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Abstract

We discuss Liouville field theory in the framework of Schwinger-Dyson approach and

derive a functional equation for the three-point structure constant. We argue the

existence of a second Schwinger-Dyson equation on the basis of the duality between

the screening charge operators and obtain a second functional equation for the structure

constant. We discuss the utility of the two functional equations to fix the structure

constant uniquely.
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Introduction

Liouville field theory has been a subject of intensive study during the last three decades.
It was initiated by the work of Polyakov [1], where the quantization of non-critical strings
was reduced to a 2d field theory with an exponential interaction. This model is integrable
classically due to the conformal symmetry, and there were several attempts to quantize it
exactly [2]-[7]. However, canonical quantization based on the classical integrability proved
very problematic and could not yield the full two and three point correlation functions.

In the 90’s, Dorn-Otto [8] and the brothers Zamolodchikov [9], independently, proposed
an exact expression for the three point function and provided a check of its consistency.
The exact expression was constructed from the residues of the correlation function at some
discrete points, where the calculation of the residues is possible by the path integral [10] and
the Dotsenko-Fateev techniques [11]. Since a continuation from discrete values, in general,
is not unique, the obtained result was called the DOZZ proposal. However, soon after that,
Teschner suggested a derivation of the DOZZ formula with the help of the degenerated
vertex operators [12]. One intriguing point about the DOZZ formula is that it has a dual
set of poles, which can not be seen form the path integral. Later on, it was proposed in
[13] that the dual set of poles is related to the presence of an extra exponential potential
which has to be introduced in the renormalized action. In [13] it has been also claimed
that the dual pole structure can fix the three point function uniquely. However, no rigorous
arguments for the presence of the extra exponential term were given. The DOZZ proposal
passed many stringent tests (see for example [14]-[17]) and it is believed that the formula is
correct, however, the duality is still not well understood. Our aim in the present paper is to
investigate the duality in more detail.

In the previous paper [18] we examined the DeWitt equation for Liouville field theory.
It is interesting to note that this Schwinger-Dyson type approach provides the same relation
for the three point function that was used in [8] to check the proposal. In the present paper
we employ this approach to analyze the duality of the theory.

We start with a path integral formulation of Liouville field theory and present the most
important points of this approach. We then derive the Schwinger-Dyson equation, which
helps to analyze the residues of the correlation functions and leads to a functional equation
for the structure constant. After this, we introduce a dual Schwinger-Dyson equation with
another screening charge operator and obtain additional residues and a second functional
equations for the structure constant. In the remaining part of the paper we provide a formal
derivation of two functional equations, starting from the bare action.

Definitions and notations

Liouville field theory is described by the action

S[φ] =
1

4π

∫

d2x
√
g
(

gkl∂kφ ∂lφ+QRφ + 4πµe2bφ
)

, (1)

where φ is the Liouville field, R is the scalar curvature for the background metric gkl, µ and
b are constants and Q = b+ 1

b
.
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The partition function

Z[J ] =

∫

[Dφ] e−S[φ]+
∫
d2x

√
g(x)J(x)φ(x) (2)

for a delta function type source

J(x) =
n
∑

i

2αi
√

g(x)
δ2(x− xi) (3)

provides the correlation functions of Liouville field theory

Z
[

n
∑

i

2αi
√

g(x)
δ2(x− xi)

]

=

∫

[Dφ] e−S[φ]

n
∏

i=1

e2αiφ(xi) ≡
〈

n
∏

i=1

e2αiφ(xi)
〉

. (4)

The Liouville field exponential e2αφ(x) is a primary field with conformal weight

∆α = α(Q− α) , (5)

and the three point correlation function has the standard CFT form

〈

e2α1φ(x1) e2α2φ(x2) e2α3φ(x3)
〉

= |x12|2γ3 |x23|2γ1 |x31|2γ2 C(α1, α2, α3) , (6)

where γ1 = ∆α1 − ∆α2 − ∆α3 , γ2 = ∆α2 − ∆α3 − ∆α1 , γ3 = ∆α3 − ∆α1 − ∆α2 and xij

(ij = 12, 23, 31) are the distances between the points xi and xj . Below we assume that the
Liouville filed is given on a sphere.

The Laplace-Beltrami operator on a sphere has only one zero mode, namely a constant
function φ0. By splitting the Liouville field φ(x) into the zero mode and its orthogonal
complement φ(x) = φ0 + φ̃(x) , with

∫

d2x
√
g φ̃ = 0, one gets

∫

d2x
√
g Rφ = 8πφ0.

