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We have carried out a comparative analysis of data collected in three experiments on Prisoner’s Dilemmas on
lattices available in the literature. We focus on the different ways in which the behavior of human subjects can
be interpreted, in order to empirically narrow down the possibilities for behavioral rules. Among the proposed
update dynamics, we find that the experiments do not provide significant evidence for non-innovative game
dynamics such as imitate-the-best or pairwise comparison rules, whereas moody conditional cooperation is
supported by the data from all three experiments. This conclusion questions the applicability of many
theoretical models that have been proposed to understand human behavior in spatial Prisoner’s Dilemmas. A
rule compatible with all our experiments, moody conditional cooperation, suggests that there is no detectable
influence of interaction networks on the emergence of cooperation in behavioral experiments.

C
ooperation is a key ingredient to understand evolution and, in particular, the major transitions that took
place since the Earth formed1. It is also fundamental for animal and human societies to arise and thrive2.
Notwithstanding its importance, how cooperation can survive the threat of free-riders, i.e., individuals

that reap the benefits of others’ help without providing anything for the common good, is still a very active area of
research. This poses a conundrum that was already noticed almost a century and half ago by Darwin3. A
theoretical framework that has been widely used in the past to shed light on these issues is the Prisoner’s
Dilemma (PD)4,5. In the two-player PD, when both of them cooperate, they obtain the maximum joint benefit;
however, free-riding when meeting a cooperator leads to the highest individual payoff, thus leading to a dilemma
as mutual defection is worse than mutual cooperation. In this context, for cooperators to outcompete defectors,
there must be something that favors the former and help them take over the population. Generally speaking, this
can be accomplished through assortment6, i.e., by having cooperators interact mostly or only with other coop-
erators; alternatively, punishment7,8 has also been shown to significantly promote cooperation.

In the last five decades, several mechanisms, processes or interaction structures have been proposed leading to
the survival of cooperators (see, e.g., Refs. 9, 10 for reviews). In 1964 Hamilton11,12 suggested that kin selection,
namely the fact that individuals cooperate only with others that are genetically related to them led to the
emergence and stability of cooperation. Subsequently, Trivers13 and Axelrod and Hamilton14 introduced reci-
procity, that consists of cooperating with those that cooperated with you in the past. When this reciprocity is
indirect, Alexander15 and Nowak and Sigmund16,17 showed that it can also promote the appearance of coopera-
tion. Yet another mechanism helping cooperators vs defectors is group (or multilevel) selection3,18,19, a somewhat
controversial proposal that has been subjected to a lot of discussion. Last, but not least, Axelrod5 suggested, and
Nowak and May20 showed by means of numerical simulations, that when the players were placed on a lattice, if
cooperators were together in clusters they could outcompete defectors, a mechanism that has been termed spatial
reciprocity (or network reciprocity when the population structure is not a planar graph).
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In particular, spatial reciprocity has received a lot of attention
from theorists. Many models have explored analytically and by simu-
lation the effects of a network structure on the promotion of coop-
eration, mostly in the framework of the PD (or the Public Goods
game, as almost always the action played must be the same for all
partners), but the results of these models largely depend on details
such as the type of spatial structure or the evolutionary dynamics
(see, e.g., Refs. 21, 22 for reviews). On the experimental side, to our
knowledge, there are only a few experiments of this kind based on
human subjects23: on small random, small world and local net-
works24, on rings25, on small regular lattices26; on medium size regular
lattices27; on small networks of different kinds; and, finally, a recent
experiment by28 on a large lattice and a large heterogeneous (fat-
tailed) network. Although the setup of all experiments is fairly sim-
ilar, their details are rather different and the effect of those details on
the results is not totally clear, but might be of crucial importance for
the development of further theories. Therefore, further analysis of
the data available so far are needed in order to reach definite con-
clusions. To contribute to this goal, here we present a comparative
analysis of three of these experiments in order to extract the prop-
erties underlying all of them and that can be considered independent
of the details of the setups in order to give as much generality and
support as possible to our conclusions.

