthalpies and 30S body rotation angles extracted from the
last 50 ns of the simulations.

3.10 Influence of refinement accuracy on our conclusions*

To estimate if and to which extent our conclusions might be affected by pos-
sible structural inaccuracies resulting from our refinement of an X-ray struc-
ture against the 13 cryo-EM maps has on our conclusions, we repeated a
simulation and our analyses using the pre3 structure with the tRNAfMet in
an artificially perturbed conformation. This perturbed structure also obeys
all stereochemical and energetic constraints set by the force field and is within
the resolution limits set by the cryo-EM map of the pre3 state, with a tRNA
conformation closer to that of the pre2 state. From a simulation starting from
this perturbed structure, for the reaction coordinates (r.c.) shown Figs. 1c,e,
one would expect the changes to mostly affect tRNAfMet motion, such that
it is similar to the motion in the pre2 state. Indeed, the r.c. values for this
motion are lower in the perturbed simulation, close to those observed in the
pre2 state, and the tRNAfMet-L1 interaction enthalpy is weakened (data not
shown). The tRNAVal-L16 interaction enthalpies are weaker in the pre3 state
than in the neighbouring states. Any change in the tRNAVal conformation
in this state is expected to result in a stronger interaction enthalpy, as is the
case for the perturbed simulation. The changes observed, however, would
not have changed the qualitative picture of the interaction enthalpies offered
by Fig. 1c. Interestingly, the changes in body rotation angle observed in the
perturbed pre3 state reflect the coupling between tRNA conformation and
body rotation reported in the main text (compare Fig. 2). The influence of the
perturbation on the other motions is small.

Upon replacement of the pre3 state by the perturbed pre3 state in the the
transition rate estimation, the barrier heights for head rotation and tRNAVal

motion did not change significantly. In particular, only transition barriers
larger than ∼4 kT are affected corresponding to rates slower than 1/µs, thus
leaving Fig. 1d unchanged.

3.11 Markov-state like representation of states and transition
barriers**

Supplementary Fig. 6a shows a schematic representation of the translocation
intermediate states as a Markov model.

3.12 Kinetic sequence of states**

The sequences of translocation intermediate states with the shortest overall
half-time within the range of the stochastical uncertainties of the correction
factor and barrier heights are {pre1a, pre1b, pre2, pre4, pre3, pre5b, pre5a,
post2a, post2b, post1, post3a, post3b} and {pre1a, pre1b, pre2, pre3, pre4,
pre5b, pre5a, post2a, post1, post2b, post3a, post3b}. They closely resemble
the sequence derived by Fischer et al.1 based on structural similarity.
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Omitting states in the proposed sequences did not yield a faster overall
half-time, with the exception of omitting the pre5b state. According to this
analysis only pre5b is a possible ”off-track“ state, suggesting that all other
states are kinetically relevant.

3.13 Kinetic sequence of states for subsets of ribosome com-
ponent movements**

As shown in 3.12, sequences based on structural similarity reflect kinetic se-
quences, i.e. the ones with the fastest progression rate for the whole ribo-
some. Since sequence of translocation intermediate states presented by Fis-
cher et al.1 is based on structural similarity of the tRNAs, the fastest progres-
sion sequence based only on the barriers heights impeding tRNA movements
should also match this structure based sequence. To test this idea, we deter-
mined the sequences, including all 12 states with two tRNAs, with the fastest
progression rate for all 31 possible subsets of ribosome components. Indeed,
Supplementary Fig. 6b shows that all fastest progression sequences includ-
ing only tRNA movements match the structure based sequence. Further, the
inclusion of movements of other ribosome components leaves sequence of
states essentially unchanged, suggesting that the movement of the tRNAs
dominates the movements of the other ribosome components. As a negative
control, we looked at the fastest progression sequences from body, head and
L1-stalk movements without tRNA movements. Indeed, completely different
sequences were obtained, whose τ values are comparable to those of ran-
domly drawn sequences (Supplementary Fig. 6b). Some of these sequence
contain multiple pre to post transtions.

Since the fastest progression sequences with the first position fixed to a
pre1 state are almost as similar to the structure based sequence as the ones
with an unfixed first state (data not shown), we conclude that the fact that
the tRNAs occupy different positions before and after translocation, while
body, head and L1-stalk return to their initial positions does not markedly
influence the determined sequences.

3.14 Contacts between the tRNAs and the ribosome and con-
servation of involved protein residues*

The frequencies of contacts between the two tRNAs and the ribosome were
determined for all states from the respective trajectories as described above.
The contacting residues of L1, L5, and L16 are generally found to be clus-
tered, e.g., D51–R60, R122–K141 and R164–K167 in L1, I43–K47, S72–Y82 in
L5, M1–R10, R44–R59 and K76–E90 in L16 protein (Fig. 3b). All these contact-
ing fragments have a high conservation degree and appear more conserved
than the protein on average.

To test whether contacting residues had in fact a higher degree of con-
servation than the rest of the protein, we used a one-sided permutation
test49. Differences in means were calculated for the contacting and non-
contacting surface residues. Then, the same difference was calculated for
every possible permutation of contacting and non-contacting groups. The
p-values were calculated as a proportion of sampled mean differences larger
than the observed value. The significance level was set at 0.05 (or 5%). In-
deed, tRNA-contacting residues have a higher conservation degree for L1
(p-value=0.0019), L5 (p-value=0.027) and L16 (p-value=1.05× 10−5) proteins,
with an overall p-value=6.62× 10−8. The high degree of evolutionary conser-
vation of the protein residues which were identified to contact tRNA during
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translocation provides an independent evidence for their potential functional
importance.

Overall, the contact entropy of tRNA-rRNA contacts is larger than that of
tRNA-protein contacts: 64 % of the tRNA-rRNA contacts, but only 38 % of
the tRNA-protein contacts have a contact entropy above 0.5. This means that
there are more state-specific contacts between the tRNAs and the proteins,
which is an interesting finding in itself.

Supplementary Tables 4a–4t list the frequencies of contacts between tRNAVal

and the ribosome for each state. Supplementary Tables ??–?? list the contacts
between tRNAfMet and the ribosome. The gray-scale level of the cells in-
dicates the frequency of atom-atom contacts corresponding to the residue
pairs, white (0–12.5%), light gray (12.5–25%), dark gray (25–50%), and black
(50–100%).
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4. Discussion

We will discuss the findings that were presented in the publications “Energy
barriers and driving forces in tRNA translocation through the ribosome”[22]
and the respective supplementary information with a focus on my personal
contributions. Then we will, in retrospect, discuss the assumptions, limita-
tions and potential improvements to the methods used to obtain these results
in the following sections. We will show, where different approaches might
have been used and highlight new possible applications of the developed
methods.

We built an all-atom model of the ribosome using X-ray crystallography
data and refined it to thirteen cryo-EM densities from Fischer et. al [6] (Sup-
plementary Fig. 1 in [22]). By that refinement we obtained an all-atom de-
scription of intermediate states of tRNA translocation.