The integration over the zero mode φ0 in (4) is given by

∫

dφ0 e2(α̃−Q)φ0−U [φ̃] e2bφ0 = Γ

(

α̃−Q

b

)

1

2b
U [φ̃]

Q−α̃

b , (7)

with α̃ ≡
n
∑

i=1

αi , Ub[φ̃] ≡ µ

∫

d2x
√

g(x) e2bφ̃(x) , (8)

leads to [10]

〈

n
∏

i=1

e2αiφ(xi)
〉

= Γ

(

α̃−Q

b

)

1

2b

∫

[Dφ̃] e−S0[φ̃]
n
∏

i=1

e2αiφ̃(xi)
(

Ub[φ̃]
)

Q−α̃

b

, (9)

where, S0[φ̃] is the free-field action

S0[φ̃] =
1

4π

∫

d2x
√
g gkl∂kφ̃ ∂lφ̃ . (10)
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When (Q− α̃) = mb, with m being a positive integer, one can perform the free-field path
integration in (9) and reduce this calculation to the Dotsenko-Fateev integrals [11], which
for n = 3 yields

∫

[Dφ̃] e−S0[φ̃]
3
∏

i=1

e2αiφ̃(xi)
(

Ub[φ̃]
)m

= |x12|2γ3 |x23|2γ1 |x31|2γ2 (−1)m m! Im(α1, α2, α3) ,

(11)
where γi (i = 1, 2, 3) are the same as in (6) and

Im(α1, α2, α3) =

( −πµ

γ(−b2)

)m
∏m

j=1 γ(−jb2)
∏m−1

k=0 [γ(2α1b+ kb2)γ(2α2b+ kb2)γ(2α3b+ kb2)]
, (12)

with γ(u) = Γ(u)/Γ(1−u). Due to the poles of the gamma function in (9) at (Q− α̃) = mb,
equation (12) defines the residues of the structure constants C(α1, α2, α3). Using the form of
the residues, the authors of [8] and [9] were able to construct C(α1, α2, α3) as a meromorphic
function

C(α1, α2, α3) =

[

πµγ(b2)b2−2b2
](Q−α̃)/b

×

Υ′(0)Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
, (13)

where Υ(x) is given by the integral representation

Υ(x) = exp

[

∫ ∞

0

dt

t

(

(

Q

2
− x

)2

e−t − sinh2
(

Q
2
− x
)

t
2

sinh bt
2

sinh t
2b

)]

. (14)

Since such kind of analytical continuation, in general, is not unique, there were several
other efforts to check the validity of (13).

Our aim is to apply the Schwinger-Dyson equation and find new functional relations
between the correlation functions, which can fix the structure constant C(α1, α2, α3) in an
alternative way.

First functional equation

The translation invariance of the path integral measure

∫

[Dφ]
δ

δφ(x)
e−S[φ]+

∫
d2x

√
g(x)J(x)φ(x) = 0 (15)

leads to the Schwinger-Dyson type equation

J(x)Z[J ]−
〈

δS

δφ(x)

〉

= 0 , (16)
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which for Liouville field theory takes the form

J(x)Z[J ] = − 1

2π
∆
δZ[J ]

δJ(x)
+

1

4π
QR(x)Z[J ] + 2µbZ[Jx,b] , (17)

where ∆ = 1√
g
∂a g

ab√g ∂b is the Laplace-Beltrami operator and

J(y)x,b = J(y) + 2b
1

√

g(x)
δ2(y − x) . (18)

The integration of (17) provides the following functional relation for the partition function
∫

d2x
√

g(x)
(

J(x)− 1

4π
QR(x)

)

Z[J ] = 2µb

∫

d2x
√

g(x)Z[Jx,b] . (19)

Note that this equation is simply obtained also from
∫

[Dφ]
δ

δφ0

e−S[φ]+
∫
d2x

√
g(x)J(x)φ(x) = 0 , (20)

which is the translation invariance of the measure only with respect to the zero mode.
Inserting the delta function type source (3) in (19) and integrating the curvature term

as above, we find

(α̃−Q)
〈

n
∏

i=1

e2αiφ(xi)
〉

= µb

∫

d2x
√

g(x)
〈

n
∏

i=1

e2αiφ(xi)e2bφ(x)
〉

. (21)