Available experiments: setups and data
We focus on the three experiments on regular lattices: one performed
in Plön25 (in fact, although we refer to the experiment by the name
‘‘Plön’’ after the group that organized it, sessions were conducted in
Kiel, Cologne and Bonn), another one in Madrid26, and finally a last
one in Zaragoza28. In these experiments the participants were vir-
tually located on the nodes of a square lattice with periodic boundary
conditions (topologically, on a torus). They played a PD game in the
same way as in most theoretical models, with each of their neighbors
choosing only one action, the same for all of them. The payoffs were
calculated by adding the payoffs of individual games with each neigh-
bor. After each round, players were informed about their action and
payoff, as well as the actions and payoffs of their neighbors. Based on
this information and their experience from previous interactions,
they had to decide on their next action.

It is important to stress that all three experiments were carried out
with real human subjects, invited to participate in person (and not
only online) as volunteers among last-year high school or under-
graduate students. This is the reason why for the largest studies there
were logistic problems that made it difficult to have independent
control groups. Indeed, the experiments had two types of treatments:
one in which the network was the same for all rounds of the game,
and another one, where the network was shuffled after every round,
as control. However, in Madrid and Zaragoza the experiment and
control treatment were performed subsequently; hence, players
already had experience in the control treatment. On the contrary,
in Plön, the control treatment was performed with new groups of
players without previous experience. This makes the comparison of
the control treatments very difficult and therefore in this paper we
will focus only on the experimental treatments. On the other hand,
having large system sizes is important to bring the experimental
studies closer to the theoretical research as we will see shortly.

References 25, 26, 28 give a full description of their respective
experimental setups, including in some cases the instructions that
were given to the participants. Here, for the sake of completeness, we
summarize the main features of the experiments, and we refer the
reader to the original publications for full details. In Plön, the experi-
ment was performed on a 4 3 4 square lattice where players inter-
acted with four neighbors in their von Neuman neighborhood. The
experiment treatment was carried out in 15 independent sessions,
whereas the control treatment (performed with independent groups
of players as stated above) was repeated 10 times, each with 16

players playing 25 rounds. Players could only take part in one session.
In Madrid, the experiment was performed on an order of magnitude
larger lattice, of size 13 3 13 (a single group of 169 subjects in total)
and volunteers played with the eight neighbors from their Moore
neighborhood. As was mentioned above, the size of the experiment
made it difficult to get an independent group of players for the
control treatment, and it was performed with the same subjects
who previously played the experiment treatment; these large experi-
ments have serious logistic problems and running them twice would
be an enormous effort (and cost). Therefore, they had a control
treatment as described, and subsequently they went through another
game of the experiment treatment again, with a different set of
neighbors. The largest experiment was performed in Zaragoza. It
tested two different types of networks: a 25 3 25 regular lattice with
degree k 5 4 and periodic boundary conditions (625 subjects), and a
heterogeneous network with a fat-tailed degree distribution (604
subjects, the number of neighbors varied between k 5 2 and k 5

16). The treatments were analogous to those of the Madrid experi-
ment and also performed in sequence: first the experimental treat-
ment and subsequently the control treatment with the same players.
No repetition of the experiment treatment was carried out in this
case.

Aside from the differences in the control treatments, the experi-
ments themselves had also differences of their own, which are more
relevant to their comparison. Table 1 summarizes these differences.
To begin with, as we have mentioned above, the size of the virtual
networks ranges from the smallest one (4 3 4) in Plön’s experiment
to the largest one (25 3 25) of Zaragoza’s experiment. The size of the
network could have a significant influence on the promotion of
cooperation, because the formation of clusters of cooperators (which
is the known mechanism by which cooperation can be promoted)
only has a chance if the networks are large enough. Furthermore, the
local structure of the networks is different. In Plön and Zaragoza,
players had four nearest neighbors; in Madrid they played with the
eight surrounding neighbors. Notice that this introduces a crucial
difference in the local structure of the network, because the clustering
coefficient of the lattice with four neighbors is zero, whereas that of
the network with 8 neighbors is 3/7. Since the clustering can signifi-
cantly influence the promotion of cooperation22, this difference
might be important.

