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Fate of classical tensor inhomogeneities in pre-big-bang string cosmology

Alessandra Buonanno
Theoretical Astrophysics and Relativity Group, California Institute of Technology, Pasadena, California 91125

Thibault Damour
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France
(Received 26 February 2001; published 6 July 2001

In pre-big-bang string cosmology one uses a phase of dilaton-driven inflation to stretch an(rimitial-
scopig spatial patch to thémuch larger size of the big-bang fireball. We show that the dilaton-driven
inflationary phase does not naturally iron out the initial classical tensor inhomogeneities unless the initial value
of the string coupling is smaller thay,<10 5,
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[. INTRODUCTION PBB scenarigcomprising an initial DDI phase matched onto
a subsequent ordinary big-bang evolujion
The pre-big-bandPBB) scenarig 1] is an attempt to use In this paper we consider the “stochastic” version of the

the kinetic energy of the string-theory dilaton to drive a pe-PBB scenario, and study the evolution of the tensor inhomo-
riod of inflation of the universe. The basic motivations of thegeneities present in genericPBB inflationary bubble. Our
PBB scenario are(i) the existence of exac¢spatially homo- conclusions is that the PBB scenario is not very effective in
geneousdilaton-driven inflationary solutions following from Smoothing out initial classical inhomogeneitiese limit

the T-duality symmetries of string-theor§2], and (ii) the ourselves to inhomogeneities small enough for not develop-

ndeed, analyzing tensor inhomogeneities, we find that they

destroyq 3] the usual(potential-driven inflationary mecha- e .
yS(3] (b Y y need to be initially unnaturally smalkexceptin the case

nism. In the “stochastic” version of the PBB scenafi L ; R .
fie] here the initial value of the string coupling is parametri-

one envisages the birth of an ensemble of pre-big-ban 2.
bubbles from the gravitational instability ofgenericstring ally smaller than thealready very small minimal value
Min—10"26 needed to solve the horizon problem, i.e. to gen-

vacuum made of a stochastic bath of classical incomin Irr:ate a space at least as large as our horizon from an initial
gravitational and dilatonic waves. In this approach the only b -1 9 ) . )
. L . : patch of sizeH;,” [1,9,10. More precisely, we find that if we

needed condition for the blisterid@ string unitg of a PBB . . .
bubble(of sizeH -, whereH.. is the initial Hubble expan- wish generic, coarsely homogeneous, bubbles to evolve into

) in » e pa our (globally very homogeneolsuniverse we need to re-
sion rate of a patch of space similar to the corresponding quireg,= (1019 \;3/2gmin210—35 We note that the necessity

i [— [T : ~ in '

condition in chaotic” inflation[5] (§ee_belov)/. Namely, lo- (for solving this “homogeneity problem” of having more
cally, the inhomogeneous contribution®f wavelengths

) : ¢ inflation than the minimal amount needed for solving the
smaller tharH;, ") to the local Friedmann equation should be horizon problem applies also to the standard inflationary

fractionally smallish(say by a factor of bcompared to the  pogels(see below:
homogeneous contributiop?~H?2, . This “stochastic” PBB
a.pproach, together with qther studies of inhomogeneous Ver- || TENSOR PERTURBATIONS IN PRE-BIG-BANG
sions of PBB[6—8|, was intended to answéor at least to COSMOLOGY
soothe the concerns about fine tunif®,10] in the PBB
scenario. However, as far as we are aware, no complete study We restrict our investigation to the simplest version of the
of the effectiveness of the PBB dilaton-driven inflation PBB scenario, which is described in the string frame by the
(DDI) in smoothing out initial homogeneities has been perfour-dimensional low-energy string-effective action
formed.[Note that this smoothing out aflassicalinhomo-
geneities is theprerequisitefor the discussion of the irre- 1
pressiblequantumfluctuations that might be the seed of the FS:_ZJ d*xy—gse ¥[R(gs) + 94" 9,0 d,0],
large-scale structure of the univers&eference[1l] dis- As
cussed the fate ofquantum inhomogeneities during the
DDI phase anq concluded that the.|r grpwth, when they ge\t/vherego is the dilaton field, related to the string coupling by
out of the horizon, was only logarithmic, but they did not '~ /i3 : ; -