This equation provides recursive relations between the correlations functions in an integral
form. Replacing n by n+ 1 in (21) and setting one of αi’s equal to b, we get

(α̃ + b−Q)
〈

n
∏

i=1

e2αiφ(xi)e2bφ(x)
〉

= µb

∫

d2y
√

g(y)
〈

n
∏

i=1

e2αiφ(xi)e2bφ(x)e2bφ(y)
〉

, (22)

which together with (21) yields

(α̃−Q) (α̃ + b−Q)
〈

n
∏

i=1

e2αiφ(xi)
〉

= (µb)2
∫

d2x
√

g(x)

∫

d2y
√

g(y)
〈

n
∏

i=1

e2αiφ(xi)e2bφ(x)e2bφ(y)
〉

. (23)

Repeating this procedure m-times, we obtain

m
∏

j=0

(α̃ + jb−Q)
〈

n
∏

i=1

e2αiφ(xi)
〉

= (bµ)m+1

∫

· · ·
∫

〈

n
∏

i=1

e2αiφ(xi)

m
∏

j=0

e2bφ(yj)
〉

d2yj

√

g(yj) . (24)
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Form this equation follows that the n-point functions are singular at α̃ = Q−mb, which
can be seen from the zero mode integration (9) as well. By (21) we also realize that the
insertion of the screening charge operator

Ub = µ

∫

d2x
√

g(x) e2bφ(x) (25)

modifies the correlator by the α̃ dependent constant factor. Note that the conformal dimen-
sion of the operator (25) is equal to zero and its insertion does not change the conformal
properties of the correlation functions.

Let us consider equation (24) for n = 3 and also the same equation with the replacement
m by m− 1. The relation of the corresponding expressions yields

(α̃−Q+mb)

∫

· · ·
∫

〈

3
∏

i=1

e2αiφ(xi)
m−1
∏

j=0

e2bφ(yj )
〉

d2yj

√

g(yj) =

µb

∫

· · ·
∫

〈

3
∏

i=1

e2αiφ(xi)
m
∏

j=0

e2bφ(yj )
〉

d2yj

√

g(yj) , (26)

and using again (24), we find

〈

3
∏

i=1

e2αiφ(xi)
〉

m
∏

j=0

(α̃ + jb−Q)

= (bµ)m(α̃−Q +mb)

∫

· · ·
∫

〈

3
∏

i=1

e2αiφ(xi)

m−1
∏

j=0

e2bφ(yj)
〉

d2yj

√

g(yj) . (27)

Similarly to (7), the zero mode integration in the right hand side of this equation provides

∫

· · ·
∫

〈

3
∏

i=1

e2αiφ(xi)

m−1
∏

j=0

e2bφ(yj)
〉

d2yj

√

g(yj) = Γ

(

α̃ +mb−Q

b

)

1

2b

∫

[Dφ̃] e−S0(φ̃) ×

3
∏

i=1

e2αiφ̃(xi)

(
∫

d2y
√

g(y)e2bφ̃(y)
)m(

µ

∫

d2x
√

g(x)e2bφ̃(x)
)

(Q−α̃−mb)
b

. (28)

Now we introduce the parameter ǫ = α̃−Q+mb and consider the limit ǫ → 0. The left
and right hand sides of (27) have the same coordinate dependent parts defined by (6) and
(11), respectively. Canceling these parts on both sides of (27), we find

lim
ǫ→0

[

m
∏

j=0

(ǫ− jb)C(α1, α2, α3)
]

=
1

2
bm(m!)(−1)mIm(α1, α2, α3) , (29)

which simplifies to

lim
ǫ→0

[

ǫ C(α1, α2, α3)
]

=
1

2
Im(α1, α2, α3) . (30)
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Replacing the parameters here by α1 7→ α1 + b and m 7→ m− 1, we obtain

lim
ǫ→0

[

ǫ C(α1 + b, α2, α3)
]

=
1

2
Im−1(α1 + b, α2, α3) , (31)

and the ratio of (31) and (30) yields the following equation

C(α1 + b, α2, α3)

C(α1, α2, α3)
=

Im−1(α1 + b, α2, α3)

Im(α1, α2, α3)
. (32)

With the help of (12), its explicit form becomes

C(α1 + b, α2, α3)

C(α1, α2, α3)
= − γ(−b2)γ(b(2α1 + b))γ(2bα1)γ(b(α2 + α3 − α1 − b))

µγ(b(α1 + α2 + α3 −Q))γ(b(α1 + α2 − α3))γ(b(α1 + α3 − α2))
.

