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Fate of classical tensor inhomogeneities in pre-big-bang string cosmology
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In pre-big-bang string cosmology one uses a phase of dilaton-driven inflation to stretch an initial~micro-
scopic! spatial patch to the~much larger! size of the big-bang fireball. We show that the dilaton-driven
inflationary phase does not naturally iron out the initial classical tensor inhomogeneities unless the initial value
of the string coupling is smaller thangin&10235.

DOI: 10.1103/PhysRevD.64.043501 PACS number~s!: 98.80.Cq, 11.25.2w
e
he

ia

an

in
nl

be

ve

tu
n
er

-
e

ge
ot
an
g
te

ca
es

to

e
o-

in

lop-

hey

ri-

n-
itial

into
-
y

he
ary

he
the

y
ll
l
lly

s

I. INTRODUCTION

The pre-big-bang~PBB! scenario@1# is an attempt to use
the kinetic energy of the string-theory dilaton to drive a p
riod of inflation of the universe. The basic motivations of t
PBB scenario are:~i! the existence of exact~spatially homo-
geneous! dilaton-driven inflationary solutions following from
the T-duality symmetries of string-theory@2#, and ~ii ! the
need to bypass the fact that a tree-level dilaton essent
destroys@3# the usual~potential-driven! inflationary mecha-
nism. In the ‘‘stochastic’’ version of the PBB scenario@4#
one envisages the birth of an ensemble of pre-big-b
bubbles from the gravitational instability of agenericstring
vacuum made of a stochastic bath of classical incom
gravitational and dilatonic waves. In this approach the o
needed condition for the blistering~in string units! of a PBB
bubble~of sizeH in

21 , whereH in is the initial Hubble expan-
sion rate of a patch of space! is similar to the corresponding
condition in ‘‘chaotic’’ inflation @5# ~see below!. Namely, lo-
cally, the inhomogeneous contributions~of wavelengths
smaller thanH in

21) to the local Friedmann equation should
fractionally smallish~say by a factor of 5! compared to the
homogeneous contributionẇ in

2 ;H in
2 . This ‘‘stochastic’’ PBB

approach, together with other studies of inhomogeneous
sions of PBB@6–8#, was intended to answer~or at least to
soothe! the concerns about fine tuning@9,10# in the PBB
scenario. However, as far as we are aware, no complete s
of the effectiveness of the PBB dilaton-driven inflatio
~DDI! in smoothing out initial homogeneities has been p
formed. @Note that this smoothing out ofclassical inhomo-
geneities is theprerequisitefor the discussion of the irre
pressiblequantumfluctuations that might be the seed of th
large-scale structure of the universe.# Reference@11# dis-
cussed the fate of~quantum! inhomogeneities during the
DDI phase and concluded that their growth, when they
out of the horizon, was only logarithmic, but they did n
analyze the smoothing properties of the entire pre-big-b
plus post-big-bang scenario. The recent discovery of the
neric appearance of an inhomogeneous chaos, ultima
leading to a string-scale foam near a big crunch@12#,
prompted us to reexamine in detail the fate of initial classi
inhomogeneities during the entire evolution of the simpl
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PBB scenario~comprising an initial DDI phase matched on
a subsequent ordinary big-bang evolution!.

In this paper we consider the ‘‘stochastic’’ version of th
PBB scenario, and study the evolution of the tensor inhom
geneities present in agenericPBB inflationary bubble. Our
conclusions is that the PBB scenario is not very effective
smoothing out initial classical inhomogeneities~we limit
ourselves to inhomogeneities small enough for not deve
ing into a turbulent chaosbeforereaching the string scale!.
Indeed, analyzing tensor inhomogeneities, we find that t
need to be initially unnaturally small,except in the case
where the initial value of the string coupling is paramet
cally smaller than the~already very small! minimal value
gin

min.10226 needed to solve the horizon problem, i.e. to ge
erate a space at least as large as our horizon from an in
patch of sizeH in

21 @1,9,10#. More precisely, we find that if we
wish generic, coarsely homogeneous, bubbles to evolve
our ~globally very homogeneous! universe we need to re
quiregin&(10210)A3/2gin

min.10235. We note that the necessit
~for solving this ‘‘homogeneity problem’’! of having more
inflation than the minimal amount needed for solving t
horizon problem applies also to the standard inflation
models~see below!.

