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Abstract
The uncertainty principle, applied naively to the test masses of a laser-
interferometer gravitational-wave detector, produces a standard quantum limit
(SQL) on the interferometer’s sensitivity. It has long been thought that beating
this SQL would require a radical redesign of interferometers. However, we
show that LIGO-II interferometers, currently planned for 2006, can beat the
SQL by as much as a factor two over a bandwidth �f ∼ f , if their thermal
noise can be pushed low enough. This is due to dynamical correlations between
photon shot noise and radiation-pressure noise, produced by the LIGO-II signal-
recycling mirror.

(Some figures in this article are in colour only in the electronic version)

A laser-interferometer gravitational-wave detector (‘interferometer’ for short) consists
mainly of an L-shaped assemblage of four mirror-endowed test masses, suspended from
seismic-isolation stacks (see figure 1). Laser interferometry is used to monitor changes in
the relative positions of the test masses produced by gravitational waves.

The uncertainty principle states that, if the relative positions are measured with high
precision, then the test-mass momenta will thereby be perturbed. As time passes, the
momentum perturbations will produce position uncertainties, thereby possibly masking the
tiny displacements produced by gravitational waves. A detailed analysis of this process gives
rise to the standard quantum limit (SQL) for interferometers: a limiting (single-sided) noise
spectral density S

SQL
h = 8h̄/(m�2L2) for the dimensionless gravitational-wave (GW) signal

h(t) = �L/L [1]. Here m is the mass of each identical test mass, L is the length of the
interferometer’s arms, �L is the time evolving difference in the arm lengths, � is the GW
angular frequency, and h̄ is Planck’s constant. This SQL is shown in figure 2 for the parameters
of LIGO-II [2] [the second generation interferometers in Laser Interferometer Gravitational
Observatory (LIGO), planned to operate in ∼ 2007–2009]: m = 30 kg, L = 4 km. The
‘straw-man’ design for LIGO-II [3], assuming (naively) no correlations between photon shot
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Figure 1. Schematic view of a LIGO-II signal recycled (SR) interferometer. The interior of the
dashed box is a conventional LIGO-I interferometer; ci and di are the input and output fields at
the beam splitter’s dark port; ai and bi are the full system’s vacuum input and signal output. The
arrows indicate gravity-wave-induced mirror displacements.

noise and radiation-pressure noise, is capable of going very close and parallel to the SQL over
a wide frequency band: ∼ 50 Hz to ∼ 200 Hz (see figure 2).

Braginsky, who formulated the concept of SQLs for high-precision measurements [4],
also demonstrated that it is possible to circumvent SQLs by changing the designs of one’s
instruments [4, 5]. Since the 1970s, it has been thought that for GW interferometers the
redesign must be major—e.g., injecting squeezed vacuum into an interferometer’s dark port [6]
and/or introducing 4 km-long filter cavities into the interferometer’s output port, as has recently
been proposed for LIGO-III [7] to implement frequency-dependent homodyne detection [8].
Yuen and Ozawa have also conceived ways to beat the SQL by taking advantage of the so-
called contractive states [9], but it is not yet clear how to implement their ideas in real GW
interferometers.

In this paper we show that although major redesigns could not be avoided if we want to
beat the SQL significantly, LIGO-II interferometers, with their currently planned design, can
beat the SQL by modest amounts (see, e.g., noise curves b1 and b2 in figure 2), if all sources
of thermal noise can also be pushed below the SQL. For current LIGO-II designs, estimates
place the dominant, thermoelastic component at about the SQL [10].

As is well known, there are two aspects of the uncertainty principle: (i) the quantum
mechanics of the test-mass wave function, and (ii) the Heisenberg-microscope-like influence
of the laser light used to measure the position. Braginsky and colleagues [5,11] have shown that
the test-mass wave-function aspect of the uncertainty principle is irrelevant to the operation of
a GW interferometer. Indeed, the interferometer does not measure relative test-mass positions;
it only monitors classical-force-induced changes in the relative positions, and those changes, in
the LIGO frequency band, are not contaminated by the details of the test-mass wave functions.
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Figure 2. Log–log plot of
√
Sh(�)/S

SQL
h (γ ) versus �/γ for the quadratures b1 (ζ = π/2) and

b2 (ζ = 0) with ρ = 0.9, φ = π/2 − 0.47 and I0 = ISQL, for the SQL, for a conventional
interferometer with I0 = ISQL, and for a straw-man LIGO-II design [2] with shot-noise /
radiation-pressure correlations naively omitted. For LIGO-II, γ = 2π × 100 Hz (top axis) and√
S

SQL
h (γ ) = 2 × 10−24 Hz−1/2. These curves do not include seismic and thermal noises; for

LIGO-II the latter is currently estimated to be slightly above the SQL [8].

