Coupling DCS and MARTe: two real-time control frameworks in collaboration

Christopher Rapson?, Pedro Carvalho®, Klaus Liiddecke®, André Neto¢, Bruno Santos®, Wolfgang Treutterer®, Axel
Winterd, Thomas Zehetbauer®

“Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching, Germany
b Instituto de Plasmas e Fusdo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
“Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf, Germany
4ITER Organization, Route de Vinon-sur-Verdon, 13115 St-Paul-Lés-Durance, France

Abstract

Fusion experiments place high demands on real-time control systems. Within the fusion community two modern
framework-based software architectures have emerged as powerful tools for developing algorithms for real-time con-
trol of complex systems while maintaining the flexibility required when operating a physics experiment. The two
frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded
Application Real-Time executor), originally from JET.

Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma
Control System which will adopt major design concepts from both the existing frameworks. This paper describes a
coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance
between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state
machines and a common message logger. Configuration data is exchanged before the real-time phase. During the
real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within
MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a

well-informed basis on which to move forward and design a new ITER real-time framework.

Keywords: control system, real time, software framework, ITER, MARTe, DCS

1. Introduction

Fusion experiments, and in the future fusion power
plants, require fast (r < 1072 s) real-time control and co-
ordination of many complex subsystems. Experiments,
by their nature, have the additional requirement of high
flexibility to facilitate many different physics or techni-
cal experiments with minimal overhead. For the con-
trol software, a framework architecture - where applica-
tions are designed based on templates and generic base
libraries encourage code re-use - is well suited to ful-
fil these requirements. The potential has been demon-
strated by two control frameworks which have been de-
veloped independently within the fusion community -
DCS (Discharge Control System) [1] was deployed at
ASDEX Upgrade in 2003 and MARTe (Multithreaded
Application Real-Time executor) [2] at JET in 2008.
Both of these frameworks have been developed with

Email address: chris.rapsonQipp.mpg.de (Christopher
Rapson)

Preprint submitted to Fusion Engineering and Design

emphasis on different aspects of tokamak control. DCS
has implemented many supervisory functions and is de-
signed to distribute controllers over multiple nodes, to
facilitate the complete integrated control of a tokamak,
whereas MARTe emphasized the easy creation of appli-
cations in a lean yet powerful infrastructure. ITER has
recognised the benefits of both of these approaches, as
they cover some of the fundamental aspects of the ITER
control needs. One of the key differences of ITER com-
pared to present-day devices is the pulse duration which
can be up to 3000 seconds. This imposes a novel set of
requirements on a potential framework, for example the
possibility of event handling and the flexible adaptation
of the pulse schedule based on the current state of the
machine [3, 4, 5].

With this in mind, in early 2013 the ITER controls
group has asked the fusion community to come together
and help in designing a novel framework which is based
on the experience and knowledge emerging from the
MARTe and DCS developments and fulfils the addi-

August 29, 2014

tional requirements of ITER.

As a first step in the development of the new frame-
work, DCS and MARTe have been brought together to
operate side-by-side. This coupling is the main topic
of this paper. The coupling tests the flexibility of DCS
and MARTe, and provides a direct comparison of their
features. This helps to identify the state-of-the-art, and
showcase the concepts on which the ITER real-time
framework will be built. Note that since the specifica-
tions for the new framework are still under discussion,
they will not be addressed here.

The coupling is not intended as an optimal techni-
cal solution, since operating two frameworks inherently
duplicates functionality and overhead. However, it has
technical value in that it allows collaborators to directly
apply algorithms at ASDEX Upgrade which were orig-
inally developed using MARTe at other experiments.

As an additional motivation, the human aspect should
not be underestimated, since DCS and MARTe had pre-
viously been developed in relative isolation. Bringing
the two teams together early in the development pro-
cess facilitates an exchange of ideas, building working
relationships and allows the new framework to leverage
the shared expertise of a united community.

