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Abstract

The first detailed comparison between gyrokinetic and gyrofluid simulations of collisionless mag-

netic reconnection has been carried out. Both the linear and nonlinear evolution of the collisionless

tearing mode have been analyzed. In the linear regime, we have found a good agreement between

the two approaches over the whole spectrum of linearly unstable wave numbers, both in the drift

kinetic limit and for finite ion temperature. Nonlinearly, focusing on the small-∆′ regime, with ∆′

indicating the standard tearing stability parameter, we have compared relevant observables such as

the evolution and saturation of the island width, as well as the island oscillation frequency in the

saturated phase. The results are basically the same, with small discrepancies only in the value of

the saturated island width for moderately high values of ∆′. Therefore, in the regimes investigated

here, the gyrofluid approach can describe the collisionless reconnection process as well as the more

complete gyrokinetic model.
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I. INTRODUCTION

Reconnection of magnetic fields is recognized to play a key role in many events occur-

ring in laboratory, space, and astrophysical plasmas. Classical examples of such events are

sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, and solar flares.

Magnetic reconnection involves a topology change of a set of field lines, which leads to a

new equilibrium configuration with lower magnetic energy. During this process magnetic

energy is converted into kinetic and thermal energy of electrons and ions [1]. Although much

of the progress in the understanding of magnetic reconnection has been possible thanks to

the use of fluid-based models, the results achieved with these models require independent

confirmation when kinetic effects are expected to be important.

Recently, a new class of generalized fluid models, so called gyrofluid models, have been

adopted to investigate magnetic reconnection in the presence of a large guide field [2–10].

These models combine the advantages of the fluid description, namely computational effi-

ciency and intuitively appealing physical interpretation, while retaining important kinetic

effects through gyro-orbit averaging [11]. However, for problems in which strongly non-

Maxwellian features characterize the distribution function it would probably be necessary

to keep many velocity-space moments to describe the detailed shape of the distribution func-

tion, in which case the gyrofluid approach may lose its advantages [12]. Therefore, detailed

comparisons between gyrokinetic and gyrofluid simulations are necessary to confirm the va-

lidity of the continuum gyrofluid descriptions and to improve them when such descriptions

are no longer applicable.

An early investigation of collisionless tearing modes by means of gyrokinetic particle-in-

cell (PIC) simulations was made in Ref. [13]. In particular, this work focused on the growth

and nonlinear evolution of small-scale magnetic islands having a characteristic width of the

order of the electron skin depth and smaller than the ion Larmor radius. In Ref. [14] the

evolution of collisionless and semicollisional tearing mode instabilities was studied using a

gyrokinetic δf PIC code with gyrokinetic ions and drift-kinetic electrons. After a bench-
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mark of the linear simulation results with eigenmode analysis for the case of fixed ions, the

nonlinear evolution of the magnetic island width was calculated. More recently, in Ref. [15]

numerical results of saturated island widths resulting from gyrokinetic δf PIC simulations

were compared to analytical calculations [16] in a more extended parameter space. In this

work electron diamagnetic effects were also considered, and it was found that they have

stabilizing effects in agreement with the asymptotic theory of Ref. [17]. Simulations of the

collisionless tearing mode with gyrokinetic electrons and fully kinetic ions were performed in

Ref. [18] and compared with the asymptotic matching theory of Ref. [16], and with a gyroki-

netic eigenmode theory in a small but finite Larmor radius limit. Very recently, collisionless

reconnection in the large guide field regime has also been investigated by comparing fully

kinetic PIC simulations and gyrokinetic results, showing that the gyrokinetic framework is

capable of making accurate predictions well outside its formal regime of applicability [19].

It was also shown that many physical quantities resulting from the nonlinear reconnection

process scale linearly with the guide field.

The first comparison between gyrokinetic and fluid simulations was carried out in Ref. [20,

21], where both the linear and nonlinear regimes of collisionless magnetic reconnection were

investigated, finding a reasonably good agreement between the two approaches for low-β

plasmas and small ion to electron temperature ratio. For β ∼ 1 and ion temperature greater

than the electron temperature, an increase in discrepancy between gyrokinetic simulations

and fluid theory was found in Ref. [22], where, however, it was shown that the adoption of

a reduced ion-to-electron mass ratio plays a significant role in causing these discrepancies.

This latter work focused on the linear regime, but also considered the collisionality depen-

dence of the tearing mode growth. The importance of adopting a realistic mass ratio was

emphasized in Ref. [23], where extensive linear studies were presented, and nonlinear results

were performed to investigate reconnection in the cases of decaying and driven turbulence.

As in most of the works mentioned above, in this paper we focus on rarefied high-temperature

plasmas in which the collisional mean free path is large enough that collisions are negligi-

ble. Additionally we consider magnetic reconnection phenomena that take place in a two-
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dimensional plane perpendicular to a strong and constant magnetic guide field. Differently

from previous studies, here the comparison is between the results of gyrokinetic and gy-

rofluid simulations. For this purpose, we adopt the gyrokinetic δf PIC code EUTERPE

with gyrokinetic ions and drift-kinetic electrons [15]. Recently, a linear version of this code

(GYGLES) has been employed to simulate the ideal-MHD internal kink mode and the col-

lisionless m = 1 tearing mode in a tokamak [24]. We also adopt the gyrofluid code that has

been employed in Refs. [7, 9, 10] to investigate ion gyro-orbit averaging effects on collisionless

magnetic reconnection. After a linear benchmark of these codes with a numerical eigenmode

and eigenvalue analysis, the results of the two models in the linear regime are compared over

the whole spectrum of linearly unstable wave numbers, both in the drift kinetic limit and

for finite ion temperature. Nonlinearly, focusing on the small ∆′ regime (with ∆′ indicating

the standard tearing stability parameter), we compare relevant observables as the evolution

and saturation of the island half-width, and the island oscillation frequency at saturation.