II. TENSOR PERTURBATIONS IN PRE-BIG-BANG
COSMOLOGY

We restrict our investigation to the simplest version of t
PBB scenario, which is described in the string frame by
four-dimensional low-energy string-effective action

GS5
1

ls
2E d4xA2gS e2w@R~gS!1gS

mn ]mw ]nw#,

~2.1!

wherew is the dilaton field, related to the string coupling b
g5ew/2, andls is the string scale. In the following, we sha
systematically use the string metricgmn

S to measure physica
lengths or frequencies. However, it will also be technica
useful to introduce the Einstein metricgmn

E . The string and

Einstein metrics are related~in 4 dimensions! by gmn
S

5ew2w0 gmn
E . Indicating the tensor perturbations a
©2001 The American Physical Society01-1
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dgmn
S 5hmn

S , and working in the synchronous gauge (g00
S 5

21,g0i
S 50,gi j

S5aS
2 d i j and h00

S 50,h0i
S 50,gS

i j hi j
S50,] jhi

S j

50), it is easily checked thathi
S j5hi

E j . Henceforth, we
denote the tensor perturbations byhi

j[hi
S j5hi

E j . Intro-
ducing the conformal timedh5dtE/aE5dtS/aS and work-
ing in Fourier space we have

hi
j~x,h!5E d3k

~2p!3
eik•x (

s562
e i

(s) j~k!h(s)~k,h!,

~2.2!

where e (s) j
i is the polarization tensor, which satisfies t

usual relations

e i
(s1) j* ~k!e i

(s2) j
~k!5ds1s2,

(
s

e i
(s) j* ~k!ek

(s) l~k!5d ik
TT jl~k!. ~2.3!

In the following to ease the notation we shall drop the sup
script s over h in Eq. ~2.2!.

A. Evolution of tensor fluctuations

During the dilaton-driven inflationary~DDI! phase1 the
Fourier transform of the tensor fluctuations satisfies
equation:

h912HEh81k2h50, ~2.4!

where HE5aE8/aE. Introducing the canonical variablec
5aE h, we obtain

c91@k22V~h!#c50, V~h!5
aE9

aE
. ~2.5!

From the above equation it is straightforward to derive t
the perturbations propagating inside the horizon (k2@V(h),
i.e. ukhu@1), during the DDI phase, evolve simply asc
[aEh.const3exp(6ikh), so that~modulo a phase factor!

hin hor.~k,h!5
aE~h in!

aE~h!
h~k,h in!, ~2.6!

whereh in is some initial time. Note that the scale factoraE
decreases in time during the DDI era@aE}(2h)1/2 and h
→02#; therefore, as long as it is within the horizon,h(k,h)
increases in time during the DDI phase. A generic fluctuat
exits the horizon for the first time during the DDI era
uhexu[1/k. Later on, while outside the horizon (ukhu!1), its
evolution is given by h912aE8/aEh8.0, so that h.c1

1c2*dh aE
22 . As aE

2}h, one gets a logarithmic growth

1Many of the results below were already derived in@11# and other
places. It is, however, simpler to give a self-contained presenta
04350
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hout hor.~k,h!. logS h

hex
D aE~h in!

aE~hex!
h~k,h in!. ~2.7!

Outside the horizonh(k,h) undergoes a logarithmic growt
while the physical wavelength in the string frame,l̂ s5aS /k,
is stretched during this DDI phase. In the following, we re
to physical quantities with a hat, e.g.,k̂i5k/aS i , where i
refers to the instant of timet i at which we evaluate the phys
cal quantity.

Later on, if aE starts to increase while the fluctuation
still outside the horizon the fluctuationh.c11c2*dh aE

22

.const. During the radiation and matter eras the amplitu
of the tensor fluctuations, after reentering the horizon,
creases as;1/aE, notably as;1/h during the radiation-
dominated~RD! phase and as;1/h2 during the matter-
dominated~MD! era.

Let us now introduce several~dimensionless! quantities
that play a crucial role in our analysis: the coefficientA that
measures theamplificationof ~tensor! fluctuations from the
initial time until today, the coefficientB!1 ~the inverse of
the redshift factor! which keeps track of the stretching o
physical frequencies and length scales between the in
patch and now, and a coefficientC whose meaning will be
described below:

A~ k̂0![
h~ k̂0 ,h0!

h~ k̂in ,h in!
, B[

k̂0

k̂in

,

C~ k̂0![S Ĥ in

Ĥ0
D 2

B 2A 2~ k̂0!. ~2.8!