In the following, Section 2 outlines the common fea-
tures as well as the differences between the frameworks,
and how they affected the coupling. Section 3 describes
the interfaces which were designed to adjust for the dif-
ferences, and allow DCS and MARTe to operate to-
gether. Section 4 describes the implementation of a spe-
cific algorithm, which was used to test the interfaces
and then demonstrated live at the ITER offices. Sec-
tion 5 presents the conclusions and an outlook on the
next steps to develop a real-time control framework for
ITER.

2. Similarities and Differences between DCS &
MARTe

DCS and MARTe share many common features. First
and foremost is their modular design. Generic Applica-
tion Modules (GAMs) in MARTe, or Application Pro-
cesses (APs) in DCS are computation modules which
are chained together to perform the real-time control.
Modules inherit much of their functionality from a li-
brary of base classes, which naturally suggest the use of
an object-oriented language. For performance reasons,
both DCS and MARTe use C++. Communication be-
tween GAMs, or between APs, is done by passing sig-
nals. This is analogous to block diagrams [6] as com-
monly used in control systems design. The signals and
modules in both frameworks are configuration driven,

allowing them to be modified without having to recom-
pile source code. This provides the flexibility to mod-
ify the control function between two plasma pulses (i.e.
less than 20 minutes for ASDEX Upgrade and JET).

In addition to their architecture, the frameworks also
have similar functional requirements. Both distinguish
between real-time and non-real-time functionality, and
co-ordinate the non-real-time tasks using a state ma-
chine. As expected, control algorithms run in real-time,
and raise an appropriate exception when execution is
delayed beyond an acceptable time limit. Both frame-
works provide a message logging mechanism and data
archiving which can be used to understand the pulse
from a physics perspective, or to analyse the control sys-
tem itself and improve the algorithms. So it is clear that
there are many common concepts, which differ only in
name or other details.

Nevertheless, some differences exist, arising mainly
from the details of their respective origins. DCS was
conceived from the start to be a holistic system, capa-
ble of performing all real-time relevant actions on AS-
DEX Upgrade. For example, DCS parses all commands
from experiment leaders and checks boundary condi-
tions from plant systems before a plasma pulse. During
the pulse DCS calculates references and co-ordinates all
plant systems. MARTe is an evolution of a real-time
framework developed by the plasma operations group
at JET [7]. Taking advantage of a major upgrade to the
JET vertical stabilisation system [8], it was decided to
create a new version of the framework that would ease
the development and the commissioning of the new sys-
tem and enable a large team of people to develop and
contribute in parallel. Hence MARTe can be deployed
as an independent module controlling a single plant sys-
tem, requiring only reference trajectories as input. Ref-
erence trajectories can be set either through configura-
tion before the experiment, or driven by an external en-
tity, such as the real-time network. This reduced scope
makes MARTe easy to understand and easy to deploy
incrementally, which has led to its wide adoption in the
fusion community. The coupling in this project makes
use of the central control capabilities intrinsic to DCS,
providing references and input data to MARTe.

In MARTe, one thread can consist of any number of
GAMs. GAMs pass information from one to another
by writing to and reading from a Dynamic Data Buffer
(DDB). Each signal has a reserved space, whose address
is communicated to the GAMs as part of their config-
uration. The configuration and initialisation processes
check and guarantee that all signal subscribers have an
existing and valid source. Since GAMs are executed se-
quentially, read/write conflicts are avoided. MARTe can

use [IOGAMs as interfaces to exchange data with differ-
ent threads or instances of itself and with other hardware
or software frameworks like DCS. Since DCS envisages
that every module could potentially exchange data with
every other module executed in a separate thread or even
on a remote computation node, it uses a reflective mem-
ory approach in combination with a local buffer and
semaphores to exchange signals. During configuration,
a publish and subscribe network is configured to con-
nect all requests for signals with their relevant produc-
ers and memory buffers are allocated for each signal.
A buffer is only allocated as required, for instance two
APs on the same node require only one copy. When
a producer publishes a signal, it will be copied to all
subscribers’ buffers via reflective memory and the sub-
scribers receive a semaphore to indicate that new data is
available. The infrastructure for transferring signals in
DCS is collectively referred to as the Signal Agent.