This paper is organized as follows: In Sec. II the adopted gyrokinetic and gyrofluid models

are described, as well as the initial equilibrium configuration. In Sec. III we focus on linear

simulation results, while the nonlinear regime is studied in Sec. IV. Finally, in Sec. V we

summarize our results and discuss their implications.

II. THE MODELS

Within the framework of low-β plasmas, β ≪ 1, the dominant field fluctuations are

the electrostatic potential Φ̂ and the parallel vector potential Â‖. Both models which are

investigated here adopt the following normalization scheme with respect to Alfvén units

t =
vA
L

t̂, x =
x̂

L
, ds =

d̂s
L
, ρS,e =

ρ̂S,e
L

, (1)

ns =
L n̂s

d̂i n0

, us =
L ûs

d̂i vA
, A =

Â‖
B0,z L

, Φ =
Φ̂

B0,z LvA
(2)

where the carets denote the dimensional quantities, us is the out-of-plane guiding center

velocity field, ns is the guiding center density perturbation, and a constant background

density n0 is assumed to be equal for each species s. L indicates a characteristic magnetic
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equilibrium length scale, while vA = B0,z/
√
µ0 n0 mi is the Alfvén speed based on the

magnetic field strength B0,z of the guiding field. d̂s = c/ωp,s is the skin depth of singly

charged ions (s = 1) or electrons (s = 2) and ρS,e =
√

mi kB T0,e/ (eB0,z) is the sound Larmor

radius. The ratio of ion temperature T0,i to the reference temperature of the electrons T0,e

is indicated by τ , while µ refers to the ratio of the ions mass mi to electron mass me.

Also, the electron plasma-β is defined by βe = µ0 kB T0,e n0/B
2
0,z, whereas βi = βeτ for ions.

A. The gyrokinetic model

The particle-in-cell code EUTERPE [25] uses a δf -scheme splitting of the distribution

function fs for each species s into a time independent background f0,s and a perturbed

part δfs in order to solve the full standard gyrokinetic Vlasov-Maxwell-system [27] globally

in toroidal 3D-geometry. Here the code is modified to simulate the tearing mode in slab

geometry. The background distribution function is assumed to be a shifted Maxwellian with

bulk velocity u0,s. EUTERPE works in the p‖-formalism so that the equations for particles

trajectories are in a slab geometry [26, 27]

~̇Rs =
1

α
√
βe

p‖
ms

~b− Ωs A~b+ ~b × ∇〈Ψ〉 (3)

=
1

α
√
βe

p‖
ms

~b+ ~̇R1
s (4)

ṗ‖,s
ms

= −α
√

βe Ωs
~b · ∇〈Ψ〉, (5)

where Ωs = (qsB0,z/ms)L/vA is the cyclotron frequency normalized to the Alfvén time for

each species, qs is the species charge, Ψ = Φ− Ap‖/ms, ~b is the normalized magnetic field

and α = L/ρS,e. The perturbed distribution function is pushed along the particle orbits

according to

˙δfs = −ḟ0,s (6)

= −f0,s

(

κu0,s

~̇R1
s · ∇x+

Ωs

√
βe α

v2s

(

p‖
ms

− u0,s

)

~b · ∇〈Ψ〉
)

. (7)
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The current gradient term with the bulk velocity u0,s reads

κu0,s
(x) =

p‖
ms

− u0,s

v2s

du0,s

dx

and vs =
√

kB Ts/ms/
(

vA d̂i/L
)

is the normalized thermal speed of each species. The

quasineutrality condition for drift kinetic electrons and gyrokinetic ions reads

ne = 〈ni〉+
Γ0 − 1

ρ2i
Φ. (8)

Γ0 is an integral operator that describes the average of the electrostatic potential over

a gyro-ring around the guiding center position. If necessary the polarization density is

approximated by a Padé approximation due to the relative complex structure of Γ0 in real

space. Otherwise the ion response is simplifed by using a long wavelength approximation,

k2
⊥ρ

2
i ≪ 1. Expanding Γ0 − 1 in a Taylor series in this limit, the quasineutrality condition

becomes

ne = 〈ni〉+∇2
⊥ Φ . (9)

The gyroaveraging of the ion guiding center density perturbation, ni, can be expressed by

the phase space integral

〈ni〉(~x) =

∫

J d6Z δ
(

~R + ~ρi − ~x
)

δ fi (10)

with the phase space Jacobian J = B, d6Z = d~R (dp‖/mi) v⊥dv⊥dα and the gyroradius

vector ~ρi(α).

