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Abstract

We analyze free conformal higher spin actions and the corresponding wave

operators in arbitrary even dimensions and backgrounds. We show that

the wave operators do not factorize in general, and identify the Weyl tensor

and its derivatives as the obstruction to factorization. We give a manifestly

factorized form for them on (A)dS backgrounds for arbitrary spin and on

Einstein backgrounds for spin 2. We are also able to fix the conformal wave

operator in d = 4 for s = 3 up to linear order in the Riemann tensor on

generic Bach-flat backgrounds.
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1 Introduction

Conformal gauge theories have received quite some attention over the years. In par-

ticular, the actions of Weyl gravity and conformal supergravity, together with their

corresponding wave equations, have been studied in great detail [1–11] as natural ex-

tensions of ordinary gravity and supergravity theories. Interest has been also devoted

to the corresponding higher spin generalizations [12–17], not just because of the in-

triguing role of conformal symmetry. Flat space higher spin (HS) fields are namely

naturally endowed with higher derivative linearized curvatures [18] that play a key role

in conformal gauge theories.1

More recently, conformal HS fields have found interesting applications in the con-

text of the AdS/CFT correspondence. There, they play the role of sources to the

1See [19–23] for some reviews of HS theories.
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conformal currents, defined in the free O(N) vector models as well as in generic CFT’s

in their free limit [24–30].

Nonetheless, it is important to keep in mind that HS conformal theories are natu-

rally higher derivative theories and for this reason violate unitarity, just as conformal

gravity. This feature allows them to bypass the Coleman-Mandula theorem as well as

other powerful no-go theorems in flat space.2 On the other hand it has been recently

pointed out how asymptotically AdS solutions of Einstein gravity can be recovered

from four derivative theories by choosing appropriate boundary conditions [32–34].

This provides some key hints about the role of the latter non-unitary theories in the

context of AdS/CFT. Therefore, these features motivate a closer look at conformal HS

theories and their properties.

Free Lagrangians and the corresponding wave equations involving massless Frons-

dal fields and their variants have received considerable interest [35–42]. But the explicit

form of the conformal wave operator for HS fields in curved spaces has not been worked

out yet.3 The aim of this paper is to study free conformal higher spins actions and the

corresponding wave operators on generic backgrounds. One of our goals is to discuss

the factorization property of the conformal wave operator for HS fields generalizing

previous result for spin 2. We have also been able to fix the conformal wave operator

in d = 4 for s = 3 up to linear order in the Riemann tensor on generic Bach-flat back-

grounds. As a byproduct of our analysis, we obtain the full conformal wave operator

on (A)dS backgrounds in any dimension in a manifestly factorized form. Each factor

turns out to be given by a two derivative operator. Their combined mass spectrum

comprises the massless and partially-massless points plus massive points in higher

dimensions [5, 38, 50–56]. This provides additional evidence for previous conjectures

made in [43, 57] and extends them. In addition, we also identify the Weyl tensor

and its derivatives as the obstruction to factorization for spin s > 2 on generic back-

grounds. Furthermore, we rediscover the well known factorization of the conformal

wave operator for spin 2 on Einstein backgrounds [3–6], and extend it to arbitrary

dimensions.

The obstruction to factorization for spin s > 2 can be interpreted as a confor-

mal reincarnation of the Aragone-Deser obstruction [58] for two derivative HS wave

operators. Indeed, the crucial difference between spin 2 and HS fields is the explicit

appearance of the Weyl tensor within the gauge variation of the generic two derivative

2See e.g. [21] and references therein for a review of various no-go theorems and [31] for a stronger

version of the Coleman-Mandula theorem in flat space.
3See [43] for some discussion of higher derivative theories in flat space, [44, 45] for some earlier

discussion on conformal operators and [46–49] for selected math literature.
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operators. On the contrary, any contribution proportional to the Weyl tensor can be

eliminated for spin 1 and 2, making their wave operator factorizable.

Amongst other things we also develop a variant of the HS tractor calculus (see

e.g [59] and references therein), that finds potentially useful applications to conformal

HS fields. We believe that this formalism might provide a useful tool for addressing

various problems with conformal higher spin fields, like for instance the extension of

the present analysis to interactions and to the study of conformal HS algebras.

The organization of the paper is as follows. In section 2 we describe a convenient

formalism that allows us to deal with conformal fields in a simplified way. In section 3

we test the consistency of a factorized conformal wave operator in generic backgrounds

studying the obstructions to factorization. In section 4 we give the spin 3 conformal

wave operator on Bach-flat backgrounds up to linear order in the Riemann tensor. In

section 5 we summarize our results and conclude. We have put additional material

that includes a discussion about gauge fixing and some lower-spin examples in the

appendices. Lastly, we have attached a Mathematica notebook containing independent

checks as an ancillary file.

2 Conformal higher spin fields

Conformal higher spin fields [8, 13] can be defined at the linear level by demanding

the following gauge invariance properties

δξ ϕµ1···µs
= ∇(µ1

ξµ2···µs), (1a)

δα ϕµ1···µs
= g(µ1µ2

αµ3···µs). (1b)

No trace constraints on fields or gauge parameters are imposed. The above generalizes

the linearized gauge invariance and rescaling invariance of conformal gravity. Indeed,

for spin 2 equation (1b) describes linear dilatations (scale transformations). For higher

spins, on top of the above transformations, one would in principle also need to consider

also proper HS scale transformations of the form ϕµ1···µs
→ Ωϕµ1···µs

. But for the

purpose of this paper it will not be necessary to impose this beforehand. Irrespectively,

the wave operators we find turn out to be automatically invariant under these scale

transformations.

We will now switch to an operator notation where fields are represented by gener-

ating functions,

ϕµ1···µs
(x) → ϕ(x, u) =

1

s!
ϕµ1···µs

(x)e µ1

a1
(x)ua1 · · · e µs

as
(x)uas . (2)
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Here we have introduced a constant auxiliary tangent variable ua. See Appendix A

for all our notational conventions and a brief introduction to the operator formalism.

In the operator notation the gauge invariance properties (1) take the form

δξϕ(x, u) = u · ∇ξ(x, u), (3a)

δαϕ(x, u) = u2α(x, u). (3b)

From this it follows that a conformal field can be regarded as an equivalence class

of standard massless higher spin fields defined on the cone u2 ∼ 0. This observation

allows us to use so-called Thomas-D derivatives ∂̂u in the auxiliary variable u. Again,

see Appendix A for more information.