Since within DCS, all signals produced by an AP are
available to any downstream process, it was found to
be important to add metadata which indicates whether
these signals can be trusted. This is useful information
for all algorithms, but in particular for safety-relevant
systems [9]. The metadata attached to all DCS sig-
nals consists of a timestamp, a confidence state and a
production state. The confidence state indicates the in-
tegrity of the data, and the production state indicates the
intention of the sample producer to generate new sam-
ples . MARTe modules traditionally exchange signals as
scalars and multi-dimensional arrays of primitive data
types without metadata. Since ITER requirements spec-
ify that all signals will carry metadata, it was one of the
goals for this project to demonstrate how MARTe would
potentially handle such structured data.

3. Interfaces

3.1. Existing Interfaces

A controller is only relevant in the context of a con-
trol system, so both frameworks have previously de-
veloped interfaces to several other systems. MARTe
comes pre-packaged with interfaces to ethernet, shared
memory and PCle. There are also interfaces to
EPICS (Experimental Physics and Industrial Control
System) and ITER SDN (Synchronous Databus Net-
work) streams [10, 11, 12]. MARTe can run on dif-
ferent environments such as Gentoo®, Red Hat® and
Fedora® core Linux distributions, Solaris®, VxWorks®,
Mac® or Windows® and has been successfully de-
ployed to control several aspects of different fusion de-
vices across the world, e.g control of magnetohydrody-
namic (MHD) instabilities at FTU [13], plasma position

at COMPASS [14], and control of multiple subsystems
at ISTTOK [15] and JET [16]. It is also a candidate for
use in ITER Fast Plant System Controllers, with a pro-
totype having been integrated into the ITER CODAC
(COntrol, Data Access and Communication) Core Sys-
tem and connected to the EPICS framework [11].

DCS draws in measurement data directly from vari-
ous analogue-to-digital converters, and drives some ac-
tuators using digital-to-analogue converters [17]. In
addition, data can be transferred via an interface to
or from a number of real-time diagnostics which can
run on Linux®, Solaris® or LabVIEW® operating sys-
tems [18]. DCS itself has so far been tested on
VxWorks® and RedHawk® Linux operating systems at
the ASDEX Upgrade experiment. DCS will soon be
adapted for use at a second experiment - the upgrade of
Tore Supra known as WEST.

3.2. Non-Real-Time Coupling

Despite both frameworks being focussed on real-
time control, the coupling of DCS and MARTe requires
some functionality which is not time-critical. Before
the pulse, configuration files are automatically synchro-
nised to avoid maintaining duplicate settings. During
the pulse, DCS notifies MARTe of any relevant state
transitions via HTTP and MARTe confirms that the state
machines are aligned. If DCS does not receive the ap-
propriate confirmation within a 2s timeout, DCS will
abort the pulse and launch a “cleanup” to try and return
to a well-defined state. The “abort” function in MARTe
fulfils the same function, so a DCS “cleanup” was used
to trigger a MARTe “abort”. At all times, an exten-
sion to the MARTe relay logger reformats messages and
forwards them to the DCS logger server, such that log
messages from both frameworks can be visualised at the
same place.

3.3. Real-Time Data Transfer

A central component of this collaboration was the
ability to exchange information in real-time between
DCS and MARTe. As noted above, DCS already in-
cludes a well-defined interface to “real-time diagnos-
tics” which is relatively agnostic regarding the hardware
and operating system to which it interfaces. It would
have been possible to couple DCS & MARTe via this
interface, with both systems well separated and even
running on separate computers. Indeed, this would have
been similar to how MARTe is deployed at other ex-
periments, e.g. JET. However, in order to demonstrate
a closer collaboration of the two systems, it was de-
cided to run both frameworks on the same computer and