Beyond sizes and number of neighbors, another important differ-
ence is the payoff matrix. In Plön, players played a strict PD where the
punishment for mutual defection, P, is larger than the sucker’s payoff
(the payoff for a cooperator facing a defector, S); in Madrid and
Zaragoza, the game played was a weak PD, where P 5 S 5 0, which
is more favorable to cooperation: namely, in the weak PD, cooperat-
ing in a situation where everybody is defecting is not costly, whereas
in the strict PD, players earn more by defecting against defectors, and

Table 1 | Comparison of the experimental settings for the three
experiments on lattices. A von Neumann’s neighborhood consists
of the four nearest neighbors in a square lattice, whereas a Moore’s
neighborhood comprises all eight surrounding neighbors in the
same lattice

Plön Madrid Zaragoza

Size of the network 4 3 4 13 3 13 25 3 25
Neighborhood von Neumann’s Moore’s von Neumann’s
Number of rounds 25 47 52
Number of sessions 15 1 1
Payoff matrix C D C D C D

C 3 0 C 7 0 C 7 0
D 4 1 D 10 0 D 10 0

# of different players 240 169 625
# of actions 6000 7943 32500
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therefore it is to be expected that they cooperate less (or, as put in29,
there is greed in the game, but not fear). Moreover, the framing of the
experiment was not the same: In Madrid and Zaragoza, the language
describing the experiment to the participants in the instructions was
completely neutral, and actions were represented by colors, whereas
in Plön actions were referred to as cooperative or non-cooperative.
Instructions are available as supplementary material to each publica-
tion and in any case from the authors upon request. Finally, in Plön,
15 independent sessions were performed, whereas in the Madrid and
Zaragoza experiments, because of the size of the networks, this was
not possible. However this should not influence the results much,
since the individual perspective is the same in all cases. The number
of actions in each round is of the same order of magnitude for all
experiments: 240 actions per round (the Plön experiment), 169
actions per round (Madrid experiment), and 625 actions per round
(Zaragoza experiment).

Global observables
Let us start the analysis with the global cooperation level. Figure 1
(top left) shows the fraction of cooperative players in each round of
the experiments. We see that in all three experiments cooperation
starts at rather high levels (between 55% and 70%), and subsequently
declines rapidly and settles on a small but non zero level (between
15% and 35%). In the Plön experiment the initial cooperation level
was the largest one, but the decline was the fastest and the final level
was the smallest. Larger initial fractions of cooperative actions in this

case may also arise from the more positive framing of the instructions
discussed above. Although there are small differences in the levels of
cooperation, each of them is significantly lower than the one pre-
dicted by the theoretical models20–22. A question may also arise as to
whether our experiments have reached an asymptotic, stationary
state. While this may not be the case, the theoretical models make
assumptions on the players’ behavior that allow also an analysis of
the non-stationary state, as we will see below.

In Figure 1 (top right) we show the distribution of players by their
fractions of cooperative actions during the game. Two differences are
noticeable. First, in Madrid we have a high number of pure defectors,
which are missing in the other two experiments. The exact mech-
anism leading a sizeable number of players to become defectors is
unclear. In this respect, it is worth recalling another recent multi-
player PD experiment on small, unstructured groups30 in of 2, 3, 4
and 5 people. Note that this is not exactly the same as looking at a
small lattice because in30 players formed a single group, whereas on a
lattice one player shares none (von Neumann neighborhood) or two
(Moore neighborhood) neighbors with her partners. Hence, increas-
ing the number of neighbors in a lattice implies not merely increasing
the number of individuals a subject plays with; it also implies an
important change of the spatial structure, more specifically of the
clustering coefficient (in the experiments with unstructured groups
the clustering coefficient was 1). Keeping this caveat in mind, the
results in30 show that the number of neighbors does not influence the
behavior of the players as soon as the size of the group is 3 or more

