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Optimal utilization of acoustic cues during auditory categorization is a vital skill, particularly
when informative cues become occluded or degraded. Consequently, the acoustic
environment requires flexible choosing and switching amongst available cues. The
present study targets the brain functions underlying such changes in cue utilization.
Participants performed a categorization task with immediate feedback on acoustic
stimuli from two categories that varied in duration and spectral properties, while we
simultaneously recorded Blood Oxygenation Level Dependent (BOLD) responses in fMRI
and electroencephalograms (EEGs). In the first half of the experiment, categories could
be best discriminated by spectral properties. Halfway through the experiment, spectral
degradation rendered the stimulus duration the more informative cue. Behaviorally,
degradation decreased the likelihood of utilizing spectral cues. Spectrally degrading the
acoustic signal led to increased alpha power compared to nondegraded stimuli. The
EEG-informed fMRI analyses revealed that alpha power correlated with BOLD changes
in inferior parietal cortex and right posterior superior temporal gyrus (including planum
temporale). In both areas, spectral degradation led to a weaker coupling of BOLD response
to behavioral utilization of the spectral cue. These data provide converging evidence from
behavioral modeling, electrophysiology, and hemodynamics that (a) increased alpha power
mediates the inhibition of uninformative (here spectral) stimulus features, and that (b) the
parietal attention network supports optimal cue utilization in auditory categorization. The
results highlight the complex cortical processing of auditory categorization under realistic
listening challenges.
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INTRODUCTION
The interpretation of acoustic signals is an essential human
skill for goal-directed behavior and vocal communication. The
core process underlying this skill—auditory categorization—has
been shown to be highly flexible and adaptive, and allows,
for instance, speaker recognition in a cocktail party situation
(Zion Golumbic et al., 2013), or speech comprehension in
noise (Nahum et al., 2008). In both cases, attention has to be
directed to the most informative aspect of the acoustic signal
(Hill and Miller, 2010).

Neurophysiological studies have suggested that the relative
weighting of information during categorization (information gain
or cue weighting, cf. Holt and Lotto, 2006) may be subserved
by the interplay between excitatory and inhibitory mechanisms
(Thut et al., 2006; Rihs et al., 2007; Weissman et al., 2009).
One promising neurophysiological marker of functional inhibi-
tion processes are brain oscillations recorded using electroen-
cephalography (EEG), predominantly in the alpha frequency
range (8–13 Hz, Foxe et al., 1998; Foxe and Snyder, 2011; Weisz
et al., 2011, 2013; Klimesch, 2012). Initially, alpha power had
been interpreted as reflecting the degree to which primary cor-
tical areas are in an “idling” mode (Adrian and Matthews, 1934;
Niedermeyer and Silva, 2005). More recent studies on auditory

comprehension, on the other hand, have shown that the pro-
cessing of degraded speech stimuli is accompanied by relative
decreases in alpha power suppression, i.e., relative increases in
alpha power (Obleser and Weisz, 2012; Becker et al., 2013). One
interpretation of this finding is that relative increases in alpha
power index greater attention and working memory demands
under degradation (Ronnberg et al., 2008; Wild et al., 2012).
It has been further proposed that brain regions showing high
alpha power undergo inhibition, which in turn allows enhanced
processing of task-relevant information (Klimesch et al., 2007).

Brain areas underlying the processing and categorization of
acoustic information have been identified by means of func-
tional magnetic resonance imaging (fMRI). Previous studies have
shown that the posterior part of the superior temporal gyrus
(pSTG) is crucially involved in auditory categorization and dis-
crimination (Hall et al., 2002; Guenther et al., 2004; Husain et al.,
2006; Desai et al., 2008; Bermudez et al., 2009; Sharda and Singh,
2012). Importantly, in most of these studies, auditory categoriza-
tion was also subserved by the planum temporale (PT) in the
pSTG. The PT has recently received particular attention, because
it does not only play a general role in auditory categorization
(Griffiths and Warren, 2002; Husain et al., 2006; Obleser and
Eisner, 2009) but also a more specific one with regard to the
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processing of spectral information and pitch (Hall and Plack,
2009; Alho et al., 2014).

Furthermore, feature-selective attentional processes play a cru-
cial role in categorization. Studies concerned with aspects of
selective attention during categorization have mainly focused
on the visual system (Yantis, 1993; Posner and Dehaene, 1994;
Corbetta et al., 2000; Yantis, 2008). These studies identified the
inferior parietal lobule (IPL) as an important, hub-like structure,
being involved when participants focus attention on informative
stimulus features (Shaywitz et al., 2001; Behrmann et al., 2004;
Geng and Mangun, 2009; Salmi et al., 2009; Schultz and Lennert,
2009; Gillebert et al., 2012). Existing research on attention in
audition has further provided evidence for the involvement of
the parietal network (Rinne et al., 2007; Salmi et al., 2009; Hill
and Miller, 2010; Henry et al., 2013). In addition, a recent struc-
tural imaging (voxel-based morphometry) study also highlighted
the role of the IPL in categorization processes (Scharinger et al.,
2014).

More recently, the possibility to combine recordings of
EEG oscillatory activity and fMRI Blood Oxygenation Level
Dependent (BOLD) activity has been explored in several imag-
ing studies. Simultaneous EEG–fMRI recordings (Ritter and
Villringer, 2006; Sadaghiani et al., 2010, 2012) suggest that alpha
power can be negatively (Goldman et al., 2002; Laufs et al., 2003;
Ritter and Villringer, 2006) or positively (Moosmann et al., 2003;
Liu et al., 2012) correlated with brain metabolism, depending on
the brain regions these correlations are observed in. However,
multi-modal neuroimaging evidence on auditory cue weighting
during categorization has been essentially absent. Most studies
concerned with a functional coupling of alpha power and BOLD
signal in selective attention tasks compared the processing of
task-relevant information with the processing of task-irrelevant
distractor information (e.g., Scheeringa et al., 2012).

