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Abstract

The scattering of light by light in a laser system with high-energy beams (not nec-

essarily high-intensity) where three pulses collide is investigated. Two of the colliding

beams (with wavelengths k1 and k2) scatter at each other and the third beam (with

wavelength k3) stimulates this process because the presence of the third beam induces

the emission of photons into the direction of the third beam itself. Since two photons

always scatter into two photons and one of the scattered photons is propagating into the

direction of the third beam, a fourth wave with wavelength k4 = k1+k2−k3 is generated

and can be measured. In this thesis we investigate the detectability of this stimulated

photon-photon scattering in laser systems with high-energy beams such as OMEGA EP

in Rochester (USA). The three colliding pulses are modelled by focused Gaussian beams

and a special geometry of these beams is chosen. An analytical approximation is derived

and for the short-pulse performance of OMEGA EP a number of N = 70.9 scattered

photons per shot is predicted which seems to be a detectable signal.

Zusammenfassung

Die Streuung von Licht an Licht in einem Lasersystem mit Hochenergie Pulsen (nicht

notwendigerweise mit hoher Intensität), in dem drei Pulse kollidieren, wird untersucht.

Zwei der kollidierenden Strahlen (mit Wellenlängen k1 und k2) streuen aneinander und

der dritte Strahl (mit Wellenlänge k3) stimuliert diesen Prozess, weil die Anwesen-

heit des dritten Strahls die Emission von Photonen in seine Richtung induziert. Da

zwei Photonen immer in zwei Photonen streuen und eines der gestreuten Photonen sich

in die Richtung des dritten Strahls fortbewegt, wird eine vierte Welle mit Wellenlnge

k4 = k1+k2−k3 erzeugt und kann gemessen werden. In dieser Arbeit soll nun untersucht

werden, ob diese stimulierte Photon-Photon Streuung in Lasersystemen mit Hochenergie

Pulsen wie OMEGA EP in Rochester (USA) gemessen werden kann. Die drei aufeinander

treffenden Strahlen werden mit fokussierten Gauß-Pulsen modelliert und eine spezielle

Geometrie der Strahlen wird gewählt. Eine analytische Näherung wird hergeleitet und

für die kurzen Pulse von OMEGA EP wird eine Anzahl von N = 70.9 Photonen pro

Kollision berechnet, was ein messbares Signal zu sein scheint.
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Units and Conventions

During the whole thesis we will use Gaussian units with natural units defined by:

~ = c = 4πε0 = 1.

This means the finestructure constant α becomes:

α = e2 ≈ 1

137
.

Another important physical quantity used in this thesis is the electron mass [MOHR08]:

m = 9.109× 10−31 kg.

Vectors in Minkowski-space will have greek indices (µ, ν, ...) and will take the values

0, 1, 2, 3. Further we will use Einstein’s summation convention: Over repeated indices

(one contravariant and one covariant) will be summed. Our conventions for important

four-vectors are listed in Table 1.

For the Minkowski-metric we use the convention:

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

That means that the D’Alembert operator has the form:

� = ∂µ∂
µ = ∂2

t −4.

Space coordinates xµ = (t,x)
Partial derivative ∂µ = (∂t,∇)
Four momentum pµ = (E,p)
Four wavevector kµ = (ω,k)
Four-vector potential Aµ = (φ,A)
Field strenght tensor Fµν = ∂µAν − ∂νAµ
Scalar product p2 = pµpµ

Table 1: Four-vector conventions
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In order to distinguish between Lorentz-indices and spinorial indices we use for the latter

big roman letters (A,B, ...). The γ-matrices satisfy the Clifford algebra:

{γµ, γν} = 2gµν .

During the whole thesis we will use the Dirac-representation of the γ-matrices:

γ0 =

(
12 0

0 −12

)
, γi =

(
0 σi

−σi 0

)
,

with the Pauli-matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
.

We will also use the notation of the Dirac conjugate spinor:

ψ̄ = ψ†γ0.

For the Fourier transformation we use the convention:

F
(
f(t)

)
(ω) = f̃(ω) =

1√
2π

∫
dtf(t)e−iωt.

The inverse transformation therefore is:

f(t) =
1√
2π

∫
dωf̃(ω)eiωt.

6



1 Introduction

Quantum electrodynamics (QED) is one of the best tested and most successful theories

in physics. However there are still important predictions that have not been tested yet.

The fact that photons interact with each other in vacuum is a very early prediction,

investigated already in 1936 by Euler and Heisenberg [EULE36]. However so far it has

eluded experimental observation.

The interaction among photons in vacuum is inherent for QED and is forbidden in

classical electrodynamics due to the fact that Maxwell’s equations are linear. In QED

virtual electron-positron pairs can interact with the photons and therefore the photons

can effectively interact with each other. The reason why this process has not been

observed yet is the extremely small cross section. The cross section for the scattering

of two photons σγγ→γγ is in the optical range of the order of 7× 10−66 cm2 [LAND82].

When two laser beams collide a rough estimation of the number N of scattered photons

per shot is N = σγγ→γγ
I·τ
ω
E
ω with the intensity I, the energy E , the frequency ω and the

pulse length τ of one beam. For example for the parameters of OMEGA EP [OMEP06]

this leads to an estimate number of N = 1× 10−16 photons scattered per shot. We see

that a direct detection of photon-photon scattering by just colliding two strong lasers is

impossible with nowadays lasers. However, stimulated photon-photon scattering where

a third laser induces the emission of a photon into the direction of itself might lead to

detectable signals.

That the collision of three beams can increase the number of scattered photons signif-

icantly was already investigated by Varfolomeev in 1966 [VARF66]. Further theoretical

investigations were made for example by R. L. Dewar in 1974 [DEWA74], F. Moulin

et. al. in 1999 [MOUL99], A. Di Piazza et. al. in 2005 [DIPI05] or by J. Lundin et

al. in 2006 [LUND06]. In addition experimental studies were made by D. Bernard et

al. in 2000 [BERN00], that achieved an upper limit of σlim = 1.5× 10−48 cm2 for the

cross section of γγ scattering using stimulated photon-photon scattering. This result is

still 17 orders of magnitude under the prediction of QED. They used ultrashort laser

pulses, however we will see that for nowadays lasers with long pulses that contain much

more energy like OMEGA EP the detection of photon-photon scattering is much more

probable.