. ; . . =e¥'%, and\ is the string scale. In the following, we shall
analyze the smoothing properties of the entire pre-big-ban ) ; . .
plus post-big-bang scenario. The recent discovery of the g ystematically use t_he string metggfw t(.) measure phyS|'caI
neric appearance of an inhomogeneous chaos, ultimate ﬁngths or frequencies. HOWGYe“ It V,V'" also be t_echnlcally
leading to a string-scale foam near a big crurd?], useful to introduce the Einstein metrgiv. The string and
prompted us to reexamine in detail the fate of initial classicaFEinstein metrics are relatedin 4 dimensions by g3,
inhomogeneities during the entire evolution of the simplest=e?¥~ 0 gEV. Indicating the tensor perturbations as

(2.9

0556-2821/2001/64)/0435017)/$20.00 64 043501-1 ©2001 The American Physical Society



ALESSANDRA BUONANNO AND THIBAULT DAMOUR
8g5,=h,, and working in the synchronous gaugghf=
—1,95=0,9;=a%8; and h3=0,h5=0,gd h?=0,5;h}
=0), it is easily checked that® '=hF . Henceforth, we
denote the tensor perturbations hy'=h>1=hF . Intro-

ducing the conformal timel »=dtg/ag=dts/ag and work-
ing in Fourier space we have

3

k . )
(277)3e|k-x ;2 Ei(t?)](k)h((r)(k, 7),

hl(x, 77)=f
(2.2

where (), is the polarization tensor, which satisfies the

usual relations

ei(‘fl)J* (k) Ei("z)j (k)= 867172,

2 )€ = (K.

o

(2.3
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aE( 77in)
ae( 7ex)

n
Nout hor( K, 7) = IOg( —
Mex

h(k,7in). (2.7

Outside the horizom(k, ) undergoes a logarithmic growth

while the physical wavelength in the string franhes as/k,

is stretched during this DDI phase. In the following, we refer
to physical quantities with a hat, e.,=k/ag;, wherei
refers to the instant of timg at which we evaluate the physi-
cal quantity.

Later on, ifag starts to increase while the fluctuation is
still outside the horizon the fluctuatiom=c;+ czfdnag2
=const. During the radiation and matter eras the amplitude
of the tensor fluctuations, after reentering the horizon, de-
creases as-1l/ag, notably as~1/n during the radiation-
dominated (RD) phase and as-1/7? during the matter-
dominated(MD) era.

Let us now introduce severatlimensionlessquantities
that play a crucial role in our analysis: the coefficiehthat
measures thamplificationof (tensoj fluctuations from the
initial time until today, the coefficienB<1 (the inverse of

In the following to ease the notation we shall drop the superthe redshift factor which keeps track of the stretching of

script o overhin Eq. (2.2).

A. Evolution of tensor fluctuations

During the dilaton-driven inflationaryDDI) phasé the

Fourier transform of the tensor fluctuations satisfies the

equation:

h”+2Heh' +k?h=0, (2.4

where Hg=ag/ag. Introducing the canonical variablé
=agh, we obtain

"
E

W= V()]9=0, =-E
E

V(7) (2.9

From the above equation it is straightforward to derive tha

the perturbations propagating inside the horizkfs{V(7),
i.e. |kn|>1), during the DDI phase, evolve simply as
=agh=constX exp(xikz), so that(modulo a phase factpr

ag( 7in)
ag(n)