As a result, the light is the only enforcer of the SQL.
Braginsky and Khalili have also shown [5] that as long as there are no correlations between

the light’s shot noise and its radiation-pressure-fluctuation noise, the light firmly enforces the
SQL. This is the case for ‘conventional interferometers’, i.e. for interferometers that have no
signal-recycling mirror on the output port and a simple (frequency independent) homodyne
detection is performed (the type of interferometer used, e.g., in LIGO-I/Virgo). However, the
signal-recycling mirror [2] (which is being planned for LIGO-II as a tool to reshape the noise
curves1), sends back into the arm cavities the signal coming out from the dark port and thereby
produces shot-noise/back-action-noise correlations, which break the light’s ability to enforce
the SQL. These dynamical correlations arise naturally from the nontrivial coupling between the
antisymmetric mode of motion of the four arm-cavity mirrors and the signal recycled optical
fields [12]. This coupling invalidates the naive picture, according to which the arm cavity
mirrors behave like free test masses subject only to Poissonian quantum-vacuum fluctuations.
As we show below, the interferometer as a whole responds to a GW signal as an ‘optical
spring’ and this oscillatory behaviour is responsible for the resonant amplification of the GW
signal and the beating of the SQL. Braginsky, Gorodetsky and Khalili [14], in designing the
‘optical bar’ GW detectors, were the first to suggest that this phenomenon could be used
to reach sensitivities beyond the free-mass SQL. The resonant dips in figure 2 correspond
to the resonant frequencies of the two dimensional dynamical system formed by the arm-

1 A power-recycling mirror is also used in real interferometers to increase the light power at the beamsplitter, but it
will not affect the quantum noise in the dark-port output. For this reason we do not take it into account.
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cavity mirrors and the signal-recycled optical field. Hence, the SR interferometer’s dynamics
cannot be described by a successive sequence of independent measurements of the test-mass
displacements, for which the SQL was originally derived [4] and further discussed [9]. On the
contrary, the SQL for a free test mass is no longer relevant for SR interferometers. Its only
remaining role is as a reminder of the regime where back-action noise is comparable to the
shot noise. The remainder of this paper is devoted to explaining these claims. The full details
will be published elsewhere [12, 13].

Kimble, Levin, Matsko, Thorne and Vyatchanin have recently derived the input-output
relations for a conventional interferometer [7] using the Caves–Schumaker two-photon
formalism [15]. The full electric field, in the Heisenberg picture, at the output (dark) port, i.e.
soon after the beamsplitter (see figure 1), reads:

E(t) =
√

4πh̄ω0

Ac

[
cos(ω0t)

∫ +∞

0
(d1e−i�t + d

†
1 ei�t )

d�

2π

+ sin(ω0t)

∫ +∞

0
(d2e−i�t + d

†
2 ei�t )

d�

2π

]
, (1)

where d1 and d2 are the two output quadratures (see figure 1), ω0 is the carrier angular frequency,
A is the effective cross sectional area of the laser beam and c is the speed of light. Indicating
by c1 and c2 the two input quadratures at the dark port, the input-output relations, at side-band
(gravity-wave) angular frequency �, are [7]:

d1 = c1 e2iβ , d2 = (c2 − Kc1) e2iβ +
h
√

2Keiβ

hSQL
, (2)

where 2β = 2 arctan �/γ is the net phase gained by the field at sideband frequency �

while in the arm cavity, γ = T c/4L is the half bandwidth of the arm cavity (T is the
power transmissivity of the input mirrors); h is the Fourier transform of the GW field, and

hSQL ≡
√
S

SQL
h is the SQL for GW detection. The quantity K = 2(I0/ISQL)γ

4/(�2(γ 2 + �2))

in (1) is the effective coupling constant which relates the motion of the test mass to the output
signal. Finally, I0 is the input light power at the beamsplitter, while ISQL = mL2γ 4/(4ω0) is
the power needed by a conventional interferometer to reach the SQL at � = γ . We indicate
by l the length of the SR cavity and limit our analysis to a SR cavity much shorter than the
arm cavities, e.g., l � 10 m. We introduce φ ≡ [ω0l/c]mod 2π , the phase gained by the carrier
while traveling one way in the SR cavity.