The technique used in most of the mentioned theoretical investigations is an effective

action approach with the effective action already derived by Heisenberg and Euler in 1936

[EULE36]. We will calculate it in the same manner. In this approach the electromagnetic

fields of the colliding beams are treated classicaly and the nonlinearity of QED due to
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photon-photon interactions is taken into account by adding nonlinear terms to Maxwell’s

equations.

J. Lundin et al. [LUND06] recieved a number of N = 0.07 scattered photons per

collision of three beams for the beam parameters of the Astra Gemini Laser system at

the Central Laser Facility (Rutherford Appleton Laboratory) [CLF], which has beams

with very high intensity. Our aim will be to derive a number of scattered photons for

laser systems with high-energy beams and not necessarily high intensities such as the

OMEGA EP laser system at the Laboratory for Laser Energetics in Rochester [LLE].

We expect that it is important for the detection of photon-photon scattering to use

beams with high energies. Furthermore we will consider a different geometry than the

three dimensional geometry considered by Lundin et al. and we will model the colliding

beams by Gaussian pulses, which is more realistic than a model of prisms with quadratic

cross section which was used by Lundin et al. [LUND06], since Gaussian pulses satisfy

Maxwell’s equations in vacuum with sufficiently high accuracy.

This thesis is structured in such a way that we will at first present in section 2 the

effective Lagrangian of QED, which will be the starting point of our following calcula-

tions. In section 3 we will begin the calculations by defining our considered geometry

and the fields of the incoming beams. Then, an analytical approximation of the number

of photons that are scattered during one shot is derived. In the following section 4 we

use the beam parameters of OMEGA EP to get a numerical value for the number of

scattered photons. Also a comparision with the result of Lundin et al. [LUND06] is

performed.
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2 Effective Lagrangian of QED

In the theory of classical electrodynamics the field equations that follow from the La-

grangian L0 = 1
2(E2−B2) are linear. Hence electromagnetic waves can not interact with

each other in vacuum in a classical theory. But in QED Feynman-diagrams like that in

figure 1 lead to an interaction between photons. Therefore our aim is now to search for

an effective Lagrangian for the electromagnetic field that can describe the nonlinearities

of QED due to processes like that in figure 1. Before we will recall a few basic facts about

QED in order to understand why processes like photon-photon scattering are possible

in QED.

2.1 Basics of QED

The aim of this section is not to introduce the whole formalism of QED. Only a few

results that are interesting for the following sections are presented. For derivations and

further informations see for example [MAND10], [KAKU93], [WEIG13].

The theory of QED follows from the Lagrangian:

L = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eAµψ̄γµψ. (2.1)

The aim in QED is to calculate the probability that a set of n particles |i〉 with four-

momenta p1, . . . , pn, which are at the beginning far away from each other and then come

close to each other and interact, scatter into a set of m particles |f〉 with four-momenta

q1, . . . , qm. This probability is given by the modulus square of the so-called S-matrix

〈f |S|i〉.

Figure 1: Feynman diagram for photon-photon scattering in the first non-vanishing order
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In a simple interaction picture approach [MAND10] this matrix is given by:

S =

∞∑
n=0

(−i)n

n!

∫
. . .

∫
d4x1 . . . d

4xnT{HI(x1) . . .HI(xn)}, (2.2)

where T denotes the time-ordering operator. The interaction Hamiltonian HI for QED

is given by:

HI(x) = eψ̄(x)γµAµ(x)ψ(x). (2.3)

For this Hamiltonian, rules can be formulated that simplify the evaluation of (2.2), the

so-called Feynman-rules:

• Due to the cubic interaction Hamiltonian (2.3) every vertex is of the form

µ

A

B

and carries the factor −ieγµBA. Also four-momentum conservation is imposed at

each vertex.

• Each internal photon line
µ ν carries a factor − igµν

p2+iε
(in Feynman

gauge),

• each internal ferminon line A B carries the factor
i(γµBApµ)

p2−m2+iε
.

• Over each undetermined internal four-momentum p we integrate with the measure∫ d4p
(2π)4 .

• Each incoming photon
µ

of polarization λ carries the εµ(p, λ),

• each outgoing photon
µ

of polarization λ carries the εµ∗(p, λ),

• each incoming fermion A of spin r carries a factor uAr (p),

• each incoming anti-fermion A of spin r carries a factor v̄rA(p),

• each outgoing fermion A of spin r carries a factor ūrA(p),
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• each outgoing anti-fermion A of spin r carries a factor vAr (p).

We used here the two transverse polarisation four-vectors ε(k, λ) = (0, ε(k, λ)), λ = 1, 2

which are defined by k · ε(k, λ) and ε(k, σ) · ε(k, λ) = δσλ, and the spinors ur(p), r =

−1
2 ,

1
2 and vr(p)), r = −1

2 ,
1
2 that are solutions to the equations (pµγ

µ −m)ur(p) = 0

and (pµγ
µ + m)vr(p) = 0 and are normalized in such a way that ūr(p)us(p) = 2mδrs

and v̄r(p)vs(p) = −2mδrs.

With these rules we get a non-zero scattering amplitude for the process of photon-

photon scattering (for the Feynman-diagram see figure 1). For the limit case of low fre-

quencies (ω � m) which is true for the optical range the total cross section is [LAND82]:

σγγ = 0.031
α4

m2

( ω
m

)6
. (2.4)

Now we saw why photons interact in QED and therefore lead to nonlinear behaviour

of electromagnetic fields.

2.2 Effective Lagrangian in an external field

Although the formalism presented in the previous section is important to understand

the background of QED we will use for the derivations in this thesis the formalism of

effective Lagrangians, because in our case this formalism is much more suitable. This

formalism will be presented now. The following calculations are based on the calculations

by Dittrich and Reuter [DITT85].

We want to start with a discussion of the vacuum in QED.

In a classial theory the vacuum is simply defined by a vanishing field. However in a

quantized field theory the vacuum still contains an energy due to vacuum fluctuations

which is infinite. This infinite energy usually is subtracted, but there are still observable

effects of this structure of the vacuum.

In QED we have two fields that usually are quantized: The electromagnetic vector

field Aµ and the spinorial Dirac-field of the electrons/positrons ψ. In general there are

vacuum fluctuations due to both fields since each of them is quantized. The case we

want to study now is slightly different. We want to study an external electromagnetic

field which is unquantized with a quantized Dirac-field, which is in it’s vacuum state.