(33)
Though this functional equation for the structure constant was derived with the restric-

tion α̃ = Q−mb, one can show that the restriction can be removed and (33) is valid for the
entire set of parameters (α1, α2, α3).

Second functional equation

The equation for the unit conformal weight

α(Q− α) = 1 (34)

has two solutions: α = b and α = 1/b. Hence, the operator

U1/b = µ̃

∫

d2x
√

g(x)e
2
b
φ(x) , (35)

with constant µ̃, has zero conformal weight, like the operator (25). The insertion of the
screening charge operator (35) does not change the conformal properties of the correlation
functions, and we use this property to suggest a second equation for the structure constant.

If we start with the relation analogous to (21)1

(α̃−Q)
〈

n
∏

i=1

e2αiφ(xi)
〉

=
µ̃

b

∫

d2x
√

g(x)
〈

n
∏

i=1

e2αiφ(xi)e
2
b
φ(x)
〉

, (36)

and perform the same iterative scheme as above, we find the equation similar to (24)

m
∏

j=0

(

α̃ +
j

b
−Q

)〈

n
∏

i=1

e2αiφ(xi)
〉

= (37)

∫

· · ·
∫

( µ̃

b

)m+1〈
n
∏

i=1

e2αiφ(xi)

m
∏

j=0

e
2
b
φ(yj)

〉

d2yj

√

g(yj) .

1We justify this relation in the next section.
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The second functional equation, obtained at α̃ = Q−m/b, then takes the form (32)

C(α1 + 1/b, α2, α3)

C(α1, α2, α3)
=

Ĩm−1(α1 + 1/b, α2, α3)

Ĩm(α1, α2, α3)
, (38)

where Ĩm is also defined by the free-field Coulomb gas integral

∫

[Dφ̃] e−S0[φ̃]
3
∏

i=1

e2αiφ(xi)
(

U1/b[φ̃]
)m

= |x12|2γ3 |x23|2γ1 |x31|2γ2 (−1)mm! Ĩm(α1, α2, α3) .

(39)
Thus, Ĩm is obtained from (12) by the replacements b 7→ 1/b, µ 7→ µ̃. Equation (38) then
reduces to

C(α1 + 1/b, α2, α3)

C(α1, α2, α3)
= −γ(−b−2) γ(2α1+1/b

b
)γ(2α1

b
)γ(α2+α3−α1−1/b

b
)

µ̃ γ(α1+α2+α3−Q
b

)γ(α1+α2−α3

b
)γ(α1+α3−α2

b
)
. (40)

Note again that equations (33) and (40) in our scheme were obtained at α̃ = Q−mb and
α̃ = Q−m/b, respectively. The same equations, without any constraints on the parameters,
were derived in [12], with the help of the degenerated operators. For irrational b, these two
equations lead to the DOZZ formula (13) uniquely [12].

Indeed, from the properties of Υ-function (14),

Υ(x+ b) = γ(bx)b1−2bxΥ(x) , Υ(x+ 1/b) = γ(x/b)b2x/b−1Υ(x) , (41)

follows that C(α1, α2, α3) defined by (13) satisfies both (33) and (40), if the dual cosmological
constants are related by

µ̃ = (πµγ(b2))b
−2

/(πγ(b−2) . (42)

Let D(α1, α2, α3) be another solution of the same equations with irrational b. The ratio
D/C then will be a function with two incommensurable periods. It is well known that such
a function is constant, which leads to D = C.

In the next section we discuss arguments leading to the relation (36) and also analyze a
relative scaling properties of µ̃ and µ, obtained directly from the path integral. The later
appears consistent with (42).

Source of the 2nd functional equation

Let us consider equation (9) with α̃ = Q−mb− 1/b. In this case, we can not calculate the
free-field path integral on the right hand side of (9), since the power of Ub[φ̃] is not integer.
An integer power of Ub[φ̃] is obtained by insertion of the second screening charge operator,
which formally yields

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e
2
b
φ(x)〉 = Γ(−m)

1

2b

∫

D[φ̃] e−S0[φ̃] × (43)

n
∏

i=1

e2αiφ̃(xi)

(
∫

d2y
√

g(y)e
2
b
φ̃(y)

)(

µ

∫

d2x
√

g(x)e2bφ̃(x)
)m

. (44)
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The argument of Γ-function here is a negative integer number and the free-field path integral
provides only the residue of the correlator. This trick gives us a hint that the correlators
have poles not only at Q− α̃ = mb, but also at Q− α̃ = m/b.