Here, given a comoving wave-numberk, k̂05k/aS0 and k̂in
5k/aSin . The index 0 refers to the present time,h5h0,
while the index, in, refers to the initial time,h5h in . The
couple of functions ofk̂0 , $A( k̂0),C( k̂0)%, and the constan
B, exhaust the description of the ‘‘transfer function’’ betwe
the classical initial inhomogeneities and the present ones

For simplicity, we restrict our attention in this paper to th
simplest PBB scenario in which there is not any intermedi
phase between the DDI era and the standard Friedm
Lemaitre-Gamow one. We denote byh1 the conformal time
at which the evolution of the universe~which is always ex-
panding in the string frame! changes from the DDI expan
sion phase to a big-bang fireball. We assume that this tra
tion takes place when the expansion rate reaches the st
scale,Ĥ15ȧS1 /aS1.ls

21 and when the string couplingg1

5ew1/2 equals its present valueg1[g0.0.1. For timesh
.h1 we assume that the dilaton has become effectively fi
so thataE5aS .

If a fluctuation reenters the horizon before the MD e
i.e. during the RD phase, we have

A~ k̂0!5
aE~h in!

aE~hex!
log~k h1!

aE~h re!

aE~heq!

aE~heq!

aE~h0!
, ~2.9!

while if reentry occurs during the MD phase we getn.
1-2
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A~ k̂0!5
aE~h in!

aE~hex!
log~k h1!

aE~h re!

aE~h0!
, ~2.10!

whereheq stands for the time at which there is equality in t
universe between radiation and matter density.

Assuming homogeneity and isotropy, the backgrou
fields in the string frame evolve as

aS~h!5S h

h1
D 2(A321)/2

, w~h!5w12A3logS h

h1
D

2`,h,h1 ,

aS~h!5aE~h!5S h

h1
D , w~h!5w1 h1,h,heq,

aS~h!5aE~h!5S h2

h1 heq
D , w~h!5w1

heq,h,h0 . ~2.11!

Henceforth, to ease the notation, when referring to the s
factor in the string frame, we shall drop the subscriptS.
Using the above equations and neglecting the logarith
growth in Eqs.~2.9!, ~2.10!, we derive

A~ k̂0!5S g1

gin
D S Ĥ1

k̂in
D S k̂0

v̂0
1D 3/2

k̂0!Ĥ0 , ~2.12!

A~ k̂0!5S g1

gin
D S v̂0

eq

k̂in
D S v̂0

1

v̂0
eqD 1/2S v̂0

eq

k̂0
D 1/2

,

Ĥ0! k̂0!v̂0
eq, ~2.13!

A~ k̂0!5S g1

gin
D S v̂0

1

k̂in
D S k̂0

v̂0
1D 1/2

, v̂0
eq! k̂0!v̂0

1 ,

~2.14!

where v̂0
15v1 /a0 , v̂0

eq5veq/a0. Here v1 and veq are the
constant comoving wave numbers whose physical coun
parts coincide with the Hubble expansion rates at timeh1
andheq, respectively. More explicitly,

veq
2

aeq
2

[Ĥeq
2 5

8pG

3
rc~ teq!,

v1
2

a1
2

[Ĥ1
25

8pG

3
rc~ t1!, ~2.15!

v̂0
1

Ĥ1

5
1

11z1
.10230,

v̂0
eq

Ĥ0

5A11zeq.102, ~2.16!

where we defined the redshift factorz as a/a0[1/(11z).
Correspondingly, we get

B5
k̂0

k̂in

5S ain

a1
D S a1

a0
D5S gin

g1
D 2/(31A3)S Ĥ0

Ĥ1
D S Ĥ1

v̂0
eqD 1/2

.

~2.17!
04350
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It has been derived in Refs.@9,7# that in order to solve the
horizon~and flatness! problems in the PBB model, one has
require that

gin&gin
min.10226, Ĥ in

21*~Ĥ in
min!21.1018ls .

~2.18!