It is thus less clear how multiple, potentially competing cues
provided by the same acoustic stimulus, will be reflected in alpha-
tuned functional processes and concomitant BOLD change. To
this end, we designed two stimulus sets for auditory categoriza-
tion. In the first stimulus set, categorization could be based on
spectral properties or physical duration, with spectral properties
being more informative. In the second stimulus set, sound dura-
tion became the more informative cue, while spectral properties
could still be used for categorization. Using combined EEG/fMRI,
we asked (a) whether auditory categorization yields a behavioral
preference for the most informative stimulus cue in each condi-
tion; (b) which brain areas support change in cue utilization, (c)
whether alpha power shows relative increases under degradation
and (d) whether alpha power correlates with BOLD in brain areas
dedicated to the processing of acoustic cues.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen healthy volunteers were recruited from the participant
database of the Max Planck Institute for Human Cognitive and
Brain Sciences (7 females, age range 20–29 years, age 25 ± 2.7
years mean ± standard deviation). They were all right-handed,
native speakers of German with no self-reported hearing impair-
ments or neurological disorders. Due to technical problems with

EEG acquisition in the magnetic resonance (MR) scanner, we
had to exclude one participant from further analyses. Participants
gave written informed consent and received financial compensa-
tion for their participation. All procedures followed the guidelines
of the local ethics committee (University of Leipzig) and were in
accordance with the Declaration of Helsinki.

STIMULI
Stimuli were based on spectral and durational modifications of
an inharmonic base signal. This base signal was constructed by
adding 16 exponentially spaced sinusoids (ratio between suc-
cessive components: 1.15) to the lowest sinusoid component
frequency of 500 Hz (Goudbeek et al., 2009; Scharinger et al.,
2014). We modified the spectral properties of individual sounds
by applying a band-pass filter with a single frequency peak, using
a second order infinite impulse response (IIR) filter with a band-
width corresponding to a fifth of its frequency peak. The term
“spectral peak” is henceforth used to refer to the filters’ center
frequency, which also describes the resulting spectral properties.
Duration modifications were based on differences in the length of
the sounds.

Individual members of category distributions, arbitrarily
labeled “A” and “B,” varied on the basis of spectral peak and
duration: For individual sounds of each category, spectral filter
frequencies and durations were randomly drawn from bivariate
normal distributions. These distributions, with equal standard
deviations, σ, differed in their means, μ, between the two cat-
egories, A and B (Table 1). Thus, each individual sound was
characterized by the two dimensions, duration and spectral peak,
with means of duration and spectral peak differing between
the two category distributions. Each category distribution con-
sisted of 1000 sound exemplars from which a random sample
was drawn for each participant in the experiment. Following
Smits et al. (2006), we converted spectral peak frequency and
duration to scales that allowed for psychoacoustic comparability.
Consequently, frequencies were converted to the equivalent rect-
angular bandwidth (ERB) scale that approximates the bandwidths
of the auditory filters in human hearing (Glasberg and Moore,
1990), and durations were converted to a logarithmic scale (DUR;
cf. Smits et al., 2006). Table 1 illustrates the means (spectral peak
and durations) of the category distributions in psychophysical
and physical units.

In the first half of the experiment (nondegraded condition),
the two stimulus distributions did not overlap in their spec-
tral peak, but 1

3 of the sounds in category A and B overlapped
in duration (Figure 1A top). This set-up aimed at biasing par-
ticipants to focus on spectral cues while sound duration may
serve as secondary cue. In the second half of the experiment
(degraded condition), spectral cues were modified by applying
four-band noise vocoding to the original stimulus distributions
(Drullman et al., 1994; Shannon et al., 1995). Noise vocoding was
done by dividing the original signal into four frequency bands,
extracting the amplitude envelope from each band and reapply-
ing it to bandpass-filtered noise carriers with matched cut-off
frequencies. Envelopes were extracted using a zero-phase, 4th-
order Butterworth low-pass filter; the low-pass filter cutoff was
set at 256 Hz. Scaling for equal root mean square (RMS) energy
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Table 1 | Means and standard deviations (in parentheses) of spectral

peak and duration distributions for stimulus categories A and B in

the nondegraded and degraded conditions (psychophysical and

physical units).

Stimulus category Nondegraded Degraded

A B A B

Spectral peak (ERB) 20.00 (0.31) 17.00 (0.31) 16.80 (0.31) 15.50 (0.31)

Spectral peak (Hz) 1739 (8) 1196 (8) 1166 (8) 984 (8)

Duration (DUR) 47.70 (1.31) 52.53 (1.31) 47.70 (1.31) 52.53 (1.31)

Duration (ms) 118 (1.14) 191 (1.14) 118 (1.14) 191 (1.14)

was performed channel-wise for each channel envelope (Rosen
et al., 1999; Erb et al., 2012). We chose four-band noise vocoding
because it offers a well-established reduction of spectrally-based
intelligibility (cf. Scott et al., 2006; Obleser and Kotz, 2010;
Obleser et al., 2012), thereby ensuring comparability to studies on
alpha power suppression in speech, while simultaneously being an
ecologically valid modification by simulating effects of cochlear
implants (Poissant et al., 2006).

Noise vocoding led to a smearing of spectral detail, while
amplitude envelope features and original stimulus duration
remained unaffected (Figure 1A, bottom). Thus, as demonstrated
before (Scharinger et al., 2014), we aimed at inducing a change in
acoustic cue utilization, from spectral peak in the first (nonde-
graded) condition, to stimulus duration in the second (degraded)
condition of the experiment. The stimulus degradation in the
second half of the experiment therefore targeted the spectral
properties (i.e., spectral peak, but also affected other spectral
features such as harmonicity). Thus, degradation of the initially
informative spectral cue ought to decrease participants’ reliance
on that cue and prompt a relatively increased reliance on the
duration cue.

All stimuli were normalized for equal root-mean-square inten-
sity and presented at ∼60 dB SPL. Onset and offset ramps (5 ms)
ensured that acoustic artifacts were minimized.