Ampère’s law closes the Vlasov-Maxwell-system

−∇2
⊥A+

∑

s

βs

ρ2s
A =

∑

s

〈j‖,s〉 (11)

with the Larmor radii ρs =
√
ms kB Ts/ (eB0,z) for each species. The corresponding gyroav-

eraged ”current” response is calculated according to

〈j‖,i〉(~x) =

∫

J d6Z δ
(

~R + ~ρi − ~x
) p‖
mi

δ fi. (12)
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The gyroaverging procedure of the fields A, Φ is being employed according to

〈A,Φ〉(~R) =
1

2 π

∫

(A, Φ) (~R + ~ρ) dα, (13)

taking sufficiently many points on the gyro ring around the guiding center position ~R.

Recently, serious computational difficulties concerning the skin terms in Eq. (11) could be

resolved using an enhanced control variate method [28].

B. The gyrofluid model

We consider the gyrofluid model that has been adopted in Refs. [7, 9, 10] to investigate

magnetic reconnection in collisionless high-temperature plasmas with a strong guide field.

This model is obtained from the equations of Ref. [32] by neglecting magnetic curvature

effects and assuming two-dimensional dynamics with ∂/∂z = 0, being z the direction of the

strong guide field. In turn, the model of Ref. [32] was obtained from the equations of Ref. [33]

by taking only the first two velocity space moments of the gyrokinetic equations for both

the electrons and the ions, assuming constant temperatures and neglecting collisions and

the electron gyroradius. Electron inertia terms, on the other hand, were retained in order to

break the frozen-in condition and allow for magnetic reconnection phenomena. Therefore,

the evolution equations of this gyrofluid model consist of the continuity equation and the

z-component of the equation of motion for the ion guiding centers:

∂ni

∂t
+ [Γ

1/2
0 Φ, ni] = [ui,Γ

1/2
0 A], (14)

∂D

∂t
+ [Γ

1/2
0 Φ, D] = τρ2S,e[Γ

1/2
0 A, ni], (15)

and similar equations for the electrons:

∂ne

∂t
+ [Φ, ne] = [ue, A], (16)

∂F

∂t
+ [Φ, F ] = −ρ2S,e[A, ne], (17)
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where the Poisson brackets between two generic fields f and g are defined by [f, g] = ~z ·

∇ f ×∇ g. Here D = Γ
1/2
0 A + d2iui is the ion guiding center parallel canonical momentum,

whereas F = A− d2eue is the electron parallel canonical momentum. Furthermore, Γ
1/2
0 Φ is

the gyro-averaged electrostatic potential and Γ
1/2
0 A is the gyro-averaged parallel magnetic

potential, where the symbol Γ
1/2
0 refers to the gyro-averaging operator that we adopt in its

lowest-order Padé approximant form [12]

Γ
1/2
0 =

1

1− ρ2i
2
∇2

⊥

. (18)

This approximation gives reasonable values for the whole range of k2
⊥ρ

2
i . The system of

equations is completed by the parallel component of Ampère’s law,

∇2
⊥A = ue − Γ

1/2
0 ui (19)

and by the quasineutrality condition

ne = Γ
1/2
0 ni +

Γ0 − 1

ρ2i
Φ. (20)

The resulting model is dissipationless and suitable for the study of reconnection mediated

by electron inertia. In particular, it possesses a noncanonical Hamiltonian structure [32]

that reveals the presence of four Lagrangian invariants, which have proved to be helpful to

understand how the reconnection evolution is affected by the plasma β and by the ratio of

species temperatures [7, 10].

C. Equilibrium configuration and numerical setup

To investigate spontaneous reconnection, the model equations are solved numerically

with an initial equilibrium that is unstable with respect to tearing modes. The instability

reconnects the antiparallel component of magnetic field lines at the resonant surface defined

by ~k · ~B0 = 0, with ~k indicating the wavevector of the mode. We consider a two-dimensional

slab geometry with x as the coordinate of the equilibrium inhomogeneity and setting ∂/∂z =

0. The equilibrium magnetic field ~B0 results from an equilibrium current u0,e carried by
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electrons only (for ions u0,i = 0). The perpendicular sheared magnetic field can be deduced

from a parallel vector potential A0,‖(x), which is chosen to be

A0,‖(x) =
C

cosh2 (x)
. (21)

The parameter C was chosen to be C = 0.1 if not stated otherwise. This results in a

maximal relative shear strength of B0,y/B0,z ∼ 0.08 in the domain and a shear length

ls = B0,z/(dB0,y/dx) = 5 at the resonant surface x = 0.

Furthermore, the plasma is considered homogeneous with flat density n0,s(x) = neq and

temperature profiles T0,s(x) = T0,s for every species s. We considered a simulation domain

{(x, y) : −π ≤ x ≤ π,−aπ ≤ y ≤ aπ}, where the parameter a fixes the domain length Ly

in y-direction, which is linked to the wavenumber ky = 2πm/Ly of the longest wavelength

mode m = 1 of the system. The tearing mode stability quantity [29] ∆′ is then charaterized

by the wavenumber ky according to the analytical expression [30]

∆′ = 2
(3 + k2

y)(5− k2
y)

k2
y

√

4 + k2
y

. (22)

The tearing mode becomes unstable in nonideal MHD if ∆′ > 0, which is the case if ky <
√
5.

The field equations in EUTERPE are discretized in real space by a B-spline finite element

method [31]. The y-direction is treated periodically, while the fields A and Φ are subject

to Dirichlet boundary conditions with respect to x. For the simulations a resolution of up

to 1024 × 128 grid points has been used for the x and y-direction, respectively. The code

pushes the perturbed distribution function δfs along particles trajectory using a Runge-

Kutta-scheme of fourth order. In the gyrokinetic simulations no special initial perturbations

are chosen so that the tearing instability evolves out of noise.

