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Abstract

This article is a technical report on the HLST project “Parallel
Multigrid on Triangles” (MGTRI) submitted by B. Scott for devel-
oping a fast parallel solver for the gyrokinetic simulation on a mas-
sively parallel computer. We consider a second order elliptic partial
differential equation on a hexagonal domain with structured triangular
meshes. We implemented a parallel matrix-vector multiplication algo-
rithm tailored to the structured triangular meshes on the hexagonal
domain. The algorithm achieved very good strong and weak scaling
properties. In addition, we investigated and implemented a paral-
lel multigrid method and two non-overlapping domain decomposition
methods, namely the FETI-DP and BDDC.
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1 Introduction

The underlying physics code project GEMT by B. Scott is intended to gen-
erate a new code by combining two existing codes: GEMZ and GKMHD.
GEMZ [18], is a simulation code for turbulent tokamak dynamics using gy-
rofluid equations [24], based on a conformal, logically Cartesian grid [20].
GKMHD is an MHD equilibrium solver which is intended to evolve the
Grad-Shafranov MHD equilibrium with a reduced MHD description which
is derived self consistently from the gyrokinetic theory.

GKMHD already uses a triangular grid, which is logically a spiral form
with the first point on the magnetic axis and the last point on the X-point
of the flux surface geometry. The solving method is to relax this coordinate
grid onto the actual contours describing the flux surface of the equilibrium
solution. Such a structure is logically the same as in a generic tokamak
turbulence code. Presently GKMHD is not parallelized. Hence, a major
building block of making the code parallel is to implement a matrix-vector
multiplication and a parallelized solver on a triangular grid which is the
topic of this report.

The matrix-vector multiplication is the key component of iterative meth-
ods such as the conjugated gradient method (CGM), the generalized minimal
residual method (GMRES) [21], and the multigrid method. For the struc-
tured grid on a rectangular domain with triangular or rectangular elements,
the matrix-vector multiplication is well developed and tested. In addition,
there are some popular libraries available to solve partial differential equa-
tions with a finite element method on unstructured triangular meshes. In
this project, we consider a new approach to handle a structured grid of a
regular hexagonal domain with regular triangle elements. We show that the
matrix-vector multiplication of this approach has almost perfect strong and
weak scaling properties.

The multigrid method is a well-known, fast and efficient algorithm to
solve many classes of problems including the linear and nonlinear elliptic,
parabolic, hyperbolic, Navier-Stokes equations, and magnetohydrodynamics
(MHD) [1, 2,9, 10, 17, 19, 27]. Although the multigrid method is complex to
implement, researchers in many areas think of it as an essential algorithm.
Its main strength is its complexity of N log IV, i.e., the number of operations
of the multigrid method depends on the number of degrees of freedom (DoF)
times the number of levels (log of the DoF).

To implement and analyze the multigrid method, we have to consider
two main parts of the multigrid algorithm, the intergrid transfer operators
and the smoothing operators, separately. The intergrid transfer operators



depend on the discretization scheme and are highly related with the dis-
cretization of the matrix. The smoothing operators are implemented ac-
cording to the matrix-vector multiplication. The multigrid method on a
triangular mesh was studied by many researchers and reached a mature
state. However, its implementation focused mostly on structured rectangu-
lar domains or unstructured grids with very complicated data structures.
Instead, the problem under consideration here is based on a structured grid
on a regular hexagonal domain. Hence, the data structure has to be adapted
to our problem to get an optimal parallel performance. We implemented the
smoothing operators and the intergrid transfer operators according to the
distribution of the triangular grid information on each core which is used to
implement the parallel matrix-vector multiplication.

Due to the ratio between computational and communication costs, the
larger the number of DoF per core is, the better are the scaling properties of
an iterative method like the multigrid method. For sufficiently large numbers
of DoF per core, the scaling properties are very good [12]. Unfortunately,
for very large numbers of cores, the number of DoF per core typically falls
below a critical threshold and the communication cost on the coarser levels
becomes more dominant than the computational cost. Especially, the exact
solver on the the coarsest level has to be improved because the number of
DoF per core is very small (1 — 4) and the required number of iterations of
a method such as CGM and GMRES increases according to the square root
of the total number of DoF which is similar to the number of cores.