EXPERIMENTAL PROCEDURE
Participants were first familiarized with the categorization task in
the scanner and had to complete a short practice run consist-
ing of 20 sounds (10 from category A and 10 from category B)
that did not occur in the main experiment. The subsequent
main experiment was arranged in four runs: Two initial runs
with nondegraded sounds, and two subsequent runs with spec-
trally degraded sounds (Figure 1A, top). In each run, 60 sound
exemplars, randomly drawn from categories A and B with equal
probability, were presented in a sparse imaging design in the MR
scanner (Hall et al., 1999). The sparse design was chosen in order
to guarantee that stimuli could be presented during silent periods
in-between the acquisition of echo-planar images (EPI). At the
same time, this design reduced contamination of the EEG signal
by gradient switches during volume acquisition.

On each trial, one acoustic stimulus was presented on aver-
age 2 s after the offset of a preceding EPI sequence (±500 ms).
Subsequently, a visual response prompt (green traffic light) was

FIGURE 1 | Stimulus characteristics and behavioral results. (A) Top:
Complex sounds differing in spectral peak (expressed in ERB; y-axis) and
duration (expressed in DUR; x-axis). Distributions are indicated by ellipses,
with black dots illustrating distributions for a representative participant.
Bottom: Stimulus wave form and spectrogram illustrate the complex
structure of sounds in the nondegraded condition (left) and the spectral
smearing as a result of vocoding in the degraded condition (right). Duration
and amplitude envelope were unaffected by degradation. (B) Results of
behavioral discrimination. Top: Perceptual sensitivity (d′) over time, obtained
from sliding windows over nondegraded and degraded trials per participant
(window size = 20 trials, step size = 1 trial). Bottom: Comparison between
by-subject cue indices in the nondegraded and degraded conditions. Mean
cue index values for the nondegraded and the degraded conditions are
connected for each participant.

presented on a screen which participants viewed through a mir-
ror 3 s after stimulus onset. Participants were then required
to indicate whether the presented sound belonged to category
A or category B by pressing one of two keys on a button
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box. Button assignment was counterbalanced across participants.
Following the response, participants received corrective feedback
(Correct/Incorrect), which was displayed for 1 s in the middle of
the screen. Five seconds after the onset of an acoustic stimulus, a
subsequent EPI volume (acquisition time TA = 2 s) was acquired,
such that the BOLD peak would best capture stimulus process-
ing. At random positions within each run, 15 silent trials (=20%
of all trials) without required responses served as baseline. The
duration of the entire experiment with short breaks between runs
was 50 min.

ACQUISITION AND PRE-PROCESSING OF EEG DATA
The continuous EEG was recorded inside the MR-scanner from
31 Ag–AgCl electrodes mounted on an elastic cap according to the
10–20 standard system (EasyCap-MR, Brain Products, Munich,
Germany). The electrocardiogram (ECG) was registered with an
additional electrode on the sternum. EEG signals were ampli-
fied with an MR-conform 32-channel amplifier (BrainAmp MR;
Brain Products, Munich, Germany) that did not get saturated by
MR activity. Signals were recorded at a sampling frequency of
5000 Hz and a resolution of 16 bits, referenced against FCz, using
the BrainVision Recorder Software (Brain Products, Munich,
Germany). The ground electrode was positioned between Fz and
FPz. All impedances were kept below 5 k�.

Since we used a sparse imaging design with stimuli being pre-
sented in-between two consecutive volume acquisitions, gradient
artifact removal from the EEG was not necessary (cf. Herrmann
and Debener, 2008; Huster et al., 2012). For preprocessing, a
finite impulse response (FIR) 100 Hz low-pass filter (389 points,
Hamming window) and a 1.7 Hz high-pass filter (4901 points,
Hann window, corresponding to a cut-off period of 1/1.7 Hz =
588 ms) was applied to the raw data. Note that filter settings were
chosen such that smearing of gradient artifacts into time windows
of interest were prohibited. Subsequently, filtered EEG data were
down-sampled to 500 Hz and subjected to an independent com-
ponents analysis (ICA) for artifact correction, using the routines
provided by EEGLab (Delorme and Makeig, 2004) and field-
trip (Oostenveld et al., 2011) within MATLAB 7.9 (MathWorks,
Natick, MA). Note that the ECG channel was removed prior
to ICA analysis. ICAs were calculated on 3-s epochs, with 1 s
before and 2 s after stimulus onset. The separation of ICA com-
ponents (total: 29) representing artifacts from those representing
physiological EEG activity was done by visual inspection of the
components’ time-courses, topographies, and frequency spectra
(cf. Debener et al., 2010), using custom-made fieldtrip scripts.
Components either showing similar dynamics as the ECG chan-
nel or resembling electroocculogram activity as illustrated in
Debener et al. (2010) were considered artifacts. Note that it
has been observed that ICA-based correction of cardio-ballistic
artifacts performs better than standard artifact subtraction meth-
ods (Debener et al., 2007; Jann et al., 2009). On average, 7
components were therefore excluded (range: 5–9) by using the
ICA-based artifact removal within fieldtrip (Oostenveld et al.,
2011).

We furthermore identified bad EEG channels after artifact
removal as channels exceeding a threshold of 150 μV in more
than 50% of all trials per participant. Bad channels (of which

no participant showed more than 1) were interpolated by using
signal information from the average of 4–5 neighboring channels
(depending on channel location).

In addition to EEG recordings inside the MR-scanner, we
tested 18 different participants (9 females, mean age 25, range 20–
31 years) outside the scanner. Presenting pre-recorded EPI sounds
at times the scanner would have operated simulated the scan-
ner noise. For this control group, the EEG was obtained from 64
Ag-AgCl-electrodes (58 scalp electrodes, 2 mastoids, 2 electrodes
for horizontal and 2 for vertical electrooculograms) on a Brain
Vision EEG system (amplifier: BrainAmp, cap: BrainCap, Brain
Products, Munich, Germany), arranged according to the extended
10/20 system, (Oostenveld and Praamstra, 2001). Otherwise,
stimulus presentation, EEG pre-processing and analyses were
identical to the procedures described here. However, due to a
technical problem with one participant, and more than 30% ICA-
artifact components in two further participants, the resulting
participant number of the control experiment was 15. This exper-
iment served the purpose of testing the validity of the recordings
obtained inside the scanner. Note, however, that overall magni-
tude differences should not be compared between the experi-
ments inside and outside the scanner, due to different recording
equipment.