Rinhor(K, 7) = h(K, 7i), (2.6

where 7;, is some initial time. Note that the scale facty
decreases in time during the DDI efagx(— 7)Y? and »
— 07 ]; therefore, as long as it is within the horizdr(k, 7)

physical frequencies and length scales between the initial
patch and now, and a coefficieGtwhose meaning will be
described below:

- h(ko.70) k
k)= ———, B==,
A= ) Kin

A2
C(RO)E<A—'“> B2A%(k,).
Ho

2.9

Here, given a comoving Wave-nukalerR(): k/ag, and Rin
=k/ag,. The index O refers to the present times= 7,
while the index, in, refers to the initial timep= %;,. The

couple of functions okq, {A(ko),C(ko)}, and the constant

, exhaust the description of the “transfer function” between
he classical initial inhomogeneities and the present ones.

For simplicity, we restrict our attention in this paper to the

simplest PBB scenario in which there is not any intermediate
phase between the DDI era and the standard Friedmann-
Lemaitre-Gamow one. We denote ky the conformal time
at which the evolution of the universgavhich is always ex-
panding in the string framechanges from the DDI expan-
sion phase to a big-bang fireball. We assume that this transi-
tion takes place when the expansion rate reaches the string-
scale,H,=ag, /ag;=\_* and when the string coupling,
=e*1? equals its present valug,=g,=0.1. For timesy

increases in time during the DDI phase. A generic fluctuation.. ,, we assume that the dilaton has become effectively fixed
exits the horizon for the first time during the DDI era at g thatag = as.

| 7ex)=1/k. Later on, while outside the horizotk(y|<1), its
evolution is given byh”+2ag/agh’=0, so thath=c,
+c,fdy agz. As aéoc 7, one gets a logarithmic growth

IMany of the results below were already derivedin] and other

If a fluctuation reenters the horizon before the MD era,
i.e. during the RD phase, we have

ag( 7in)

A 700 X)|09(k 71)

ag(7re) ag( 7leq)
ag( 7eq) ae(70)

A(ko)= (2.9

places. It is, however, simpler to give a self-contained presentatiornwhile if reentry occurs during the MD phase we get
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aE("?in)Io (k )aE(nre)
ac( 700 0 M a ()

A(kg)= (2.10

where 7, stands for the time at which there is equality in the L, ~H;/
universe between radiation and matter density.

Assuming homogeneity and isotropy, the background
fields in the string frame evolve as

, ¢(ﬂ)=901—\/§|09< ) t tlz t

7 ) —(V3-1)/2 7
71

as(ﬂ)=(a

FIG. 1. Schematic representation, in the string frame and for the
nonminimal version of the PBB scenario, of the evolution of: the
7 Hubble horizorH %, an intermediate physical wavelendtashed
ag(n)=ag( 77):(_), o(n)=¢; M<7<7eq Iine). gpd the corrjoving siz& (continuous ling corresponding to

7 the initial patchH ~*.

TS N<11,

2
It has been derived in Reff9,7] that in order to solve the

horizon(and flatnessproblems in the PBB model, one has to
require that

as(n)=aE(77)=( ) e(n)=¢1

71 Meq
Neq< N<17o. (2.11)

Henceforth, to ease the notation, when referring to the scale  g,=gM"=10"26 A '=(AMM~1=10),.

factor in the string frame, we shall drop the subsci$ot (2.18
Using the above equations and neglecting the logarithmic
growth in Egs.(2.9), (2.10, we derive Indeed, defining the total amount of inflation as the ratio
0 i\ 32 between the comoving Hubble length at the end and begin-
A(RO):(%) MRS | ) %o@:'o (2.12 ning of the PBB inflationary phase,
gin kin wé
. - - a;H
. g1\ wo" w(l) v wg’ 12 Z= 1A1, (2.19
Ako)=| —|| = “eq - ainHin
gln in woq ko
FAo<ko<od (2.13 the horizon problem is solved if we impose that
0 \&
~1 r o\ 12 2
- 1) k - N A lo(t
A(kg) = (%) TO) A_(l , w(e)q< ko<< wé, ZzZ= ,\0( v , (2.20
Yin/ \ kin/ | @g lo(ts)