Propagating the electric field (1) down to the SR mirror and introducing the input and
output quadratures ai and bi (i = 1, 2) for the entire SR interferometer (figure 1), we obtain
the final input-output relations [12]: 2(

b1

b2

)
= 1

M

[
e2 iβ

(
C11 C12

C21 C22

) (
a1

a2

)
+

√
2Kτ eiβ

(
D1

D2

)
h

hSQL

]
, (3)

where, to ease the notation, we have defined:

M = 1 + ρ2 e4 iβ − 2ρ e2 iβ

(
cos 2φ +

K
2

sin 2φ

)
,

C11 = C22 = (1 + ρ2)

(
cos 2φ +

K
2

sin 2φ

)
− 2ρ cos 2β ,

C12 = −τ 2
(
sin 2φ + K sin2 φ

)
, C21 = +τ 2

(
sin 2φ − K cos2 φ

)
,

D1 = − (
1 + ρ e2 iβ

)
sin φ , D2 = − (−1 + ρ e2 iβ

)
cosφ . (4)

2 Here we face a delicacy of the Fourier-based formalism due to possible unstable modes of the system. We cured
the problem by introducing an appropriate control system which leaves the expression of the noise spectral density
unchanged [12, 13].
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In the above equations ρ and τ are the amplitude reflectivity and transmissivity of the SR
mirror, respectively. For a lossless SR mirror: τ 2 + ρ2 = 1. Because ai, a

†
i in (3) represent a

free field, they satisfy the usual commutation relations for quadratures with � 	 ω0 [15].
We assume a frequency-independent quadrature bζ = b1 sin ζ + b2 cos ζ is measured

via homodyne detection, and the noise is calculated as follows [7]. We define hn(�) ≡
�bζhSQLM/[

√
2Kτ(D1 sin ζ + D2 cos ζ )], where �bζ is the noise part of bζ , and then the

(single-sided) spectral density Sh(f ) of hn, with f = �/2π , can be computed by the formula:
2πδ(�−�′)Sh(f ) = 〈hn(�)h†

n(�
′)+h†

n(�
′)hn(�)〉. Assuming that the input is in its vacuum

state, we find [12] that the noise spectral density can be written in the simple form (note that
Cij ∈ �):

Sh = h2
SQL

2K
1

τ 2 |D1 sin ζ + D2 cos ζ |2 ×
[
(C11 sin ζ + C21 cos ζ )2 + (C12 sin ζ + C22 cos ζ )2] . (5)

Figure 2 shows this Sh(f ) for the two quadratures b1 (i.e. ζ = π/2) and b2 (ζ = 0), with
(for definiteness) ρ = 0.9, φ = π/2 − 0.47 and I0 = ISQL. Also shown for comparison
are the SQL, and Sh(f ) for a straw-man LIGO-II design when the shot-noise/radiation-
pressure correlations are (naively) ignored [3], and for a conventional interferometer with
I0 = ISQL. The sensitivity curves for the two quadratures go substantially below the
SQL and show an interesting resonance structure. To explain the resonant frequencies
in the case of a highly-reflecting SR mirror, we have found it convenient to investigate
the free oscillation modes of the entire interferometer. By free we mean no GW signals
[h(�) = 0] and perfect reflectivity for the SR mirror (ρ = 1). The free-oscillation frequencies
satisfy the relation [12, 13]: cos 2β = cos 2φ + K sin φ cosφ, which can be solved to give
�2

res/γ
2 = [tan2 φ ± √

tan4 φ − 4I0/ISQL tan φ]/2, which agrees quite accurately with the
frequencies of the valleys in the dashed noise curves (ρ � 1) of figure 2. For very low light
power (Io 	 ISQL) the resonant frequencies decouple into: �0

res � 0, i.e. the eigenfrequency
of a free mass and �1,2

res � ±γ tan φ, i.e. the optical resonances of a SR interferometer with
fixed arm-cavity mirrors [2]. By increasing the light power up to Io = ISQL, the test masses and
the optical field get more and more coupled, and the resonant frequencies of the entire system
become a ‘mixture’ of the two decoupled resonances. It is easy to show [12, 13] that the low-
frequency resonant dip in figure 2 originates from the free-mass eigenfrequency �0

res, modified
by the dependence of the radiation-pressure force on the test-mass motion’s history; while the
higher-frequency resonant valley is largely due to the optical field resonances �1,2

res . Hence, the
SR mirror feeds back the signal into the arm cavities and makes the SR interferometer behave
as an ‘optical spring’ detector. The GW device gains sensitivity near the resonant frequencies.

To give a first rough idea of the performances that a SR interferometer with homodyne
detection can reach if thermal noise can be made negligible, we have estimated the signal-to-
noise ratio (S/N)2 = 4

∫ ∞
0 |h(f )|2/Sh(f )df [1] for gravitational waves from binary systems

made of black holes and/or neutron stars. Using the Newtonian, quadrupole approximation
for which the waveform’s Fourier transform is |h(f )|2 ∝ f −7/3, and introducing in the above
integral a lower cutoff due to seismic noise at �s = 0.1γ (fs � 10 Hz), we get for the
parameters used in figure 2: (S/N)1/(S/N)conv. � 1.83 and (S/N)2/(S/N)conv. � 1.98.
These numbers refer to the first and second quadratures, respectively. Here (S/N)conv. is the
signal to noise ratio given by a conventional interferometer with the same light-power input at
the beamsplitter, which is SQL-bounded.