ACQUISITION AND PRE-PROCESSING OF fMRI DATA
Functional MRI data were recorded with a Siemens VERIO 3.0-T
MRI scanner equipped with a 12-channel head coil, while par-
ticipants performed the categorization task in supine position
inside the scanner. Acoustic stimuli were transmitted through
MR-compatible headphones (mr confon GmbH, Magdeburg,
Germany). In-ear hearing protection (Hearsafe Technologies
GmbH, Cologne, Germany) reduced scanner noise by approxi-
mately 16 dB.

Seventy-five whole-brain EPI volumes (30 axial slices, thick-
ness = 3 mm, gap = 1 mm) in each of the 4 runs were
collected every 9 s (TA = 2 s; TE = 30 ms; flip angle = 90◦;
field of view = 192 × 192 mm; voxel size = 3 × 3× 4 mm).
High-resolution, 3D MP-RAGE T1-weighted scans were used
for localization and co-registration (acquired on a 3T Siemens
TIM Trio scanner with a 12-channel head coil 29 months prior
to the experiment, with the parameters: sagittal slices = 176,
repetition time = 1300 ms, TE = 3.46 ms, flip angle = 10◦,
acquisition matrix = 256 × 240, voxel size = 1 × 1× 1 mm).
Voxel-displacement-maps for distortion correction (Jezzard and
Balaban, 1995; Hutton et al., 2002) were calculated on the basis of
field maps (30 axial slices, thickness = 3 mm, gap = 1 mm, repe-
tition time = 488 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle =
60◦, field of view = 192 × 192 mm, voxel size = 3 × 3× 3 mm).

Functional (T2∗-weighted) and structural (T1-weighted)
images were processed using Statistical Parametric Mapping
(SPM8; Wellcome Department of Imaging Neuroscience,
Institute of Neurology, University College of London). Functional
images were first realigned using the 6-parameter affine trans-
formation in translational (x, y, and z) and rotational (pitch,
roll, and yaw) directions to reduce individual movement artifacts
(Ashburner and Good, 2003). Subsequently, a mean image of
each run-based image series was used to estimate unwarping
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parameters, and voxel-displacement-maps were used for cor-
recting magnetic field deformations (Jezzard and Balaban,
1995; Hutton et al., 2002). Participants’ structural images were
manually pre-aligned to a standardized EPI template (Ashburner
and Friston, 2004) in MNI space, improving co-registration
and normalization accuracy. Next, functional images were co-
registered to the corresponding participants’ structural images
and normalized to MNI space. Functional images were then
smoothed using an 8-mm full-width half-maximum Gaussian
kernel and subsequently used for first-level general linear model
(GLM) analyses.

ANALYSIS OF BEHAVIORAL DATA
Our behavioral dependent measures were overall performance and
cue utilization. Overall performance was estimated by d′, a mea-
sure of perceptual sensitivity that is independent of response bias.
Perceptual sensitivity, d′, was calculated from proportions of hits
and false alarms according to a one-interval design (Macmillan
and Creelman, 2005), where hits were defined as “category-A”
responses to category-A stimuli, and false alarms were defined as
“category-A” responses to category-B stimuli. Perceptual sensitiv-
ity was calculated separately for each experimental run (2 non-
degraded, 2 degraded runs). In order to visualize performance
over time, we additionally calculated d′ values in sliding windows
(size: 20 trials, step size: 1 trials), separately for the nonde-
graded and the degraded condition, and with the exclusion of null
trials.

The measure of cue index quantified individual participants’
cue utilization (spectral peak vs. physical duration) in the follow-
ing way: First, for each condition, the likelihood of a category-A
response was predicted from the stimulus’ physical properties,
spectral peak and duration, by means of logistic regressions.
The slope of the regressions function, expressed by absolute
β, indicated the degree to which the corresponding physical stim-
ulus property influenced the categorical response (βspectral peak;
βduration; Goudbeek et al., 2009; Scharinger et al., 2013). Note that
βspectral peak and βduration were estimated simultaneously. Second,
the normalized difference between these β values (cue index) indi-
cated participants’ preference to rely on spectral peak (negative
values according) or on duration (positive values).

Cue index = βduration − βspectral peak

βduration +βspectral peak

ANALYSIS OF EEG DATA
For the analysis of the event-related potentials (ERPs), single-trial
EEG epochs were first re-referenced to linked mastoids (approx-
imated by channels Tp9 and Tp10). Subsequently, epochs were
filtered with a 20-Hz Butterworth low-pass filter and re-defined to
include a pre-stimulus interval of 500 ms and a post-onset inter-
val of 1500 ms. Baseline correction was applied by subtracting the
mean amplitude of the −500 to 0 ms baseline interval from the
epoch. Single-trials were averaged separately for the nondegraded
and the degraded condition. Auditory N1 components (Näätänen
and Picton, 1987) were identified by visual inspection in a time
window between 100 and 150 ms post onset. Averaged amplitudes

for Cz within the N1 time-window were compared between con-
ditions (nondegraded, degraded) by means of dependent-samples
t-tests.

For time-frequency analyses, re-referenced EEG-data were
down-sampled to 125 Hz and then decomposed with a Morlet
wavelets analysis (Bertrand and Pantev, 1994), centered on win-
dows that slid in steps of 10 ms along the temporal dimension
(−1 to 2 s). In the spectral dimension, we used 1-Hz bins from 1
to 30 Hz. Wavelet widths ranged from 1 to 8 cycles, equally spaced
over the 30 frequency bins. Time-frequency analyses were done
separately for nondegraded and degraded trials. Mean power val-
ues of a pre-stimulus baseline interval (−500 to −50 ms) were
subtracted from the epoch. A time-frequency region of interest
(ROI) was chosen according to the typical alpha-band interval
(7–11 Hz) and according to epochs that previously showed the
suppression effect in speech (400–700 ms post onset, e.g., Obleser
and Weisz, 2012; Becker et al., 2013). A consistent and symmetric
posterior electrode selection for subsequent EEG/fMRI correla-
tions was based on electrodes where alpha power was strongest
in above-mentioned ROI (within the nondegraded condition).
These electrodes were: CP1, CP2, P7, P3, Pz, P4, P8, POz, O1, Oz,
and O2. Averaged power values in the alpha ROI was compared
between conditions by means of dependent-samples t-tests.