(2.14

where w5 =w, /g, ®3%=we/ay. Here w; and weq are the wherelo(t;)=Ho *a; /ag andi(t;)=H; *~\,. The equal-

constant comoving wave numbers whose physical countefly Sign in Eq.(2.20 refers to theminimal PBB scenario, in
parts coincide with the Hubble expansion rates at tige ~ Which the horizon volume today has evolved from an initial

and 7,4, respectively. More explicitly, (Hubble patch of sizeH;.*. The minimal and nonminimal
scenarios are illustrated in Fig. 1. Note that, in the nonmini-

w_ng ~2 876G t w_f=H2:87TG (t), (215 mal scenario, the Hubble scale at present thiae is strictly

aéq_ eq. g3 Pe eq): ai_ 1775 Pclla)s : smaller than the comoving scalgty)=L;,a,/a;,. Using

the isotropic and homogeneous PBB background solutions
(2.11), it is easily derived that,/a;=(gi,/g,)?®"® and

wd 1 wd O — (AL 231(3+3) ; -
0 - o _ Mtz ~1® (2.16 Hi,/Hi=(9in/91) . Imposing Eq.(2.20 with the

= = 10730, — 1+z, . ; . L . 7.
A, 1+z Ho 4 equality sign, we find the minimal initial conditions as
where we defined the redshift factaras a/a,=1/(1+2). - 312 AR ~ \ 34
Correspondingly, we get min_ ﬂ a _ ﬂ
Oin =01| = 1| = eq )
i 2(3+3) [ {3 o\ 12 Ho & “o
g Ko_(n| (21 :(%) P Hoj ([ Fu (229
ko, \ai/\ao 01 A\ w8

(2.17 and
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Hl —V3/I(V3+1)

ai

=l

~ O\ —V3/(V3+1)
HR"=H, )

Ho

. &)Sq V3/12(v3+1)
1| =

H,

: (2.22

where we useda,; /ap=w3/H,=(Ho/H1)(H1/w)Y2 In-
serting in EQgs.(2.21), (2.22 the numerical vaIuesFIO
=10 Hz, 0¢%=10"% Hz andH;=X_'~10" Hz, we
obtain Eq.(2.18.

Introducing the notatiory,=g;,/g""=10"%;, (gin<1,
with equality in the minimal scenanpwe can rewrite Egs.
(2.13, (2.19 in the form

~ 3/2
Ak )——1 HO) Ao<ko<aot, (2.23
o/= = A ’ 0SKo<= ’ .
(g ko °
A(R ) 1 (Ho 1/2 1
0 :_—_ ~ y
(gin)l/\‘3 k0 \/1+Zeq

wS<ko<wy. (2.24

The above equations can also be recast in a unique formu

which interpolates between the two frequency regions:

~ 1/2
Ho

ko

Ho
ko

A(kg) =

1
W( + —1+ZeJ' (2.25

The most striking consequence of Eg.25 concerns tensor
fluctuations on the present horizon scﬁ[& I:|0. For these

PHYSICAL REVIEW D 64 043501

where N=log(a;/a;) is the total number ofe foldings.
Hence, differently from the PBB scenario, where tensor per-
turbations increase during the PBB era, in ordinary inflation
as \V increasedlonger inflationary era.A decreases para-
metrically.

However, thisamplificationof initial tensor fluctuations
by PBB cosmology(instead of the usuatleamplification
mechanism of potential-driven inflation in the nonminimal
case, though paradoxical, does not, by itself, imply that the
initial value of the tensor inhomogeneities must be fine tuned
to an unnaturally small value. Indeed, the classical quantity
that needs to be smallish for the dilaton-driven inflation to
start is not theamplitudeof tensor waves, but thegnergy
density(compared t(].pﬁ]). We shall postpone the study of the
latter quantity to the next section.