The gyrofluid code decomposes the fields into a time-independent background equilibrium

and an evolving perturbation within a pseudospectral method [7]. Periodic boundary condi-

tions are employed in both the x- and y-directions, and a grid of 1024×128 points has been

used. Since periodic boundary conditions are imposed also along the x-direction, a Fourier

series truncated to eleven modes is used to approximate Eq. (21). Finally, an Adams-

Bashforth algorithm is applied to push the fields in time, and an initial disturbance on the
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out-of-plane current density of width O(de) around the resonant surface is set to accelerate

the onset of the tearing instability.

It is important to note that the boundary conditions for the fields with respect to the x-

direction are different in the two codes. This is a consequence of the historical development

of the codes. Due to the numerical method underlying the gyrofluid code periodic boundary

conditions arise naturally. In EUTERPE the chosen field boundary conditions are fixed

in the code. Our choice of the domain size in the x-direction is sufficient to avoid finite

domain size effects on the value of the tearing stability index ∆′. However, in the following

we will check the effects of the boundary conditions by performing a detailed linear bench-

mark with an eigenvalue approach. If, in the following, simulations in the drift kinetic limit

were performed, this was achieved by setting the temperature ratio to τ = 1/900, giving

ρi = 1/30 ≪ de, which makes the effect of the gyroaveraging operators negligible. Addition-

ally, instead of the Padé approximation the long wavelength approximation was then used

for the quasi-neutrality equation in EUTERPE.

III. LINEAR COMPARISON OF THE MODELS

As a first step we check the accuracy of the codes in the linear regime with a benchmark.

For this purpose a numerical eigenmode and eigenvalue analysis is applied to each of the

two models in the drift kinetic limit. After the accuracy of the codes is checked to a high

degree, we proceed with a comparison of the models in both the drift kinetic limit and the

finite Larmor radius case.

A. Eigenvalue equations

In this section we describe the procedure of performing a numerical benchmark using a

shooting method to get the linear dispersion relation in the drift kinetic limit. An anal-

ysis of the eigenvalues and the eigenmode structure is given here for both the linearised

gyrofluid and the gyrokinetic equations. The gyrofluid equations (14–20), and the gy-
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rokinetic equations (5–9), are linearised using the ansatz δΦ (x, y, t) = ei(ky y−ωt)Φ̃(x) and

δA (x, y, t) = ei(ky y−ωt)Ã(x) for the perturbed quantities, additionally assuming a long-wave-

length approximation for the quasineutrality equation, Eq. (9). The field equations are cast

into a general form with the coefficients qij , with (i, j) = (A,Φ),

d2Φ̃

dx2
= −qΦΦ (x, ω) Φ̃− qΦA (x, ω) Ã (23)

d2Ã

dx2
= −qAΦ (x, ω) Φ̃− qAA (x, ω) Ã (24)

The linearisation of the gyrofluid system gives the following coefficients

qΦΦ (x, ω) = −k2
y +

∑

s

qs
F ′
0,s

Ns

ky
ω

(25)

qΦA (x, ω) =
∑

s

qs
Ns

(

−qs −
ks
k‖

Ns − τsρ
2
S,e

k‖ks
ω2

)

(26)

qAΦ (x, ω) =
∑

s

−
F ′
0,s

Ns

ky
ω

(27)

qAA (x, ω) =
∑

s

qs
Ns

(

−qs − τsρ
2
S,e

k‖ks
ω2

)

(28)

where the prime denotes the derivative with respect to x. Also the quantities

F ′
0,s = −By,0 + (−1)s+1 d2s u

′
0,s (29)

k‖ = −A′
0ky (30)

ks = −u′
0,sky (31)

Ns = d2s

(

1− τs
ρ2S,e
d2s

k2
‖

ω2

)

, (32)

have been introduced to make the notation more compact. Note that in the above relations

τ1 = τ for ions and τ2 = 1 for electrons.
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The coefficients resulting from the linearisation of the gyrokinetic model are

qΦΦ (x, ω) = −k2
y + α2βe

∑

s

Ωs

µs

Xs

v2s k‖
〈V 1

s 〉 (33)

qΦA (x, ω) = −α
√

βe

∑

s

Ωs

µs

Xs

v2s k‖

(

〈V 2
s 〉+ u0,s〈 V 1

s 〉
)

(34)

qAΦ (x, ω) = ne

∑

s

Ωs

µs

Xs

v2s k‖

(

〈V 2
s 〉+ u0,s〈V 1

s 〉
)

(35)

qAA (x, ω) = −k2
y −

ne

α
√
βe

∑

s

Ωs

µs
(36)

×
(

Xs

v2s k‖

(

〈V 3
s 〉+ 2 u0,s〈V 2

s 〉+ u2
0,s〈V 1

s 〉
)

+ Ωs

)

.

where we have introduced Xs = −ks − k‖Ωs and µi = 1, µe = µ.

The functions 〈V n
s 〉 (x, ω) for each species are defined as

〈V n
s 〉 =

(√
2 vs

)n−1 1√
π

∫ ∞

−∞
dt tn

e−t2

t−
(

1√
2 vs

(

ω
k‖

− u0,s

))

=
(√

2 vs

)n−1

Zn (ζs)

(37)

with Zn (ζs) being the plasma dispersion function of n-th order with the species argument

ζs =
(

ω
k‖

− u0,s

)

/
(√

2 vs
)

.