Figure 1 | Main experimental results. (Top left) Fraction of players who cooperated in each round. (Top right) Fraction of players who cooperated a

given fraction of the rounds. (Bottom left) Fraction of players who earned a given amount, normalized by the average earning of all players in the same

experiment. (Bottom right) Scatter-plot of earnings vs cooperativeness of the players. Each point represents one player, described by the fraction of

rounds in which the player cooperates and the player’s earnings normalized by the average earning of all the players. Slopes of the fits are following: Plön

experiment s 5 20.61, Madrid experiment s 5 20.64 and Zaragoza experiment s 5 20.50 (p , 0.001 in all cases).

www.nature.com/scientificreports
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(players in a pairwise PD turned out to cooperate more as time
proceeded). Then again, all our results suggests that in the experi-
ments spatial structure does not influence the global behavior of the
players. The large number of pure defectors noticed in the Madrid
experiment is still puzzling and further experiments are required to
address this issue. In addition, there is yet another difference we can
observe: in Plön there are no players who cooperated more than 65%
of the rounds, while in Madrid and Zaragoza the number of the
players who cooperated more that 65% of the rounds is substantial,
albeit small. The reason for this could be that in Plön the game was a
strict PD, where cooperating is costly, and therefore players were less
prone to cooperate.

Next, we present the distribution of players according to their
earnings [Figure 1 (bottom left)]. We notice that the distribution
of earnings in Plön’s experiment is slightly narrower. This could be
the consequence of the size of the network or (more likely) the payoff
matrix. Since there are not many players in the system, the earnings
might be more correlated between themselves and therefore the dis-
tribution is narrower. However, the payoff matrix is also different in
this experiment and as we have seen this could make players less
prone to cooperate, which also narrows the earnings distribution.
Finally, in Figure 1 (bottom right) we present the correlation between
the earnings and the cooperativeness of the players. In all three cases
there is a significant correlation (p-value , 0.001) and all three show
the same trend: earnings and cooperation are anticorrelated.

Human behavior
The importance of the global results to assess the relevance of net-
works to promote cooperation notwithstanding, in this paper we
want to focus on an issue that the three experiments considered left
open, i.e., on how players actually played the PD. We will study the
same three possible update strategies considered in the original
papers, namely unconditional imitation or imitate-the-best20, the
Fermi rule31 and moody conditional cooperation26,28. The first two
of these dynamics are both examples for imitation (and thus do not
lead to actions not played previously) and depend on the payoffs of
the previous round, while the third one looks only at the actions of
the player’s partners to decide on the next action. We will analyze the
possible influence of each one of these update schemes separately in
what follows.

Absolute payoffs: imitate-the-best
The first update rule that has been analyzed in the previous literature
is imitate-the-best. The reason for this is that in the original paper by
Nowak and May20 this was the evolutionary dynamics that was used
in the simulations, and it led to a high level of cooperation. Imitate-
the-best is a deterministic rule in which every player chooses as her
next action the action of her neighbor who earned the largest payoff,
including herself. In this manner, payoff differences only enter the
update rule through the comparison of the payoffs with the one of the

player that is deciding, and the value of those differences is not
relevant.

As a first step to check whether imitate-the-best is observed in the
experiments, we first compute the probability that the player’s action
is the same as the action of the best player from the previous round.
This number is rather high in all experiments (between 63% and
76%). However, since players have just two possible actions available,
often the action of the focal player will coincide with the action of the
best neighbor in the previous round just by chance. Importantly, we
stress that even if this result were significant, it would rule out that
players use (deterministic) imitate-the-best, in agreement with the
observed lack of cooperation. Indeed, for unconditional imitation to
promote cooperation, it has to be deterministic, i.e., a 100% imita-
tion. If imitation is not unconditional, then noise will prevent the
formation of clusters, the key mechanism observed in Nowak and
May’s simulations, and subsequently we would not find any pro-
motion of cooperation.