For the quantity3, defined by Eq(2.8), we find for the
PBB scenario under investigation that

>

Ho
|:|in

min

-0
I(in

(am) 2/(3+3) =10 42(an) 2/(3+3) ’

(2.27

where in the last equation we used the fact thHf.
~10°* Hz. Here the behavior is similar to what happens in
%andard inflation, e.g., with a de Sitter phase we derive

(2.28

In PBB cosmology, as in ordinary inflation, the wave-
length of the tensor perturbations always gets stretched, and
the amount of stretching is parametrically larger in the non-

scales, the amplification coefficient connecting them to theninimal case@,@l; or N> N,in) than in the minimal one.

initial fluctuations isA(Ho)=(gi,) ~**. In the minimal sce-
nario (g;,=1) this is.A(Hy)=1 which means that horizon-
scale tensor fluctuations today just reprodyoceodulo a
logarithmic amplification factor that we neglecidte corre-
sponding initial horizon-scale fluctuationfNote that this
preservation of the amplitude of horizon-scale fluctuations i
the minimal, horizon-solving, case applies equally well to
standard potential-driven inflation scenali®©n the other

hand, the amplification properties of PBB inflation look

worse in the nonminimal scenario&ﬁ«l) for which
horizon-scale tensor fluctuations today grarametrically

It is important to notice that the formulas given above for

the classical“transfer function” A(k,) and the(inverse red-

shift factor B are physically meaningful only when it con-
cerns a present spatial frequerigysuch that the correspond-
ing blueshifted frequencyB‘1R0 (which represents the

"nitial frequency is smaller than the string scale,= 1/\.

hen this is not the case, this classical transfer function does
not apply, and one must consider the problem of quantum-
normalized fluctuationgas studied, e.g., in Ref13]). The
results for A and B provided by Egs.(2.23, (2.24 and
(2.27) are summarized in Fig. 2.

amplified compared to the corresponding initial fluctuations.
This behavior is different in the PBB model than in ordinary
inflation. For example, if inflation is implemented by a de
Sitter phase fiys=const), starting at;, and ending at;
when the transition to RD phase occurs, then the amplifica-
tion factor for fluctuations that are just outside the horizon

(RONHO) is
A _ |:|dsal
ko) = - ,
A( 0) © A(Hoao)

B. Power spectrum for tensor fluctuations

The “bare” power spectrum is defined by the relation:
(hD(ky, (D" (kp, )y = 97172 8 kg — k)

X PPk, m), (2.29

whereh(?)(k, ») is given by Eq.(2.2). Using the relations
(2.3) and assuming isotropy it is straightforward to derive:

(2.26
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i dk dQy -
<hf(xla7])h:<*(xz,77)>=f?Ee'k'(xl X2)

. k3 3
X 8 (k) PRk, 7). 10
2
(2.30
Hence, the “physical”(per logarithmic interval of spatial =i
frequency power spectrum is related to the “bare” one
through FIG. 2. We show schematically how the “transfer function”
between initial and present time acts both on the amplitude, Eq.
K3 (2.295, and the frequency, Eq2.26), of tensor fluctuations. We
PR (k, )= ﬁpﬁare(k, 7). (2.3)  have assumed for simplicity thaf 7;,) =1 andg;,=1. In the mini-

mal PBB scenario the initial string frequen&g=)\s‘1 corresponds

o 21, 2 gy min
[In the following we drop the superscript “physical” on the tOda}'&OB“’S__ 1 Hz. The present Hubble freql{er:f%_ﬁHin
power spectrun).Note that the “physical” power spectrum ~10 ** Hz originates from the initial frequenciit"~10** Hz,
has the same dimensions h%(x 7) (i.e. it is dimension- which corresponds to 1 Fermi. Note that, whereas the colored re-

less. The energy density in gravitational waves is given by:glons refer tg initial classical fluctuations, the white one on the left
part of the figure concerns wavelengths that would correspond to

initial length scales formally smaller than the string scale, i.e. to

Pow= J dk dpGW(k), dpow(k) _ 1 Pi(K), quantum fluctuations. For them the classical transfer function does
(2.32
where P, is the (physica) power spectrum for the time de- M:c(ﬁo) (2.395
rivative of the tensor fluctuationdh/dt, i.e. Py(k) Qew(Kkin) '