Hence we will have charge fluctuations due to virtual electron-positron-pairs, but no

virtual photons and no real electron-positron pairs. That means we assume that no real

electron-positron pairs are created from the vacuum. This is a good assumption if our

field strenghts are far below the critical value of QED (Ecr = m2

|e| = 1.3× 1016 V/cm).
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If there was no Dirac-field the equations of motion were ∂µF
µν = 0 which can be

derived from the variational principle

δS0[A]

δAµ
= 0, (2.5)

with

S0[A] =

∫
d4xL0 and L0 = −1

4
FµνF

µν . (2.6)

The Dirac field shall be described by

Lψ = ψ̄
(
iγµ∂µ −m

)
ψ. (2.7)

In order to quantize the Dirac-field one imposes the equal time anti-commutation rela-

tions

{ψA(x, t), ψ̄B(y, t)} = γ0A
Bδ(x− y). (2.8)

The interaction between the external field Aµ and the Dirac-field ψ is given by

LW = −jµAµ = −eψ̄γµψAµ. (2.9)

Here we can easily see that the current can be derived from the action SW =
∫
d4xLW

via
δSW [A]

δAµ
= −jµ. (2.10)

Our aim is now to find an action

Seff[A] = S0[A] + S1[A] (2.11)

with S0 defined in eq. (2.6). The action S1 should not contain the Dirac-field explicitly

and shall fulfill the boundary condition S1[Fµν = 0] = 0.

Although the action should not contain the Dirac-field explicitly we want to simulate

the possibility of virtual electron-positron-pair creation. Therefore S1 should also fulfill

δS1[A]

δAµ
= −〈0|jµ(x)|0〉 . (2.12)

This request is motivated by eq. (2.10). We took the vacuum expectation value because

this will lead to an expression that doesn’t contain ψ explicitly anymore and since the

Dirac-field is assumed to be in it’s vacuum state.
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The generalized Maxwell equations that follow from the variational principle δSeff[A]
δAµ

=

0 then are:

∂νF
νµ = −〈0|jµ(x)|0〉 . (2.13)

We now want to rewrite 〈0|jµ(x)|0〉 such that it depends only on the field Aµ. There-

fore let’s redefine at first jµ with the help of the anti-commutation relations (2.8):

jµ = eψ̄γµψ − e

2
{ψ̄, γµψ} =

e

2
[ψ̄, γµψ]. (2.14)

This is possible due to the fact that the charge of the quantized Dirac-field has an infinite

value in the vacuum state. The redefined current in eq. (2.14) is a current where this

inifinity is subtracted.

Now we can rewrite the vacuum expectation value as follows:

〈0|jµ|0〉 = −e lim
x′→x
s

γµAB 〈0|Tψ
B(x′)ψ̄A(x)|0〉 . (2.15)

Here T denotes the time ordering symbol and limx′→x
s

denotes a symmetrical limit defined

by:

lim
x′→x
s

=
1

2

(
lim
x′→x
x′0>x0

+ lim
x′→x
x′0<x0

)
(2.16)

In eq. (2.15) we can see the Green’s function of the Dirac operator in an external field

which is defined by:

(
γµAB(i∂µ − eAµ)−m1AB

)
GBC(x, y) = i1ACδ(x− y) (2.17)

and can be written as

GAB(x, x′) = 〈0|TψA(x)ψ̄B(x′)|0〉 . (2.18)

Therefore our defining equations for S1 are:

δS1[A]

δAµ
= e tr

(
γµG(x, x)

)
(2.19)

and

S1[Fµν = 0] = 0. (2.20)

These equations can be solved by:

S1[A] = i T r log
(G[A]

G[0]

)
, (2.21)
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x

Figure 2: Feynman diagram for G(x, x)

with

G[A] =
i

γπ −m+ iε
and πµ = i∂µ − eAµ. (2.22)

For a prove see [DITT85].

The expression Tr denotes the trace in spinor and configuration space:∫
d4x tr 〈x| . . . |x〉 . (2.23)

The processes described by G(x, x) in the presence of an external field are represented

in one feynman diagram (see figure 2). The double line denotes the presence of the

external field. We also can see see now that the processes we describe with this formalism

are exactly the processes we are interested. We have virtual electrons/positrons but no

virtual photons. Also we can see that no real electrons/positrons can appear, which is

exactly what we wanted because we are interested only in interactions of photons with

each other.

The formalism also works if we quantize the electromagnetic field as well. Then we

would get in addition processes like in figure 3, since virtual photons can appear in

this case. But the formalism is much more complicated in this case and it’s not really

possible to work with the results. These diagrams anyway are of higher order and since

we are interested in processes like in figure 1 it is ok that we did not quantize the

electromagnetic field.

Figure 3: Feynman diagram if also the electromagnetic field is quantized
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2.3 Heisenberg-Euler Lagrangian

The result (2.21) is not useful for calculations. For special cases of the external field it

is possible to derive from eq. (2.21) a more useful result. The result we will need is the

Heisenberg-Euler Lagrangian:

Leff = −F +
1

8π2

∫ ∞
0

ds

s3
e−ism

2
[
e2s2G cot

[
es(
√
F2 + G2 + F)

1
2
]

× coth
[
es(
√
F2 + G2 + F)

1
2
]
− 1 +

2

3
e2s2F

]
.

(2.24)

For a derivation see for example [LAND82].

Equation (2.24) is true for constant or slowly varying fields (ω � m). It’s important

that this result depends only on the two gauge and Lorentzinvariant scalars F = 1
2(B2−

E2) and G = E ·B. The gauge invariance insures that ∂µ 〈0|jµ(x)|0〉 = 0 (see [DITT85]).

For field strengths far below the critical value Ecr = 1.3× 1016 V/cm this result can

be simplified further:

Leff =
1

2
(E2 −B2) +

2α2

45m4

[
(E2 −B2)2 + 7(E ·B)2

]
. (2.25)

This Lagrangian will be the starting point for our calculations.

The generalized Maxwell equations following from the Heisenberg-Euler Lagrangian

are:

∇ ·E = −∇ ·P, (2.26)

∇×E +
∂B

∂t
= 0, (2.27)

∇ ·B = 0, (2.28)

∇×B− ∂E

∂t
=
∂P

∂t
+∇×M. (2.29)

where we defined the effective polarization and magnetization of the vacuum:

P = ξ
[
2(E2 −B2)E + 7(E ·B)B

]
, (2.30)

M = ξ
[
− 2(E2 −B2)B + 7(E ·B)E

]
, (2.31)

with

ξ =
4α2

45m4
. (2.32)
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This leads to an effective wave equation

�E = ∇(∇ ·P)− ∂

∂t

(∂P
∂t

+∇×M
)
. (2.33)

In the following we will call the right hand side of eq. (2.33) the effective current

jeff(E,B, x).