Validity and predictive power of our refined ribosome models has been
confirmed by the agreement between our model and ribosome conformations
later found in X-ray structures [32] (Fig.1b in [22]). Bond length and angle dis-
tribution quality as well as the overall stereochemical quality of our ribosome
models matches that of X-ray structures (Supplementary Table 2 in [22]). We
conclude from our findings that models from cryo-EM refinement can parallel
the accuracy of X-ray structures, if the refinement is based on high-resolution
cryo-EM data and a good starting model. This high model quality further al-
lows to reliably perform MD simulations with the refined models as starting
structures.

Quantifying ribosome movements from cryo-EM densities requires man-
ual guidance in segmenting cryo-EM densities (Fig. 1.2a shows a segmented
ribosome cryo-EM density). Instead, our refined models directly show the
movement of the tRNAs, L1-stalk and small subunit body and head. We gen-
erated ensembles from the refined models of the thirteen substates by 100 ns
MD simulations. To identify the interaction patterns on ribosome parts that
are crucial for tRNA translocation, we first identified the movements that gov-
ern translocation by exploring the structure of the ribosome free energy land-
scape.

We initially proposed that the structure of the free energy landscape of
tRNA translocation is governed by a hierarchy of barriers, as suggested by
Frauenfelder (Fig. 1.6). Indeed, we found that this postulated hierarchy of
energy barriers impedes the movement of the tRNAs, the L1-stalk as well as
body and head rotations (Fig. 1d in [22]). The Frauenfelder picture, in which
a hierarchy of energy barriers governs transitions between states with similar
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free energy (Fig. 2.1), was initially proposed for myoglobin [14]. We find it
confirmed for the much larger and more complex ribosome.

Whereas the cryo-EM experiment determined the occupation probabilities
of the energy minima in the energy landscape, our free energy barrier esti-
mates through a harmonic approximation to the ensemble data estimated the
probability to find ribosome parts in transition states between two transloca-
tion intermediates. Our simulations further allowed us not only to determine
the free energies of the transition states, but also how fast transitions occur
from one state to another. To that aim, we linked the energy barriers to tran-
sition rates using the fact that our molecular dynamics method (eq. (2.11))
provides the correct thermodynamical ensemble and, additionally, dynamic
information. We exploited this dynamic information by determining an over-
all attempt rate and geometry factor by comparing observed transitions in our
simulation time to the expected transition probabilities from the free energy
barrier estimate (section 2.4 and Supplementary Information in [22]).

The uncovered hierarchy of barriers (Fig. 1d in [22]) suggests a classifica-
tion of ribosome substates into early pre states (pre1 and pre2), late pre-states
(pre3-pre5), early post (post1-post2) and late post states (post3). The free en-
ergy barrier between the pre2 and the pre3 state has been identified before
from the population analysis of small subunit body and head conformations
[6]. We now find that not only body and head rotation impede the transition
from pre2 to pre3, but also the movement of both tRNAs. In fact, in the ma-
jority of other states it is the tRNA movement, not body and head rotations,
that impedes transitions.

Though translocation is presented as a sequence of intermediates, the ac-
tual transition dynamic is a stochastic process in an energy landscape [6, 126].
So far, it was unclear whether the sequence of translocation intermediates
in [6] is kinetically relevant. We tested the kinetic relevance of this linear
sequence based on structural similarity by comparing it to the sequence of
states that would show the fastest overall progression. To perform the meta-
dynamics analysis that describes translocation as this stochastic process, we
discretized the continuum of translocation substates by a Markov model (Sup-
plementary Fig. 5), where we assume that transitions in our Markov model
are given by the slowest of our estimated intrinsic transition rates. Using our
Markov state model, we obtained the fastest progression sequence of substates
that almost coincides with the sequence derived from purely geometric sort-
ing, except for a swap between the post1 and post2 states. Together with the
barriers seen between these states, our data would now suggest to group the
post1 and post2 states into one.

We have also addressed the question whether “dead-end” states exist in
tRNA translocation using the same framework (Supplementary Information sec-
tion 3.12). On the one hand this seems unlikely in the context of a ribosome
that evolved to be highly efficient, on the other hand these states might exist as
kinetic controls. Our results suggested pre5b is a “dead end”, though removal
of this state from the fastest progression sequence did not significantly alter
the overall sequence progression rate. More precise kinetic data on the transi-
tion rates from the pre5 states would be required to increase the significance
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of this finding. The current rate estimates, especially for transitions from pre5
states to the early post states are coarse due to the large barriers that slow the
pre- to post-translocation state transition.

After describing the ribosome dynamics as a concerted motion of tRNA,
L1-stalk, body, and head movements, we assessed the influence of the indi-
vidual parts on the meta-dynamics described by the Markov model above by
excluding the rate limiting effect of individual movements, as well as com-
binations of ribosome movements (Supplementary Information Fig. 6b). The
analysis allowed us to conclude that tRNA movements determine the kinetic
sequence of states.

We extracted how ribosome parts individually contribute to the barriers
between states and showed a possible way to connect them to the overall
ribosome transitions with our Markov model. These rates for the movement
of single ribosome parts were obtained using complete ribosome simulations,
whereas, to estimate the transition rates, we treated them as independent from
the ribosome. This procedure allowed us to extract “intrinsic” transition rates,
and to disentangle the mutual influence of the ribosome parts.

We further asked, what interactions create the free energy barriers and
how they are overcome. Detailed protein residue and RNA nucleotide inter-
actions are not accessible to cryo-EM, but through our thirteen all-atom de-
scriptions of translocation intermediates. The stability of these interactions is
an ensemble property whereas our refined models represent single ribosome
conformations. This ensemble property of cryo-EM densities, is reflected in
the smeared out cryo-EM densities of the flexible ribosome parts (compare the
green and purple tRNA densities of the two 12Å resolution cryo-EM densities
in Fig. 1.5b), but lacks the resolution to identify interactions on a per-residue
level. From our simulation ensemble information we extracted the interaction
stability, i.e. the contact frequency between the tRNAs and ribosomal proteins
(Fig. 1c in [22]). This extraction of contact frequencies from 50 000 confor-
mational snapshots was only possible through the efficient contact finding
algorithm we developed [21].

We identified three main tRNAs interaction partners on the large riboso-
mal subunit, L1, L5 and L16 (Fig. 1c in [22]). The tRNAs interact in distinct
patches with L16 and L5, stepping along L16 and sliding along L5 (Fig. 5
in [22]), and interact in one strong contact patch with the L1-stalk that serves
to pull the tRNA out of the ribosome.

To address whether the identified mechanisms are anecdotal or universal
to prokaryotic translocation, we further analysed the obtained contact fre-
quencies. We assumed that the contacting residues should be more than av-
erage conserved if they are universally relevant. Through a comparison of
more than 6 000 protein sequences we found that contact patches are indeed
conserved (Fig. 3b in [22]).