These fourth-order equations are a nontrivial extension with respect to the case where the

electrostatic potential Φ̃ is negleted [14, 34], which is only of second order. Both these sets

of eigenvalue equations are solved numerically using a shooting method, which is formulated

as a Riccati problem [35]. By using an adaptive stepsize integrator results of very high

accuracy results are obtained.

For the equilibrium configuration considered here, i. e. without any equilibrium gradients

of temperature or density, the eigenvalue has only an imaginary part ω = i γ. The

Eqs. (23–24), with the coefficients (25–28) and (33–37), are solved using Dirichlet boundary

conditions in x-direction.
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FIG. 1: Benchmark of the gyrofluid eigenfunctions. Left the real part of the parallel vector potential

Ã, right the imaginary part of the electrostatic potential Φ̃. Eigenfunctions are normalized by their

maximum value.

B. Linear Benchmark with eigenvalue approach

The first benchmark is carried out for the parameter values de = 0.1, di = 4.285, ρS,e =

0.6, ky = 0.6 using the drift kinetic limit. This corresponds to βe = 1.96 ·10−2 and a realistic

proton to electron mass ratio µ = 1836. The comparison of the eigenfunction resulting

from the shooting method with results from the gyrofluid simulation is shown in Figure 1.

Due to symmetries of the equations and the pure imaginary eigenvalue, γ = 0.0248, only

the real part of Ã remains, as well as only an imaginary part of Φ̃. The field structures

agree very well with results from the shooting code, although the boundary conditions with

respect to x differ. The same procedure has been performed with EUTERPE using the

coefficients defined by Eqs. (33–37). In this case γ = 0.0273, and both potentials are in

good agreement with the results from the shooting method as well, as shown in Figure 2.

In this case both methods used the same boundary conditions regarding the x-direction.

The comparison with the solution of the gyrofluid problem shows that the instability is

mainly influenced by the dynamics at the resonant layer. The solutions drop very fast to

zero approaching the boundaries and therefore the influence of the boundary conditions is

suppressed. This will be important for further nonlinear comparisons.

To check the eigenvalues over an extended ky-spectrum of unstable modes, simulations

have been performed with the previous setup varying the simulation domain size Ly. The
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FIG. 2: Benchmark of the gyrokinetic eigenfunctions. Left the real part of the parallel vector

potential Ã, right the imaginary part of the electrostatic potential Φ̃. Eigenfunctions are normalized

by their maximum value.
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FIG. 3: A benchmark of the linear growth rates of both models for various wavevectors ky. Both

the gyrofluid code and gyrokinetic code work linearly exact.

comparison of both fluid and kinetic results and the relevant results of the shooting method

are shown in Figure 3. We have thus shown numerically that the two codes give exact

results in the linear regime over a wide range of ky.

C. Model comparison in the drift kinetic limit

In the following we use two sets of parameters which are relevant for reconnection

physics. The parameter associated with Setup I and II are listed in the Table below. Case
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Setup I II

µ 1836 100

βe 4.91 · 10−3 4 · 10−2

ρS,e 0.3 0.2

de 0.1 0.1

di 4.285 1.0

TABLE I: Set of parameters defining setup I and II used for the simulations.

I refers to a realistic mass ratio µ and ”kinetic” regime, βe ≫ me/mi, or equivalently

ρS,e ≫ de, whereas case II defines a ”medium” range between kinetic and inertial regime,

βe ∼ me/mi.

Simulations for cases I and II have been performed for various ky. Over the full range of

wave numbers, from the large-∆′ to the small-∆′ cases, close to the stability threshold at

ky ∼ 2.23, both models describe the reconnection process very well, as shown in Figure 4.

It is found a relative maximum deviation of about 20% around ky ∼ 1 for both setups.

However, in the small-∆′ limit the differences of the growth rates become smaller.

The kinetic description allows one to estimate the width of the region of particle acceler-

ation, δ, due to the resonance condition k‖ ρS,e/de = ky δ/ls · ρS,e/de ∼ γ in the small-∆′

limit and δ ≪ L [36]. This limit is defined by the condition ∆′ de ≪ (de/ρS,e)
1/3. Together

with the kinetic dispersion relation in this limit, γ = ky de ρS,e∆
′/ls, one gets the estimate

δ ∼ ∆′ d2e. The two-fluid description also yields this scaling of the growth rate and current

layer in the small-∆′ limit [17, 37].

Another point which might be important concerns the assumptions of the adopted

gyrofluid model, which is a truncation of the much more complete model proposed by

Snyder and Hammett [33]. The derivation uses the restriction that the bulk velocity

of the species u0,s is much smaller than the thermal velocity vs. Moreover, this model

uses an unshifted Maxwellian when performing the integration over the velocity space to

get the equations of moments. Therefore, the gyrofluid equations hold exactly only for
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FIG. 4: The comparison of the linear dispersions shows a good agreement between the two ap-

proaches over the full ky range. Left. Case I, µ = 1836. Right. Case II, µ = 100. (Solid lines

connect the numerical results for better visualization.)