:RZPh(k). The ratio between the energy density in gravita- _ _ A _ _

tional waves and the critical energy, (conventionally de- Where the dimensionless quantifyk,) was defined in Eq.

fined in all caseksby 3H2=87Gp,) reads (2.8 above. We can compute the explicit expression of the
[

tranfer functionC(k,) by using Eq.(2.25 and the useful

_ Ldpewk) 1R relation BH;,/Ho=(gin) 2. We find
QGW(k)E——,\E—A—ZPh(k). (2.33 o
Pc dlogk 6 H R . ~Ho [ Hy 1 2
Clko) =(gin) P == | = + — (2.39
As explained in the Introduction, in the stochastic PBB Ko \ ko 1+ 27

model a generic inflating bubble is expected to have initial

values of Qgy(k) and of similar ratios for the other field
inhomogeneities which are smallisisay ~1/5), but not ’ ) ]
parametrically small. As we are interested in order-of-Cal negative power ofgj, entering the amplitude-
magnitude estimates, we shall henceforth consider that ggmplification coefficientA(ko), given by Eq.(2.25]. [The
neric inhomogeneities should be allowed to be as large agositiveness of the exponent gf, in C(ko) is due to the
Qow~Q~1. o o positive compensating exponent enteringgH;,/H,
Therefore, while by definition the amplification of the = — .3 . .

L : : =(gin)“"*.] Therefore from the point of view of the para-

power spectrum dfiis given only by theA factor[defined in metric dependence of the overall decrease of tensor inhomo-

Eq.(2.8)], geneities, PBB inflation is not qualitatively different from
N ordinary inflation. However, we shall see that, from a quan-
Pn(ko) — A2(ky) (2.34 titative point of view, solving the “homogeneity problem”
Pr(kin) o ' leads to a more severe constraint for PBB inflation.
Let us now use the existing limits on the amount of gravi-
the amplification of)¢,, reads tational waves generating inhomogeneities in the cosmic mi-
crowave background radiatiQ€ MBR) to constrain the ini-

tial amount of gravitational wave® gy(ki,). From[14,15

2 . — . . __we read:
Here,H,G andp, are all measured in string units. For discussing

initial values it would be more accurate to work with Einstein-frame 0 2
guantities. We neglect the inaccuradye to the difference between Qenl(ko) h%oo< 7X10” ll( A_O) , Ho<ko<30H,.
the physical Einstein and string Hubble expansion jatésoduced Ko

by our definition, which is only a factor of order unity. (2.37

Note the good news that, in this result, the poweagfon
the right-hand side is noywositive[contrary to the paradoxi-
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Usingh;p=0.65 and writing the most stringent consequenceCMBR'’s bound given by Eq(2.37) to these fluctuations that

of this limit (corresponding td&,=H,), we get the “homo- ~ are re-entering the horizon now we get
geneity constraint” .
Q8 (king)e ™ *V = Mmin <1071, (2.43
r \(m \2N3—10-10
ewtkino) (Gin) ™= 1077 (239 Therefore, as happens in the minimal PBB scenario, in the
minimal (horizon-problem-solving de Sitter case X
= Nmin) One is still facing an “homogeneity problem,” i.e.
the CMBR’s bound forces the initial tensor inhomogeneities

to be unnaturally smallQ%y, (HM™=<10"1°. To solve this

scenario ¢in=1), i.e}._t?l the case L” which |We rﬁqli]ire_the homogeneity problem, i.e. to relax this fine tuning and to be
minimum amount of inflation in order to solve the horizon oy 10 4" siart with09S (k o)~ 1, we must depart from the

problem (i.e. an initial PBB bubble of size 1 FerimiEq. . . : X .
(2.38 would tell us that the initial tensor inhomogeneities r:;r\l}majlge Sitter scenario by at leastesfoldings, i.e. A’
-~ min .

must be unnaturally smalf g, (A" =<10"1° This would
mean that one looses all the genericity benefits of consider-
ing a “stochastic” PBB model.