Signal Agent ¢ MARTeAP p DDB
—> —— —> I0GAM

GAM

ShMem-Queues
GAM

(L

- ! <— IOGAM

Figure 1: The path used to transfer signals in real-time from the DCS
signal agent to MARTe GAMs for computation, and to return the
results. Data transfer marked with ‘s’ are triggered by semaphores,
those marked with ‘p’ are polled. Unmarked arrows indicate that the
data transfer happens sequentially, as soon as the previous step is com-
pleted.

exchange signals via shared memory (ShMem) queues.
DCS typically uses ShMem to pass signals between APs
running on the same computer, and MARTe was able to
simply include the library in order to use the same ac-
cess methods. It was decided to have one queue per
signal, and for the queue management to be performed
by MARTe. DCS only checks whether the queues are
present during configuration. Queues have a limited
size, and overflow detection. Locking is implemented
for all reading and writing operations. Since there is
only one “reader” per queue, data is removed after read-
ing. Also, since data will be read almost instantly after
being written (DCS waits for a semaphore and MARTe
polls at 1 MHz) the queues are usually empty. Attempt-
ing to read an empty queue returns false, which MARTe
uses as an indication to keep polling. Note that aside
from data transfer, the ShMem queues provide a method
to synchronise the two frameworks in real-time, since
both wait for data from the other before proceeding.
Fig. 1 illustrates the path taken by data. On the DCS
side of the queue, an AP called “MARTeAP” subscribes
to signals from within the DCS real-time network. As
an AP, it can make use of DCS’ base functions to syn-
chronise the signals and start execution as soon as all
signals are available. It then writes the signals to the
corresponding ShMem queue. On the MARTe side,
an Input-Output GAM (IOGAM) polls the queue for a
new data sample, and, when available, fetches all data
from the ShMem queue to the DDB. The IOGAM im-
plements the DCS driver that reads and converts DCS
signals into MARTe’s signals. DCS signals are a struc-
ture with 4 attributes (timestamp, confidence state, pro-
duction state and value(s)) which are split into separate
signals. The IOGAM defines one of the incoming sig-
nals as a timing source to synchronize the internal tim-
ing of both frameworks. The mapping between DCS
signals and MARTe DDB signals is previously defined

in MARTe configuration file as well as which signals
will be used by which GAMs. To return signals to
DCS, a MARTe IOGAM writes data from the DDB to
other shared memory queues. The IOGAM is config-
ured to combine 4 attributes which are separate signals
in MARTe into one data structure for each DCS signal.
The IOGAM includes the data structures definitions via
a DCS header file. There are different structures for
each of the different value types used: uint32, uint64,
float, vector<float> and double. Metadata always has
the same type.

As soon as MARTe writes its outputs to the queues,
the MARTeAP receives a semaphore for each queue,
reads in the signals, and distributes them over the
DCS real-time network. If a response is delayed, the
MARTeAP will wait indefinitely. The DCS alarm sys-
tem detects the delay and will raise an alarm if real-time
constraints are violated.

This design is generic and scalable; in principle it
would allow several MARTeAPs to communicate with
several [OGAMs.

4. Implementation and Results

To demonstrate the interface described above, it was
decided to replicate an AP from ASDEX Upgrade
within MARTe. Then, both the AP and its replica can
run in parallel and the results can be compared. The AP
chosen was the MHD _Evaluator, which accumulates in-
formation on MHD instabilities from several diagnos-
tics and co-ordinates actuator responses. This is one
of the most active areas of development within DCS,
as part of the program to stabilise Neoclassical Tear-
ing Modes (NTMs). In the context of this demon-
stration, the details of NTM control is not important,
and a large body of literature is available to the inter-
ested reader [e.g. 19]. The demonstration used a “Re-
play Mode” to reproduce the input data that DCS re-
ceived during a specific ASDEX Upgrade pulse. The
Replay Mode is useful to conduct tests without being
connected to a real experiment, and allows software de-
velopment under fully reproducible and realistic condi-
tions. Note that all DCS processes (in particular those
required as part of the framework infrastructure) are
executed as normal, although only the outputs from
the MHD_Evaluator AP and its replica in MARTe are
shown here.