Thus, we have to find a special handling on the coarser level and/or
look for other methods which are more efficient for small numbers of DoF
per core than the multigrid method. Regarding the former, we consider
to reduce the number of cores which are used to solve the problem on the
coarser levels. Considering the complexity of the data communication, we
can conclude that the case which uses only one core below a certain coarse
level is the best choice. So, for a certain coarse level, the executing core
gathers data from all cores, executes the coarse level iteration, and sends
the results back to all cores. This algorithm also avoids the coarsest level
limitation where there must be at least one DoF per core. Instead of having
only one core solving the coarser level problem while the others are idling,
we chose to replicate the same computation on each core; then we use these
results for computations on the finer level without the need to send the
results to all cores. Numerical experiments show that this implementation
performs better, especially, on the large numbers of cores. However, it still
needs more improvement to run efficiently on a massively parallel computer.

A potential candidate for the coarsest level solution is the domain decom-



position method (DDM) which is intrinsically parallel and scalable on mas-
sively parallel computers for solving partial differential equations (PDEs).
The DDM can be further classified into the so-called overlapping and non-
overlapping methods. On the one hand the overlapping method can be used
as a preconditioner of the Krylov iterative method. On the other hand, the
non-overlapping method is suited for problems which have discontinuous
coefficients in the PDEs or have many distinct parts in the domain. The
convergence rate of the DDM for reaching a certain error threshold shows
the following behavior: for the one-level DDM it depends on the number of
cores and for the two-level DDM it depends on the ratio between its coarsest
and finest mesh sizes.

We implemented, analysed and developed the following two-level DDMs:
the two-level Schwarz (overlapping) method [3, 25, 26], the balanced domain
decomposition method with constraints (BDDC) [16], and the dual-primal
finite element tearing and interconnection (FETI-DP) [7] method. While
implementating the two-level Schwarz method, we were confronted with the
same problem on the coarses levels as in the case of the multigrid method.
Therefore, no performance improvements compared to the multigrid method
were seen. Consequently we investigate only the performance of the BDDC
and FETI-DP.



2 The model problem and its discretization

In this section, we explain the model problem we are interested in and
how we discretize it. We consider a structured triangulation with regular
triangles of a regular hexagonal domain. This triangulation is fitted for
a regular hexagonal domain and may be extend to a general domain by
a conformal mapping. As discretization scheme, we consider both a finite
element method (FEM) and a finite volume method (FVM).

The FEM and FVM have been studied and used in many areas and have
different aspects. The FEM has been well analysed on mathematical grounds
with highly developed mathematical theories, but hardly keeps conservation
properties which are important for some application problems. The FVM is
originated to conserve quantities locally, but an error analysis of the FVM
is more difficult and can be obtained by the comparison with an analysis of
the FEM.

We consider a Poisson type second order elliptic partial differential equa-
tion (PDE) on a regular hexagonal domain (as shown in Fig. 1) with a
Dirichlet boundary condition

(2.1)

a(x,y)u—Vb(:v,y)Vu =1 in (),
u =0, ond,

where f € L%(Q), b(z,y) is a positive function and a(z,y) is a non-negative
function. It is well known that (2.1) has a unique solution.

o0

Figure 1: A regular hexagonal domain of the model problem.



2.1 Finite element method (FEM)

First, we consider the finite element formulation for (2.1).
Multiplying each side with the test function v and integrating over {2,
we obtain the following equation

/Qa(x,y)uvdx—/Q(v.b(x,y)vu)vdx:/vadx

and, by using the Gauss divergence theorem with a Dirichlet boundary con-
dition, we get the following equation

/Qa(:c,y)uvdx—i—/gb(x,y)Vu-Vvdx—/vadx. (2.2)

By denoting

aE(u,v):/a(x,y)uvdx—i—/b(x,y)Vu-Vvdx,
Q Q

the second-order elliptic problem (2.1) can be written in the follwoing form:
Find u € H(Q) such that

aE(u,v):/vadX (2.3)

for any test function v € H}(2) where H{ () is the space of the first differ-
entiable functions in 2 with zero values on the boundary 0f2.