The underlying experimental data as well as each of the above described
steps, the model building, the cryo-EM refinement, MD simulations, contacts
analysis, free energy barrier estimates, attempt rate and geometry factor deter-
mination as well as the Markov model of translocation are based on numerous
assumptions, which we will discuss now. Further, we will show where the de-
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veloped methods are not limited to the ribosome, but applicable to related
systems.

4.1 Biochemical background

The biochemical setup used to gather the cryo-EM data for our ribosome
model refinement is special in many ways. First, it uses an in vitro model as-
say of E. coli ribosomes. Second, it does not use EF-G and GTP to drive translo-
cation, but thermal fluctuations in equilibrium. Third, the used buffer condi-
tions and the specific tRNA pair tRNAVal/tRNAfMet favor retro-translocation,
not the canonical forward translocation [127].

In vitro assays neglect cellular effects. In vivo, translocation rates are dom-
inated by the availability of cognate tRNA [128] and influenced, e.g., by molec-
ular crowding in the cell and the number of ribosomes reading mRNA in close
proximity to each other [129, 130]. Though these effects do affect the overall
protein expression rate, we assume that they do not alter the fundamental
properties of ribosome function we want to explore. Their influence on ri-
bosome function is only understood, if we understand translation in its most
basic setting.

Escherichia coli is an established model organism in spectroscopic, X-ray,
and cryo-EM measurements. Mechanisms that are specific for E. coli might
be mistaken as general features of prokaryotic translocation. However, the
extremely high evolutionary conservation of ribosomes and the large struc-
tural similarity to extromphile prokaryotes from completely different environ-
ments, such as Haloarcula marismortui, Thermus thermophilus, and Deinococcus
radiodurans renders it unlike that the features we describe are specific to E.
coli. In contrast, we find many key features of prokaryotic ribosomes even in
eukaryotes [131, 132] — to an extent that a common naming convention for
ribosomal proteins in eukaryotes and prokaryotes is being developed.

The biological relevance of the cryo-EM data we used has been challenged
on the grounds that the tRNAs translocate “backwards” through the ribosome.
Due to initial excess of tRNAfMet in solution, the preferred tRNAfMet pathway
is the seemingly paradox tRNAfMet entry through the ribosomal exit site, and
subsequent movement to the peptidyl site. However, after 20 minutes, the ex-
cess concentration of tRNAfMet is depleted [6] and the system is equilibrated1.
In an equilibrium system, all processes are time-independent, thus the retro-
translocation setup cannot have any influence on the translocation pathway.
Indeed, different translocation pathways for forward and retro-translocation
in equilibrium would generate directed motion without energy cost, a per-
petuum mobile. Further, Fischer et al. showed that during equilibration only
the ratio between pre-and post-translocation state population changes, not the
populations within pre- and post-translocation states.

Yet, the special buffer conditions and the combination tRNA species re-
quired to induce retro-translocation in an excess of tRNAfMet might affect the

1More precisely it approached equilibrium beyond measurable deviations, true equilibrium is
only reached in the infinite limit.
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translocation pathway. Though the tRNA species does affect the overall rate of
translocation [133], we expect little influence on the tRNA translocation path-
way. First, the tRNAs are very similar in structure and ribosome binding sites
very narrowly fit the tRNAs, sterically prohibiting large deviations. Second,
the observed order-of-magnitude difference in rates translates to a free energy
difference of (log 10)kBT ≈ 2.3kBT, which is below the error margin of our
rate estimates.

Though we do expect an influence of the buffer conditions on our esti-
mated transition rates, a rigidifying effect of Mg2+ ions on RNA [134], for
example, we do not expect a large effect on our conclusions, because ion re-
arrangement on RNA is very slow compared to our simulation time-scales
[134].

Through the use of GTP, EF-G drives translocation forward, i.e. in pres-
ence of EF-G and GTP, the pre-translocation states are rapidly depleted and
the occupation of post-translocation states is favoured. However, it is un-
known to what extent EF-G alters the reaction pathway during tRNA translo-
cation. Yet, we assume that the fundamental principles of movement of tRNA
through the ribosome remain unchanged, because the available structural
data [135, 136, 137, 138] suggests that EF-G mainly acts to prevent backward
translocation. Further, our estimated interaction enthalpies largely exceed the
energy provided by GTP hydrolysis, rendering a complete change in the free-
energy valley that defines tRNA translocation unlikely.

Still, EF-G catalyzed GTP hydrolysis might act as a “gate-opener” to a
distinct free energy “valley” in which tRNAs move during EF-G catalyzed
translocation. Here, by the very long (20 min) equilibration time that the used
cryo-EM setup allowed, we would very likely already observe such a second
“valley”. Overall, though the translocation kinetics are definitely affected by
the presence of EF-G, we assumed that translocation paths and ribosome-
tRNA interactions are very similar with and without EF-G present.

4.2 Cryo-EM reconstruction

For our refinement, we used a subset of the sharpened cryo-EM density maps
instead of the raw data, ca. 2 million cryo-EM micrographs. Though the
cryo-EM reconstruction method carfully tested against overfitting of the data
through crossover refinement, a small inherent bias towards the ensemble of
obtained cryo-EM densities and to the assigned free energies remains. This
is due to the fact that for a reconstruction of cryo-EM maps configurational
space is binned to yield a sufficient number of micrographs to reconstruct
a cryo-EM density. The hierarchical sorting routine that was employed, for
example, bins body rotations in 5◦ steps. Fig. 4.1 shows that any partitioning
of state space changes the free energy landscape. Uneven partitioning might
even introduce artificial high energy transition state intermediates, an effect
that was avoided in the hierarchical sorting routine employed by Fischer et al.

The fact that a different sorting routine, e.g. a shift of the 30S body rotation
bins by one degree, would result in a slightly different reconstructed ensemble
of structures with different assigned free energies shows that the cryo-EM raw
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Figure 4.1: Partioning in state space changes a flat free energy landscape G0
and introduces a free energy barrier.

data ensemble information is not fully exploited.
A potential way to further exploit the cryo-EM raw data would be the as-

signment of free energies to ribosome configurations that were generated in
our MD simulations using the 2d projection images from cryo-EM. To perform
this task, the ribosome configurations would be projected into two dimensions
and subsequently assigned to cryo-EM micrographs. A subsequent counting
of the assigned projections would yield an occupation probability for a ribo-
some configuration directly from the cryo-EM raw data. Sifting through the
most likely configurations would in turn yield a reconstruction method simi-
lar to electron density reconstruction methods from free-electron laser diffrac-
tion images.

4.3 Cryo-EM refinement

From the ensemble of fifty available cryo-EM density maps we choose a sub-
set of thirteen translocation intermediates. First, we selected the best resolved
cryo-EM densities of major tRNA configurations (pre1-post4 states). Where
cryo-EM maps with significantly differing features for these major tRNA con-
figurations had been resolved, we complemented our initial set with these
maps (in the pre1, pre5, post2 and post3 state) to best represent the complete
set of fifty resolved cryo-EM densities.