We now summarize our results. We find the following manifestly factorized form

of the spin s conformal wave operator in (A)dSd:

O(s) =

d
2
−2+s
∏

i=1

[

− d−4+2s
i(d−3−i+2s)

u · ∇∇ · ∂̂u + Λ[(i− s+ 1)(i− s− d+ 2)− s]
]

, (4)

Similarly, the factorized spin 2 conformal wave operator on any Einstein background

can be expressed as

O(2) =

d
2
∏

i=1

[

− d
i(d+1−i)

u · ∇∇ · ∂̂u + Λ[(i− 1)(i− d)− 2] +Wµνρσu
µuρ∂̂uν

∂̂uρ

]

. (5)

The conformal wave operator for higher spins does not factorize on generic Einstein

spaces, as we shall demonstrate in the next section.

3 Factorization of conformal wave operators

In this section we study the obstructions for a factorized conformal wave operator to be

gauge invariant on generic backgrounds. Our soon to be disproved assumption is that

the conformal wave operator factorizes into two-derivative operators on any Bach-flat

background, or generalizations thereof in d > 4. The existence of a conformal wave

operator on Bach-flat backgrounds can be argued on the basis of the following two

observations.

Firstly, an Aragone and Deser type of obstruction [58] cannot arise since the con-

formal coupling with gravity has the same number of derivatives as the kinetic term at

any order in the spin s field. In particular any coupling of the type s− s− 2− . . .− 2

involving n spin two fields and two spin s fields must involve 2s + d − 4 derivatives.
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This type of obstruction appears for two derivative operators like the Fronsdal oper-

ator because the corresponding gravitational couplings are higher derivative [31, 60,

61].

Secondly, any possible tadpoles (i.e. vertices linear in the higher spin field) can

be removed. In principle one might be forced to add them, but they can always be

integrated by parts into a non-linear equation for the metric. In d = 4 this equation

will involve the Bach tensor, although in general it will become a higher derivative

condition for the metric containing 2s + d − 4 derivatives. For this reason it will be

compatible with, if not equivalent to, the conformal gravity equations of motion.

We will come back to constructing a conformal invariant operators on generic

backgrounds in section 4. But first we will concentrate on an Ansatz that is explicitly

factorized, with the aim of identifying the obstruction to its gauge invariance. The

non-existence of a factorized solution in general will not imply the non-existence of the

full operator. In fact, we expect to the full operator to exist for any spin on generic

conformal manifolds for the reason mentioned above.

3.1 Ansatz

A (2s+ d−4)-derivative factorized Ansatz for the conformal spin s wave operator can

be written as

O(s) =

d
2
−2+s
∏

i=1

Fi, (6)

where Fi is the most general Ansatz for a two derivative operator:

Fi = +αiu · ∇∇ · ∂̂u + βiΛ + γiR
Λ
µνρσu

µuρ∂̂uν
∂̂uσ

+ δiR
Λ
µνu

µ∂̂uν
+ σiR

Λ. (7)

Here we have defined RΛ
µνρσ = Rµνρσ − Λ(gµρgνσ − gνρgµσ), and similarly for the Ricci

tensor (see also Appendix A). On Einstein backgrounds this simplifies to

FE

i = +αiu · ∇∇ · ∂̂u + βiΛ + γiWµνρσu
µuρ∂̂uν

∂̂uσ
, (8)

where Wµνρσ is the Weyl tensor.

For the purpose of enforcing gauge invariance of the full operator it is useful to
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compute the gauge transformation of the generic two-derivative operator Fi. It reads

Fu · ∇ = u · ∇
[

(1 + α) +α
(

1− 2
h

)

u · ∇∇ · ∂̂u

+ Λ
{

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
}]

− α
(

u · ∇RΛ
µνρσ

)

uµuρ∂̂uν
∂̂uσ

+ (γ − α)RΛ
µνρσu · ∇uµuρ∂̂uν

∂̂uσ

+ 2(γ − 1)RΛ
µνρσu

µ∇νuρ∂̂uσ
+ (1 + α)

(

u · ∇RΛ
µν

)

uµ∂̂uν

+ (α+ δ) RΛ
µνu · ∇uµ∂̂uν

+ (1 + δ)RΛ
µνu

µ∇ν − uµuν
(

∇ · ∂̂uRΛ
µν

)

− 2
h−2

(γ + δ)RΛ
µνu

µuν∇ · ∂̂u + σRΛu · ∇. (9)

First of all, the structure of the gauge variation illustrates an important difference

between spin-2 and higher spins. This is due to the appearance of terms proportional

to the full Riemann tensor and its derivatives, for instance

(

u · ∇RΛ
µνρσ

)

uµuρ∂̂uν
∂̂uσ

. (10)

This term, being cubic in the auxiliary variable u, appears only for spin s ≥ 3. This

is actually a reincarnation of the same feature pointed out by Aragone and Deser [58]

in the context of Fronsdal fields.

The above gauge variation can be used to recursively compute the gauge variation

of the factorized Ansatz (6). Using the notation

Fiu · ∇ = u · ∇F̃i + Xi, (11)

we get

(F1 · · ·Fn) u · ∇ = u · ∇
(

F̃1 · · · F̃n

)

+ X (n), (12)

where X (n) is recursively defined as

X (n) = X1F̃2 · · · F̃n + F1X (n−1) =
n
∑

k=1

F1 · · · Fk−1Xk F̃k+1 · · · F̃n. (13)

It is then straightforward to see that gauge invariance for the spin s wave operator

implies the condition

u · ∇
(

F̃d
2
−2+s

· · · F̃1

)

+ X
(

d
2
−2+s

)

= 0. (14)

3.2 Arbitrary spins on AdS backgrounds

The coefficients α and β enter the Riemann-independent part of the Ansatz (7). Hence,

in order to fix them it is sufficient to look at the zeroth order in the RΛ tensors. This
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corresponds to the case of (A)dS, which we are going to consider in detail in this

section. The equation (14) will simplify and will admit an iterative structure, which

is crucial for factorization.