The MHD _Evaluator algorithm was implemented in
MARTe, with the functionality modularised to use 4
GAMs: The first is a low pass filter which is applied
to Mirnov coil measurements ef NFM-amplitudesfor
meode-nambers2/1-and-3/2 (one GAM is used twice),

Figure 2: Diagram depicting the interactions of GAMs with the DDB.
GAMs are executed sequentially from left to right. Yellow shading
indicates where one GAM has been used multiple times with different
inputs and outputs.

the second performs a shift on a detected position of
the 2/1-and-3/2-NTM;-as-well-as-a-separate-shift-on
whichever-one-of these-has-the higher-amplitude (one
GAM is used 3 times), the third extracts two rhe el-
ements (eorresponding-to-q=15-and-q=2:0) from a
vector rho(q) and finally power switching is performed
depending on the proximity of the Electron Cyclotron
Resonance Heating (ECRH) deposition to the shifted
positions from the second GAM (again, one GAM is
used 3 times). Fig. 2 depicts the GAMs and their se-
quential execution in MARTe.

In normal operation, DCS uses separate comput-
ers for real-time and non-real-time processes. For the
demonstration, DCS was adapted such that all software
ran on just one computer, with an 8-core 2.4 GHz Intel
Xeon ES5 — 2609 processor. The RedHawk® operating
system was used because it is the operating system of
choice for DCS, and MARTe is flexible enough to run
on a wide range of operating systems. Of the 8 available
cores, 6 were shielded from interrupts and used specif-
ically for real-time processes. Of the 6 shielded cores,
4 were allocated to DCS and 2 to MARTe. The remain-
ing 2 unshielded cores were shared between DCS non-
real-time processes and the operating system. MARTe
GAMs are assigned a specific core and an execution or-
der by the configuration. DCS APs are scheduled by
the operating system on any of the 4 available cores,
according to their priorities. For example, data acquisi-
tion APs have high priority since several other APs are
waiting for their output. Hyper-threading was not used,
and all other kernel parameters were left at their default
values.

After approximately four months of development,
the coupled DCS-MARTe system was presented in a
live demonstration. Within this demonstration, it was
shown how to start up both frameworks, and operate

their user interfaces. Notably, developers with a MARTe
background showed that they could operate DCS and
vice versa. Then, the DCS state machine was directed
to transition through its states via the GUL. MARTe
state transitions were synchronised as explained in sec-
tion 3.2. Fig. 3 depicts buttons at the left triggering
state transitions in DCS, which in turn trigger the ap-
propriate state transitions in MARTe. The states for two
complete pulses are shown on the MARTe side, since it
was important to demonstrate multiple pulses, replaying
several different ASDEX Upgrade pulses. In order to
start the next pulse from a well-defined initial state, the
“cleanup” function in DCS is called before each pulse.

During the real-time phase, MARTe output could
be displayed using live introspection tools. Some no-
table log messages were also highlighted. This demon-
strated that it was still possible to use the computer for
other tasks, without disrupting the real-time functional-
ity. Performance was robust, despite the hardware limi-
tations and the additional overhead of running two real-
time frameworks and in particular the communication
between them. As shown in Fig. 4, the cycle time was
still well within the real-time limit of 1.5ms. The dia-
gram shows the cumulative time spent in different tasks
each cycle. Firstly, the time for the MARTeAP to ac-
quire signals as a group from the Signal Agent and write
them to the ShMem queues. Secondly, the time used by
MARTe to read in the signals, compute the results and
write the results to the queues. And thirdly the time
for the MARTeAP to read the queues and publish the
signals back to the Signal Agent. The process requires
some additional time for logging, a watchdog timer, and
signal management threads. Note that the completion
time for each of these tasks does not necessarily corre-
spond to the execution time, since processes must wait
for the scheduler and are data-driven. That is, they must
wait for inputs from other processes. The figure shows
that in most cycles, this wait time (included in the ma-
genta area) dominates. All measurements were made
within the DCS MARTeAP by requesting a timestamp
from a dedicated timing board. So the task “MARTe”
refers to the time between writing MARTe inputs to the
queue and receiving a semaphore that MARTe outputs
are available. Even though MARTe’s performance is
not affected by the scheduler, the measurement will be.
Most importantly, the process is always completed in a
maximum time of 1.4 ms. The excerpt shown in Fig. 4
is the period where this process was under the highest
load.