ANALYSIS OF fMRI DATA
Activated voxels were identified using the GLM approach
(Friston, 2004). At the first level, a GLM was estimated for
each participant with a first-order finite impulse response (FIR;
window = 2 s) and a high-pass filter with a cut-off of 128 s,
representing standard settings for sparse imaging designs (cf.
Peelle et al., 2010). The design matrix included regressors for
sound trials (corresponding to volumes following sound repre-
sentations), the mean-centered single-trial parametric modula-
tor alpha power (obtained from the ROI defined above), and
silent trials (corresponding to volumes following null trials).
Experimental runs were included as regressors of no interest (one
for each run). Six additional regressors of no-interest accounted
for the realignment-induced spatial deformations of the EPI
volumes.

Resulting beta-maps were restricted to gray- and white mat-
ter. This information was obtained from group-averages based
on individual T1-weighted scans. On the first level, the fol-
lowing contrasts were calculated (separately for nondegraded
and degraded conditions): sound trials against implicit baseline
and parametric modulator alpha power against implicit base-
line. Furthermore, we calculated the contrasts nondegraded >

degraded and degraded > nondegraded.
On the second level (group level), all contrasts were compared

against zero using one-sample t-tests. Additionally, for each con-
dition (nondegraded, degraded), sound-trial contrasts (against
implicit baseline) from the first level were correlated with cue
index using linear regression. Differences between nondegraded
and degraded conditions in Cue index/BOLD correlation were
assessed by testing the slopes of the linear regressions against each
other using a dependent samples t-test.

For statistical thresholding of second-level activations, we used
a threshold of p < 0.005 combined with a cluster extent of 15
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voxels that corresponds to a whole-brain significance level of
p < 0.05, as determined from a MATLAB-implemented Monte
Carlo simulation (Slotnick et al., 2003; Erb et al., 2013).

In order to visualize BOLD modulation differences across
conditions, ROIs of 10 mm radii were defined using the SPM
toolbox MarsBaR (Brett et al., 2002). They were centered on the
peak coordinates of significant clusters identified in the whole-
brain analyses. For these regions, mean regression beta values
were estimated for each participant. Note that no additional
tests were conducted for these regions to avoid statistical circu-
larity. Determination of anatomical locations was based on the
Automated Anatomical Labeling Atlas (AAL; Tzourio-Mazoyer
et al., 2002), and PT localization followed Westbury et al. (1999).

RESULTS
BEHAVIORAL DATA
Participants performed above chance as indicated by d′ val-
ues significantly greater than zero [mean d′ = 1.51, SD = 0.43;
t(14) = 19.19, p < 0.01]. Participants’ performance was charac-
terized by a considerable improvement over the first twenty trials,
as estimated from sliding-window averages of d’-values (window
size: 20 trials, step size: 1 trial, Figure 1B top). After degrada-
tion was introduced, performance dropped to the initial level,
but quickly regained a stable plateau and did not differ over-
all from the nondegraded condition [nondegraded vs. degraded
t(14) = 1.00, p = 0.32].

Cue indices marginally differed between conditions
[t(14) = 1.94, p = 0.07], with more negative values for the
nondegraded than the degraded condition. This means that the
tendency of utilizing spectral cues (i.e., a negative cue index) in
the nondegraded condition decreased in the degraded condition
(i.e., a positive-going cue index). However, a spectral strategy was
never entirely given up, as judged from overall still negative cue
indices in the degraded condition (Figure 1B, bottom).

EEG DATA
The N1 (100–150 ms) of the ERP showed a typical central/midline
topography (inside and outside the scanner). N1 mean amplitude
marginally differed between the nondegraded and the degraded
condition [t(14) = 1.9, p = 0.08], with more negative values in
the nondegraded than in the degraded condition. This effect
reached significance outside the scanner [t(14) = 7.89, p < 0.01;
Figure 2A].

Alpha power (7–11 Hz) around 400–700 ms showed a central-
posterior distribution and also differed significantly between
conditions, with relatively higher alpha power for the degraded
than for the nondegraded condition [t(14) = 2.06, p = 0.04
Figure 2B]. Again, this effect also held for the control experiment
outside the scanner [t(14) = 2.56, p = 0.03; Figure 2C].

In order to assess the covariation of alpha power and cue index,
we calculated correlations between mean alpha power and mean
cue index per participant, and in addition, separately for the non-
degraded and degraded condition. Overall, mean alpha power
and mean cue index did not correlate significantly [r = 0.28,
t(14) = 1.07, p = 0.30]. This held both within the nondegraded
[r = 0.23, t(14) = 0.85, p = 0.41] and the degraded condition
[r = 0.16, t(14) = 0.60, p = 0.56].

fMRI DATA
Overall auditory categorization network in parietal and temporal
areas
Results from group-level whole-brain analyses showed that the
categorization of nondegraded and degraded sounds (compared
to baseline) lead to activations in extensive bilateral temporo-
parietal clusters, with peaks in inferior parietal lobule and post-
central gyrus (see Figure 3). Furthermore, peaks in precentral
and cingulate cortex were predominantly seen for nondegraded
sounds, while degraded sounds showed activations in pSTG, PT,
and Heschl’s gyrus. Both conditions also revealed substantial acti-
vations in middle frontal gyrus (MFG), inferior frontal gyrus
(IFG), and in the dorsal medial nucleus of left Thalamus.

More activation for degraded than for nondegraded sounds
was found in right IFG (extending into the insula), left and right
pSTG (including parts of PT, i.e., gray matter with a likelihood of
25–45% being in PT according to Westbury et al., 1999), as well
as right STG (extending into the insula). A detailed overview of
the clusters is provided in Table 2.