At zeroth order in Riemann tensors we have Xi ∼ 0, and end up with the following

equation for the ith factor in the Ansatz:

(

∇ · ∂̂u
)i−1

[

(1 + αi) +αi(1− 2
h
)u · ∇∇ · ∂̂u

+ Λ
(

βi + u · ∂̂u + 1 + (αiu · ∂̂u + 1)(u · ∂̂u + d− 2)
)

]

∼
(

∇ · ∂̂u
)i

. (15)

This recursively ensures that all terms proportional to
(

∇ · ∂̂u
)i−1

vanish. In principle

we should also impose that no higher divergence is generated, but this condition turns

out to be automatically satisfied if the number of derivatives is chosen to be 2s+d−4.

We will now fix all α’s and β’s by solving linear equations. We begin with observing

that

(

∇ · ∂̂u
)k

F̃i =
(

∇ · ∂̂u
)k−i [

ai +biu · ∇∇ · ∂̂u + ciΛ
]

(∇ · ∂̂u)i +O
(

RΛ
)

, (16)

where the coefficients satisfy the following recursion relations:

aj = aj−1 + bj−1, (17a)

bj = bj−1

(

1− 1
d
2
− 2 + s− j

)

, (17b)

cj = cj−1 + bj−1(s− j − 1)(s− j + d− 3) + aj−1

(

2(s− j) + d− 3
)

. (17c)

These recursion relations have boundary conditions

a0 = 1 + αi, (18a)

b0 = αi

(

1− 1
d
2
− 2 + s

)

, (18b)

c0 = βi + s+ (αi(s− 1) + 1)(s+ d− 3). (18c)

The solution to the first two recursion relations reads:

aj = 1 + αi

[

1 + j

(

1− 1 + j

d− 4 + 2s

)]

, (19a)

bj = αi

(

1− 1 + j
d
2
− 2 + s

)

. (19b)

We do not write the solution for ci since it is rather cumbersome and enters only inter-

mediate steps of the computation. We can now enforce gauge invariance by recursively
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demanding that terms proportional to a divergence vanish in the gauge variation. We

end up with

ai−1(αi) = 0, (20a)

ci−1(αi, βi) = 0. (20b)

The solution to these equations reads

αi = − 1

1 + (i− 1)
(

1− i
d−4+2s

) , (21a)

βi = (i− s+ 1)(i− s− d+ 2)− s. (21b)

And so the conformal wave operator on (A)dS takes the form

O(s) =

d
2
−2+s
∏

i=1

[

− d− 4 + 2s

i(d− 3− i+ 2s)
u · ∇∇ · ∂̂u + Λ

(

(i− s+ 1)(i− s− d+ 2)− s
)

]

.

(22)

Finally, the action which has O(s)ϕ(s) = 0 as an equation of motion reads

S(s) = 1
2

∫

ddx
√
−g e∂̂u1 ·∂̂u2ϕ(s)(u1)O(s)ϕ(s)(u2)

∣

∣

∣

∣

ui=0

. (23)

This reproduces the correct equations of motion because the operator O is automati-

cally self-adjoint up to total derivatives.

It is worth pointing out that the coefficients β precisely match the masses associated

with the partially massless points for spin s, plus some discrete massive points in d > 4.

This is in agreement with previous conjectures on conformal HS wave operators [43, 57].

This implies in turn that the part of the conformal operator that is not proportional

to divergences or traces has the form

O ∼

d
2
−3+s
∏

i=0

[

+Λ
(

(i− s+ 2)(i− s− d− 3)− s
)

]

. (24)

In Appendix C we show that terms involving divergences can be set to zero by choosing

a convenient gauge.

Before concluding this section it is important to comment that strictly speaking

the above discussion is sufficient to determine the full conformal spin s operator on

(A)dS only in d = 4, where the number of derivatives required by scale invariance is

2s. In higher even dimensions the first s factors have to be the same as above but

the next d
2
− 2 factors are not constrained by gauge invariance and one would need to

analyze conformal invariance more closely. Notice that conformal invariance,

δgµν = Ω(x)2gµν , (25)
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is not easy to prove due to the generically complicated transformation properties of

covariant derivatives. However, the condition of gauge invariance at the operator level,

O(s) u · ∇ = 0, (26)

is strong enough to completely fix the wave operator in any dimension. Loosely speak-

ing, operator gauge invariance means that the kernel of O(s) u ·∇ is enlarged from the

HS gauge parameters ξ to arbitrary homogeneous functions of u.4 Moreover, we have

also checked in Appendix C that the factorization Ansatz does not play any role and

one can arrive at analogous results starting from a more general Ansatz. One can then

argue, and check with examples (see Appendix D), that the stronger gauge invariance

condition (26), implies conformal invariance when the operator Os is defined on the

equivalence classes (56). In d = 4 the crucial simplification is that the operator gauge

invariance and the usual gauge invariance conditions coincide.

From a group-theoretical perspective the operator gauge invariance implies also

that the pattern of masses follows a very simple relation,

E = d+ s− 3− i for 0 ≤ i ≤ d
2
− 3 + s. (27)

This is nothing but the continuation of the pattern of the (partially-)massless points,

0 ≤ i ≤ s − 1, to massive points. Furthermore, it is what is expected from the

decomposition of a representation of the conformal algebra with respect to the (A)dS

subalgebra [57]. It is remarkable that the above requirements can be recast in terms of

a usual gauge invariance condition extended to the operator level. For these reasons,

it might provide a useful tool to control conformal invariance (25).

So far we have been able to completely fix the conformal wave operator on (A)dS.

In the following we will analyze the same problem in generic backgrounds. We shall

first consider the spin-2 case in more detail, and then address the higher spin problem.

3.3 Spin 2 on generic backgrounds

The spin 2 case is special with respect to its higher spin cousins because the commu-

tation relations (62) simplify. In particular, terms of order u3 or ∂̂3
u in the conformal

operator as well as terms of order ∂̂2
u in gauge variation drop out. The gauge variation

4Enlarging the domain of formal generating functions to distributions has also been done in [62].
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of a single F (9) simplifies to

Fu · ∇ = u · ∇
[

(1 + α) +α(1− 2
h
)u · ∇∇ · ∂̂u

+ Λ
(

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
)]

+ 2(γ − 1)RΛ
µνρσu

µ∇νuρ∂̂uσ
+ (1 + α)

(

u · ∇RΛ
µν

)

uµ∂̂uν

+ (α + δ) RΛ
µνu · ∇uµ∂̂uν

− uµuν
(

∇ · ∂̂uRΛ
µν

)

+ (1 + δ)RΛ
µνu

µ∇ν

− 2
h−2

(γ + δ)RΛ
µνu

µuν∇ · ∂̂u + σRΛu · ∇. (28a)

This enables us to eliminate all instances of the Riemann tensor by simply choosing

γ = 1. This very simple observation is sufficient to ensure that the factorized Ansatz

works on any Einstein background.