In any event, in order to test for the significance of the high levels
of imitation of the player with the largest payoff found in the three
experiments, we resorted to a randomization test, summarized in
Fig. 2. In the plots we represent the number of players who repeated
the action with the best payoff in their neighborhood a given number
of rounds, both in the experiments and in an average over 1000
randomizations of their positions in the lattice. These randomiza-
tions were done by taking the time series of actions of every player
and reshuffling them over the lattice, i.e., the order in the sequence of
actions is preserved and only the location of players on the network is
changed. Therefore, it is clear that in the randomized data, player’s
behavior cannot show any influence from their neighbors as they
were not near each other. The results of this average are similar to
those found in the experiment, suggesting that, even if there were
some level of unconditional imitation in a subset of players, it would
certainly be very small and not significant for the evolution of the
system as a whole. Therefore, imitate-the-best does not appear to be
the update strategy explaining the behavior of human subjects in
spatial PDs, a conclusion that has been reached in other experi-
ments24, although strictly speaking, our statistical analysis does not
allow us to definitely rule out this strategy.

Moody conditional cooperation
Moody conditional cooperation (MCC) is a rule that was introduced
in26 to describe the behavior of the subjects in the Madrid experi-
ment. The definition of this behavioral rule contains two main ingre-
dients: first, people cooperate more when more of their neighbors
cooperated in the previous round; and second, their probability to
cooperate depends on their own ‘‘mood’’, to be specific, on whether
they themselves cooperated or defected in the previous round. It has
to be noticed that the first feature is nothing but conditional coop-
eration, identified in32 in one-shot public goods experiments.
Figure 3 shows that MCC is observed in all three experiments: In

Figure 2 | Randomization test for imitate-the-best. Distribution of players per number of times that their actions coincide with the action of the

best player in the previous round, as obtained from the experiment (bars) and as arises from 1000 randomizations of the players’ positions in the lattice

(solid lines). Left, Plön experiment; center, Madrid experiment, and right Zaragoza experiment.

www.nature.com/scientificreports
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general, after the player defected the probability of cooperating
slightly decreases with the number of cooperators in the neighbor-
hood, and after the player cooperated it increases. In Plön, the beha-
vior after the player cooperated is noticeably different than in the
other two experiments, the slope being considerably larger. The

probability of cooperating if the player is surrounded by defectors
is much lower in Plön than in the other two experiments. This is
probably a consequence of the different framing and/or the different
payoff matrices used in the experiments: Since in Plön subjects
played a strict PD, cooperating while surrounded by defectors was
costly. Therefore, players in this experiment tend to cooperate much
less when they are surrounded with defectors than in the other two
experiments. As in the previous section, we need to establish the
significance of this finding by comparing with what arises from
randomizations of the players’ location in the lattice. We present
the results of this randomization in Fig. 4, using the experiment in
Plön as an example (results for the other two experiments are very
similar and are not shown). As can be seen from the plot, the rando-
mization of the subjects’ positions leads to the disappearance of the
dependence on the context, i.e., on the number of players that coop-
erated in the previous round. Note that the randomizations show
traces (albeit much smaller than the experiment) of MCC behavior if
applied to the whole experiment, but by leaving out only the first two
rounds the two lines becomes flat and the context dependence is not
observed anymore. The dependence on the focal player’s own choice
in the previous round, which is not affected by the randomization, is
still evident from the figure. We thus conclude that the evidence is
strong enough to claim that all three experiments are compatible
with MCC behavior.

Payoff differences: Fermi rule
An alternative proposal to understand the behavior of the partici-
pants in the experiment is the Fermi rule31,33. This is again an imit-
ative rule, albeit with a stochastic character that not only allows for
not imitating the other’s behavior but also gives rise to the possibility
of making mistakes. The rule is defined as follows: players pick at
random one of their neighbors and copy the action they used in the
previous round with a probability given by

Figure 3 | Probability of cooperation in different contexts. On the x-axis

is the fraction of cooperating neighbors in the previous round and on the y-

axis is the probability that the focal player will cooperate in the next round.