Few of the many possible atom configurations that fit cryo-EM data are
biologically and physically meaningful. Cryo-EM refinement poses an incom-
plete problem where additional constraints, a force-field, need to be intro-
duced to obtain the desired, physically and biologically relevant, atom config-
urations. With these additional constraints however, the refined structures are
an overinterpretation of cryo-EM data if not cross-validated independently.

Of the variety of cryo-EM refinement procedures we chose to maximize
the cross-correlation of the atom structure to the cryo-EM density over using
the inverted cryo-EM density as an additional attractive potential energy term
in the force-field [139]. This eliminated the need for strong constraints on
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secondary structure that were necessary in previous approaches to refine cryo-
EM densities of the ribosome [64].

To test the influence of the refinement procedure choice on the resulting
conformation, we used DireX [122] and implemented a refinement based on
the algorithm of Orzechowski et al. [140], using a physical potential as a force-
field instead of the dynamic elastic network model used in DireX. The im-
proved results with the physical potential at the expense of increased compu-
tational cost suggests that initial configurations obtained by refinement with
DireX should be further refined using a physical potential.

Though all atom positions were available from the refinement procedures
and our refinement did predict a crystal structure conformation (Fig.1b in [22])
within the range of thermal fluctuations, we made sure not to over-interpret
our refined structures by ensemble and spacial averages. The ensemble aver-
ages were performed over all frames of MD simulations of the refined struc-
tures and thus minimzed the effect of artifacts in the single refinement struc-
ture. The spacial averages were performed over protein residues and RNA
nucleotides, when describing local interactions.

Two key questions are to be addressed in future refinement approaches.
First, present refinement procedures yield a single conformation, whereas the
cryo-EM map represents a conformation ensemble. This issue is currently
being addressed by Vaiana et al. through implementing a target function
that maximizes the cross-correlation to an average map from an ensemble of
structures, as proposed in [141].

The second question is, how strongly a force-field may influence the cryo-
EM refinement without overfitting the data. A force-field free refinement, will
yield a very high correlation at the cost of an unphysical, chemically mean-
ingless structure, whereas a refinement guided predominantly by the force-
field would result in poor correlation to the input density. The weighting λ
between force-field V(x) and experimental input C(x) might be addressed us-
ing a Hamiltonian replica-exchange method [142], where multiple refinement
Hamiltonians H(λ) = λV(x) + (1− λ)C(x) are used simultaneously. The en-
semble reweighting technique would further yield the required ensemble of
refined structures as described above and might prevent the common refine-
ment problem where refinement algorithms are trapped in local minima.

4.4 Force-field and sampling

The conclusions we draw for mechanisms of tRNA translocation from our
simulations rely on a sufficiently accurate description by the MD force-field
and sampling of ribosome conformations.

Apart from the conventional limitations sketched in section 2.2, due to
the high flexibility and charge of RNA compared to proteins, parametrization
of RNA force-fields for simulations is especially challenging [134, 143]. Cor-
rectly accounting for long-range electrostatic interactions is crucial for RNA
simulations [143]. To accurately model these long-range electrostatic interac-
tions, we used the particle-mesh-ewald method [144]. The accurate descrip-
tion of RNA-ion interactions poses an additional challenge to the force-field
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[143]. Though the ion parameters by Joung et al. [145] largely improved
the simulation properties of monovalent ions and especially prevents their
unphysical aggregation in solution as observed in previous ribosome simu-
lations [146], the interactions of Mg2+ with RNA are not fully described by
current models. However, multivalent ions in our simulations were placed in
their binding sites as resolved in crystal structures. Because ion rearrange-
ment on RNA is much slower than the time-scales of our simulations, we
assume that these short-comings in force-field parametrization do not affect
our conclusions [134].

Influence of the force-field parameters on the simulation results is usually
tested by performing the same set of simulations with another force-field. We
did not perform this canonical test against another force-fields, because no
other force-field for RNA and protein simulations with modified RNA nu-
cleotide parameters was available that was parametrized independently from
the amber99sb-ildn force-field [147] we used.

Despite the vast computational time (≈ 2 · 106 CPU hours) that we used for
sampling ribosome conformations with highly efficient algorithms [148], we
cannot rule out that single simulations are “stuck” in improbable excursions in
the free energy landscape. To test how robust our conclusions are with respect
to excursions in the energy landscape, we performed one of our simulations
with an improbable, distorted, tRNA conformation in the pre3 state. We found
that our conclusions were not affected and that the overall conclusions remain
valid. Multiple parallel simulations from the same refined conformations have
now been performed to address this concern further. Yet, essential movements
on the meso-scale between the 100ns dynamics from our simulations and the
much larger time-scales reflected in the cryo-EM data might not be covered
due to our limited sampling.

To address our limited sampling of ribosome conformations, we extended
our sampling capacities over the past three years. Accessible ribosome sim-
ulation time-scales, and thus the available sampling, increased by a factor of
ten through an increase in computer power and more efficient simulation al-
gorithms, such as domain-decomposition, electro-static calculations and the
use of graphical processing units.

4.5 Transition rate estimates

The limited sampling time will also have a direct effect on the estimated free
energy barriers of the ribosome. Figure 4.2 shows a one-dimensional example
system, where limited sampling of two intial configurations creates an ap-
parent free energy barrier in a flat free energy landscape. The estimated free
energy barrier in this system only vanishes after infinitely long sampling.

Also in our simulations, barriers might be overestimated due to limited
sampling. First, the large differences in free energy barrier estimates from con-
formationally close states speak against a locally flat ribosome energy land-
scape. Second, the observed range of attempt rates for ribosome parts between
(20 ns)−1 and (40 ns)−1 (Supplementary Fig.3b in [22]) indicates that in the
same simulation different ribosome parts experience different dynamics, also
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Figure 4.2: Sampling on a flat energy landscape from two distinct confor-
mations within limited time induces a barrier between states. Sampling in
a flat energy landscape (G∞ in the chart on the bottom left) started simultane-
ously in states A and B at t = 0 (left charts). Propagation of the probability
densities through the Smoluchowsky equation up to t=1 shows that the bar-
rier between states A and B only vanishes for t → ∞, even assuming perfect
sampling at all time points.

contradicting a locally flat free energy landscape. Overestimation of barriers
due to limited sampling is further accounted for by the global geometry factor
c.

The different approximations that were made to obtain the free energy
barrier estimates and then, via global attempt rate and geometry factor, the
transition rates, introduce systematic errors. For example, the harmonic ap-
proximation yields poor results, if the underlying energy-landscape is very
anharmonic. Note however, that for the relatively small structural deviations
from the starting structures during our simulations, the second order Taylor-
expansion of the energy landscape captures the essential features of the local
free energy landscape. The quality of the estimates will be increased in future
applications by taking into account the local geometry at the barrier top and
in the minima via eq. (2.20).