Indeed, defining the total amount of inflation as the ra
between the comoving Hubble length at the end and be
ning of the PBB inflationary phase,

Z5
a1Ĥ1

ainĤ in

, ~2.19!

the horizon problem is solved if we impose that

Z>
l̂ 0~ t1!

l̂ c~ t1!
, ~2.20!

where l̂ 0(t1)5Ĥ0
21a1 /a0 and l̂ c(t1)5Ĥ1

21;ls . The equal-
ity sign in Eq.~2.20! refers to theminimal PBB scenario, in
which the horizon volume today has evolved from an init
~Hubble! patch of sizeĤ in

21 . The minimal and nonminima
scenarios are illustrated in Fig. 1. Note that, in the nonm
mal scenario, the Hubble scale at present timeĤ0

21 is strictly
smaller than the comoving scaleL(t0)5L in a0 /ain . Using
the isotropic and homogeneous PBB background soluti
~2.11!, it is easily derived thatain /a15(gin /g1)2/(31A3) and
Ĥ in /Ĥ15(gin /g1)2A3/(31A3). Imposing Eq.~2.20! with the
equality sign, we find the minimal initial conditions as

gin
min[g1S Ĥ1

Ĥ0
D 2A3/2S a1

a0
D 2A3/2

5g1S Ĥ1

v̂0
eqD 2A3/4

,

~2.21!

and

FIG. 1. Schematic representation, in the string frame and for
nonminimal version of the PBB scenario, of the evolution of: t
Hubble horizonH21, an intermediate physical wavelength~dashed
line! and the comoving sizeL ~continuous line! corresponding to
the initial patchH21.
1-3
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Ĥ in
min[Ĥ1S Ĥ1

Ĥ0
D 2A3/~A311!S a1

a0
D 2A3/~A311!

5Ĥ1S v̂0
eq

Ĥ1
D A3/2(A311)

, ~2.22!

where we useda1 /a05v̂0
1/Ĥ15(Ĥ0 /Ĥ1)(Ĥ1 /v̂0

eq)1/2. In-

serting in Eqs. ~2.21!, ~2.22! the numerical valuesĤ0

510218 Hz, v̂0
eq510216 Hz and Ĥ1.ls

21;1042 Hz, we
obtain Eq.~2.18!.

Introducing the notationḡin[gin /gin
min[1026gin (ḡin<1,

with equality in the minimal scenario!, we can rewrite Eqs
~2.13!, ~2.14! in the form

A~ k̂0!5
1

~ ḡin!1/A3 S Ĥ0

k̂0
D 3/2

, Ĥ0! k̂0!v̂0
eq, ~2.23!

A~ k̂0!5
1

~ ḡin!1/A3 S Ĥ0

k̂0
D 1/2

1

A11zeq

,

v̂0
eq! k̂0!v̂0

1 . ~2.24!

The above equations can also be recast in a unique form
which interpolates between the two frequency regions:

A~ k̂0!5
1

~ ḡin!1/A3 S Ĥ0

k̂0
D 1/2F Ĥ0

k̂0

1
1

A11zeq
G . ~2.25!

The most striking consequence of Eq.~2.25! concerns tenso
fluctuations on the present horizon scalek̂0;Ĥ0. For these
scales, the amplification coefficient connecting them to
initial fluctuations isA(Ĥ0).(ḡin)

21/A3. In the minimal sce-
nario (ḡin51) this isA(Ĥ0).1 which means that horizon
scale tensor fluctuations today just reproduce~modulo a
logarithmic amplification factor that we neglected! the corre-
sponding initial horizon-scale fluctuations.@Note that this
preservation of the amplitude of horizon-scale fluctuations
the minimal, horizon-solving, case applies equally well to
standard potential-driven inflation scenario.# On the other
hand, the amplification properties of PBB inflation loo
worse in the nonminimal scenario (ḡin!1) for which
horizon-scale tensor fluctuations today areparametrically
amplified compared to the corresponding initial fluctuatio
This behavior is different in the PBB model than in ordina
inflation. For example, if inflation is implemented by a d
Sitter phase (ĤdS.const), starting att i , and ending att1
when the transition to RD phase occurs, then the amplifi
tion factor for fluctuations that are just outside the horiz
( k̂0;Ĥ0) is

A~ k̂0!5e2NS ĤdSa1

Ĥo a0
D , ~2.26!
04350
la

e

n
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where N[ log(a1 /ai) is the total number ofe foldings.
Hence, differently from the PBB scenario, where tensor p
turbations increase during the PBB era, in ordinary inflat
as N increases~longer inflationary era! A decreases para
metrically.