However, it should be clear from the argument itself that this simplification is non-

generic. For completeness and to underline the non-generic nature, let us analyze the

factorization of the conformal spin 2 operator on general backgrounds more closely.

Taking the solution (21) for α’s and β’s obtained in the previous section into account,

the gauge-invariance condition reads in d = 4

X1F̃2 + F1X2 = 0. (29)

Here we have

Xi =+ (1 + αi)
(

u · ∇RΛ
µν

)

uµ∂̂uν
+ 2(γi − 1)RΛ

µνρσu
µ∇νuρ∂̂uσ

+ (αi + δi)R
Λ
µνu · ∇uµ∂̂uν

+ (1 + δi)R
Λ
µνu

µ∇ν − uµuν
(

∇ · ∂̂uRΛ
µν

)

− 2
h−2

(γi + δi)R
Λ
µνu

µuν∇ · ∂̂u + σiR
Λu · ∇ (30)

F1 = −u · ∇∇ · ∂̂u − 2Λ (31)

F̃2 =
1
3

−1
3
u · ∇∇ · ∂̂u − Λ. (32)

The terms linear in RΛ
µνρσ without any divergence are

2RΛ
µνρσu

µ∇νuρ∂̂uσ

[

(γ1 − 1)(1
3

−Λ) + (γ2 − 1)( −2Λ)
]

. (33)

It is easy to see that the only solution to gauge invariance is γi = 1, which eliminates

any instance of the Riemann tensor in the gauge variation. In order to study the

obstructions related to RΛ
µν it is useful to first concentrate on the terms that do not

involve any derivative of RΛ
µν . Thus for the moment we will set ∇αRµν ∼ 0 and, as a

consequence of the Bianchi identity, RΛ ∼ 0 (i.e. the non-constant part of the Ricci

scalar vanishes). Dropping terms proportional to divergences for simplicity, we get the
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following gauge variation:

O(2)u · ∇ ∼+
[

(δ1 + 1)RΛ
µνu

µ∇ν + (δ1 − 1)RΛ
µνu · ∇uµ∂̂uν

]

[1
3

−Λ]

− 1
6
(δ1 + 1)RΛ

µνu
µuν∇ · ∂̂u

+ [ −2Λ]
[

(1 + δ2)R
Λ
µνu

µ∇ν + (α2 + δ2)R
Λ
µνu · ∇uµ∂̂uν

]

− u · ∇∇ · ∂̂u
[

(1 + δ2)R
Λ
µνu

µ∇ν + (α2 + δ2)R
Λ
µνu · ∇uµ∂̂uν

]

. (34)

Keeping only terms of the order (RΛ)2 and commuting all boxes until they act on the

gauge parameter while dropping divergences, we obtain:

−1
6
(δ1 + 1)RΛ

µνu
µuνRΛ

µν∇µ∂̂uν

(1 + δ2)
[

− 2RΛ
µαR

Λα
νρσu

µ∇νuρ∂̂uσ
+RΛ

µαR
Λα

νu
µ∇ν

]

+(α2 + δ2)
[

− 2RΛ
µνραR

Λα
σu

µ∇νuρ∂̂uσ
+RΛ

µνu
µ∇νRΛ

ρσu
ρ∂̂uσ

]

−(α2 + δ2)u · ∇RΛ
µβR

Λ β
νu

µ∂̂uν
. (35)

This cannot be set to zero by tuning the free coefficients, which implies RΛ
µν is an

obstruction to factorization in the spin two case. This concludes the proof that factor-

ization of the spin-2 conformal wave operator is possible only on Einstein backgrounds.

As we have seen above its form is remarkably simple and can be written as

O(2) =
(

−u · ∇∇ · ∂̂u − 2Λ +Wµνρσu
µuρ∂̂uν

∂̂uσ

)

×
(

−2
3
u · ∇∇ · ∂̂u − 4Λ +Wµνρσu

µuρ∂̂uν
∂̂uσ

)

. (36)

On more general conformal manifolds factorization is not possible.

The above discussion generalizes readily to any dimension, upon which we get the

following manifestly factorized form of the spin 2 conformal wave operator:

O(2) =

d
2
∏

i=1

[

− d
i(d+1−i)

u · ∇∇ · ∂̂u + Λ[(i− 1)(i− d)− 2] +Wµνρσu
µuρ∂̂uν

∂̂uσ

]

, (37)

Before concluding this section, let us point out that the above result is the unique

operator that factorizes, and it reduces to our previous result (4) upon restricting

to (A)dS backgrounds. If the factorization requirement is dropped more conformal

operators can be found, e.g. by linearizing the conformal invariant densities of [63–66].

However, all but one of these densities vanish when linearized on (A)dS backgrounds

as they consist of more than two Weyl tensors. See also subsection D.2 for an example

of this for d = 6.

We will now proceed to the higher spin cases. Due to the generic nature of the

obstructions we found for spin 2, we will restrict our attention to Einstein manifolds

in what follows.
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3.4 Higher spins on Einstein backgrounds

We will now consider arbitrary spins on Einstein backgrounds, and consequently set

RΛ
µν to zero. Upon doing so, the commutation relations simplify drastically and the

gauge variation of a single F , equation (9), becomes

Fu · ∇ = u · ∇
[

(1 + α) +α(1− 2
h
)u · ∇∇ · ∂̂u

+Λ
(

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
)]

− α(u · ∇Wµνρσ)u
µuρ∂̂uν

∂̂uσ
+ (γ − α)Wµνρσu · ∇uµuρ∂̂uν

∂̂uσ

+ 2(γ − 1)Wµνρσu
µ∇νuρ∂̂uσ

. (38)

To analyze if the Weyl tensor is an obstruction it is useful to drop all of its derivatives

and set

∇αWµνρσ ∼ 0, (39a)

[∇β ,∇α]Wµνρσ ∼ 0. (39b)

We can then rewrite equation (38) as

Fu · ∇ ∼ u · ∇
[

(1 + α) +α(1− 2
h
)u · ∇∇ · ∂̂u (40)

+ Λ(β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2))

+(γ − α)Wµνρσu
µuρ∂̂uν

∂̂uσ

]

+ 2(γ − 1)Wµνρσu
µ∇νuρ∂̂uσ

.