This equation is non linear and therefore in general difficult to solve. But perturba-

tively it’s possible to find solutions. When we assume we have a strong field (for example

a laser field) which satisfies the usual wave equation (�E0 = 0) and a small correction

δE which is of order ξ, eq. (2.33) becomes:

�E0 + �δE = �δE = jeff(E0,B0, x) (2.34)

Here we neglected the terms of order ξ2 and used �E0 = 0.

The idea of stimulated light by light scattering is that E0 is the sum of three laser

fields with frequencies ωi, i = 1, 2, 3. Due to the cubic dependence of jeff on the fields

E and B we have an oscillating source with the frequency ω4 = ω1 + ω2 − ω3 and hence

we expect the generation of a fourth wave δE with ω4 = ω1 + ω2 − ω3. This is exactly

the idea of stimulated light by light scattering. Two lasers scatter at each other and a

third laser stimulates the emission of photons in the direction of the third laser. Due to

the process of photon-photon scattering (figure 1) a fourth wave has to be emitted that

has the four-wavelenght k4 = k1 + k2 − k4 due to momentum conservation.
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3 Induced photon-photon scattering with Gaussian laser pulses

Now we want to derive the number of scattered photons that could be detected when

three laser pulses collide. At first we discuss the geometry and the electric and magnetic

fields of the beams which collide. Then we use equation (2.33) to derive the number of

scattered photons.

3.1 Geometry

The geometry we will consider is two dimensional. We assume we have two beams

that counterpropagate and a third beam that propagates perpendicular to the other two

beams (see figure 4). The pulses are assumed to be Gaussian beams. For the general

form of focused Gaussian beams see for example [SALA02]. In our case it is enough to

consider the form of Gaussian beams with ε = 2
kw0
� 1, because (as we will see later

in eq. (3.9) and eq. (3.10)) for the calculations only the product of the three Gaussian

pulses E1, E2 and E3 will be important and the geometry ensures that this product is

already extremely small for x, y, z ∼ w0. Therefore the fields in this region won’t be

important and we can assume ε� 1.

At first we consider a Gaussian beam that propagates in positive z-direction and is

linear polarized into the x-direction. With the above assumptions the fields now have

the form:

E =

E0
0

 and B =

0

E

0

 , (3.1)

with

E = E0
w0

w(z)
exp

[
− (ωt− kz)2

2σ2

]
exp

[
− x2 + y2

w2(z)

]
sin
(
ωt− kz + ψ(r)

)
. (3.2)

k1 k2

k3

z

y

Figure 4: geometry of the beams
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Here we defined:

w(z) = w0

√
1 +

( 2z

kw2
0

)
and ψ(r) = ψ0 −

k(x2 + y2)z

2
(
z2 + (

kw2
0

2 )2
) + arctan

( 2z

kw0

)
. (3.3)

ψ0 is a constant phase, which will fall out later. For the non-constant terms of ψ one

can see that for typical values of x, y and z like w0 the terms are of order ε and therefore

will be neglected in the following. Similarly we can write w(z) ≈ w0, since the term 2z
kw2

0

is of order ε as well.

With these approximations eq. (3.2) becomes:

E(x, y, z) = E0 exp
[
− (ωt− kz)2

2σ2

]
exp

[
− x2 + y2

w2
0

]
sin
(
ωt− kz + ψ0

)
. (3.4)

We now need the electric and magnetic fields of the three pulses with the geometry of

figure 4. Also we would like to have general linear polarizations. The polarization of

beam i shall be defined by the angle φi between the x-axis and the polarization vector.

The angle shall be positive if it is clockwise when looking in the direction of ki.

For beam 1 (the beam with k1 in figure 4) the electric field has the form of eq. (3.4).

But if we assume a general linear polarization φ1 the directions of E and B (see eq.

(3.1)) are rotated:

E1 =

E1 cosφ1

E1 sinφ1

0

 and B1 =

−E1 sinφ1

E1 cosφ1

0

 , with E1(x, y, z) = E(x, y, z). (3.5)

For the two remaining fields we get similar expressions:

E2 =

 E2 cosφ2

−E2 sinφ2

0

 and B2 =

−E2 sinφ2

−E2 cosφ2

0

 , with E2(x, y, z) = E(x, y,−z) (3.6)

and

E3 =

E3 cosφ3

0

E3 sinφ3

 and B3 =

−E3 sinφ3

0

E3 cosφ3

 , with E3(x, y, z) = E(x, z,−y). (3.7)

Now we can substitute these results into the expressions (2.30) and (2.31) for the effective
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polarization and magnetization by setting E = E1+E2+E3 and B = B1+B2+B3. Hence

P and M are sums of products, where each product consists of exactly three of the fields

Ei and Bi. Keeping in mind that every of these fields has a factor sin(ωit−ki · r+ψ0,i)

and that these products therefore can be rearranged with the addition theorem

sin(x) sin(y) sin(z) =
1

4

[
sin(x+ y − z) + sin(x− y + z) + sin(−x+ y + z)

− sin(x+ y + z)
] (3.8)

we see that only terms of the form E1E2E3, where the numbers of the fields are all

different, can lead to a term that is proportional to sin(ω4t−k4 ·r) with ω4 = ω1+ω2−ω3

and k4 = k1 + k2 − k3. Since we expect the emission of such a wave due to the process

in figure 1 we can neglect all other terms. That means we neglect terms like E1E1E2

and so on. This leads to the polarization and magnetization:

P(r, t) = 16ξGPE1(r, t)E2(r, t)E3(r, t), (3.9)

M(r, t) = 16ξGME1(r, t)E2(r, t)E3(r, t). (3.10)

The factors GP and GM are geometric factors that depend on the polarization angles

φi. In order to have geometric factors that are of the order of one we extracted the

factor 16 in eq. (3.9) and eq. (3.10). The expressions for these factors are given in the

appendix (A.1) and (A.2).

Now we can apply the addition theorem (3.8) and neglect the three terms on the right

hand side of eq. (3.8) that lead to a different term than sin(ω4t− k4 · r). This leads to

the final form of the polarization and magnetization:

P(r, t) = 4ξGPE0,1E0,2E0,3 exp
[
− 3x2

w2
0

− 2y2

w2
0

− z2

w2
0

]
× exp

[
− (ω1t− k1z)

2 + (ω2t+ k2z)
2 + (ω3t+ k3y)2

2σ2

]
× sin

(
(ω1 + ω2 − ω3)t− k1z + k2z − k3y + ψ0,1 + ψ0,2 − ψ0,3

)
.