Fig. 4.1 shows that the way state space is partitioned strongly influences
the obtained free energy profile and the estimated barriers. A method we
used to partition ribosome conformational space is the choice of a few reac-
tion coordinates (by principal component analysis) as shown in Fig. 2.1. If,
for example, the reaction coordinate shown in Fig. 2.1 is oriented at another
angle, the separation of states A and B is less pronounced. Fig. 4.3 shows
an example, where the seperation of states vanishes all together. A rotation
of the reaction coordinates in Fig 4.3 by π/2, however, will separate the two
states in one reaction coordinate. A method that finds these rotations is the
full correlation analysis [149]. This method empirically minimizes the mutual
information, thus maximizes the separation, between reaction coordintates by
a series of orthogonal transformations of the reaction coordinates obtained by
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Figure 4.3: A free energy barrier in a two dimensional energy landscape
disappears upon projection on the individual reaction coordinates. Two
states A and B are well separated by an energy barrier in the two-dimensional
product space (top right) of reaction coordinate one and two (r.c. 1 and r.c.2),
but have no barrier in the individual reaction coordinates. In consequence,
the inclusion of multiple dimensions is necessary for good free energy barrier
estimates. If r.c.1 and r.c.2 describe different ribosome parts, this shows that
coupling between ribosome parts might induce free energy barriers that are
invisible if the parts are treated independently.
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PCA. Applied to our simulations, it will yield reaction coordinates that better
pronounce free energy barriers. However, we expect that we well capture the
free energy barriers impeding the movement of ribosome parts with three re-
action coordinates, since the inclusion of additional reaction coordinates did
not change the relative height of the estimated free energy barriers (data not
shown). On the other hand, the relative free energy barrier heights did change
significantly with the inclusion of a second and third reaction coordinate, in-
dicating that a naive one- or two-dimensional harmonic approximation to the
free energy landscape is insufficient.

We extracted a single attempt rate for all transitions from our ribosome
simulations by comparing the frequency of succesfull attempts to overcome
energy barriers in our simulations to the estimated height of these barriers.
Longer simulations would also see attempts to overcome larger barriers, and
in turn lead to a lower attempt rate estimate, thus the single attempt rate we
observe is coupled to the time-scale of the simulation and to the height of
the free energy barriers we analyze. Dropping the assumption of one single
attempt rate and instead using subsets of translocation intermediates to an
attempt rate for each subset of states might provide a tool to uncover special
features of the free energy landscape of a limited subset of translocation in-
termediates, though more extended sampling of ribosome configurations will
be needed for such an approach.

In modeling the transition rates we did not consider the following three ef-
fects. First, we did not analyze other 50S subunit movements than the L1-stalk.
Due to the very similar conformation of the 50S subunit, L1-stalk excluded,
throughout all tRNA translocation states, we did not expect a significant con-
tribution to the overal ribosome movement. Second, for the ribosome to tran-
sition from from one translocation intermediate state to another, the concerted
motion of all its parts will be required. We assumed, that the slowest of these
motions dominates the transition. Especially if the time-scales for the indi-
vidual transition of the slowest ribosome parts is similar, this will affect the
overall ribosome transition rate even if these movements are energetically un-
coupled. We did not consider this second effect in our analysis, because we
expect the error in the estimates of the individual rates to be larger than this
“concerted motion” effect. Third, as sketched in Fig. 4.3, the transitions might
be hindered by larger energy barriers than estimated due to energetic cou-
pling between different ribosome parts, which we did not yet cover in our
analysis.

To overcome high barriers hindering transitions and reveal the pathways
that connect the minima on the free energy landscape, sampling might be
enhanced at the cost of restricting the system to chosen reaction coordinates.
One of these methods is umbrella sampling, which we already employed to
yield the free energy profile of the tRNA L1-stalk interaction (Fig.1f in [22]).
Possible other approaches are temperature replica exchange simulations or
simulations where the cryo-EM density of another state is used as a biasing
potential. Our harmonic approximation in the free energy landscape also
estimates the location of the free energy barrier (eq. 2.18) and thus yields a
transition state approximation we did not employ so far.
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The transition rate estimates might help to perform meta-dynamics on
other sparsely sampled energy landscapes, e.g. the energy landscape of pro-
tein folding and also to extract local diffusion properties in energy landscapes
[150] from local attempt rate estimates.

4.6 Interaction enthalpies and contact frequencies

Interaction enthalpies have been described on a per-residue basis between
tRNA and the large subunit proteins L1, L5, and L16 after filtering relevant
residue-nucleotide interactions according to contact frequencies. Other inter-
actions will also drive tRNA translocation, e.g. the interactions between the
large and the small ribosomal subunit. The analysis of these interactions went
beyond the scope of the publication [22]. Preliminary analysis by Bock et al.
showed that, similar to tRNA translocation, 30S body and head rotation is
made efficient through levelling the interaction enthalpy [151]. Though um-
brella sampling and interaction enthalpy analysis revealed that the L1-stalk
pulls the tRNA, it remains unclear what drives the L1-stalk.

The contact frequencies between tRNA and ribosomal proteins L1, L5,
and L16 from our simulations (Supplementary Tables 4a-4t in [22]) reflect
the strength of residue-nucleotide interactions per translocation intermediate
state. Thus they directly suggest residues for mutagenesis that might stabilize
or destabilize specific translocation intermediates.

4.7 Fast contacts search algorithm and implementa-
tion

Though initially developed for finding contacts between ribosome parts, the
implementation of the fast contacts search algorithm addresses the issue of the
scaling of data analysis algorithms in the simulation field. Extracting mean-
ingful information from simulation data is as important as the data generation
itself, but most efforts so far have been spent on increasing the efficiency of
sampling algorithms, whereas data analysis tools scale poorly. We imple-
mented an algorithm that scales approximately on the order of n log n, where
n is this particle number. This scaling now is similar to the MD algorithms
[148].

Yet, algorithms for finding atoms in near vicinity to each other were pre-
viously employed in molecular dynamics simulations. One example is the
“neighbor-list” approach used in MD simulations, where a contact search is
made efficient through keeping a list of neighbours from previous simulation
frames. We did not use this approach explicitly in our algorithm, because the
frames we analyzes are too uncorrelated to efficiently employ the neighbor-
information from previously analyzed frames. However, by initially reusing
the atom sorting from previous frames, we implicitly use this neighbor infor-
mation in our implementation.

Another frequently used approach is a “grid-search” that assignes atoms to
grid-cells, or, even more efficiently, to nodes of a balanced octree and reduces
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computational cost by calculating distances only for atoms that were assigned
to related grid cells or nodes, respectively. Such an algorithm is very efficient
for multiple distance queries, but not used in our approach, because of the
large overhead of initially creating the grid or octree structure. Our algorithm
implicitly uses the advantages of the octree approach. It is implicit in the
so-called bboxes and their repeated splitting (cf. Fig.1 in [21]). In contrast
to a standard octree approach, only the nodes of the octree structure (called
bboxes in [21]) are created that contribute to find contacts within the given
distance.

A theoretical proof for the lower- and upper bounds of scaling and data
storage needs for the fast contact search went beyond the scope of our work,
but exhaustive empirical testing did not show significant deviation from the
assumed n log n scaling (Fig. 2 in [21] and scaling of intersubunit contacts
search between differently sized parts of ribosome subunits, data not shown).
The scaling behaviour of our fast contact search appears worse than the re-
porting time for other range searches, log n. However, the pre-processing time
is the crucial factor for our applications, because we query each data set only
once. Thus we match the expected n log n scaling behaviour of other reported
efficient algorithms if the necessary pre-processing is considered [152].