After the pulse, it was demonstrated that the
MARTe outputs exactly replicated those from the
MHD _Evaluator. A selection of these outputs are com-

—> T10363: 14:30:05:COMMAND: "Load Replay"
T10363: 14:30:05:ProtOpen to PpDM

LOAD

T10363: 14:30:05:Check if SLS is in "
T10363: 14:30:06:DiagConnect
T10363: 14:30:06:Cleanup to C
T10363: 14:30:07:Prepare to C
T10363: 14:30:07:SetReplay to
T10363: 14:30:08:Send TSE program "Te
T10363: 14:30:08:GetParams t
T10363: 14:30:19:FubScribe to
T10363: 14:30:19:ReqEnv to C
T10363: 14:30:23:LoadMap
T10363: 14:30:23:Replay to
T10363: 14:30:39:Start to C
T10363: 14:30:39:S
T10363: 14:30:39:Switch Cx
T10363: 14:30:39: Reply: Cmd:run Info:""
T10363: 14:30:41:: Cycle: 1 00:00.000
T10363: 14:30:41:First Cycle

T10363: 14:35:44:: Cycle:13730 05:02.8!
T10363: 14:35:44:COMMAND: "Stop"
T10363: 14:35:44: Duration: 05:05
T10363: 14:35:44:Stopping Shot {sec): 0
T10363: 14:35:45: Reply: Cmd:stop Info:""
T10363: 14:35:45:COMMAND: "ProtShot"
T10363: 14:35:45: Duration: 00:01

T10363: 14:35:45:Protocolling Signal Data fsec): 0
T10363: 14:35:45:SafetyStatus: value:0,

—_—

systems into realtime

StateMachine| 1794| ABORT

StateMachine| 1793| PULSE

StateMachine| 1800| TRIGGER
StateMachine| 1801| END_PULSE
StateMachine | 1795| COLLECTION_COMPLETED
StateMachine| 1794| ABORT

StateMachine| 1793| PULSE

StateMachine| 1800| TRIGGER
StateMachine| 1801| END_PULSE
StateMachine| 1795| COLLECTION_COMPLETED

T10363: 14:36:09:Protocolling Signal DAta (sec): 24

T10363: 14:36:10:ProtClose to PpDM
T10363: 14:36:10:LogClose to LogDM

Figure 3: A selection of log messages depicting state transitions. Buttons fro

m the DCS GUI are shown at left, log messages within the same GUI

are shown in the centre, and log messages from MARTe are shown at right. The red arrows indicate the cause of the state transition.

—allowed time

—process completion time

Il DCS read queue, publish output
MARTe

Il DCS get signals, write to queue

1.5

1

time [ms]

o
3

85

0.52 0.54 0.56

time [s]

0.58 0.6

Figure 4: Time allowed for each cycle, and the time required to exe-
cute various tasks within the real-time process.

pared in Fig. 5, with those from MHD_Evaluator on
the left in blue, and those from MARTe on the right in
green. The light blue and light green symbols represent
the metadata (confidence and production state), where
these deviate from the best case.

The top frames show a measurement of the NTM am-
plitude, after being passed through a low-pass infinite
impulse response filter. Until t=0.26s, the sensor data is
tagged as INVALID and STOPPED. This data must be
ignored, otherwise it would corrupt the output of the fil-
ter for infinite time. The output quality depends on the
input, so during this time it is also tagged as INVALID
(marked with an X) and STOPPED (marked with a cir-
cle).