(3.11)

For M we get exactly the same except that GP is replaced by GM . To keep the following

calculations clearer we assume here that the frequencies of the three pulses are the same:

ω0 = ω1 = ω2 = ω3 ⇒ ω0 = ω4 (3.12)
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Now we can simplify equation (3.11) and get:

P(r, t) = 4ξGPE0,1E0,2E0,3 exp
[
− 3x2

w2
0

− 2y2

w2
0

− z2

w2
0

]
exp

[
− ω2

0

2σ2

(
(t− z)2 + (t+ z)2 + (t+ y)2

)]
× sin

(
ω0(t− y) + ψ0,1 + ψ0,2 − ψ0,3

)
.

(3.13)

For later purposes we define:

S(r) = E0,1E0,2E0,3 exp
[
− 3x2

w2
0

− 2y2

w2
0

− z2

w2
0

]
(3.14)

and

γ(r, t) = exp
[
− ω2

0

2σ2

(
(t−z)2+(t+z)2+(t+y)2

)]
sin
(
ω0(t−y)+ψ0,1+ψ0,2−ψ0,3

)
. (3.15)

This leads to:

P(r, t) = 4ξGPS(r)γ(r, t) (3.16)

and equally

M(r, t) = 4ξGMS(r)γ(r, t). (3.17)

The crucial point is that γ carries the whole time dependence and this will keep the

following calculations clearer.

3.2 Solution of the wave equation

We now want to solve eq. (2.33) for δE. We observe that eq. (2.33) is an inhomogeneous

waveequation with a current jeff, that only depends on the fields E and B, but due to

the perturbation ansatz jeff does not depend on δE any more.

Therefore we can use the Green’s function method to solve the waveequation. The

retarded Green’s function of the D’Alembert operator is [NOLT11]:

Gret(r, t) =
δ(t− |r|)

4π|r|
θ(t). (3.18)

Hence the solution to eq. (2.33) is:

δE(r, t) =
1

4π

∫
dr′

jeff(r′, t− |r− r′|)
|r− r′|

. (3.19)
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In order to deal with the retarded time we do a Fouriertransformation in time:

δẼ(r, ω) =
1

4π

∫
dr′

e−iω|r−r
′|

|r− r′|
j̃eff(r′, ω). (3.20)

The tilde denotes the Fourier transformation. That means we need the Fouriertransfor-

mation of jeff(r, t). In order to get this transformation we use the following important

property of the Fourier transformation:

F(∂tf(t))(ω) = iωF(f(t))(ω). (3.21)

Using this identity the Fourier transformation of the current jeff becomes:

j̃eff(r, ω) = ∇(∇ · P̂) + ω2P̃− iω∇× M̃. (3.22)

We will deal with the explicit forms of P̃ and M̃ in section 3.4.

Substituting this result into eq. (3.20) leads to:

δẼ(r, ω) =
1

4π

∫
dr′

e−iω|r−r
′|

|r− r′|

(
∇(∇ · P̂) + ω2P̃− iω∇× M̃

)
. (3.23)

Since we will observe the scattered photons far away from the source, we can make the

common approximation:
e−iω|r−r

′|

|r− r′|
≈ 1

|r|
e−iω|r|eiωr̂r

′
, (3.24)

where r̂ denotes the unit vector into the direction of r. Using this approximation and

performing partial integrations in order to get rid of the nabla’s in eq. (3.23) we get:

δẼ(r, ω) =
1

4π

e−iω|r|

|r|

∫
dr′ ω2

(
P̃− r̂(r̂ · P̂)− r̂× M̃

)
eiωr̂r

′
. (3.25)

Now we can substitute the expressions for the polarization (3.16) and magnetization

(3.17) and use that in eq. (3.16) and eq. (3.17) only the function γ(r, t) depends on

time:

δẼ(r, ω) =
ξ

π

e−iω|r|

|r|

∫
dr′ ω2

(
GP − r̂(r̂ ·G)P − r̂×GM

)
S(r′)γ̃(r′, ω)eiωr̂r

′
. (3.26)

That means the only Fouriertransformation we will have to perform is the fouriertrans-

formation of γ(r, t).
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3.3 Scattered energy

After having derived an expression for the electric field (3.26) we now want to calculate

the energy that is produced during the collision of the three beams. Therefore we

calculate at first the Poynting vector:

S =
1

4π
E×B. (3.27)

We see that we need at first the B-field corresponding to the electric field (3.26).

In order to get the B-field we look at the Fourier transformation of equation (2.27)

(we use here again the property (3.21)):

∇× Ẽ(r, ω) = −iωB̃(r, ω). (3.28)

As we will measure far away from the interaction region, E(r, ω) given in eq. (3.26)

depends on r mainly due to the factor e−iω|r|. With this assumption the left hand side

of eq. (3.28) becomes:

∇× Ẽ(r, ω) = −iω r̂× Ẽ(r, ω). (3.29)

Hence we get for the Poynting vector:

S(r, t) =
1

4π

∫
dωdω′

2π
Ẽ(r, ω)×

(
r̂× Ẽ(r, ω′)

)
ei(ω+ω′)t. (3.30)

Using the Graßmann-identity we get:

S(r, t) =
1

4π

∫
dωdω′

2π

[
r̂
(
Ẽ(r, ω) · Ẽ(r, ω′)

)
− Ẽ(r, ω′)

(
r̂ · Ẽ(r, ω)

)]
ei(ω+ω′)t. (3.31)

We observe that r̂ · Ẽ(r, ω) = 0 since

r̂ ·
(
GP − r̂(r̂ ·GP )− r̂×GM

)
= 0. (3.32)

Our aim is now to calculate the whole energy that is scattered. This energy can be

calculated via:

E =

∫
dt

∫
r2dΩ

(
r̂ · S(r, t)

)
. (3.33)

Substituting eq. (3.31) into this expression and using that 2πδ(ω + ω′) =
∫
dtei(ω+ω′)t:

E =
1

4π

∫
r2dΩ

∫
dω
(
Ẽ(r, ω) · Ẽ(r,−ω)

)
. (3.34)
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We know that the electric field E(r, t) is real. Therefore we know:

Ẽ(r, ω) =

∫
dt√
2π
e−iωtE(r, t) =

∫
dt√
2π
e−iωtE∗(r, t)

=

(∫
dt√
2π
eiωtE(r, t)

)∗
= Ẽ∗(r,−ω).