We present separately the probabilities of cooperation after the focal player

played C and D in the previous round. All error bars are the standard

deviations of a binomial distribution,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=n

p
, where n is the number

of samples and p is the probability of cooperating. Straight lines are

weighted fits to the data (using as weights the inverse of the variances) that

take into account the number of instances of each context.

Figure 4 | Probability of cooperation in different contexts in randomized data of Plön experiment. On the x-axis is the fraction of cooperating neighbors

in the previous round and on the y-axis is the probability that the player will cooperate in the next round. We present separately the probabilities of

cooperation after the focal player played C and D in the previous round. All error bars are the standard deviations of a binomial distribution,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=n

p
, where n is the number of samples and p is the probability of cooperating. Left: whole experiment. Right: without the first 2 rounds. Top:

experimental results. Bottom: randomized data.
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p~
1

1zexp bDP=a½ � , ð1Þ

where DP 5 Pi 2 Pj, Pi is the payoff of the player whose strategy is
being updated, Pj is the payoff of the randomly chosen player to
imitate, a is a normalization constant that takes into account the max-
imum and minimum payoff differences, and b is a tunable parameter
that introduces the possibility of choosing actions leading to worse
payoffs. Indeed, when b 5 0 the player updates her action irrespective
of the payoff difference with probability 1/2, while as b R ‘ only
actions leading to better payoffs are copied, with probability 1.

In Figure 5 we show the probability that the action changes
depending of the payoff difference between the focal player and
the best player who played the opposite action in the previous round.
We see that in the Plön experiment the dependence is well fitted by
the Fermi function. However, in the other two experiments, one

could in principle try to fit the same expression, but the shape of
the cloud of points indicates that the fitting would not be very good.

In view of the experimental data, the key issue is whether these
results truly support some Fermi-like behavior or not. In that respect,
it is worth mentioning that in25, even if a reasonable fit to the func-
tional form of the rule could be obtained, it was also found that an
additional high level of ‘‘spontaneous mutation’’ (around a 30%) was
necessary to explain the changes in behavior in homogeneous neigh-
borhoods. Therefore, it may be possible that what appears similar to a
behavior described by a Fermi rule arises from some other origin. To
assess this possibility, we took into account that in the previous
subsection we found a dependence of the context that may also
influence the results in Fig. 5. In fact, what is plotted there is the
possibility to change behavior, i.e., the lower curve and the difference
between 1 and the upper curve in the MCC probabilities. In addition,
the payoff difference is not independent of the context.

Figure 5 | Data for the Fermi rule. Probability of changing action in the next round as a function of the payoff difference between the focal player and the

best of the players that chose the opposite action. Note that this is not exactly the Fermi update rule, because it is not possible to find out which neighbor (if

any) the player chose for updating her strategy; hence, choosing the best performing one is a sensible proxy for this unknown variable. The results are

presented separately for the players who changed from cooperation to defection and those who changed from defection to cooperation (see legends).

Results are shown for Plön (left), Madrid (center) and Zaragoza experiments (right). The solid line in the left plot (Plön) is a fit using the analytical

expression of the Fermi rule (see25 for details). All error bars are the standard deviations of a binomial distribution,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=n

p
, where n is the number of

samples and p is the probability of changing the action.

Figure 6 | Fermi rule by different contexts compared with randomized sample for Plön experiment. Panels from from left to right and from up to

bottom represent the five possible contexts (respectively, from zero to four cooperating neighbours). Solid symbols represent the observed fraction of

cooperative actions after playing D (circles) and defective actions after playing C (squares), as a function of the payoff difference between the focal player

and the best of her neighbours that chose the opposite action. Empty symbols represent the results of 1000 randomizations of players’ positions in the

lattice. The error bars represent 99% confidence interval.