Alpha power covaries with BOLD activity in pSTG, PT, and IFG
Group-level whole-brain analyses showed that single-trial alpha
power correlated positively with BOLD only in the degraded
condition. Here, alpha power/BOLD correlations occurred in
two clusters in IFG (comprising pars triangularis and ventral
orbitofrontal cortex), in one cluster located in right pSTG (with
25–45% probability of being in PT), and in one cluster in right
angular gyrus. In the nondegraded condition, alpha power/BOLD
correlations did not survive the statistical threshold.

Stronger modulations of BOLD by alpha power could be
observed in the orbital part of right IFG, as well as in bilateral
pSTG, again comprising parts of the PT (with 25–45% probability
according to Westbury et al., 1999; cf. Table 3 and Figure 4A).

Cue index modulates BOLD activity in parietal attention and
temporal auditory network
Group-level whole-brain regression analyses using the cue index
showed positive correlations with BOLD in right MFG (anterior
prefrontal cortex) only in the degraded condition. Here, a reduc-
tion of using spectral cues corresponded to an increased BOLD
signal in anterior prefrontal cortex. By contrast, cue index/BOLD
correlations in the nondegraded condition did not survive the
statistical threshold.

Furthermore, positive cue index/BOLD correlations were
stronger in the degraded than in the nondegraded condition in
right dorso-lateral prefrontal cortex (covering parts of pars tri-
angularis and pars opercularis), left pSTG/pSTS (extending into
PT), left posterior MTG (involving parts in occipito-temporal
cortex), right (ventral) IPL (involving parts of supramarginal
gyrus and extending rostrally into postcentral gyrus; cf. Table 3
and Figure 4B).

DISCUSSION
The two most important findings of this multimodal brain imag-
ing study on auditory categorization are the following: First,
auditory categorization of degraded stimuli yielded decreases in
alpha power suppression (i.e., relative alpha power increases),
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FIGURE 2 | EEG results. (A) Grand-average of evoked responses in the
nondegraded (left) and degraded (right) condition. ERP-differences between
conditions were seen for the N1, with a central/midline distribution
(100–150 ms, indicated by gray bars). (B) Averaged time-frequency
representations for the nondegraded (left) and degraded (middle) condition, and
difference between averages (degraded > nondegraded; right). The strongest
effect of alpha suppression (compared to baseline) occurred at central-posterior

electrodes (selection marked with black dots; 400–700 ms, 7–11 Hz), where it
also significantly differed between conditions. (C) Averaged time-frequency
representations from the control experiment outside the MR scanner
(nondegraded: left, degraded: middle, difference: right). Differences and
topographies are comparable to within-scanner recordings. Note that overall
magnitude differences should not be compared between the experiments
inside and outside the MR scanner, due to different recording equipment.

which correlated with increased activation in right PT and IFG.
Second, even though the behavioral measure of cue utilization
only marginally differed between conditions, less reliance on
spectral cues under sound degradation corresponded to increased
activation in left PT and right IPL. In the subsequent sections,
these findings will be discussed in more detail.

ENHANCED ALPHA POWER DURING DEGRADED SPEECH PROCESSING
In the current study, categorizing spectrally degraded sounds was
accompanied by an attenuation of alpha power suppression. That
is, relatively stronger alpha power was observed for the catego-
rization of degraded as compared to nondegraded sounds. This
reduction in alpha power suppression (relative to a pre-stimulus
baseline) has previously been observed in comparing spectrally
degraded speech stimuli to their nondegraded (intelligible)

counter-parts (Obleser and Weisz, 2012; Becker et al., 2013).
The current data thus extend previous findings by showing that
increased alpha power under degradation is not restricted to
speech material, but may reflect a more general process that
has been interpreted before as enhanced “functional inhibition”
(Jensen and Mazaheri, 2010), increased “idling” (Adrian and
Matthews, 1934), or a more “active processing state” (Palva and
Palva, 2011).

A parsimonious interpretation of this effect relates to the func-
tional inhibition hypothesis of increased alpha power (e.g., Jensen
and Mazaheri, 2010). According to this approach, alpha power
shows a relative decrease in areas subserving the processing of
to-be-attended information (Thut et al., 2006), while it increases
in areas subserving the processing of to-be-ignored information
(Rihs et al., 2007). Thereby, alpha power dynamics instate a
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FIGURE 3 | Regions of the sounds>baseline contrast in nondegraded

(green) and degraded (red) condition (co-activation in nondegraded

and degraded condition: yellow). Slices focus on the temporo-parietal
network. Note that overlap/co-activation is shown as illustrative means and
is not based on statistical measures.

gain mechanism for neural information processing (Jokisch and
Jensen, 2007; Kerlin et al., 2010). While the functional role of
alpha oscillations in auditory processing and categorization has
been examined much less often and only recently (Weisz et al.,
2011, 2013; Obleser and Weisz, 2012; Obleser et al., 2012; Becker
et al., 2013), the interpretations provided by these previous stud-
ies are in line with the functional inhibition hypothesis. For
instance, it has been observed that alpha power suppression cor-
relates with the intelligibility of auditory (speech) input (Obleser
and Weisz, 2012; Becker et al., 2013). Alpha power suppression
was attenuated when auditory stimuli were degraded, that is,
when comprehension was more effortful and required higher
demands on attention (Obleser et al., 2012), as has been suggested
for effortful listening situations before (e.g., Shinn-Cunningham
and Best, 2008; Wild et al., 2012).

With respect to our data, we propose that alpha power
increases gated the neural processing of acoustic information
(duration vs. spectral peak) that differed in task-relevance
between conditions: The introduction of spectral degradation in
the second half of our experiment changed the relative informa-
tiveness or task-relevance of the spectral and duration cues, with
spectral peak becoming less informative than stimulus duration.
It is thus possible that enhanced alpha under degradation indexed
the inhibition of spectral information processing.

Historically, however, enhanced alpha power has first been
interpreted as reflecting the degree to which cortical areas are
in an “idling” state (Adrian and Matthews, 1934; Niedermeyer
and Silva, 2005). Consequently, reduction or suppression of alpha
power was taken to index a departure from the idling mode

Table 2 | Significant clusters obtained from whole-brain analyses

(p < 0.005, extent threshold = 15) for the contrasts sounds > baseline

in each condition, and the contrast degraded sounds > nondegraded

sounds.