There is, however, a way to solve this “homogeneity ~We have shown that the dilaton-driven inflationary phase
problem,” i.e. to relax this unnatural fine tuning of initial of the pre-big-bang scenario is not very effective in smooth-
inhomogeneities, and to allow for “generic” initial inhomo- ing out the classical inhomogeneities that are expected to be
geneitiesQgw(ki,)~1. Indeed, the fact thay,, enters Eq. present in a generic, initial patch of space which starts its
(2.36) with a positive power means that it is enough to im-inflationary evolution. We computed the various “transfer
pose functions” that relate the initial spectrum of inhomogeneities

to the present one. Our main conclusion is that the require-
_mS(lO‘ 10) B2_1079, (2.39 ment of naturalness of initial inhomogeneiti€34,,~1) can
be satisfied only at the price of a constraift{10] on the
In terms of the string coupling;,, this limit is 9 orders of initial value of the (homogeneous part of thestring cou-

where we denoted blg,,o the initial wave number that cor-
responds now toH,, i.e. kpo=8 'H,. [Note that ki
=H;,.] If we were to restrict ourselves to the minimal PBB

IIl. DISCUSSION AND CONCLUSIONS

magnitude smaller than the value given in E2.18), i.e. pling, which is much strongeiby a factor~10"°) than the
previously acknowledged constraifibllowing from the ne-
gin=10"%, (2.40  cessity to solve the horizon and flatness problems

Ordinary inflation qualitatively faces an analogous homo-
Note, however, that this inequality applies only if the initial geneity problem. For example in the de Sitter case we need
spectrum is not completely redshifted out of the present hoto require ~6 e foldings more than the minimal number
rizon. The condition for this ikp,,<Agt, i.e. BA;'>H,.  needed to solve the horizdgand flatnessproblems in order

Using B=10"*%(g;,)?C* ) this yields: to overcome this initial inhomogeneity issue. Quantitatively,
this additional constraint is not very severe for ordinary in-
gin=gi"=10"%. (2.41 flation because, in many inflationary models, the number of

folds is exponentially dependent on some inverse power of

In conclusion, we obtain three possible scenarifs:if  the coupling constants of the underlying theory.
10 3<g,,=10 25, we must require initialy21,, <1 and as This additional “homogeneity” constraint on the PBB

a consequence, the PBB scenario suffers from a serious hBrodel discussed here does not necessarily mean that the ba-
mogeneity problem{ii) if 10-%°<g;, <1073, there is no sic (elegant idea of dilaton-driven inflation is to be dis-

need to fine-tune the initial tensor perturbatior@?, carded. There might be other ways of using the kinetic en-

~O(1) [in this case, the tensor fluctuations on very Iargeergy of a scalar field to drive a nonfine-tuned inflationary

scales can still, in principle, be seen as classical small ﬂucf[i)h"",‘,c’e'lIf;1 pa;]t'lcrlljlz'rf;che rfecenttlk)]/ pr:g;sed model_lofnﬂak—'
tuations in the CMBR, and (iii) for g;,=10° only initial  uon” [16], which differs from the scenario In making
; : use of higher-order kinetic terms to drive an inflationary
guantum fluctuations survive. h has b h o h fficient thi "
Before ending this section, it is instructive to discuss, forPNase, has been snown to have efficient smoothing properties

comparison, the fate of initial inhomogeneities, discussed 5517]'
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