C ≪ 1. For the linear simulations done here the amplitude of the sheared perpendicular

field was chosen as C = 0.1, which approximates this limit very well and additionally

allows relatively short simulation times. However we checked this point simulating a mode

with ky = 1.0, de = 0.1, di = 4.285, ρS,e = 0.3 and decreasing C from 10−1 to 10−4. Although

these runs required very long simulation times for small C, due to the dependence of γ

from ls, the relative deviation of the growth rates of the models fell from approximately 20%

to 12%.

D. Influence of gyro-effects

It is desirable to go beyond the drift kinetic limit and simulate the tearing mode for finite

ion temperatures when the gyroradius can become much larger than the thickness of the

electron diffusion region which is O(de) [38]. Here we only compare the linear simulations of

the codes using the setup scenario II for ky = 1.0 and 2.0, while varying τ . The gyrokinetic

effects now enter according to Eq. (8) using the approximation of Padé.

Figure 5 shows that the growth rates obtained with the two different codes behave qual-

itatively very similar when we vary τ . While for small τ the growth rate remains nearly

constant, for larger ion-gyroradii ρi ≫ ρS,e (τ & 1), the growth rate begins to increase
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FIG. 5: In the medium-∆′ regime, ∆′ de ∼ 1 (left), and in the small ∆′ de regime (right) the codes

show good agreement over whole range of τ . The analytical predicition, Eq. (38), fits well for both

the gyrokinetic and gyrofluid model (right).

strongly.

For the medium range ky ∼ 1 both models cover the physics very well (Figure 5, left). This

result is important since it proves clearly that the gyro-effects are being covered correctly by

both gyro-approaches, which provides a good starting point for the following comparisons

in the nonlinear regime.

The right frame of Figure 5 displays the simulation results in the small-∆′ limit, which for

the case with hot electrons and ions is defined by ∆′ de ≪
[

de/
(

ρS,e
√
1 + τ

)]1/3
. In this

range of parameters an analytical prediction for a kinetic ion response together with an

electron fluid derived by Porcelli gives [17]

γ = ky ∆
′ √1 + τ

de ρS,e
ls π

, (38)

which reproduces the simulation results to high accuracy. Since the parallel ion dynamics and

the gyrophase-independent part of the real space ion particle density 〈ni〉 were neglected in

Porcelli’s theory, their effect plays a negligible role when considering an equilibrium without

density gradients. Ion diamagnetic drifts may change this picture, and an investigation of

nonuniform ion density equilibria will be the subject of a future publication.
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IV. COMPARISON OF THE NONLINEAR MODELS

In fusion relevant applications the saturated behaviour of the tearing instability is a very

important issue. Continuing with the parameters of both cases I and II we now discuss the

nonlinear phase, concentrating on the small-∆′ regime. The saturated island half width w

and oscillation frequency ωB in the deeply nonlinear phase are the two most relevant ob-

servables. Up to now, in the literature there are only a few extended simulation results of

these quantities in homogeneous plasmas [14, 15, 18].

It is important to note that the equilibrium considered in this section is unstable with

respect to modes with m = 1, which can in general interact in the nonlinear phase

with the m = 0 mode. Pseudospectral codes simulate a complete rectangular domain

[−mmax, . . . , mmax] × [−nmax, . . . , nmax] in Fourier space [40], n being the mode number in

z-direction (nmax = 0 here), so the m = 0 mode is being simulated as well. In the gyrofluid

simulations all relevant scales were well resolved by choosing the extent of the Fourier spec-

trum to 1/kmax ≪ de. In EUTERPE it is not necessary to choose a corresponding domain

setup. Nevertheless, to match the initial computational conditions of the two methods, EU-

TERPE was adjusted to adopt the filter [−1, . . . , 1] × [0]. Because higher modes numbers

m = 2, 3, . . . are expected to play no role in the dynamics the chosen filter does not restrict

the essential physics.

The gyrokinetic simulations were performed with up to Np = 3·107 markers with a minimum

time step ∆t = 0.125. The skin depth de = 0.1 is resolved with at least 16 points, whereas

the width of the perturbed current produced by the parallel electric field, δ, was resolved

with about ten points. The numerical resolution of the vector potential in the x-direction

amounts to nx = 1024 points, which separates scales up to ∆ x = 5 · 10−3. This introduces

an upper error range, which can be removed with finer grid resolutions but demands a much

higher computational effort.

We apply two different methods to obtain the island half widths w of the collisionless tearing
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mode. Assuming the constant-Ã approximation, the half width evolution is given by [39]

w(t) = 2

√

Ã(x = 0, y = 0, t) ls. (39)

Otherwise, without any approximation, we can obtain the exact island half width using the

geometric definition of the island separatrix at each time step by solving numerically the

equation

A(x = 0, y = 0, t) = A

(

x = w (t) , y =
π

ky
, t

)

(40)

on the discrete spatial grid used in the codes. Assuming that the X-point is at x = 0, y = 0

and following the separatrix, the island half width w is found at x = w (t) , y = π/ky.

A. Drift kinetic limit

The evolution of the island half width into the deeply nonlinear regime is shown in Figure 6

for the parameters ky = 1.8, µ = 1836 and ρS,e = 0.3 obtained with both codes. This Figure

shows the solution of Eq. (40) at each time step. Both gyrofluid and gyrokinetic models

behave well in the nonlinear phase and show a clear saturated phase beginning at t ∼ 1500.