www.nature.com/scientificreports
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Following this reasoning, we conjecture that the context depend-
ence is actually a possible origin of the observed behavior. To check
this hypothesis, Fig. 6 shows the data for the Plön experiment split
into the five possible contexts (from zero to four cooperators), and
compares it with the same randomization of spatial positions that we
have used in the previous subsection. The plots reveal that, first, there
is certainly a split of the putative Fermi-like curve in two parts, left
and right, that arise from the fact that the probability to go from C to
D is larger than that of changing from D to C; and, second, that once
the context is taken away from the data, there is no dependence of the
probabilities to change on the payoff differences, and the experi-
mental points are practically all within the error bars of the rando-
mization. To obtain further confirmation of this result, we carried
out agent-based simulations of the three experiments using the data
on their corresponding MCC to define the agents behavior, and
analyzed the resulting data to see if it exhibited Fermi-like depen-
dences. The results are plotted in Fig. 7: if one compares these plots
with the original ones from the experiments in Fig. 5, it is apparent
that most experimental points are within the standard deviations of
the average of the simulations. Therefore, it appears that observa-
tions of Fermi-rule-like behavior may arise from MCC. In this
respect, Fig. 8 shows that the opposite is not true, namely that the
Fermi rule does not explain the moody conditionally cooperative
behavior observed in the experiments, and hence, the two explana-
tions are not equivalent, leaving MCC as the rule most compatible
with the experiments among those considered here.

Discussion and conclusions
Although there are several differences in the results between the three
experiments, there are a few features that appear to be universal. The
first one is the low but nonzero asymptotic level of cooperation. In
spite of the fact that many theoretical models predict the promotion
of cooperation by a mechanism of network reciprocity, such a pro-
motion was not observed in any of the experiments analyzed here. In
this paper we have only considered spatially structured populations,
i.e., individuals interacting on square (planar) graphs. In other
experiments23,24, performed on a smaller scale, the level of coopera-
tion is also low. The experiments in28 extend this result to hetero-
geneous graphs, whereas the analysis of the well-mixed population
treatment of the experiments in34 make it clear that fixed or randomly
changing lattices lead to similar cooperation levels. This is further
confirmed by the treatments on static networks, randomly changing
networks, or dynamic networks with a low rewiring rate in35 and36.
Note, however, that these papers report also experiments in which
participants can choose their partner at a large rate, and their coop-
eration emerges; this is a completely different problem and it is clear
that our conclusions do not apply. Other global observables, such as

the distributions of cooperation and earnings look similar, but dif-
ferences between the experimental setups, such as the payoffs and the
number of neighbors in the lattice, do influence the details of these
distributions, most notably the percentage of cooperation. In all
experiments there is a significant negative correlation between the
number of cooperations and the earnings, the slopes being similar to
each other. Therefore, in terms of these global observables, the pre-
sent comparative analysis allows to draw two main conclusions: First,
the fraction of cooperative actions is around 20–30% in lattices, not
substantially higher than in well-mixed populations in any case.
Second, defectors earn more than cooperators, a quantity that can
be twice as large when comparing full defectors and full cooperators.
It has been suggested10 that the observation that population structure
does not promote cooperation may be due to the choice of payoffs for
the experiments, and that considering higher benefits for the coop-
erators could lead to different results. Even though such a setup
amounts to reducing the temptation to defect and hence constitutes
a weaker dilemma, the corresponding experiments should be per-
formed to assess the generality of the conclusions obtained from the
available data.

Figure 7 | Emergence of the Fermi rule in simulations of Moody conditional cooperators. Probability of changing action in the next round as a function

of the payoff difference between the focal player and the best of the players that chose the opposite action. The results are presented separately for the

players who changed from cooperation to defection and those who changed from defection to cooperation (see legends). Results are obtained from

simulations using the parameters of the MCC found in Plön (left), Madrid (center) and Zaragoza experiments (right). All error bars represent 99%

confidence intervals. Madrid data has been binned to reduce the noise, and the simulations include not only MCC but also cooperators and defectors as in

the original population, to check the effect of having a truly heterogeneous population.