By choosing a finite dimensional space of H&(Q), we can classify different
discretization methods including as e.g. the spectral method, the discontin-
uous Galerkin method, the conforming and the non-conforming FEM.

Here we consider only piecewise linear finite element spaces defined on
the triangulation with regular triangles as in Fig. 2 (solid lines). Let h;
and Tp, = 71 be given, where 77 is a partition of € into regular triangles
and h; is the maximum diameter of the elements of 7;. For each integer
1 <k < J,let hy = 2~ 1, and the sequence of triangulations Th, = Ti. be
constructed by a nested-mesh subdivision method, i.e., let T be constructed
by connecting midpoints of edges of the triangles in Tr_1. Let 7, = T; be
the finest grid.

Define the piecewise linear finite element spaces

Vi = {v € C%(Q) : v|f is linear for all K € Ty}



Figure 2: The primal (solid lines) and dual (dotted lines) triangulations.

Then, the finite element discretization problem can be written as follows:
Find uy € Vj such that

aE(uJ,v):/vadx (2.4)

for any test function v € V.
We have the following well-known error analysis result about the FEM.

Theorem 2.1 If u € H%(Q) and uy the solution of (2.1) and (2.4). Then
there exists a constant C, independent of hy, such that

lu = wgllo + hyllu = wsllin, < Ch3lluls. (2.5)
The equation (2.4) can be written as the following linear system;
AJUJ = f] (26)

where Ay is a matrix of dimV; x dimV; and wy and f; are vectors with
dimension dimVj.



2.2 Finite volume method (FVM)

Next, we consider a finite volume formulation for (2.1). The FVM origi-
nates from a different starting point, i.e., from control volumes. According
to control volumes, the FVM can be classified by overlapping [22] and non-
overlapping FVM. In this report, we consider the non-overlapping control
volume which is corresponding to the previous triangulations in Fig. 2 (dot-
ted lines).

Let 7,F be a finite set of control volumes as shown in Fig. 2 with dot-
ted lines. By the integral (2.1) over each control volume K7}, we have the
following equation

J,

and, by using the Gauss divergence theorem, we derive

J,

By restricting the solution space to Vj, we have the following problem:
Find u’ € V such that, for all K} € T,

J,

Define associated test function spaces Yy, k = 1,...,J, as the space of
piecewise constant functions:

a(z,y)udx — / (V-b(z,y)Vu)dx = fdx

* * *

a(z,y)udx — / b(x, y)% do = f dx. (2.7)

. DK 3\OK 509 on K3

a(x,y)uydx — / b(x, y)% do = fdx. (2.8)

. DK H\OK 509 on K3

Yy = {2z € L*(Q) : 2|k is a constant function}.

Also, define a bilinear form aj(-,-) : Vi x Y = R by

ay(ug,v) = / a(z,y)ugv dx — / b(x,y)%v do
K3 DK E\OK 5N00) on
for up € Vi, and v € Y.
Then, Eq. (2.8) can be written by
a’y(ug,v) :/ fodx. (2.9)
Kp

for all v € Y.
From results on convergence analysis in [4] and [5], we got the following
error estimations for the non-overlapping FVM.



Theorem 2.2 Ifu € H*(Q) and u% € V; as the solution of (2.1) and (2.9).
Then there exists a constant C, independent of hy, such that

lu = ujllip, < Chyllulla. (2.10)

Furthermore, assume that f € H'(Q) and a(z,y),b(z,y) € W2, Then
there exists a constant C, independent of hy, such that

lu —wjll < ChI(ull2 + [ f]l1)- (2.11)
The equation (2.9) can be written as the following linear system;
Ajuy = [y (2.12)

where A% is a matrix of dimV; x dimY}, u; is a vector with dimension
dimVy, and fy is a vector with dimension dimY;. But, in most of the cases,
we choose the same cardinality of V; and Yy, i.e., dimV; = dimY/.

In the case of a(z,y) and b(x,y) being piecewise constant functions, the
discretized system from the FEM and the FVM are only different in the
source term (right-hand side of the system).