The gauge variation of the factorized Ansatz becomes

δO(s) = u · ∇F̃1 · · · F̃d
2
−2+s

+

d
2
−2+s
∑

k=1

F1 · · · Fk−1XkF̃k+1 · · · F̃d
2
−2+s

, (41)

where

F̃i = (1 + αi) +αi(1− 2
h
)u · ∇∇ · ∂̂u

+ Λ
(

βi + u · ∂̂u + 1 + (αiu · ∂̂u + 1)(u · ∂̂u + d− 2)
)

+ (γi − αi)Wµνρσu
µuρ∂̂uν

∂̂uσ
(42a)

Fi = +αiu · ∇∇ · ∂̂u + βiΛ+ γiWµνρσu
µuρ∂̂uν

∂̂uσ
(42b)

Xk = 2(γk − 1)Wµνρσu
µ∇νuρ∂̂uσ

. (42c)

We can now concentrate on terms involving the Weyl tensor via the combination
(

Wµνρσu
µuρ∂̂uν

∂̂uσ

)m

. (43)
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These include terms proportional to powers of the Weyl tensor and the gauge parameter

ξ,

W α1 β1

µ1 ν1
W

α2 β2

α1 β1
· · ·W ρ1 σ1

αm βm
ξρ1σ1..., (44)

and are non vanishing upon setting the derivatives of the Weyl tensor to zero. More-

over, they can arise only from the first contribution to the gauge variation. For this

reason they need to vanish identically, so we are forced to impose the following condi-

tion:

γi = αi, ∀ i. (45)

Notice that we have used the defining properties of the α’s and β’s in eq. (16) to

simplify the terms involving divergences. However, when we now shift our attention

to terms that involve the Weyl tensor via the combination

(

Wµνρσu
µuρ∂̂uν

∂̂uσ

)m−1

Wµνρσu
µ∇νuρ∂̂uσ

, (46)

we see that they do not vanish for covariantly constant Weyl tensors. Thus gauge

invariance also requires

γi = 1, ∀ i. (47)

The above clash of the gauge invariance condition identifies these particular Weyl

tensor combinations, and hence generically the Weyl tensor, as the generic obstruc-

tion to factorization for the spin s conformal wave operator on Einstein backgrounds.

Moreover, we can also identify the first derivative of the Weyl tensor as an independent

obstruction to factorization. This can be seen from (38) by looking at the contributions

proportional to α(u · ∇Wµνρσu
µuρ∂̂uν

∂̂uσ
), since none of the α’s is vanishing.

We have performed various independent checks of the above computations explicitly

with the help of Mathematica. We have attached the corresponding notebook to this

paper where the explicit spin 3 wave operator has been constructed up linear order

in the Riemann tensor. In the next section we briefly summarize the contents of the

notebook.

4 Spin 3 wave operator on Bach-flat backgrounds

With the help of Mathematica we have worked out the explicit form of the unique spin

3 conformal wave operator in d = 4 up to linear terms in the Riemann tensor on Bach-

flat backgrounds. We have done this by simply listing all possible contractions and

constructing a gauge invariant Ansatz out of those. As expected from our arguments

in section 3, we did not find any obstruction.
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Furthermore, we also confirmed the invariance of the wave operator under Weyl

rescalings of the metric (25). Remarkably, this turned out to be automatically the

case after imposing gauge invariance under (1).

Even at linear order in Riemann tensors, the wave operator is rather unwieldy,

consisting of roughly 200 terms. Its full form can be found in the attached notebook.

Here we present the wave operator on Ricci flat backgrounds. It reads:

O(3)
µνρ(ϕ) =− 21

10
∇µτRναρβ∇σ

σϕ̂
ταβ − 7

10
∇ναRρστβ∇στ ϕ̂µ

αβ + 182
25
∇στRναρβ∇στ ϕ̂µ

αβ

− 49
25
∇µνRρατβ∇στ ϕ̂σ

αβ − 49
25
∇µτRναρβ∇στ ϕ̂σ

αβ − 7∇µαRντρβ∇στ ϕ̂σ
αβ

− 259
25
∇µ

σϕ̂ταβ∇τσRναρβ − 84
25
∇µ

σϕ̂ταβ∇ταRνσρβ + 721
50
∇στ ϕ̂µ

αβ∇ατRνσρβ

− 161
50
∇στ ϕ̂µ

αβ∇αβRνσρτ − 21
5
∇µ

σϕ̂σ
τα∇β

βRντρα + 252
25
∇στ ϕ̂µσ

α∇β
βRντρα

− 35
2
∇στ ϕ̂µν

α∇β
βRρστα + 343

50
∇µ

σϕ̂ν
τα∇β

βRρτσα − 7
5
∇τRρασβ∇µν

σϕ̂ταβ

+ 7
50
∇σϕ̂ταβ∇µντRρασβ − 42

5
∇τRναρβ∇µ

σ
σϕ̂

ταβ + 161
50
∇ρRσατβ∇µ

στ ϕ̂ν
αβ

+ 399
50
∇τRρασβ∇µ

στ ϕ̂ν
αβ + 441

50
∇αRρστβ∇µ

στ ϕ̂ν
αβ − 7∇νRρασβ∇µ

στ ϕ̂τ
αβ

− 42
5
∇σRναρβ∇µ

στ ϕ̂τ
αβ − 49

5
∇αRνσρβ∇µ

στ ϕ̂τ
αβ − 203

50
∇σϕ̂ταβ∇µτσRναρβ

− 21
10
∇σϕ̂ταβ∇µταRνσρβ − 42

25
∇σϕ̂σ

τα∇µ
β
βRντρα + 98

25
∇σϕ̂µ

τα∇ν
β
βRρτσα

− 112
25
∇µϕ̂

στα∇σ
β
βRντρα + 77

25
∇σϕ̂µ

τα∇σ
β
βRντρα + 42

5
∇σRναρβ∇στ

τ ϕ̂µ
αβ

+ 56
5
∇αRνσρβ∇στ

τ ϕ̂µ
αβ − 98

5
∇αRρστβ∇σταϕ̂µν

β + 399
50
∇νRρστβ∇σταϕ̂µα

β

+ 721
50
∇τRνσρβ∇σταϕ̂µα

β − 161
50
∇βRνσρτ∇σταϕ̂µα

β − 7∇µRνσρβ∇σταϕ̂τα
β

+ 154
25
∇σϕ̂µ

τα∇τ
β
βRνσρα − 36

5
ϕ̂στα∇µσ

β
βRντρα − 42

5
Rµ

στα∇νρτ
βϕ̂σαβ

+ 84
5
Rµ

στα∇νστ
βϕ̂ραβ +

56
5
Rµ

στα∇ντ
β
βϕ̂ρσα − 42

5
Rµ

σ
ν
τ∇ρσ

αβϕ̂ταβ

− 42
5
Rµ

σ
ν
τ∇ρ

αβ
βϕ̂στα − 98

5
Rµ

στα∇στ
β
βϕ̂νρα + 56

5
Rµ

σ
ν
τ∇σ

αβ
βϕ̂ρτα

+ 21
5
Rµ

σ
ν
τ∇α

α
β
βϕ̂ρστ − 2

5
∇µνρ

σταϕ̂στα + 12
5
∇µν

στα
αϕ̂ρστ

− 3∇µ
στ

τ
α
αϕ̂νρσ +∇σ

σ
τ
τ
α
αϕ̂µνρ +O(R2), (48)

where ∇µ1···µn
= ∇(µ1

· · ·∇µn) and ϕ̂µνρ = ϕµνρ − 1
2
g(µνϕρ)σ

σ.

5 Conclusions

In this paper we have studied conformal wave operators for HS fields on general back-

grounds. We have found a manifestly factorized form for them in (A)dS, and for spin

2 on arbitrary Einstein backgrounds. The whole analysis has been carried out in ar-

bitrary dimensions. The main result of this paper is the explicit form of the wave

operator on (A)dS backgrounds, together with the identification of the obstruction to

factorization on more general backgrounds.
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The results of this paper confirm previous conjecture about conformal HS wave

operators on (A)dS backgrounds [43, 57]. On the other hand the identification of

the obstruction to factorization for spin s > 2 HS wave operators on more general

backgrounds lead us to reconsider modifications of this conjecture. Specifically, the

computation of the c-coefficient of the Weyl anomaly done in [57], which assumes

factorization on Ricci-flat backgrounds, should be reconsidered.

We expect the variant of the Tractor formalism exploited in this paper to be a key

tool for further analysis of conformal HS theories on generic backgrounds. We plan to

come back to these issues in future publications. The full form of the conformal wave

operator on generic backgrounds is still missing, and so far we have been able to fix it

only up to linear order in the Riemann tensor for spin 3.

Before concluding let us mention once again that the operator gauge invariance

condition turns to be very powerful to control conformal invariance in any dimension.

Therefore, we conjecture the existence of a solution to the latter stronger operator

condition on general backgrounds. This feature can be also interpreted by saying

that operator gauge invariance of the corresponding wave operator is equivalent to its

conformal invariance. Since in our setting we only require linear Weyl symmetry on

top of gauge symmetry, this observation shares possible similarities with analogous

statements in the context of CFT (see e.g. [67–69]).

It will also be interesting to address questions about interactions and gauge algebra

deformations with the variant of the tractor calculus introduced here. We leave this as

well as other interesting questions related to conformal HS fields for future research.

Note added

During the final stages of preparation of the present article the paper [70] by R. Metsaev

appeared. Although using different techniques, it contains some results that are in

overlap with the results presented in subsection 3.2. While we use an explicitly higher

derivative formalism, [70] exploits an ordinary derivative formulation by introducing

auxiliary fields. The results of [70] are equivalent to the factorization of the conformal

operator in (A)dS background that we recover in a different way.
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velyan and A. Sagnotti for useful discussions and comments on the manuscript. We

performed various computations with the xAct collection of Mathematica packages

[71], and in particular with xTras [72].

A Notation and conventions

In this appendix we give a brief introduction to the techniques and conventions we

used to deal with conformal HS fields.

We mainly rely on an operator formalism where index contraction and symmetriza-

tion of indices are realized in terms of auxiliary variables. This allows us to translate

tensor operations in terms of operator calculus, resulting in simplified manipulations

(see e.g. [73] for further details).

After replacing symmetric tensors by polynomials in the auxiliary variable ua as

in equation (2), it is possible to define the action of the covariant derivative as a

differential operator on both x and u:

∇̃µ → ∇µ = ∇̃µ − 1
2
ω a
µ bL

b
a = ∇̃µ − ω a

µ bu
b∂ua , (49a)

[∇µ,∇ν] = Λ(uµ∂uν
− uν∂uµ

) +RΛ
µνρσ(x)u

ρ∂uσ
, (49b)

where above and henceforth commutator equations will be assumed to hold on scalar

functions of u with no naked tensorial index. Here ∇̃µ is the standard covariant

derivative acting on naked tensorial indices, ω is the spin-connection and L b
a are the

Lorentz generators. We have expressed the latter in terms of differential operators

upon introducing the derivative ∂ua , which is defined by:

∂uaub = δba. La
b = ua∂ub − ub∂ua . (50)

We have also expressed the commutator of covariant derivatives in terms of RΛ
µνρσ.

This is simply the Riemann tensor minus its constant trace part:

RΛ
µνρσ = Rµνρσ − Λ(gµρgνσ − gνρgµσ), (51)

This conveniently parametrizes the difference between constant curvature metrics and

more general ones.