However, thisamplification of initial tensor fluctuations
by PBB cosmology~instead of the usualdeamplification
mechanism of potential-driven inflation in the nonminim
case!, though paradoxical, does not, by itself, imply that t
initial value of the tensor inhomogeneities must be fine tun
to an unnaturally small value. Indeed, the classical quan
that needs to be smallish for the dilaton-driven inflation
start is not theamplitudeof tensor waves, but theirenergy

density~compared toẇ in
2 ). We shall postpone the study of th

latter quantity to the next section.
For the quantityB, defined by Eq.~2.8!, we find for the

PBB scenario under investigation that

B5
k̂0

k̂in

5
Ĥ0

Ĥmin
in ~ ḡin!2/~31A3!.10242~ ḡin!2/~31A3!,

~2.27!

where in the last equation we used the fact thatĤmin
in

;1024 Hz. Here the behavior is similar to what happens
standard inflation, e.g., with a de Sitter phase we derive

B5e2NS a1

a0
D . ~2.28!

In PBB cosmology, as in ordinary inflation, the wav
length of the tensor perturbations always gets stretched,
the amount of stretching is parametrically larger in the no
minimal case (ḡin!1; or N.Nmin) than in the minimal one.

It is important to notice that the formulas given above f
theclassical‘‘transfer function’’A( k̂0) and the~inverse! red-
shift factor B are physically meaningful only when it con
cerns a present spatial frequencyk̂0 such that the correspond
ing blueshifted frequencyB 21k̂0 ~which represents the
initial frequency! is smaller than the string scalev̂s51/ls .
When this is not the case, this classical transfer function d
not apply, and one must consider the problem of quantu
normalized fluctuations~as studied, e.g., in Ref.@13#!. The
results for A and B provided by Eqs.~2.23!, ~2.24! and
~2.27! are summarized in Fig. 2.

B. Power spectrum for tensor fluctuations

The ‘‘bare’’ power spectrum is defined by the relation:

^h(s1)~k1 ,h!h(s2)* ~k2 ,h!&5ds1s2 d (3)~k12k2!

3P h
bare~k1 ,h!, ~2.29!

whereh(s)(k,h) is given by Eq.~2.2!. Using the relations
~2.3! and assuming isotropy it is straightforward to derive
1-4



l
e

e

y

-

ta

B
tia

of
g

e

the

-
mo-

n-
’’

vi-
mi-

ng
e

n

’’
Eq.

re-
left
d to
to
oes

FATE OF CLASSICAL TENSOR INHOMOGENEITIES IN . . . PHYSICAL REVIEW D64 043501
^hi
j~x1 ,h!hl

k* ~x2 ,h!&5E dk

k

dVk

4p
eik•(x12x2)

3d ik
TT jl~k!

k3

2p2
P h

bare~k,h!.

~2.30!

Hence, the ‘‘physical’’~per logarithmic interval of spatia
frequency! power spectrum is related to the ‘‘bare’’ on
through

P h
phys.~k,h![

k3

2p2
P h

bare~k,h!. ~2.31!

@In the following we drop the superscript ‘‘physical’’ on th
power spectrum.# Note that the ‘‘physical’’ power spectrum
has the same dimensions ash2(x,h) ~i.e. it is dimension-
less!. The energy density in gravitational waves is given b

rGW5E dk

k

drGW~k!

d logk
,

drGW~k!

d logk
5

1

16pG
Pḣ~k!,

~2.32!

wherePḣ is the ~physical! power spectrum for the time de
rivative of the tensor fluctuationdh/dt, i.e. Pḣ(k)
. k̂2Ph(k). The ratio between the energy density in gravi
tional waves and the critical energyrc ~conventionally de-
fined in all cases2 by 3Ĥ258pGrc) reads

VGW~ k̂![
1

rc

drGW~ k̂!

d log k̂
[

1

6

k̂2

Ĥ2
Ph~ k̂!. ~2.33!