Figure 8 | Emergence of MCC in simulations of the Fermi rule. On the x-

axis is the fraction of cooperating neighbors in the previous round and on

the y-axis is the probability that the focal player will cooperate in the next

round. We present separately the probabilities of cooperation after the

focal player played C and D in the previous round. Results are obtained

from simulations using the parameters of the Fermi rule found in Plön, the

only case in which a good fit could be obtained. All error bars represent

99% confidence intervals.
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Regarding the microscopic part of our study, a frequent criticism
of earlier experiments was that the systems analyzed are too small.
However, in our data we find no sign that the size of the system
changes the behavioral rules. We have considered the three different
update rules that had been studied in the past in connection with
these experiments. The detailed comparison of the outcome of the
three experiments leads to a clear conclusion: a majority of players,
that can be almost the whole population, behave in a way that is
consistent with moody conditional cooperation (MCC). We found
no evidence that subjects imitate their neighbor with the best payoff
beyond what arises randomly from the lack of choice, and observa-
tions of Fermi-like behavior in which players copy one neighbor’s
action with probability proportional to their payoffs difference can
be attributed to a side effect of MCC. It is clear that the behavior of the
players depends on their own previous action in all the experiments,
even under randomizations of the positions of the players.
Interestingly, in the experiment by Cassar23 it was also shown that
the behavior of the players is significantly correlated with their pre-
vious action. The econometric analysis of the results in small groups
setup of30 is also in agreement with the dependence on the previous
round; at the same time, that study suggested that memory may be
limited to just one round, in agreement with earlier findings by
Milinski and Wedekind37 (although note that in dynamic networks
with different actions per partner longer memory has been
observed38, leading to similar results due to discounting behavior).
As for the general features of MCC, it turns out that he probability to
cooperate after having cooperated increases with the number of
cooperating neighbors, and is always equal to or higher than the
probability to cooperate after having defected, which is only weakly
depending, if at all, on the context in the previous round. Therefore,
among the rules considered here, MCC is the most compatible one
with the experimental results. It would be interesting to design spe-
cific experiments to put MCC to further tests and to check other
alternative explanations that may be suggested. In this respect, we
note MCC is a rule that would quickly become complex with increas-
ing number of available actions; in this case, other rules similar to the
Fermi one might be more applicable.

In summary, the comparative analysis of the experiments on the
spatial PD presented here strongly suggests that an imposed lattice
structure on a population of human subjects does not influence the
global level of cooperation, and also that subjects behave in a way that
seems to be fully compatible with moody conditionally cooperation.
Subsequent theoretical and experimental research should take these
findings into account. On the theoretical side, one important con-
clusion that arises from the present comparative analysis is that
players do not seem to take into account the payoff of their neighbors
in updating their actions, focusing instead on their actions, and that
non-innovative rules (such as purely imitative ones that do not
include mutations) are not compatible with experimental observa-
tions. Note that other contexts where non-human entities are inter-
acting could of course be modeled with payoff-dependent rules,
especially when they are subject to Darwinian evolution, but our
results seem to rule this out for behavior in spatial social dilemmas
involving people. It is necessary to extend this research to other
games, and additional experiments are needed. Very often social
dilemmas do not take the form of the PD, but are coordination39,
or anti-coordination/coexistence40–42 games, for instance. Not much
is known from an experimental viewpoint about networked version
of such games, although some results are available for coordination
in small groups43 which suggest that networks are also not relevant to
cooperation. Notwithstanding, further research is necessary in view
of the predictions that topological bottlenecks may play role in the
diffusion of conventions44,45 that are beyond the available results.
Another important point is the extension of the experiments to peo-
ple different from University students, an important issue that
may46,47 or may not be relevant48 but needs more verifications. We

hope that the results we are providing here for the spatial PD moti-
vates the community to address these important and exciting open
questions.
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46. Herrmann, B., Thöni, C. & Gächter, S. Antisocial punishment across societies.
Science 319, 1362–1367 (2008).

47. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature
466, 1480–1484 (2010).
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