From the above, we know that A; and A% has the same dimension, so
we consider the multigrid method to solve the system

Ajug = [y, (2.13)

where Ay : V; — V7 is a symmetric positive system.

10



3 Parallelization of the structured grid

The issue of the parallelization is how to distribute the work (load balancing)
and how to reduce the data communication costs to a minimum. To get good
load balancing, we distribute the data in such a way that each core handles
a similar amount of cells or nodes. In contrast to an unstructured grid, the
information of a structured grid can be employed by the programmer. It
gives the opportunity to minimize the storage requirement for the triangular
grid information and to optimize the data communication on a distributed
memory computer.

In our implementation, we use real and ghost nodes on each core. The
values on the real nodes are handled and updated locally. The ghost nodes
are the part of the distributed sub-domains located on other cores whose
values are needed for the local calculations. Hence, the values of the ghost
nodes are first updated by the cores to which they belong to as real nodes
and then transferred to the cores that need them. To reduce the data com-
munication during matrix elements computation, the computation of the
matrix elements within the overlapping regions which belong to more than
one core as real cells can be calculated concurrently by those cores.

3.1 Load balancing

We consider of how to divide the hexagonal domain into sub-domains with
the same number of cores. FExcept for the single core case, we divide the
hexagonal domain in regular triangular sub-domains and each core handles
one sub-domain. Hence, the feasible numbers of cores are limited to the
numbers 6 x 4" for n = 0,1,2,... as e.g. can be seen in Fig. 3. For each core
we have to define what are real and ghost nodes on the common boundary
regions of the sub-domains. We declare the nodes on the common boundaries
between two sub-domains to be real nodes of the sub-domain which is either
radially outward or located in the counter clockwise direction. As shown in
Fig. 3 (c). For our problem with a Dirichlet boundary condition on the outer
boundary, we can handle these boundary nodes as ghost nodes. The value
of there boundary ghost nodes are determined by the boundary condition
and thus do not have to be transferred from other cores.

We number the sub-domains beginning at the center and going out-
wards following the counter clockwise direction as shown in Fig. 4. Each
sub-domain can be further divided into triangles; this process is called tri-
angulation. In this process each line segment of the sub-domain is divided
into 2™ parts. It can be shown that, independently of the total number of

11
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Figure 3: The sub-domains according to the number of cores.

sub-domains and triangulation chosen, there are just three domain types
shown in Fig. 5. These give detailed information of the real and ghost nodes
being connected to other sub-domains and cells which are needed to compute
the matrix elements for the real nodes. We summarize the number of real
nodes and ghost nodes and the total number of nodes in each sub-domain in
Table 1. To see how good the load balancing is, we measure the ratio of the
largest number of real nodes to the smallest number of real nodes as “ratio”
which is [2"(2" + 3)]/[2"(2" + 1)]. It tends to “one” as n is increased.

The local numbering of the nodes of the three sub-domain types (a), (b)
and (c) in Fig. 5 are necessary to describe the inter sub-domain communica-~
tion pattern. Usually, we number real nodes first and then ghost nodes. We

12
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Figure 4: The numbering of the sub-domains.

level Type I Type 11 Type II1 Ratio
Real Ghost | Real | Ghost Real Ghost
1(1) 2 8 1 6 2 8 2.0000
2(3) 7 14 6 12 9 14 1.5000
3(7) 29 26 28 24 35 26 1.2500
4(15) 121 50 120 48 134 50 1.1167
5(31) 497 98 496 96 526 98 1.0604
6(63) 2017 194 2016 192 2078 194 1.0308
7(127) | 8129 386 8128 384 8254 386 1.0155
n(N) | M+1|3N+5| M |3N+3| M+ N |3N+5

Table 1: The number of real and ghost nodes (N = 2" — 1 and M =
N(]\;"'l) — 2n—1[2n o 1])

13
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(a) Sub-domain type I: 0, 6, 9, 12, 15, 18, 21, 24, ....

29 31 33 35 37 39 41 43
(M +1)

(b) Sub-domain type II: 1, 2, 3, 4, 5, 11, 14, 17, 20, 23, 28, ....
47 49 51 53 55 57 59

36 -
(M+N+1) 44(M+2N +2)
(¢) Sub-domain type III: 7, 10, 13, 16, 19, 22, 25, 27, ...