(3.35)

Now the total emitted energy is:

E =
1

4π

∫
r2dΩ

∫
dω
∣∣Ẽ(r, ω)

∣∣2. (3.36)

We substitute the expression we already derived for the electric field (3.26) and get:

E =
ξ2

4π3

∫
dΩ

∫
dω

∫
dr′
∫
dr′′ω4G(r̂)S(r′)S(r′′)γ̃(r′, ω)γ̃∗(r′′, ω)eiωr̂(r′−r′′) (3.37)

with

G(r̂) =
(
GP − r̂(r̂ ·GP )− r̂×GM

)2
. (3.38)

The remaining task will be to solve eq. (3.37).

3.4 Fourier transformation of γ

In order to solve the integral (3.37) we need to know the form of γ̃(r, ω). Since γ(r, t)

(3.15) is mainly a Gaussian multiplied with a sinus, the transformation is easy to perform

and we get as result:

γ̃(r, ω) =
i

2

σ√
3ω0

exp
(
− ω2

0

2σ2
(2z2 + y2)

)
×
[

exp
[
i(ω0y − ψ0,1 − ψ0,2 + ψ0,3)−

(
σ2(ω + ω0)− iω2

0y
)2

6σ2ω2
0

]
− exp

[
− i(ω0y − ψ0,1 − ψ0,2 + ψ0,3)−

(
σ2(ω − ω0)− iω2

0y
)2

6σ2ω2
0

]]
.

(3.39)

We observe that in ω this is a function with mainly two Gaussian peaks. One for ω = −ω0

and one for ω = ω0. For the integral (3.37) we need β(r′, r′′, ω) := γ̃(r′, ω)γ̃∗(r′′, ω).

Hence we should take a careful look at this expression. As already mentioned γ̃(r′, ω)

consists of two parts, but as these parts are very strongly peaked only one part con-

tributes for ω < 0 and the other one contributes only for ω > 0. That means for ω < 0
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we can write:

β(r′, r′′, ω)|ω<0 =: β−(r′, r′′, ω) =
σ2

12ω2
0

exp
(
− ω2

0

2σ2
(2z′2 + y′2 + 2z′′2 + y′′2)

)
× exp

[
iω0(y′ − y′′)−

(
σ2(ω + ω0)− iω2

0y
′)2 +

(
σ2(ω + ω0) + iω2

0y
′′)2

6σ2ω2
0

]
.

(3.40)

Similarly we get for ω > 0:

β(r′, r′′, ω)|ω>0 =: β+(r′, r′′, ω) =
σ2

12ω2
0

exp
(
− ω2

0

2σ2
(2z′2 + y′2 + 2z′′2 + y′′2)

)
× exp

[
− iω0(y′ − y′′)−

(
σ2(ω − ω0)− iω2

0y
′)2 +

(
σ2(ω − ω0) + iω2

0y
′′)2

6σ2ω2
0

]
.

(3.41)

Hence the total scattered energy (3.37) can be written as:

E = E− + E+ (3.42)

with

E− :=
ξ2

4π3

∫
dΩ

∫ 0

−∞
dω

∫
dr′
∫
dr′′ω4G(r̂)S(r′)S(r′′)β−(r′, r′′, ω)eiωr̂(r′−r′′) (3.43)

and

E+ :=
ξ2

4π3

∫
dΩ

∫ ∞
0

dω

∫
dr′
∫
dr′′ω4G(r̂)S(r′)S(r′′)β+(r′, r′′, ω)eiωr̂(r′−r′′). (3.44)

By carefully looking at the expressions for β− (3.40) and β+ (3.41) we observe:

β−(r′′, r′,−ω) = β+(r′, r′′, ω). (3.45)

That means that if we make the substitution ω → −ω in eq. (3.43) we get:

E− :=
ξ2

4π3

∫
dΩ

∫ ∞
0

dω

∫
dr′
∫
dr′′ω4G(r̂)S(r′)S(r′′)β+(r′′, r′, ω)e−iωr̂(r′−r′′). (3.46)

Now we can excange the varibles r′ ↔ r′′ and get:

E− :=
ξ2

4π3

∫
dΩ

∫ ∞
0

dω

∫
dr′
∫
dr′′ω4G(r̂)S(r′)S(r′′)β+(r′, r′′, ω)eiωr̂(r′−r′′), (3.47)

24



which is identical with E+ (3.44). Hence:

E = 2E+. (3.48)

3.5 Solution of the integral

In this section we want to solve the remaining integrals in eq. (3.44).

At first we look at the ω-integral. The factors depending on ω are:

ω4 exp
[
−
(
σ2(ω − ω0)− iω2

0y
′)2 +

(
σ2(ω − ω0) + iω2

0y
′′)2

6σ2ω2
0

]
eiωr̂(r′−r′′). (3.49)

As σ is of the order of 1000 (for the parameters of OMEGA EP) the function is very

strongly peaked at ω = ω0 and we can take the limit σ →∞. In this limit the Gaussian

peak approaches a Delta-distribution, since:

lim
σ→∞

σ√
π
e−σ

2x2
= δ(x). (3.50)

The integral in ω of expression (3.49) therefore becomes:

√
3πω0

σ
ω4

0e
iω0r̂(r′−r′′). (3.51)

This limit (σ →∞) corresponds to the assumption that the scattered wave is monochro-

matic. Since at the end we will take experimental parameters of laser systems with quite

long pulses, this assumption will lead to a good result.

While performing the limit σ →∞ the factor

exp
(
− ω2

0

2σ2
(2z′2 + y′2 + 2z′′2 + y′′2)

)
. (3.52)

which appears in γ̃(r′, ω)γ̃∗(r′′, ω) (see eq. (3.39)) is approximated by 1. The remaining

integral is now:

E = C

∫
dΩ

∫
dr′
∫
dr′′G(r̂)S(r′)S(r′′) exp

[
iω0

(
r̂(r′ − r′′)− (y′ − y′′)

)]
, (3.53)

with

C =
ξ2

π3

σ
√

3πω3
0

24
E2

0,1E
2
0,2E

2
0,3. (3.54)

The functions S(r) (3.14) are just Gaussians and therefore the integrals in r′ and r′′ are
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easy to perform. The integral in x′ for example is of the form:∫
dx′ exp

(
− 3x′2

w2
0

)
eiω0r̂xx′ =

√
πw0√

3
exp

[
− (w0ω0)2

12
r̂2
x

]
. (3.55)

With r̂x I denoted the x-component of r̂.