4.8 Applications of fast contacts search

On the ribosome, during A-site decoding, small configurational changes are
transmitted to trigger a response in distant sites (cf. section 1.1). Further in-
tersubunit interactions might serve as a “dial control” of tRNA translocation.
An analysis of contact patch changes that is now made possible with our im-
plementation of efficient contacts search, can serve as a tool to explain how
these configurational changes are transmitted through the ribosome.

Our implementation of a fast contact search algorithm in g_contacts, al-
lowed to identify the contacts that are involved in allosteric transitions in
hemoglobin [20]. Further it has been applied to study the impact of point
mutations to EF-Tu, and as a tool to identify flipped lipid head groups in
coarse-grain simulations (Leonov and Bubnis, personal communication).

Another application of our fast contact search implementation lies in the
characterization of intrinsically disordered proteins. These proteins do not
have a defined fold, but explore a large variety of conformations. Standard
methods to characterize ensemble data fail in this case, e.g. the root mean
square deviation measure with respect to a reference structure, because a well
defined reference structure is missing. Also contact maps that describe the
pair-wise interactions of protein residues are not applicable due to the unde-
fined fold and thus wide variety of residue-residue interactions. This problem
is solved by the extension of this contact map to a contact frequency map that
reflects the averaged contact map over a large ensemble of conformations. Our
implementation of fast contacts search now allows calculation of this contact
frequency map, which was previously prohibitively expensive.

Further the conatct frequency map provides a similarity measure compara-
ble to the widely used RMSD, but which does not rely on a reference structure.
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Here the deviation of the contact frequency map averaged over a simulation
window from the contact frequency map of the whole simulation is used.

4.9 Follow-up projects

With our ribosome simulations and the respective analysis tools we laid the
foundations for a series of follow up studies that we will present now.

Translation comprises a hierarchy of chemical processes (Fig. 1.3). The
methods developed in this work, the ribosome model, cryo-EM refinement
routines, the fast contact search, and our method to characterize the ribosome
free energy landscape, will facilitate the study of the processes adjacent to
elongation: A-site decoding, peptide bond formation and termination, and,
further up the tier, ribosomal initiation, termination, and recycling.

The prerequisite for these further studies is accompanying structural data
to refine and validate our all-atom ribosome model. With this data on hand,
the same methods to characterize the ribosome free energy landscape and the
interactions of its parts, will indeed aid to advance to the “post-structural” era
of ribosome research also in other processes than translocation [126].

This structural data is already on hand for a biochemical complex that
occurs during selenocysteine (Sec) incoorporation in peptide elongation. Se-
lenocystein is a non-canonical amino-acid that is essential for a variety of
prokaryotes, archea and eukaryotes. It is part of the catalytic center of se-
lenoproteins that catalyses redox-reactions. The mechanism of selenocystein
incorporation into proteins is unusual, because the tRNA that delivers Sec to
the ribosome reads a stop codon. This reading is only performed if the down-
stream mRNA exhibits a special fold, which is triggered through the mRNA
selenocystein insertion (SECIS) sequence. This special fold triggers selB bid-
ing, which in turn aids Sec-tRNASec accommodation to the ribosme similar to
EF-Tu. Due to the low yield of the ribosomal elongation factor selB promoted
accommodation of Sec-tRNASec, structure determination has been difficult.
Now, a high-resolution cryo-EM density will allow to model the ribosome in
atomic detail in complex with SelB (Fischer et al., personal communication).
From that starting point, we aim at understanding how the SECIS fold is
recognised by selB and how selB aids selenocystein incorporation through the
ensemble information that is provided by MD simulations of this complex. In
contrast to the approach of this thesis, where we extracted general features
of translocation from a special setup, we aim here at the selenocystein spe-
cific ribosome interactions. The current problems in refining high-resolution
cryo-EM densities of the selB-ribosome complex might be overcome by the
Hamiltonian replica exchange protocol described above.

Translocation in eukaryotes is yet less understood than in prokaryotes.
The novel high-resolution crystal structures of eukaryotic ribosomes [131] al-
low MD simulations on the resolved states, as performed by Sanbonmatsu
et al. (conference proceedings), though the structural detail of translocation
intermediate states and detailed kinetic information of tRNA translocation in
eukaryotes is still lacking and renders a similar approach to ours challenging
at the time [132].
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An outstanding challenge that is closest related to the presented work is to
understand the role of EF-G in translocation. The transition rate estimates in
our work already provide a hypothetical mechanism for EF-G (Fig.1d in [22]).
By binding to the pre3 state EF-G binding might block the excursions of the
tRNAVal as well as the body from the pre3 and pre4 to the pre1 state conforma-
tions (cf. purple and red lines connecting pre3, pre4 and pre1b in Fig. 1d [22]).
Until recently, the lack of structural data prohibited a computational study
of EF-G dynamics on the ribosome. Now, new crystal structures of EF-G
bound to the ribosome have been solved and provide atomic models for EF-G
binding to the ribosome [136, 137, 138]. Here, cryo-EM structures of further
translocation intermediates with EF-G would provide the necessary additional
information to follow the same approach as in this thesis.
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geometry., FEBS Letters, 587(13), 1848–57, 2013.

[60] B. L Grigorenko, M. S Shadrina, I. A Topol, J. R Collins, and A. V Nemukhin. Mechanism of
the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation
factor Tu., Biochimica et Biophysica Acta, 1784(12), 1908–17, 2008.

[61] A Adamczyk and A Warshel. Converting structural information into an allosteric-energy-
based picture for elongation factor Tu activation by the ribosome., Proceedings of the National
Academy of Sciences of the United States of America, 108(24), 9827–32, 2011.



BIBLIOGRAPHY 98

[62] A Aleksandrov and M Field. Mechanism of activation of elongation factor Tu by ribosome:
catalytic histidine activates GTP by protonation., RNA, 19(9), 1218–25, 2013.

[63] I Besseova, K Reblova, N Leontis, and J Sponer. Molecular dynamics simulations suggest
that RNA three-way junctions can act as flexible RNA structural elements in the ribosome.,
Nucleic Acids Research, 38(18), 6247–64, 2010.

[64] L. G Trabuco, E Villa, K Mitra, J Frank, and K Schulten. Flexible fitting of atomic structures
into electron microscopy maps using molecular dynamics, Structure, 16(5), 673–683, 2008.

[65] E Villa, J Sengupta, L. G Trabuco, J LeBarronc, W. T Baxterc, T. R Shaikhc, R. A Grassuccid,
P Nissene, M Ehrenberg, K Schulten, and J Frank. Ribosome-induced changes in elonga-
tion factor Tu conformation control GTP hydrolysis, Proceedings of the National Academy of
Sciences of the United States of America, 106(4), 1063–1068, 2009.