The second row shows the target for Electron Cy-
clotron Current Drive (ECCD) in the co-ordinates of the
normalised poloidal flux (p). The target is calculated by
adding an offset trajectory set by a physicist to a mea-
surement of the NTM position. Measuring the NTM
position is difficult, so many datapoints are tagged as
INVALID (marked with an X). If the position cannot be
estimated at all, the value is set to -1, but then the sig-
nal must be tagged INVALID since this is not a physical
value for p. Again, the signal quality of the input (NTM
position) is reflected in the output.

The third row indicates when the ECCD is on target
so that power can be switched on. This takes the out-
put from the second row as an input, and compares it to
an estimate of the ECCD deposition location (ogcep).
In this pulse prccp Was constant, so it only aligns with
Prarger Dy chance for two short intervals. The confidence

DCS MHD_Evaluator AP

3 6
(0]
N
n 4
=
|_
Z 2
ge)
o
£ 9
=
1
g,
50
[o%

0 2 4
time [s]

Equivalent MARTe GAMs

3, 6
[0)
N
n 4
=
'_
Z 2
pe)
o
S 9
=
)
g
50
(o

0 2 4
time [s]

Figure 5: Time traces of some of the output signals from the original DCS MHD_Evaluator AP (left) reproduced by the MARTe GAMs (right).

state is INVALID (marked with an X) whenever the
NTM position estimate and hence p;4,¢.; are INVALID.
Where pjarger is VALID (no symbol), the power switch
confidence state depends on the state of prcep. PEccD
depends in turn on a measurement of the density pro-
file, which in this pulse was degraded to CORRECTED.
Hence, the confidence state of the power switch is COR-
RECTED (marked with a -) at best. Again, the MARTe
GAMS produce identical outputs to the original algo-
rithm in terms of both the numeric output and the related
metadata.

5. Conclusions and Future Work

In conclusion, the MARTe and DCS frameworks
were successfully adapted to operate side by side, ex-
changing data and co-operating on a control task. The
functionality was demonstrated live in a range of differ-
ent scenarios for the ITER CODAC team.

For ASDEX Upgrade, the ability to execute MARTe
in parallel with DCS adds the possibility to use al-
gorithms for diagnostics and control from other ex-
periments which have already been developed using
MARTe. This would be possible with minimal extra de-
velopment, whenever an experiment would require it.

Looking towards the new framework, the successful
coupling of DCS and MARTe indicates that the collab-
oration is off to a good start. As noted previously, cou-
pling two frameworks is not an optimal design, but is
extremely useful in terms of stimulating an exchange of
ideas and experience. Following this project, the next
step is to converge on the specifications for the new
framework. Once these are settled, the new code base
can be started. In addition to support from a core team
of DCS and MARTe developers, there is also interest
from the wider community. Good progress up to this
point gives confidence that the result will be a flexible
and powerful tool for tokamak control in the future.

6. Acknowledgements

This project has received funding from the Euratom
research and training programme 2014-2018.

[1] W. Treutterer, et al., ASDEX Upgrade discharge control sys-
tem - a real-time plasma control framework, Fusion Eng. Des.
(2014).

[2] A. C. Neto, et al., MARTe: A Multiplatform Real-Time Frame-
work, IEEE T. Nucl. Sci. 57 (2010) 479-486. 16th IEEE/NPSS
Real-Time Conference, Beijing, PEOPLES R CHINA, MAY
10-15, 2009.

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

J. A. Snipes, Y. Gribov, A. Winter, Physics requirements for
the ITER plasma control system, Fusion Eng. Des. 85 (2010)
461-465. 7th IAEA Technical Meeting on Control, Data Acqui-
sition and Remote Participation for Fusion Research, Aix-en-
Provence, FRANCE, MAY 15-JUN 19, 2009.

A. Winter, et al., Status of the ITER plasma
control system conceptual design, in: Proceed-
ings of ICALEPCS2009, Kobe, Japan, 2009. URL:

[19]

Acquisition and Remote Participation for Fusion Research, Aix-
en-Provence, FRANCE, MAY 15-JUN 19, 2009.