The integrals in y′, z′, x′′, y′′ and z′′ can be performed in the same way. The total

scattered energy therefore is:

E = C
w6

0π
3

6

∫
dΩ exp

[
− (w0ω0)2

(1

6
r̂2
x +

1

4
(r̂y − 1)2 +

1

2
r̂2
z

)]
G(r̂). (3.56)

It remains to perform the integral in Ω. The factor ω0w0 will be of order 60 for our

experimental parameters. This means that the integrand is strongly peaked arround:

r̂ = k̂4 =

0

1

0

 . (3.57)

Physically this means that the main contribution of the scattered wave propagates along

the y-axis and the beam is not spread over a great solid angle Ω. Mathematically this

means that we can approximate: G(r̂) ≈ G(k̂4). Now we will calculate the integral

(3.56) by choosing spherical coordinates:

r̂ =

 sin θ cosφ

cos θ

− sin θ sinφ

 with φ ∈ [0, 2π], θ ∈ [0, π], and dΩ = dθ sin θ dφ. (3.58)

These are the usual spherical coordinates but rotated in such a way that for θ = 0

r̂ = k̂4. The integral we now have to perform is:

E = C
w6

0π
3

6

∫ 2π

0
dφ

∫ π

0
dθ sin θ exp

[
− (w0ω0)2

(1

6
sin2 θ cos2 φ

+
1

4
(cos2 θ − 2 cos θ + 1) +

1

2
sin2 θ sin2 φ

)]
G(k̂4).

(3.59)

We already discussed that due to the fact that ω0w0 is of the order of 60 the main

contribution of the integral comes from a very small solid angle around r̂ = k̂4. That’s
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why we can approximate sin θ ≈ θ and cos θ ≈ 1. Now the integral in θ becomes:∫ π

0
dθ θ exp

[
− (w0ω0)2θ2

(1

6
cos2 φ+

1

2
sin2 φ

)]
=

1

2(ω0w0)2(1
6 cos2 φ+ 1

2 sin2 φ)

×
[
1− exp

(
− (ω0w0)2π2(

1

6
cos2 φ+

1

2
sin2 φ)

)]
≈ 1

2(ω0w0)2(1
6 cos2 φ+ 1

2 sin2 φ)
.

(3.60)

It remains to solve the φ-integral:∫ 2π

0
dφ

1

2(ω0w0)2(1
6 cos2 φ+ 1

2 sin2 φ)
=

6π√
3(ω0w0)2

. (3.61)

In the end we get:

E = C
π4

√
3

w4
0

ω2
0

G(k̂4). (3.62)

Dividing this result by ω0 we get the number of scattered photons:

N = ξ2

√
π3

24
σw4

0E
2
0,1E

2
0,2E

2
0,3G(k̂4). (3.63)
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4 Experimental parameters and results

In this section we want to look at the beam parameters of OMEGA EP and get actual

numbers for the scattered photons when three beams collide. This is followed by a

discussion and comparision of the results.

4.1 OMEGA EP parameters

OMEGA EP has a short-pulse performance and a long-pulse performance [OMEP06].

There are two beams that are capable of the short-pulse performance. That means

when the short pulse performance is used, one beam has to be split into two beams.

That brings the intensity of two of the beams down by a factor of 1
2 . The long-pulse

performance is possible for four beams and hence this reduction is only a problem of the

short-pulse performance.

In order to evaluate equation (3.63) we need the values of w0, σ, and the field strenghts

of the three beams: E0,1, E0,2 and E0,3. For σ we actually need ω0 and the Gaussian

pulse width τ , because σ is defined by equation (3.2) and therefore can be calculated by

σ = τω0.

The parameters of the short- and long-pulse performance are listed in Table 2.

4.2 Electric field strenghts

As we can see in Table 2 we have to derive the electric fieldstrengths from the averaged

intensities.

In order to derive the electric fieldstrengths we consider again the field of a Gaussian

beam that propagates in positive z-direction as in eq. (3.1) and eq. (3.2). At z = 0 the

fields are:

E =

E0
0

 and B =

0

E

0

 , (4.1)

parameters short-pulse long-pulse

Pulse width τ (ps) 0.5 5× 103

Focal spot radius w0 (µm) 10 50
Averaged intensity (W/cm2) 2× 1020 6× 1015

Wavelength (nm) 1053 351

Table 2: Parameters of OMEGA EP for the short-pulse performance and the long-pulse
performance. Averaged intensity means averaged over the focal spot.
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with

E(x, y, t) = E0 sin(ωt+ ψ0) exp
(
− x2 + y2

w2
0

)
exp

(
− (ωt)2

2σ2

)
. (4.2)

We will now calculate the average intensity of this field in time and over the focal spot

πw2
0 in the x-y-plane. The intensity is given by the Poynting vector:

S =
1

4π
(E×B) =

1

4π

 0

0

E2

 . (4.3)

As σ is of the order of 1000 the Gaussian in time won’t be important for the averaging.

The average in time therefore is the average of sin2(ωt+ψ) over a period T (Tω = 2π):

1

T

∫ T

0
dt sin2(ωt+ ψ) =

1

2
. (4.4)

The intensity averaged in time therefore is:

E2
0

8π
exp

(
− 2r2

w2
0

)
, with r2 = x2 + y2. (4.5)

Now we average over the focal spot by using polar coordinates:

|S̄| = 1

πw2
0

∫ 2π

0
dφ

∫ w0

0
dr
E2

0

8π
r exp

(
− 2r2

w2
0

)
=

E2
0

16π

∫ 2

0
dx e−x =

E2
0

16π

[
1− e−2

]
.