In what follows we shall work only with the contracted auxiliary variable uµ =

e µ
a (x)ua and the associated derivative ∂uµ = eaµ(x)∂ua . The latter commutes with the

covariant derivative on generic backgrounds as a consequence of the vielbein postulate:

[∇µ, u
ν ] = 0, [∂uµ ,∇ν ] = 0. (52)
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The operators box, symmetrized gradient, divergence, trace, symmetrized metric, and

spin can then be represented respectively by the following operators:

box: , divergence: ∇ · ∂u, sym. metric: u2,

sym. gradient: u · ∇, trace: ∂2
u, spin: u · ∂u. (53)

They satisfy the following operator algebra:

[ , u · ∇] = Λ
[

u · ∇(2u · ∂u + d− 1)− 2u2∇ · ∂u
]

(54a)

+ 2RΛ
µνρσ∇µuνuρ∂uσ

− (∇σR
Λ
νρ −∇ρR

Λ
νσ)u

νuρ∂uσ +RΛ
νρu

ν∇ρ,

[∇ · ∂u, ] = Λ
[

(2u · ∂u + d− 1)∇ · ∂u − 2u · ∇∂2
u

]

(54b)

− 2RΛ
µνρσ∇µuρ∂uσ∂uν +RΛ

µν∇µ∂uσ + (∇µRΛ
µσ)∂uσ

− (∇σR
Λ
νρ −∇ρR

Λ
νσ)u

ρ∂uσ
∂uν

[∇ · ∂u, u · ∇] = +Λ
[

u · ∂u(u · ∂u + d− 2)− u2∂2
u

]

+RΛ
µνρσu

νuρ∂uµ
∂uσ

+RΛ
µνu

µ∂uν
, (54c)

[∇ · ∂u, u2] = 2u · ∇, (54d)

[∂2
u, u · ∇] = 2∇ · ∂u, (54e)

[∂2
u, u

2] = 2(d+ 2u · ∂u). (54f)

On Einstein backgrounds these commutation relations simplify due to the identity

RΛ
µνρσ = Wµνρσ, where Wµνρσ is the Weyl tensor. The main difficulty is however the

fact that the operator algebra does not close and requires the inclusion of Riemann

tensors and their derivatives of arbitrary order. The algebra closes only if one restricts

it to its spin s sector.

In the case of conformal higher spin fields one needs to work with fields defined on

equivalence classes,

ϕµ1···µs
∼ ϕµ1···µs

+ g(µ1µ2
αµ3···µs), (55)

or in terms of the auxiliary variables:

ϕ ∼ ϕ+ u2α. (56)

In order to work on such equivalence classes it is quite useful to exploit a variant of the

Tractor calculus (see e.g. [59] and references therein) in which one replaces ordinary

derivative operators ∂u with Thomas-D derivatives:

∂̂uµ = ∂uµ − 1

h
uµ∂

2
u. (57)

Here we have defined h as

h = d− 2 + 2u · ∂u. (58)
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Thomas-D derivatives have the useful property to be automatically defined on the

above equivalence classes, since

∂̂uµu2 = u2
(

∂uµ − 1
h−4

uµ∂
2
u

)

∼ 0. (59)

In this way the operator algebra simplifies since we can consistently set u2 ∼ 0, and

we end up with only four operators: , u · ∇, ∇ · ∂̂u, and u · ∂̂u. Notice that

∂̂2
u = u2(∂2

u)
2 ∼ 0. (60)

Further using the commutation relation

[∂̂uµ , uν] = gµν − 2
h
uµ∂̂uµ , (61)

we end up with the following operator algebra:

[∇µ,∇ν ] = Λ(uµ∂̂uν
− uν ∂̂uµ

) +RΛ
µνρσ(x)u

ρ∂̂uσ
, (62a)

[ , u · ∇] = Λu · ∇(2u · ∂̂u + d− 1) (62b)

− 2RΛ
µνρσu

µ∇νuρ∂̂uσ
− uνuρ(∇ · ∂̂uRΛ

νρ) + (u · ∇RΛ
νσ)u

ν ∂̂uσ +RΛ
µνu

µ∇ν ,

[∇ · ∂̂u, ] = Λ(2u · ∂̂u + d− 1)∇ · ∂̂u (62c)

− 2RΛ
µνρσ∇µuρ∂̂uν ∂̂uσ +RΛ

µν∇µ∂̂uν + (∇µRΛ
µσ)∂̂uσ

+ uρ∂̂uν
(∇ · ∂̂uRΛ

νρ)− (u · ∇RΛ
νσ)∂̂uν

∂̂uσ
,

[∇ · ∂̂u, u · ∇] = − 2
h
u · ∇∇ · ∂̂u + Λu · ∂̂u(u · ∂̂u + d− 2) (62d)

−RΛ
µνρσu

µuρ∂̂uν
∂̂uσ

+RΛ
µνu

µ∂̂uν
.

This operator algebra is defined on equivalence classes (56), and again closes only if

one also includes derivatives of the Riemann tensor and their commutators recursively.

B Spin s wave operator in standard tensor notation

It is not too difficult to present the generic recursive structure of the two derivative

operators entering the (A)dS solution in terms of standard tensor notation. One can

then define the following recursion relation

ϕ
(i−1)
µ(s) = P ν(s)

µ(s)

{

[

−Λ[(i− s+ 1)(i− s− d+ 2)− s
]

ϕ
(i)
ν(s)

− d−4+2s
i(d−3−i+2s)

[

s∇ν∇αϕ
(i)
αν(s−1) +

s(s−1)
d−4+2s

∇ν∇νϕ
(i)α

αν(s−2)

]

}

, (63)
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where eliminating the auxiliary variable acting with the operator (∂̂uµ
)s, we are left

with the spin s traceless projector P ν(s)
µ(s) . Above, we have conveniently defined new

fields ϕ
(i−1)
µ(s) with ϕ

(0)
µ(s) = O(s)

µ(s) and ϕ

(

d
2
−2+s

)

µ(s) = ϕµ(s) of weight shifting by two units at

each step. One then ends up with the conformal operator written in standard tensor

notation upon substituting the corresponding fields above till expressing ϕ
(0)
µ(s) in terms

of ϕµ(s).

C Wave operator in non factorized form

In this appendix we will rewrite the factorized wave operator for a conformal spin s

field on (A)dS backgrounds in a more standard form from which one can read off the

analogue of the de Donder tensor for conformal higher spins.

We start by writing an Ansatz of the type:

O(s) =

s+
d
2
−2

∑

i=0

γi(u · ∇)iB
s+

d
2
−2−i

(∇ · ∂̂u)i (64)

=

s+
d
2
−2

∑

i=0

γi(u · ∇)i







s+
d
2
−2−i
∏

j=1

( +βi,jΛ)






(∇ · ∂̂u)i.