The energy conservation proved to be more accurate than 2.5%. Moreover, it turned out

for all simulations presented here that the coupling between the m = 0 and m = 1 modes

is very weak and can be neglected. Figure 7 shows a comparison of the evolution of the

exact island half width and the island half width obtained according to Eq. (39) for the

gyrofluid simulation shown in Figure 6. We have checked that for wavenumbers ky ≥ 1.8,

which corresponds to the small-∆′ limit, the island half width calculated with the constant-Ã

approximation is valid within the precision of measurement. Nevertheless, in the following

we use Eq. (40).

When the island width becomes comparable to the linear current sheet thickness δ, the

mode saturates [16]. After the transition into the saturation phase the width of the island

begins to oscillate with a characteristic frequency ωB, which is clearly visible in Figure 6

and 7. From the timeseries w(t) the saturated island half width w is measured by taking
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FIG. 6: Island half width as a function of time for setup I and ky = 1.8. Both gyrofluid and

gyrokinetic models show clear saturated behaviour of the mode. The steps are due to the spatial

discrete grid points.
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FIG. 7: Comparison between the exact island half width obtained by solving Eq. (40) on a discrete

spatial grid and the island half width calculated according to Eq. (39) (Setup I and ky = 1.8). In

the small-∆′ limit the const-Ã approximation is numerically confirmed.

the mean value w = 〈w(t)〉T after saturation starts, with T indicating a period longer than

the oscillation frequency.

In the following we measure both quantities w and ωB for an extended parameter range

to compare the gyrokinetic and gyrofluid models, and to check the validity of analytical

predictions in this regime of parameters.

Figure 8 shows the saturated island half width w as a function of the longest wavelength
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in the system for both parameter cases. For values ky ∼ 1.6 the relative difference of the

island half widths obtained with the two adopted models is found to be about 30% for both

parameter cases I and II. Increasing ky to the range ky = 1.9 . . . 2.23 close to the stability

threshold the agreement between the results of the two codes is much better. The relative

deviation of the island half widths is approximately 10% for ky = 1.9 in both setups and

vanishes practically for higher wavenumbers. This shows that for ∆′ . 1 both models

agree very well. Therefore, there are no significant differences between the gyrofluid and the

gyrokinetic models for small island widths, i. e. when w . de. So for the cases investigated

here, in which the island half width and the current layer thickness δ are much smaller than

the equilibrium scales, the fluid description produces practically the same island half widths

as the more complete kinetic model. The comparison between the models also shows that

the island width is slightly higher in the fluid description than in the kinetic model. These

are the first extended comparisons of the saturated island width in slab geometry over a

broad range of parameter.

Since for both parameter cases the ion skin depth is much larger than the electron skin
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FIG. 8: Saturated island half width w as a function of ky for Setup I (left panel) and for Setup II

(right panel). The gyrokinetic and gyrofluid models show a very good agreement in determining

the saturated island half width in the small-∆′ limit.

depth, de ≪ di, electron inertia dominates completely. This regime has been investigated

analytically in an early kinetic approach by Drake and Lee [16], where it was shown that the

tearing mode saturates approximately when w ∼ δ, which in this regime means w ∼ ∆′ d2e.
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A more detailed estimation yields

w = ∆′ d2e
2G

(41)

with G ∼ 0.41 [16]. Therefore, in the small island limit, de ≪ L ∼ ls, the saturated island

half width is described only by the skin depth de and the tearing mode stability parameter

∆′, which for our choice of the equilibrium is known analytically from Eq. (22).

The analytical prediction in comparison with our simulation results depending on ky is

shown in Figure 9. Eq. (41) well reflects the qualitative behaviour of w over the shown

ky-range, and agrees more closely with the gyrokinetic results than the gyrofluid ones. The

deviations of the prediction of w can be caused by assumptions which are not completely

valid in the simulations. For instance, in the analytical estimations the shifted background

Maxwellian was not used rigorously, and in addition the density response was neglected.

For both parameter cases investigated here, the island width does not seem to depend

on the values of ρS,e = 0.2, 0.3, as can be seen by comparing the left and right panels of

Figure 8. This suggests that there is no influence of finite electron temperature effects on

the island width. This is consistent with the fact that the analytical prediction, Eq. (41),
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FIG. 9: The saturated island half width w depending on ky is compared with the prediction

by Drake and Lee [16] for the parameter case I. The analytical model shows a good qualitative

agreement with simulation results for ∆′ < 1.

does not contain finite electron temperature effects related to ρS,e, which are linked to finite

pressure effects and the width of the ion inflow region [37]. Since ρS,e is comparable to the

electron skin depth and the analytical model does not contain this quantity, it is unclear
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whether it plays an important role in nonlinear simulations with both kinetic species. To

investigate this dependence we fix the parameters ky = 1.8, ∆′ de ∼ 0.25, µ = 1836 and vary

ρS,e = 0.3, 0.1, 0.05, 0.025. The simulations have shown that the island half width remains

the same (w ∼ 0.04) to high accuracy in both gyrokinetic and gyrofluid simulations. It

follows that in the small-∆′ regime the pressure scale has no influence on the saturation

level of the collisionless tearing mode.