As explained in the Introduction, in the stochastic PB
model a generic inflating bubble is expected to have ini
values ofVGW( k̂) and of similar ratios for the other field
inhomogeneities which are smallish~say ;1/5), but not
parametrically small. As we are interested in order-
magnitude estimates, we shall henceforth consider that
neric inhomogeneities should be allowed to be as large
VGW;Vw;1.

Therefore, while by definition the amplification of th
power spectrum ofh is given only by theA factor@defined in
Eq. ~2.8!#,

Ph~ k̂0!

Ph~ k̂in!
5A 2~ k̂0!, ~2.34!

the amplification ofVGW reads

2Here,Ĥ,G andrc are all measured in string units. For discussi
initial values it would be more accurate to work with Einstein-fram
quantities. We neglect the inaccuracy~due to the difference betwee
the physical Einstein and string Hubble expansion rates! introduced
by our definition, which is only a factor of order unity.
04350
:

-

l

-
e-
as

VGW~ k̂0!

VGW~ k̂in!
5C~ k̂0!, ~2.35!

where the dimensionless quantityC( k̂0) was defined in Eq.
~2.8! above. We can compute the explicit expression of
tranfer functionC( k̂0) by using Eq.~2.25! and the useful
relationBĤ in /Ĥ05(ḡin)

2/A3 . We find

C~ k̂0!5~ ḡin!2/A3
Ĥ0

k̂0
S Ĥ0

k̂0

1
1

A11zeq
D 2

. ~2.36!

Note the good news that, in this result, the power ofḡin on
the right-hand side is nowpositive@contrary to the paradoxi-
cal negative power of ḡin entering the amplitude-
amplification coefficientA( k̂0), given by Eq.~2.25!#. @The
positiveness of the exponent ofḡin in C( k̂0) is due to the
positive compensating exponent enteringBĤ in /Ĥ0

5(ḡin)
2/A3 .# Therefore from the point of view of the para

metric dependence of the overall decrease of tensor inho
geneities, PBB inflation is not qualitatively different from
ordinary inflation. However, we shall see that, from a qua
titative point of view, solving the ‘‘homogeneity problem
leads to a more severe constraint for PBB inflation.

Let us now use the existing limits on the amount of gra
tational waves generating inhomogeneities in the cosmic
crowave background radiation~CMBR! to constrain the ini-
tial amount of gravitational wavesVGW( k̂in). From @14,15#
we read:

VGW~ k̂0!h100
2 ,7310211S Ĥ0

k̂0
D 2

, Ĥ0, k̂0,30Ĥ0 .

~2.37!

FIG. 2. We show schematically how the ‘‘transfer function
between initial and present time acts both on the amplitude,
~2.25!, and the frequency, Eq.~2.26!, of tensor fluctuations. We

have assumed for simplicity thath(h in)51 andḡin51. In the mini-

mal PBB scenario the initial string frequencyv̂s5ls
21 corresponds

today toB v̂s51 Hz. The present Hubble frequencyĤ05B Ĥ in
min

;10218 Hz originates from the initial frequencyĤ in
min;1024 Hz,

which corresponds to 1 Fermi. Note that, whereas the colored
gions refer to initial classical fluctuations, the white one on the
part of the figure concerns wavelengths that would correspon
initial length scales formally smaller than the string scale, i.e.
quantum fluctuations. For them the classical transfer function d
not apply.
1-5
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Usingh10050.65 and writing the most stringent consequen
of this limit ~corresponding tok̂05Ĥ0), we get the ‘‘homo-
geneity constraint’’

VGW~ k̂in0!~ ḡin!2/A3&10210, ~2.38!

where we denoted byk̂in0 the initial wave number that cor
responds now toĤ0, i.e. k̂in05B 21Ĥ0. @Note that k̂in0

>Ĥ in .# If we were to restrict ourselves to the minimal PB
scenario (ḡin51), i.e. to the case in which we require th
minimum amount of inflation in order to solve the horizo
problem ~i.e. an initial PBB bubble of size 1 Fermi!, Eq.
~2.38! would tell us that the initial tensor inhomogeneiti
must be unnaturally small:VGW(Ĥ in

min)&10210. This would
mean that one looses all the genericity benefits of consi
ing a ‘‘stochastic’’ PBB model.