(4.6)

As result we have:

E2
0 =

16π|S̄|
1− e−2

. (4.7)

Now we can rewrite our result (3.63) for the number of scattered photons in terms of

the averaged intensities:

N = ξ2

√
π9 163

24 (1− e−2)3
|S̄1||S̄2||S̄3|ω0 τ w

4
0 G(k̂4). (4.8)
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4.3 Numerical results

Using that ξ = 4α2

45m4 we rewrite eq. (4.8):

N = 10.84

(
I1I2I3

(1020 W/cm2)3

)(1 µm

λ

)( τ

1 ps

)( w0

10 µm

)4
G(k̂4). (4.9)

Ii denotes here the intensity of beam i averaged over the focal spot. These intensities

are given in Table 2. For the short-pulse performance two of the beams have only half of

the intensity that is given in Table 2. The geometry factor given in the appendix (A.3)

is maximal for polarization angles φ1 = φ2 = φ3 = π
4 . For these angles we have G(k̂4) =

6.89. For the short-pulse performance this leads to a number of N = 70.9 photons

per shot. For the long-pulse performance we get N = 0.14× 10−3. The much smaller

intensities for the long-pulse performance lead to a much smaller result although the

much longer pulse duration τ and the bigger focal spot w0 of the long-pulse performance

lead to greater energies per beam. Hence the long-pulse performance is not suitable

for a measurement. But the result of N = 70.9 photons per shot for the short-pulse

performance seems to be a detectable number.

4.4 Comparision with the results of Lundin et al.

We now want to compare our result with results presented in other papers in particular

with the result of [LUND06], where a number of N = 0.07 photons was derived for a

three dimensional setup and for parameters of the Astra Gemini system. Their result

was propartional to: N ∼ λ−1LP1P2P3b
−2G, where L is the length of a pulse, Pi is the

power of beam i, b2 is the focal spot size and G is a geometry factor that is defined

in the same way as our geometric factor. Due to the fact that the power of a laser is

proportional to the intensity times the focal spot size, we can see that their result has

the same scalings as our result. This is a first evidence that our result is compatible

with their result.

Nevertheless their result is three orders of magnitude smaller than our result. We

observe that the beam parameters of OMEGA EP are more suitable, since the beams

contain much more energy, but only a factor of 4 can be explained with the different

parameters. But there is an explanation for the rest of the factor.

At first we should consider that the geometry they used is completely different. The

geometric factor G, which they defined in the same way as we did, is for their three

dimensional geometry one order of magnitude smaller than the geometric factor for our

two dimensional geometry. Further they had to use frequency doubling to realise the
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geometry they considered and therefore they considered a power loss of 60% for two of

the beams. All this explains already that our result has to be of a factor 250 bigger than

their result.

The remaining unexplained factor of 4 could have various reasons. For example, the

interaction region of the two different geometries will be different. Also the model for

the colliding beams is different.
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5 Conclusions

The purpose of this thesis was to investigate the possibility of detecting photon-photon

scattering in modern laser systems with high-energy pulses. Therefore, we considered

the collision of three Gaussian beams. We chose a special geometry of the three in-

coming beams and with the effective action of Heisenberg and Euler we calculated the

energy of the generated fourth beam. The result was an analytical approximation and

a comparison with the calculations by Lundin et al. [LUND06] proofed that our result

gives the right order of magnitude. The difference between our results and the results

of Lundin et al. [LUND06] are mainly the different beam parameters of OMEGA EP

which are more suitable here than the parameters of Astra Gemini, that were chosen

by Lundin et al., since the beams of OMEGA EP contain much more energy. Also the

geometry and the more realistic Gaussian beam model for the incoming three pulses led

to differences.

It is important to mention here that the above calculations could easily be adapted

for other geometries of the wavevectors k1, k2 and k3. The special geometry was only

chosen to keep the calculations more transparent.

In order to get actual results we took parameters of the OMEGA EP laser system and

got a number of N = 70.9 photons scattered per shot for the short-pulse performance.

This number seems to be detectable and hence the detection of photon-photon scattering

appears to be in principle possible with OMEGA EP. However the chosen geometry

might have the drawback that the scattered photons propagate in exactly the opposite

direction as the third laser beam. Therefore the detection of the scattered photons

might be a difficult experimental task. Of course, other geometries could be chosen,

where the scattered photons are well separated of the three beams, but then the number

of scattered photons might decrease.

We have also observed that the long-pulse performance of OMEGA EP is unsuitable

for the detection of light by light scattering although the beams contain much more

energy and therefore the total number of photons that can scatter at each other is much

higher. This comes from the fact that we consider stimulated photon-photon scattering

and therefore the field strength of the third beam, which induces the scattering of a

photon in the direction of beam three, is important as well.

However, we saw that the parameters of OMEGA EP are more suitable than the

paramters of Astra Gemini, although Astra Gemini reaches higher intensities. So just

increasing the intensities of lasers further and further won’t lead to an improvement for

the detection of photon-photon scattering. It is rather important to have pulses with
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high energy that don’t have too small intensities. For the detection of photon-photon

scattering it seems to be essential to have a laser system with the right combination of

high intensity and high energy beams.

In conclusion, the order of magnitude calculated here gives hope that the very impor-

tant prediction of light by light scattering in QED can be measured in near future.
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Appendices

We present here the formulas for the geometric factors in dependence of the polarization

angles φ1, φ2 and φ3:

GP =

[
1

16

(
16 cos(φ1) cos(φ2) cos(φ3) + 6 cos(φ3) sin(φ1) sin(φ2)

+17 cos(φ2) sin(φ1) sin(φ3) + 17 cos(φ1) sin(φ2) sin(φ3)
)]

x̂

+

[
11

16
cos(φ3) sin(φ1 − φ2)

]
ŷ

+

[
1

16
(−11 sin(φ1 + φ2 − φ3)− 3 sin(φ1 + φ2 + φ3))

]
ẑ

(A.1)

GM =

[
1

16

(
− 2

(
3 cos(φ1) cos(φ2) + 8 sin(φ1) sin(φ2)

)
sin(φ3)

−17 cos(φ3) sin(φ1 + φ2)
)]

x̂

−
[

11

16
sin(φ1 − φ2) sin(φ3)

]
ŷ

+

[
1

16

(
− 11 cos(φ1 + φ2 − φ3) + 3 cos(φ1 + φ2 + φ3)

)]
ẑ

(A.2)

G(k̂4) =
1

256

(
24 cos(φ1) cos(φ2) cos(φ3)− 2 cos(φ3) sin(φ1) sin(φ2)

+31 cos(φ2) sin(φ1) sin(φ3) + 31 cos(φ1) sin(φ2) sin(φ3)

)2

+
1

256

(
− 31 cos(φ2) cos(φ3) sin(φ1)− 31 cos(φ1) cos(φ3) sin(φ2)

+2 cos(φ1) cos(φ2) sin(φ3)− 24 sin(φ1) sin(φ2) sin(φ3)

)2

(A.3)
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