A useful trick is then to parameterize the gauge variation of a divergence as:

(∇ · ∂̂u)nu · ∇ =
[

an +bnu · ∇∇ · ∂̂u + Λcn

]

(∇ · ∂̂u)n−1, (65)

where the coefficients satisfy the following recursion relations

an = an−1 + bn−1, (66a)

bn = bn−1

(

1− 2
d−2+2(s−n)

)

, (66b)

cn = cn−1 + bn−1(s− n)(s− n + d− 2) + an−1(2(s− n) + d− 1), (66c)

with

a1 = 1, b1 = − 2

d − 4 + 2s
, c1 = (s− 1)(s+ d− 3), (67)

and hence

an = 1− n(n− 1)

d− 4 + 2s
+

(n− 1)(n− 2)

d− 6 + 2s
, (68a)

bn = −
d
2
− 2 + s− n

(d
2
− 2 + s)(d

2
− 3 + s)

, (68b)
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while we do not present the solution for cn for brevity. One can now compute the

gauge variation of the operator Ei = γi(u · ∇)iB
s+

d
2
−2−i

(∇ · ∂̂u)i:

Eiu · ∇ = γiai(u · ∇)i







s+
d
2
−2−i
∏

j=1

( +Λβi,j)






( +Λ ci

ai
)(∇ · ∂̂u)i−1 (69)

+ γibi(u · ∇)i+1







s+
d
2
−2−i
∏

j=1

[ +Λ (βi,j + 2(s− i) + d− 3)]






(∇ · ∂̂u)i.

Therefore, by requiring that the terms proportional to (u · ∇)i+1 in the variation of

Ei cancel the terms proportional to (u · ∇)i+1 in the variation of Ei+1 one gets the

following conditions for the free coefficients γi and βi,j:

γi+1 = − bi

ai+1

γi, (70a)

βi,1 =
ci+1

ai+1
− 2(s− i)− d+ 3, (70b)

βi,j = βi+1,j−1 − 2(s− i)− d+ 3. (70c)

The conditions can be solved to give

γi = (−1)i
∏i−1

n=0 bn
∏i

n=1 an
, γ0 = 1, (71a)

βi,1 =
ci+1

ai+1

− 2(s− i)− d+ 3, (71b)

βi,j = βi+j−1,1 − (j − 1)[2(s− i) + d− j − 1]. (71c)

After plugging in the solution for the coefficients ai, bi and ci we then get

βi,j = (i+ j + 1− s)(i+ j − s− d+ 2)− (j − 1)[2(s− i) + d− j − 1]− s. (72)

As before, this matches all partially massless points in d = 4, and also some massive

points in higher dimensions.

The generalized de Donder tensor can be easily extracted from equation (64):

D(

d
2
−3+s

) =

d
2
−2+s
∑

i=1

(u · ∇)i−1B
s+

d
2
−2−i

(∇ · ∂̂u)iϕ(s). (73)

This tensor has one derivative less than the full equation of motion. From the gauge

invariance condition one can easily extract its gauge variation:

δξD(

d
2
−3+s

) = −

d
2
−2+s
∏

j=1

(

+(β0,j + 2s+ d− 3)Λ
)

ε(s−1). (74)
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The right-hand-side can be viewed as a second order equation on an effective gauge

parameter that is of order 2s+ d− 6. This linear second order diagonal equation can

be solved throughout spacetime [74] in order to set D(

d
2
−3+s

) to zero. In this partial

gauge, the equation of motion becomes (24).

D Examples in various dimensions

In this appendix we list some known non-linear conformal actions, and confirm that

their equations of motion reduce to (4) upon linearization on (A)dS spaces.

D.1 Spin 1 data

d=2 The 2 dimensional case is trivial since the spin 1 conformal field does not

propagate and indeed the number of derivatives compatible with conformal symmetry

is 0.

d=4 In four dimensions the Maxwell’s theory is conformally invariant, and its equa-

tion of motion is precisely (64) for s = 1 and d = 4.

d=6 In six dimensions there are a number conformal invariants quadratic in A =

ϕ(1). Yet there is only one that is gauge invariant, not a total derivative, and non-zero

on AdS backgrounds. It reads

I = F µν
(

( −1
2
R)δρµδ

σ
ν +Rµ

ρδσν + Cµν
ρσ
)

Fρσ +∇µJ
µ, (75)

with Fµν = ∇[µAν]. The Weyl tensor could have been omitted, as F · C · F is confor-

mally invariant on its own. However, including it reproduces Branson’s D4,1 conformal

operator [46] acting on Aµ as the equation of motion:

∇ν
(

∇[µ∇ρFν]ρ + SFµν − 4Sρ
[µFν]ρ

)

= 0, (76)

where Sµν is the Schouten tensor and S is its trace. Upon linearizing these equations

of motion on (A)dS we find (4) or (64) for s = 1 and d = 6 in agreement with the

solution to the operator gauge invariance condition.

D.2 Spin 2 data

d=2 Two-dimensional conformal gravity is just Einstein gravity, whose linearized

equation of motion on (A)dS can be precisely recast in the form (4) or (64) for s = 2

and d = 2.
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d=4 The action for four dimensional conformal gravity is

S =

∫

d4x
√
−gCµνρσC

µνρσ, (77)

whose linearized equation of motion is exactly (4) or (64) for s = 2 and d = 4.

d=6 In six dimensions there are three conformal invariants for gravity, namely [63,

65, 66]

I1 = CµρσνC
µαβνCα

ρσ
β, (78a)

I2 = CµνρσC
ρσαβCαβ

µν , (78b)

I3 = Cµρσλ

(

δµν +4Rµ
ν − 6

5
δµνR

)

Cνρσλ +∇µJ
µ (78c)

with ∇µJ
µ a total derivative which can be found in [63]. Because the Weyl tensor

vanishes on AdS backgrounds, only the third invariant gives a non-zero quadratic

perturbation on AdS. Upon computing its equations of motion, we find (4) or (64) for

s = 2 and d = 6, again in agreement with the general result obtained above enforcing

the stronger operator gauge invariance condition.
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