A further important nonlinear quantity which has been compared within the adopted

gyrokinetic and gyrofluid models is the oscillation frequency ωB that characterizes the

saturation phase, as shown in Figures 6 and 7. In the kinetic context it was observed that

this frequency is due to the bounce motion of trapped electrons in the island [14]. We

consider again the parameter cases I and II, and measure the oscillation frequency as the

mean value of several oscillation periods in the deeply nonlinear saturation phase, namely

ωB = 2π np/(Tf − Ti), being np the number of periods. In the gyrofluid simulations the
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FIG. 10: Oscillation frequency as a function of the wavenumber ky for the two models using the

parameter setup I (left panel) and the parameter setup II (right panel). Both models deliver

practically the same oscillation frequency in the saturated phase in the low- and medium-∆′ range.

oscillation frequency can always be clearly observed. While for parameters of case I the

frequency can be measured clearly with the gyrokinetic code EUTERPE, this is more

difficult in case II. Therefore, to obtain good results the number of markers was doubled to

Np = 3 · 107 and the previous time step was halfed to ∆ t = 0.125.
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The results are displayed in Figure 10. The models agree very well for all wavenumbers ky

shown here, also for moderate values of ∆′ ∼ 1. These results clearly show that also in this

regime the oscillatory behaviour of the saturated reconnection process can be described

completely by a fluid description.

From a rough kinetic estimation one gets ωB ∼ ky vew/ (2 ls) [14, 16], so the frequency

is roughly proportional to the island width and the stability parameter ∆′ according to

Eq. (41). The results in Figure 10 confirm this linear scaling in the limit of low ∆′ values.

B. Finite ion temperature effects

This section deals with the extension of previous nonlinear results by including finite ion

temperature effects using the full finite Larmor radius (FLR) response.

We focus on the parameter case I and investigate the behaviour of the saturated island half

width and oscillation frequency with increasing ion temperature.

In Figure 11, left, the saturated island half width is shown when the ion temperature is
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FIG. 11: Comparison of the island half width w (left panel) and the oscillation frequency ωB (right

panel) as a function of the temperature ratio τ for the parameter Setup I and ky = 1.8.

varied using the values τ = 1/900, 0.25, 1, 4 and fixing ky = 1.8. The island width only

changes by about 5% over approximately three orders of magnitude of τ . This shows that

finite Larmor radius effects on w are weakly relevant for ∆′ . 1.

As stated earlier, Ref. [16] predicts the general saturation condition w ∼ δ. Here, due to

the influence of finite ion temperature, the parallel current channel width changes according
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to [20]

δ ∼ γ ls

ky ve
√
1 + τ

. (42)

On the other hand the growth rate increases according to γ ∝
√
1 + τ , as we have seen in

section III. Using Eq. (38) for the growth rate and Eq. (42) for the modified current width,

the generalized scaling of the saturated island half width for finite τ becomes

w ∼ ∆′ d2e (43)

as stated for the drift kinetic case. This estimation makes evident that the saturated island

width does not change significantly with ion temperature.

In contrast to the island half width, the oscillation frequency changes significantly when the

temperature ratio is varied, as shown in the right panel of Figure 11. The dependence of the

oscillation frequency on the temperature ratio is similar to that of the growth rate. However,

even with small but finite τ . 1, the two models agree completely in the saturated phase.
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V. SUMMARY

We have simulated collisionless magnetic reconnection via the tearing instability with

a gyrokinetic and a gyrofluid model. The results of both approaches have been compared

to each other linearly and nonlinearly for an extended set of parameters. To the best

of our knowledge, this is the first comparison of these two models for simulations of the

collisionless tearing mode.

As a first step, we have applied a shooting method to benchmark the linear simulations of

both codes in the drift kinetic limit. The linear eigenmodes of the two models have been

benchmarked for a single wave number and a fixed set of plasma parameters, whereas the

linear growth rates of both codes have been compared for a range of wave numbers. It has

been shown that in the linear regime both codes give results with high degree of accuracy.

Then the results of the two models have been compared over the whole spectrum of linearly

unstable wave numbers for two sets of plasma parameters showing a good agreement

between the growth rates obtained with the gyrokinetic model and the gyrofluid one.

The linear simulations have been extended to the case of finite ion temperature, where

we have shown that ion gyro-orbit averaging effects can be properly described by both

approaches. Furthermore, numerical simulations in the small ∆′de range compare favorably

with the asymptotic theory by Porcelli [17].

Nonlinear simulations of both models have been carried out in the small-∆′ regime. We

have performed a detailed comparison of observables such as the evolution and saturation

of the island width, as well as its oscillation frequency in the saturated phase, which has

not been performed in this extend of parameter space so far. The gyrokinetic and gyrofluid

simulations have shown that close to the marginal stability the evolution and saturation

of the island width for both models is practically the same. Moreover, an important and

new observation is that the oscillation frequency of the island width shows no difference

between the two models. Therefore, the main result is that the nonlinear evolution of

the collisionless tearing mode in the drift kinetic limit is essentially well described by
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the fluid theory. We have also considered finite ion temperature effects in the saturated

island phase. Here again both models differ only slightly when measuring the island width

and its oscillation frequency. Therefore, in the regimes investigated here, the nonlinear

reconnection physics can be completely described with a gyrofluid approach.

Slightly stronger deviations between the simulation results occur for ∆′ ∼ 1, suggesting that

further investigations will be of interest in this regime, as well as in cases where ∆′ ≫ 1, for

which a detailed nonlinear comparison between the gyrokinetic and gyrofluid models is still

missing.
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