There is, however, a way to solve this ‘‘homogene
problem,’’ i.e. to relax this unnatural fine tuning of initia
inhomogeneities, and to allow for ‘‘generic’’ initial inhomo
geneitiesVGW( k̂in);1. Indeed, the fact thatḡin enters Eq.
~2.36! with a positive power means that it is enough to im
pose

ḡin&~10210!A3/2;1029. ~2.39!

In terms of the string couplinggin , this limit is 9 orders of
magnitude smaller than the value given in Eq.~2.18!, i.e.

gin&10235. ~2.40!

Note, however, that this inequality applies only if the initi
spectrum is not completely redshifted out of the present
rizon. The condition for this isk̂in0,ls

21 , i.e. Bls
21.Ĥ0.

Using B510242(ḡin)
2/(31A3) this yields:

gin*gin
thr.510269. ~2.41!

In conclusion, we obtain three possible scenarios:~i! if
10235&gin&10226, we must require initiallyVGW

in !1 and as
a consequence, the PBB scenario suffers from a serious
mogeneity problem;~ii ! if 10269&gin&10235, there is no
need to fine-tune the initial tensor perturbations,VGW

in

;O(1) @in this case, the tensor fluctuations on very lar
scales can still, in principle, be seen as classical small fl
tuations in the CMBR#, and ~iii ! for gin&10269 only initial
quantum fluctuations survive.

Before ending this section, it is instructive to discuss,
comparison, the fate of initial inhomogeneities, discussed
far for the PBB scenario, within an ordinary inflation sc
nario ~modelled for simplicity as a simple de Sitter phas!.
For a de Sitter inflationary phase it is straightforward to d
rive from Eqs.~2.26!, ~2.28! that ~for k̂0;Ĥ0),

C~ k̂0!5e24(N2Nmin), ~2.42!

whereNmin5log(ĤdSa1 /(Ĥ0 a0)) is the minimal amount of
e-foldings needed to solve the horizon problem. Applying
04350
e

r-

-

o-

e
c-

r
o

-

e

CMBR’s bound given by Eq.~2.37! to these fluctuations tha
are re-entering the horizon now we get

VGW
dS ~ k̂in0!e24(N2Nmin)&10210. ~2.43!

Therefore, as happens in the minimal PBB scenario, in
minimal ~horizon-problem-solving! de Sitter case (N
5Nmin) one is still facing an ‘‘homogeneity problem,’’ i.e
the CMBR’s bound forces the initial tensor inhomogeneit
to be unnaturally small:VGW

dS (Ĥ in
min)&10210. To solve this

homogeneity problem, i.e. to relax this fine tuning and to
able to start withVGW

dS ( k̂in0);1, we must depart from the
minimal de Sitter scenario by at least 6e foldings, i.e.N
*Nmin16.

III. DISCUSSION AND CONCLUSIONS

We have shown that the dilaton-driven inflationary pha
of the pre-big-bang scenario is not very effective in smoo
ing out the classical inhomogeneities that are expected to
present in a generic, initial patch of space which starts
inflationary evolution. We computed the various ‘‘transf
functions’’ that relate the initial spectrum of inhomogeneiti
to the present one. Our main conclusion is that the requ
ment of naturalness of initial inhomogeneities (VGW;1) can
be satisfied only at the price of a constraint@9,10# on the
initial value of the ~homogeneous part of the! string cou-
pling, which is much stronger~by a factor;1029) than the
previously acknowledged constraint~following from the ne-
cessity to solve the horizon and flatness problems!.

Ordinary inflation qualitatively faces an analogous hom
geneity problem. For example in the de Sitter case we n
to require ;6 e foldings more than the minimal numbe
needed to solve the horizon~and flatness! problems in order
to overcome this initial inhomogeneity issue. Quantitative
this additional constraint is not very severe for ordinary
flation because, in many inflationary models, the number oe
folds is exponentially dependent on some inverse powe
the coupling constants of the underlying theory.

This additional ‘‘homogeneity’’ constraint on the PB
model discussed here does not necessarily mean that th
sic ~elegant! idea of dilaton-driven inflation is to be dis
carded. There might be other ways of using the kinetic
ergy of a scalar field to drive a nonfine-tuned inflationa
phase. In particular the recently proposed model of ‘‘k infla-
tion’’ @16#, which differs from the PBB scenario in makin
use of higher-order kinetic terms to drive an inflationary
phase, has been shown to have efficient smoothing prope
@17#.
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