Our aim here is to investigate the relation between

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e
2
b
φ(x)〉 and 〈

n
∏

i=1

e2αiφ(xi)〉 ,

that was proposed in the previous section by (36).
The Schwinger-Dyson equation obtained from the bare action of Liouville field theory,

similarly to (19), yields

(α̃−QB)〈
n
∏

i=1

e2αiφ(xi)〉 = µBb

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e2bφ(x)〉 , (45)

where the index B stands for the bare parameters. Note that QB = 1/b and the classical
conformal dimension of e2αφ(x) is αQB. Thus, classically there is only one screening charge
given by (25). Replacing the bare Schwinger-Dyson equation by a renormalized one, we find

(α̃−QR)〈
n
∏

i=1

e2αiφ(xi)〉 = µR bβ

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e2bβφ(x)〉 , (46)

with renormalized parameters QR, µR and β.
Taking into account that both sides of eq. (46) should have the same conformal trans-

formation properties, one gets the following condition on the renormalized parameters [19]

1−QRβb+ β2b2 = 0 . (47)

By this equation there are two choices for β, β1 = 1 and β2 = 1/b2, which yield the same
background charge QR = b + 1/b. They correspond to two exponential operators with
conformal weight one. From (46) we then get two possible Schwinger-Dyson equations

[α̃−QR]〈
n
∏

i=1

e2αiφ(xi)〉 = µ1 b

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e2bφ(x)〉 , (48)

[α̃−QR]〈
n
∏

i=1

e2αiφ(xi)〉 = µ2
1

b

∫

d2x
√

g(x)〈
n
∏

i=1

e2αiφ(xi)e
2
b
φ(x)〉 , (49)

where the first coincides with (19) and the second with (36) at µ1 = µ and µ2 = µ̃, respec-
tively. These cosmological constants are renormalized according to the choice of β.

To analyze the scaling properties of the cosmological constant we consider the exponential
interaction µBe

2αφ(x), which is regularized by

µBe
(2αφ(x)−2α2G(x,x)),

9



where G(x, x) is the two point Green’s function at coincide points. Introducing a regulator
Λ for G(x, x) by

G(x, x) ∼ 1

2
ln[

Λ2

µB
],

and performing the redefinition µB → Λ2µ0, with a dimensionless parameter µ0, the regular-
ized exponent can be written as µ1+α2

0 Λ2e2αφ(x). Then, for α = b the dimensionless scaling

parameter is µ1+b2

0 ∼ µ, while for α = 1/b the scaling is µ
1+1/b2

0 ∼ µ̃. From these relations it
follows that µ̃ ∼ µ1/b2 , which is consistent with (42).

According to Seiberg [20] a vertex operator e2αφ with 2Reα > Q can not be defined

in Liouville field theory. Hence, for a given b either e2bφ(x) or e
2
b
φ(x) will break the Seiberg

bound. For example, if 0 < b < 1 the Seiberg bound is broken by e
2
b
φ(x) and if b > 1, then

by e2bφ(x). For b = 1 both screening charge operators, as well as, equations (48) and (49)
coincide. Thus, one has only one screening charge operator for a given b.

It is important to note that the Schwinger-Dyson equation is obtained from the Schwinger
action principle [21] and the path integral is the solution of this functional equation. If one
considers the bare Schwinger-Dyson equation as a fundamental equation for Liouville field
theory, then its regularization provides two equations (48) and (49). Although the left hand
side of these equations is the same correlation function, the two screening charge operators on
the right hand side differ and only one of them satisfies the Seiberg bound for a given value of
b. Nevertheless, the equations are valid simultaneously if they are understood as functional
relationships between the analytically continued expectation values. These relationships
hints towards the use of the Barnes double Gamma function for the structure constants.

In a follow up to this work we intend to investigate the discussed points from the per-
spective proposed in [22]. Namely, to use the operator equation of motion for the Liouville
field in the presence of two screening charges and to show how these charges define the dual
pole structure.

We hope that the Schwinger-Dyson approach discussed in this paper can be extended
beyond Liouville field theory, in particular, to Toda theory and other coset WZW models.
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