M. Reich, et al., ECCD-based NTM control at AS-
DEX Upgrade, in: Europhysics Conference Abstracts,
Proceedings of the 39th EPS Plasma Physics Con-
ference, Stockholm (2012) Paper P1.076, 2012. URL:
http://ocs.ciemat.es/epsicpp2012pap/pdf/P1.076.pdf.

http://accelconf.web.cern.ch/accelconf/icalepcs2009/papers/tup110.pdf.

G. Raupp, et al,, Real-time exception handling - use cases
and response requirements, Fusion Eng. Des. 87 (2012) 1891
— 1894. Proceedings of the 8th {IAEA} Technical Meeting on
Control, Data Acquisition, and Remote Participation for Fusion
Research.

W. Treutterer, et al., Management of complex data flows in the
ASDEX Upgrade plasma control system, Fusion Eng. Des. 87
(2012) 2039 — 2044. Proceedings of the 8th IAEA Technical
Meeting on Control, Data Acquisition, and Remote Participation
for Fusion Research.

G. D. Tommasi, F. Piccolo, F. Sartori, A flexible and reusable
software for real-time control applications at JET, Fusion Eng.
Des. 74 (2005) 515 — 520. Proceedings of the 23rd Symposium
of Fusion Technology SOFT 23.

F. Sartori, et al., The JET PCU project: An international plasma
control project, Fusion Eng. Des. 83 (2008) 202 — 206. Pro-
ceedings of the 6th IAEA Technical Meeting on Control, Data
Acquisition, and Remote Participation for Fusion Research.

G. Raupp, et al., Control processes and machine protection on
ASDEX Upgrade, Fusion Eng. Des. 82 (2007) 1102-1110.
24th Symposium on Fusion Technology (SOFT-24), Warsaw,
POLAND, SEP 11-15, 2006.

D. Valcarcel, et al., EPICS as a MARTe configuration environ-
ment, Nuclear Science, IEEE Transactions on 58 (2011) 1472—
1476.

B. B. Carvalho, et al., The ITER fast plant system controller
ATCA prototype real-time software architecture, Fusion Eng.
Des. 88 (2013) 541-546. Proceedings of the 27th Symposium
On Fusion Technology (SOFT-27); Lige, Belgium, September
24-28, 2012.

S. Yun, A. C. Neto, M. Park, S. Lee, K. Park, A shared memory
based interface of {MARTe} with {EPICS} for real-time appli-
cations, Fusion Eng. Des. 89 (2014) 614 — 617. Proceedings of
the 9th {IAEA} Technical Meeting on Control, Data Acquisition,
and Remote Participation for Fusion Research.

C. Galperti, et al., Specifications and implementation of the rt
mhd control system for the ec launcher of ftu, in: EPJ Web of
Conferences, volume 32, 2012. URL: www. scopus. com, cited
By (since 1996):2.

F. Janky, et al., Determination of the plasma position for its real-
time control in the COMPASS tokamak, Fusion Eng. Des. 86
(2011) 1120-1124. Cited By (since 1996):2.

I. S. Carvalho, et al., ISTTOK control system upgrade, Fusion
Eng. Des. 88 (2013) 1122-1126.

D. Alves, et al., A new generation of real-time systems in the
JET tokamak, in: Real Time Conference (RT), 2012 18th IEEE-
NPSS, 2012, pp. 1-9. doi:10.1109/RTC.2012.6418367.

K. Behler, et al., Deployment and future prospects of high per-
formance diagnostics featuring serial I/O (SIO) data acquisition
(DAQ) at ASDEX Upgrade, Fusion Eng. Des. 87 (2012) 2145 —
2151. Proceedings of the 8th IAEA Technical Meeting on Con-
trol, Data Acquisition, and Remote Participation for Fusion Re-
search.

W. Treutterer, et al., Real-time signal communication between
diagnostic and control in ASDEX Upgrade, Fusion Eng. Des. 85
(2010) 466—469. 7th IAEA Technical Meeting on Control, Data