We now briefly discuss how optical losses affect the noise in a SR interferometer. We
have computed [12] the influence of losses using (i) the lossy input-output relations (analog of
equation (2)) for a conventional interferometer [boxed part of figure 1] as derived in [7], and
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(ii) an analogous treatment of losses in the SR cavity. We find that for loss levels expected
in LIGO-II [3], the optical losses have only a moderate influence on the noise curves of
figure 2; primarily, they just smooth out the deep resonant valleys. More specifically, for (i)
the physical parameters used in figure 2, (ii) a net fractional photon loss of 1% in the arm
cavities and 2% in each round trip in the SR cavity, and (iii) a photodetector efficiency of 90%,
we find a fractional loss in S/N for inspiraling binaries of 8% and 21%, for the first and second
quadratures, respectively.

In the last part of this letter we discuss the role played by the shot-noise / radiation-
pressure correlations, present in LIGO-II’s noise spectral density (5), in beating the SQL. Our
analysis is based on the general formulation of linear quantum measurement theory developed
by Braginsky and Khalili in [5]. Quite generically [5, 13], we can rewrite the output O of the
whole optical system as: O = Z + Rxx F + Lh. Here by output we mean one of the two
quadratures b1, b2 or a combination of them, e.g., bζ (modulo a normalization factor). Rxx

in the above equation is the susceptibility of the antisymmetric mode of motion of the four
mirrors [5], given by Rxx(�) = −4/(m�2); Z is the effective3 output noise field and F is the
effective back-action force, both of these operators do not depend on the mirror mass m. The
noise spectral density reads [5]:

Sh = 1

L2

{
SZZ + 2Rxx � [SFZ ] + R2

xx SFF
}
, (6)

where the (one-sided) cross correlation of two operators is defined by 2πδ
(
� − �′) SAB(�) =

〈A(�)B†(�′) + B†(�′)A(�)〉. Due to their dependence on m the terms containing SZZ , SFF
and � [SFZ ] in equation (6) should be identified as the spectral densities of the effective
shot noise, back-action noise and a term proportional to the effective correlation between the
two noises [5]. From the definition of spectral density, one can derive [5, 12] the following
uncertainty relation for the (one-sided) spectral densities and cross correlations of Z and F :
SZZ SFF − SZF SFZ � h̄2. It turns out that this equation does not impose in general a lower
bound on the noise spectral density (6). However, in a very important type of interferometer
it does, namely for interferometers with uncorrelated shot noise and back-action noise, e.g.,
a LIGO-I/Virgo type conventional interferometer. In this case Sconv

ZF = 0 = Sconv
FZ [7] and

inserting the vanishing correlations into equation (6) and into the uncertainty relation, one
easily finds that Sconv

h � S
SQL
h . From this it follows that to beat the SQL one must build up

correlations between shot noise and back-action noise. In a SR interferometer the arm-cavity
light containing the GW signal and the quantum-vacuum fluctuations enters the SR cavity
through the dark port (see figure 1). Part of this light leaks out through the SR mirror and
contributes to the shot noise, but another portion, which is correlated to it, is fed back into the
arm cavities and contributes to the radiation-pressure noise at some later time. This mechanism
not only originates the nontrivial coupling between the antisymmetric mode of motion of the
four arm-cavity mirrors and the signal-recycled optical field, which we discussed above, but
also builds up dynamical correlations between the shot-noise and the radiation-pressure noise.
Indeed, we obtain: SSR

ZF = SSR
FZ �= 0 (see [12] for their explicit expressions).

In conclusion, our analysis has demonstrated the importance of using fully quantum
techniques to analyse SR interferometers with LIGO-II parameters, where the correlations
between the shot and radiation-pressure noises are significant. It also revealed the crucial
role of the coupled optical-mechanical dynamics in producing such correlations. It is now
important to identify the best SR configuration, i.e. the choice of the physical parameters I0,
3 We refer to Z and F as effective because we have shown [13] that for a SR interferometer the real force acting
on the test masses is a combination of these effective fields. When the shot noise and radiation-pressure-noise are
correlated, the real force does not commute with itself at different times [13], which makes the analysis in terms of
real quantities more complicated than in terms of the effective ones.
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φ, ρ, ζ , and the readout scheme (homodyne or modulation/demodulation) that optimizes the
S/N for various astrophysical GW sources.
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