[66] R. C Thompson and P. J Stone. Proofreading of the codon-anticodon interaction on ribo-
somes., Proceedings of the National Academy of Sciences of the United States of America, 74(1),
198–202, 1977.

[67] P Whitford, P Geggier, R Altman, S Blanchard, J Onuchic, and K Sanbonmatsu. Accommo-
dation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple
pathways, RNA, 16(6), 1196–1204, 2010.

[68] T Caulfield and B Devkota. Motion of transfer RNA from the A/T state into the A-site
using docking and simulations., Proteins, 80(11), 2489–500, 2012.

[69] P Whitford, J Onuchic, and K Sanbonmatsu. Connecting energy landscapes with experi-
mental rates for aminoacyl-tRNA accommodation in the ribosome., Journal of the American
Chemical Society, 132(38), 13170–1, 2010.

[70] H White. Coenzymes as fossils of an earlier metabolic state, Journal of Molecular Evolution,
7(2), 101–104, 1976.

[71] A Sievers, M Beringer, M Rodnina, and R Wolfenden. The ribosome as an entropy trap.,
Proceedings of the National Academy of Sciences of the United States of America, 101(21), 7897–
901, 2004.

[72] S Trobro and J Aqvist. Mechanism of peptide bond synthesis on the ribosome, PNAS, 102,
12395–12400, 2005.

[73] P Sharma, Y Xiang, M Kato, and A Warshel. What are the roles of substrate-assisted
catalysis and proximity effects in peptide bond formation by the ribosome?, Biochemistry,
44(34), 11307–14, 2005.

[74] M Rodnina and W Wintermeyer. The ribosome as a molecular machine: the mechanism
of tRNA-mRNA movement in translocation., Biochemical Society transactions, 39(2), 658–62,
2011.

[75] Y. P Semenkov, M. V Rodnina, and W Wintermeyer. Energetic contribution of tRNA hybrid
state formation to translocation catalysis on the ribosome, Nature structural biology, 7(11),
1027–1031, 2000.

[76] P. C Spiegel, D. N Ermolenko, and H. F Noller. Elongation factor G stabilizes the hybrid-
state conformation of the 70S ribosome, RNA, 13(9), 1473–1482, 2007.

[77] D Moazed and H. F Noller. Intermediate states in the movement of transfer RNA in the
ribosome., Nature, 342(6246), 142–8, 1989.

[78] J. B Munro, R. B Altman, N O’Connor, and S. C Blanchard. Identification of two distinct
hybrid state intermediates on the ribosome, Molecular Cell, 25(4), 505–517, 2007.

[79] S. E Walker, S Shoji, D Pan, B. S Cooperman, and K Fredrick. Role of hybrid tRNA-binding
states in ribosomal translocation, Proceedings of the National Academy of Sciences, 105(27),
9192–9197, 2008.

[80] H Kim, J Yeom, H Ha, J Kim, and K Lee. Functional analysis of the residues C770 and G771
of E coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome,
Journal of microbiology and biotechnology, 17(7), 1204–1207, 2007.

[81] X Agirrezabala, J Lei, J Brunelle, R Ortiz-Meoz, R Green, and J Frank. Visualization of
the Hybrid State of tRNA Binding Promoted by Spontaneous Ratcheting of the Ribosome,
Molecular Cell, 32(2), 190–197, 2008.



99 BIBLIOGRAPHY

[82] P Julian, A Konevega, S Scheres, M Lazaro, D Gil, and W Wintermeyer. Structure of
ratcheted ribosomes with tRNAs in hybrid states, Proceedings of the National Academy of
Sciences of the United States of America, 105(44), 16924–16927, 2008.

[83] W Li and J Frank. Transfer RNA in the hybrid P/E state: Correlating molecular dynamics
simulations with cryo-EM data, Proceedings of the National Academy of Sciences of the United
States of America, 104(42), 16540–16545, 2007.

[84] J Frank and R. K Agrawal. A ratchet-like inter-subunit reorganization of the ribosome
during translocation., Nature, 406(6793), 318–22, 2000.

[85] A Ratje, J Loerke, A Mikolajka, M Brunner, P Hildebrand, and A Starosta. Head swivel on
the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites, Nature,
468(7324), 713–U143, 2010.

[86] P Cornish, D Ermolenko, H Noller, T Ha, and D Ermolenko. Spontaneous intersubunit
rotation in single ribosomes., Molecular Cell, 30(5), 578–588, 2008.

[87] J Fei, A Richard, J Bronson, and R Gonzalez. Transfer RNA-mediated regulation of ribo-
some dynamics during protein synthesis, Nature structural & molecular biology, 18(9), 1043–
U106, 2011.

[88] L Trabuco, E Schreiner, J Eargle, P Cornish, and T Ha. The Role of L1 Stalk-tRNA Interaction
in the Ribosome Elongation Cycle, Journal of Molecular Biology, 402(4), 741–760, 2010.

[89] Z Zhang, K Sanbonmatsu, and G Voth. Key intermolecular interactions in the E. coli
70S ribosome revealed by coarse-grained analysis., Journal of the American Chemical Society,
133(42), 16828–38, 2011.

[90] P. C Whitford, S. C Blanchard, J. H. D Cate, and K. Y Sanbonmatsu. Connecting the Kinetics
and Energy Landscape of tRNA Translocation on the Ribosome, PLoS Computational Biology,
9(3), e1003003, 03 2013.

[91] R Zwanzig. Diffusion in a rough potential., Proceedings of the National Academy of Sciences of
the United States of America, 85(7), 2029–30, 1988.

[92] I Fernandez, C Ng, A Kelley, G Wu, Y.-T Yu, and V Ramakrishnan. Unusual base pairing
during the decoding of a stop codon by the ribosome., Nature, 500(7460), 107–10, 2013.

[93] J Sund, M Ander, and J Aqvist. Principles of stop-codon reading on the ribosome., Nature,
465(7300), 947–50, 2010.

[94] M Laurberg, H Asahara, A Korostelev, J Zhu, S Trakhanov, and H Noller. Structural basis
for translation termination on the 70S ribosome., Nature, 454(7206), 852–7, 2008.

[95] A Weixlbaumer, H Jin, C Neubauer, R Voorhees, S Petry, A Kelley, and V Ramakrishnan.
Insights into translational termination from the structure of RF2 bound to the ribosome.,
Science, 322(5903), 953–6, 2008.

[96] A Korostelev, H Asahara, L Lancaster, M Laurberg, A Hirschi, J Zhu, S Trakhanov, W Scott,
and H Noller. Crystal structure of a translation termination complex formed with release
factor RF2., Proceedings of the National Academy of Sciences of the United States of America,
105(50), 19684–9, 2008.

[97] E Jaynes. Information Theory and Statistical Mechanics, Physical review, 106(4), 620–630,
1957.

[98] J Bryngelson and P Wolynes. Intermediates and Barrier Crossing in a Random Energy-
Model (with Applications to Protein Folding), Journal of physical chemistry, 93(19), 6902–
6915, 1989.