Contrast Area Coordinates Z Extent

(voxels)

Nondegraded
sounds > baseline

l. IPL/BA40 −39, −13, 61 4.95 2659

r. IFG/BA46 45, 38, 31 4.4 539

r. IPL/SMG 42, −34, 46 4.28 470

r. Cereb/Culmen 21, −55, −26 4.2 194

r. Cereb/Culmen 3, −61, −32 4.18 170

l. Thalamus −6, −19, 7 3.87 113

r. Cuneus 18, −91, 1 3.75 103

l. Insula/BA13 −30, 14, 1 3.66 72

r. Insula/BA13 30, 20, −2 3.65 61

r. ITG/BA20 57, −46, −17 3.6 37

l. Insula/BA13 −27, 26, −5 3.55 21

l. Occ./BA17 −15, −91, 1 3.49 27

l. MFG/BA10 −24, 59, −8 3.46 80

l. pSTG/PT −48, −46, 7 3.42 30

r. pSTG/PT 51, −40, 13 3.17 35

Degraded sounds >

baseline
l. Postcentral/IPL −51, −22, 46 5.61 2074

r. IPL/BA40 39, −43, 58 4.82 1563

r. Cingulate/BA32 3, 11, 55 4.77 631

r. Precentral/BA6 48, 5, 40 4.29 354

l. Cuneus/BA18 −18, −100, 1 4.24 512

r. MFG/BA11 21, 47, −11 4.24 15

r. MFG/BA10 36, 50, 10 4 84

r. IFG/BA47 30, 29, −2 3.7 70

l. MFG/BA10 −33, 41, 4 3.7 79

l. MTG/BA21 −63, −31, −14 3.64 41

l. Thalamus −12, −19, 10 3.47 63

l. Insula/BA13 −30, 32, 7 3.32 75

l. MFG/BA10 −27, 32, 25 3.2 19

r. Cereb./Culmen 15, −52, −23 3.17 21

Degraded >

Nondegraded
r. IFG/Insula 33, 14, −17 3.9 43

l. pSTG/PT −51, −37, 10 3.41 16

r. STG 48, −4, −8 3.3 31

r. pSTG/PT 54, −25, 19 3.2 30

Abbreviations are explained in the text. Coordinates are given in Montreal

Neurological Institute (MNI) space.

toward a more attentive state. While this interpretation might be
applicable for the general suppression of alpha power (vs. base-
line) for nondegraded and degraded conditions, it cannot explain
the differences in alpha power between conditions. That is, overall
performance in our experiment (and thus presumably attentional
effort) was comparable between the nondegraded and degraded
conditions, while alpha power increased in the latter condition.
Thus, this increase in alpha power is unlikely to reflect a more
pronounced idling state.
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Table 3 | Significant clusters obtained from whole-brain analyses

(p < 0.005, extent threshold = 15) for the parametric modulators

alpha and cue index, together with modulation differences between

conditions.

Contrast Area Coordinates Z Extent

(voxels)

Alpha power by
BOLD (degraded)

r. oIFG/BA47 45, 29, −8 3.37 49

r. IFG/BA45 54, 26, 10 3.25 16

r. pSTG/PT 51, −43, 10 3.14 31

r. AG/BA39 36, −67, 43 3.04 16

Alpha power by
BOLD (nondegraded)

– – n.s.

Alpha power
degraded >

nondegraded

r. oIFG/BA47 45, 29, −11 3.32 18

r. pSTG/PT 54, −43, 13 3 15

l. pSTG/PT −54, −49, 13 2.94 22

Cue index by BOLD
(degraded)

r. MFG 39, 47, 4 4.46 58

Cue index by BOLD
(nondegraded)

– – n.s.

Cue index degraded
> nondegraded

r. DLPFC 42, 11, 28 3.74 49

l. pSTG/PT −54, −40, 7 3.7 21

r. IPL 42, −40, 40 3.53 93

l. MTG −45, −55, 4 3.28 22

Abbreviations are explained in the text. Coordinates are given in MNI-space.

Finally, it has been recently proposed that alpha power
enhancement can also be indicative of active processing states
(Palva and Palva, 2011). According to the “active processing
hypothesis,” enhanced alpha power underlies the coordination of
neural processing in task-relevant cortical structures, particularly
for higher-order attentional and executive functions. Since the
participants in our experiment seemed to be reluctant to refrain
from spectral cue utilization under degradation, enhanced alpha
power may also relate to “listening” harder for spectral cues, i.e.,
to an active process of utilizing spectral cues despite their being
less informative. Both the “functional inhibition” and “active pro-
cessing” hypotheses can be applied to the cortical regions in which
alpha power positively correlated with BOLD.

SPECTRAL DEGRADATION AND THE PLANUM TEMPORALE
In the degraded condition of our experiment, we observed posi-
tive correlations of alpha power with BOLD activations in poste-
rior STG and PT. The posterior STG and the PT have previously
been suggested to subserve the processing of spectral information,
and in particular, pitch and pitch changes (Zatorre et al., 1994;
Zatorre and Belin, 2001; Schönwiesner et al., 2005; Hall and Plack,
2009; Alho et al., 2014). In particular, Hall and Plack (2009) pro-
vided evidence that apart from lateral Heschl’s gyrus (Schneider

et al., 2005; Warren et al., 2005), the (right) PT supports pitch
processing to a substantial degree. Importantly, Hall and Plack
(2009) used stimuli that bore close resemblance to our degraded
sound stimuli such that participants may have perceived and pro-
cessed pitch differences between our sound categories. Altogether,
the involvement of pSTG and PT in our experiment is likely
to reflect spectral processing. The positive correlation of alpha
power and BOLD activation in this “hub”-like structure for audi-
tory categorization (Griffiths and Warren, 2002) can shed further
light onto the relative weighting of spectral vs. duration cues
under degradation.