[99] P Hanggi, P Talkner, and M Borkovec. Reaction-Rate Theory - 50 Years after Kramers,
Reviews of modern physics, 62(2), 251–341, 1990.

[100] V Kenkre, E Montroll, and M Shlesinger. Generalized master equations for continuous-time
random walks, Journal of Statistical Physics, 9(1), 45–50, 1973.

[101] H Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions, Physica, 7, 284–304, 1940.

[102] H Brinkman. Brownian Motion in a Field of Force and the Diffusion Theory of Chemical
Reactions, Physica, 22(U), 29–34, 1956.



BIBLIOGRAPHY 100

[103] M Von Smoluchowski. Uber Brownsche Molekularbewegung unter Einwirkung ausserer
Krafte und deren Zusammenhang mit der verallgemeinerten diffusionsgleichung, Ann.
Phys, 48, 1103, 1915.

[104] S Chandrasekhar. Stochastic problems in physics and astronomy, Revs Modern Physics, 15(1),
2–89, 1943.

[105] R Landauer and J Swanson. Frequency Factors in Thermally Activated Process, physical
review, 121(6), 1668–&, 1961.

[106] J Langer. Theory of Nucleation Rates, Physical Review Letters, 21(14), 973–&, 1968.

[107] P Langevin. Sur la théorie du mouvement brownien, Comptes rendus hebdomadaires des
séances de l’Académie des sciences, 146, 530–533, 1908.

[108] W. E van Gunsteren and H. J. C Berendsen. Computer Simulation Of Molecular Dynamics
Methodology Applications and Perspectives In Chemistry, Angewandte Chemie. International
edition in English, 29(9), 992–1023, 1990.

[109] B. J Alder and T. E Wainwright. Studies in Molecular Dynamics. I. General Method, The
Journal of Chemical Physics, 31(2), 459–466, 1959.

[110] M Born and R Oppenheimer. Zur Quantentheorie der Molekeln, Annalen der Physik, 389(20),
457–484, 1927.

[111] E Hairer, C Lubich, and G Wanner. Geometric numerical integration illustrated by the
Stormer-Verlet method, Acta numerica, 12, 399–450, 2003.

[112] P Auffinger and E Westhof. RNA solvation: A molecular dynamics simulation perspective,
Biopolymers, 56(4), 266–274, 2000.

[113] J Norberg and L Nilsson. Molecular dynamics applied to nucleic acids, Accounts of Chemical
Research, 35(6), 465–472, 2002.

[114] T Darden, D York, and L Pedersen. Particle mesh Ewald: An N-log(N) method for Ewald
sums in large systems, Journal of Chemical Physics, 98, 10089–10092, 1993.

[115] S Nose and M. L Klein. Constant Pressure Molecular-dynamics for Molecular-systems,
Molecular Physics, 50(5), 1055–1076, 1983.

[116] W Hoover. Canonical Dynamics - Equilibrium Phase-Space Distributions, Physical review.
A, Atomic, molecular, and optical physics, 31(3), 1695–1697, 1985.

[117] H. J. C Berendsen, J. P. M Postma, W. F van Gunsteren, A DiNola, and J. R Haak. Molecular
dynamics with coupling to an external bath, Journal of Chemical Physics, 81(8), 3684–3690,
October 1984.

[118] F. C Bernstein, T. F Koetzle, G. J. B Williams, E. F Meyer, M. D Brice, J. R Rodgers, O
Kennard, T Shimanouchi, and M Tasumi. Protein Data Bank - Computer-Based Archival
File For Macromolecular Structures, Journal of Molecular Biology, 112(3), 535–542, 1977.

[119] D Ermak and J McCammon. Brownian Dynamics with Hydrodynamic Interactions, the
Journal of chemical physics, 69(4), 1352–1360, 1978.

[120] J Dubochet, M Adrian, J Lepault, J. J Chang, J. C Homo, A. W McDowall, and P Schultz.
Cryo-electron microscopy of vitrified specimens., Quarterly reviews of biophysics, 21(2), 129–
228, 1988.

[121] B Sander, H Stark, and M. M Golas. Corrim-based alignment for improved speed in single-
particle image processing., Journal of structural biology, 143(3), 219–28, 2003.

[122] G. F Schroder, A. T Brunger, and M Levitt. Combining efficient conformational sampling
with a deformable elastic network model facilitates structure refinement at low resolution,
Structure, 15(12), 1630–1641, 2007.

[123] K Pearson. On lines and planes of closest fit to systems of points in space., Philosophical
Magazine, 2(7-12), 559–572, 1901.

[124] K Halvorsen, M Lesser, and A Lundberg. A new method for estimating the axis of rotation
and the center of rotation, Journal of Biomechanics, 32(11), 1221 – 1227, 1999.

[125] C Gramkow. On Averaging Rotations, International Journal of Computer Vision, 42, 7–16, 2001.

[126] P Moore. How Should We Think About the Ribosome?, Annual review of biophysics, 41(1),
1–19, 2012.



101 BIBLIOGRAPHY

[127] A. L Konevega, N Fischer, Y. P Semenkov, H Stark, W Wintermeyer, and M. V Rodnina.
Spontaneous reverse movement of mRNA-bound tRNA through the ribosome, Nature struc-
tural & molecular biology, 14(4), 318–324, 2007.

[128] W. F Anderson. The effect of tRNA concentration on the rate of protein synthesis., Proceed-
ings of the National Academy of Sciences of the United States of America, 62(2), 566–73, 1969.

[129] J. R Warner, A Rich, and P. M Knopf. A multiple ribosomal structure in protein synthesis.,
Proceedings of the National Academy of Sciences of the United States of America, 49(1), 122–9,
1963.

[130] S Proshkin, A. R Rahmouni, A Mironov, and E Nudler. Cooperation between translat-
ing ribosomes and RNA polymerase in transcription elongation., Science, 328(5977), 504–8,
2010.

[131] A Ben-Shem, N de Loubresse, S Melnikov, L Jenner, G Yusupova, and M Yusupov. The
structure of the eukaryotic ribosome at 3.0 Å resolution., Science, 334(6062), 1524–9, 2011.

[132] D Wilson. The Structure and Function of the Eukaryotic Ribosome, Cold Spring Harbor
perspectives in biology, 4(5), 2012.

[133] H Gingold and Y Pilpel. Determinants of translation efficiency and accuracy., Molecular
Systems Biology, 7, 481, 2011.

[134] D. E Draper. A guide to ions and RNA structure, RNA, 10(3), 335–343, 2004.

[135] Y Gao, M Selmer, C Dunham, A Weixlbaumer, A Kelley, and V Ramakrishnan. The Struc-
ture of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State,
Science, 326(5953), 694–699, 2009.

[136] A Pulk and J. H. D Cate. Control of ribosomal subunit rotation by elongation factor G.,
Science, 340(6140), 1235970–U77, 2013.

[137] D Tourigny, I Fernandez, A Kelley, V Ramakrishnan, and I FernÃąndez. Elongation fac-
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