Previous studies using simultaneous EEG-fMRI recordings
have observed positive and negative correlations of alpha power
with BOLD (Laufs et al., 2003; Gonçalves et al., 2006; de Munck
et al., 2007; Goldman et al., 2009; Scheeringa et al., 2009, 2011;
Michels et al., 2010; Liu et al., 2012). The interpretation of neg-
ative correlations of alpha power with BOLD activations follows
the functional inhibition hypothesis (Foxe et al., 1998; Klimesch
et al., 2007; Foxe and Snyder, 2011; Weisz et al., 2011, 2013;
Klimesch, 2012; Obleser and Weisz, 2012; Obleser et al., 2012).
That is, regions where activations increase with decreasing alpha
power have been suggested to be relevant for attending to infor-
mative stimulus features, while regions where alpha power is
positively correlated with BOLD haven been suggested to support
the suppression of non-informative (task-irrelevant) stimulus
features. Positive correlations of alpha power with BOLD can also
be interpreted within the “active processing hypothesis” (Palva
and Palva, 2011). This hypothesis relates enhanced alpha power
to stronger neural coordination in cortical areas processing task-
relevant information, particularly for higher-order attentional
and executive functions.

Here, we observed that the posterior STG and the PT
showed increased activation for degraded vs. nondegraded stim-
uli, and that STG and PT activations positively correlated
with alpha power. This can either be interpreted with the
“functional inhibition hypothesis” or the “active processing
hypothesis:”

According to the “functional inhibition hypothesis,” the pos-
itive correlation of alpha power with BOLD activation in (right)
PT may reflect the relative inhibition of spectral information in
this brain area. In detail, introduction of spectral degradation
affected the informativeness of spectral peak for categorization,
and corresponded to a change in cue utilization. That is, spec-
tral peak became relatively task-irrelevant, and may have been
inhibited in pSTG and PT.

According to the “active processing hypothesis,” the positive
correlation of alpha power and BOLD activation in pSTG and PT
(particularly under degradation) may reflect the enhanced need
for neural coordination in order to maintain spectral cue utiliza-
tion. Overall, cue indices remained negative even after spectral
information was degraded, that is, participants still relied on their
initial spectral categorization strategy. For maintenance of the
spectral strategy, participants might have drawn on (right) pos-
terior STG and PT resources. Thus, the positive correlation of
alpha power and BOLD in these cortical regions may index the
need to listen “harder” to degraded stimulus cues that once were
informative.
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FIGURE 4 | (A) Positive correlation of alpha power with BOLD activity in the
degraded condition (red), and correlation differences between conditions
(blue; co-activation: magenta). Betas extracted from orbital inferior frontal
gyrus and PT ROI visualize correlation differences between conditions. Data
taken from a representative participant illustrate the positive single-subject

alpha power/BOLD correlation in the degraded condition. (B) Positive
correlations of cue index and BOLD in the degraded condition (red) and
correlation differences between conditions (blue). Betas extracted from IFG,
dorso-lateral prefrontal cortex and IPL visualize the correlation differences
between conditions.

Finally, the “active processing hypothesis” seems to receive fur-
ther support from the positive alpha power/BOLD correlations in
frontal (IFG) areas. Note that Palva and Palva (2011) suggest that
inhibition at lower sensory levels might be achieved by higher-
level frontal functions, such that a positive alpha power/BOLD
correlation in IFG may indicate that lesser reliance on spectral
than on duration cues under degradation is mediated by activ-
ity in frontal regions. This may also relate to the observation
that alpha power and behavioral cue utilization indices correlated
only at trend-level with each other, suggesting that alpha power
changes are more likely reflecting indirect, modulatory signa-
tures of “functional inhibition” (after a stimulus while preparing
a response, see also Obleser and Weisz, 2012; Wilsch et al., 2014).
These signatures are dissociable from and follow in time early
auditory signatures, accounting for the latency of the alpha power
effect centered at around 500 ms post stimulus onset.

A ROLE OF THE RIGHT IPL IN AUDITORY ATTENTION
The behavioral tendency of disregarding spectral cues in the
degraded condition of our experiment was accompanied by
increased activation in anterior prefrontal cortex, and, compared
to the nondegraded condition, in right IPL. In the degraded con-
dition, right IPL showed a stronger correlation of cue index with
BOLD activation than in the nondegraded condition (Figure 4B).
As part of the fronto-parietal executive network (Posner and
Dehaene, 1994; Corbetta et al., 2000), the IPL has repeatedly
been found to subserve selective attention (Shaywitz et al., 2001;
Behrmann et al., 2004; Salmi et al., 2009) and attentional control

(Hill and Miller, 2010). Its activation was commonly observed
in situations that require flexible changes in attention during the
processing of informative stimulus features or task-relevant infor-
mation (Geng and Mangun, 2009; Schultz and Lennert, 2009;
Gillebert et al., 2012). In line with studies supporting the IPL’s
role in selectively attending to the most informative stimulus fea-
ture (Jacquemot et al., 2003; Gaab et al., 2006; Husain et al.,
2006; Kiefer et al., 2008; Obleser et al., 2012), changes in IPL
activation might support the change in cue utilization that was
necessary for successful categorization (see Henry et al., 2013
for attention to temporal features). Note however that, behav-
iorally, participants tried to maintain their initial strategy and
overall differed only marginally in cue utilization. Therefore, this
interpretation must be considered carefully and substantiated by
future research.

SUMMARY
In this multi-modal imaging study, we have shown that acous-
tic cue utilization during auditory categorization is flexible,
even though listeners seem resilient to abandon initial catego-
rization strategies. Brain areas processing the specific acoustic
information—spectral peak vs. duration—supported the change
in cue preference together with areas in the fronto-parietal atten-
tion network. Our data complement previous speech-related
observations of alpha power increases in adverse and effortful lis-
tening situations (Obleser and Weisz, 2012; Obleser et al., 2012;
Wilsch et al., 2014). We suggest that increased alpha power under
degradation mediates the relative weighting of acoustic stimulus
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features. Both the “functional inhibition” and the “active pro-
cessing” hypotheses can account for these findings. Importantly,
the combination of behavioral, electrophysiological, and hemo-
dynamic measures is an indispensable methodology for further
investigations in auditory cognition.
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