Figure 5: The local numbering of the node on the three sub-domain types
(e: real nodes, o: ghost nodes, N =2" — 1 and M = W)
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depict the local numbering and properties of the nodes for n = 3 in Fig. 5.

3.2 Data communication step

To get the value on the ghost nodes from the other cores for all sub-domains,
we implement certain communication steps. The communication steps are
the dominating part of the parallelization process and thus a key issue for
the performance of the parallel code. The easiest way to implement the data
communication would be that every ghost node value is received from the
core which handles it as a real node value. However, such implementation
would need several steps and their number would vary among different cores.
This approach could be well suited for unstructured grids, but it would be
too slow in our case. We solve the problem by using a sophisticated data
communication routine which needs a fixed number (five) of steps for each
core.
Our dedicated data communication steps are as follows:

Stepl:
Step2:
Step3:
Step4:

Stepbh:

Radial direction (Fig. 6. a)

Counter clockwise rotational direction (Fig. 6. b)
Clockwise rotational direction (Fig. 6. c)

Radial direction (same as in (1), Fig. 6. a)

Mixed communications (Fig. 6. d)

In these communication steps, the number of nodes which needs to be
updated is one to four only after Step3. We illustrate the processe in Fig. 6
and show the updated values on nodes after the first three steps in Fig. 7
depending on their relative positions.

3.3 Krylov subspace methods

In this subsection, we review the Krylov subspace method which is used as
a popular iterative solver whose performance can be improved by a precon-
ditioner.

Define the Krylov subspace of order m by

K (A;v) = span{v, Av, ..., A" T} (3.1)

The Krylov subspace is a subspace of the set spanned by all vectors u € RY
which can be written as u = p;,—1(A)v, where p,,—1 is a polynomial in A of

15
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Figure 6: The data communication steps.

degree < m — 1. Clearly, we have K;(A;v) C K2(A,v) C K3(A,v),..., and
the dimension of the subspace increases at most by one for each step.

Theorem 3.1 Let A€ RN*N andv € RYN. The Krylov subspace K,,(A;v)
has a dimension equal to m if and only if the degree of v with respect to
A, denoted by deg,(v), is not less than m, where the degree of v is defined
as the minimum degree of a monic non-null polynomial p in A, for which

p(A)v = 0.

The CGM and the GMRES are well-known and well-analyzed Krylov
subspace methods. The CGM works only if A is symmetric and positive
definite to the inner product of the vector space. For the CGM, we have the

16
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Figure 7: After third communication step (Step3) (&: first step, #: second
step, W: third step).
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following theorem about its termination and convergence rate.

Theorem 3.2 Let A be a N x N symmetric and positive definite matriz.
The CGM to solve Eq. (2.13) terminates after at most N steps. Moreover,
the error d™) at the m-th iteration (with m < N ) is

k(A)—1

VE(A) +1

where k(A) is the condition number of A, i.e., k(A) = TN with the largest
eigenvalue Ay and the smallest eigenvalue A1 of A.

1d™ |4 < 20™ 1O 4, with p = (3:2)

Theorem 3.2 can be applied for any Krylov subspace method and shows
that the convergence rate p is very good when the condition number x(A) is
small and approaches one as k(A) increases. For large real-world problems,
the condition number x(A) is very large, so the Krylov subspace method
converges very slowly.

The performance of the Krylov subspace method can be improved by re-
placing the original problem with a preconditioned problem i.e., the original
problem Ax = b is replaced by a preconditioned problem Az = b where

MAx = Mb, or AMM 'z =b, or M, AMgMg'z = Mpb.
A b Az A i b

The first two cases are referred to as left and right preconditioning, re-
spectively, while for the last case we apply a split preconditioner My MRg.
To be an efficient preconditioner, A needs to have a small condition num-
ber, i.e., M or MMy is a approximate inverses of A (M~ ~ A). Another
required property of the preconditioner M is that the system M 'y = z
can be easily solved for any z. Applying a preconditioned Krylov subspace
method just means to apply the Krylov subspace method to the precondi-
tioned problem A% = b instead of the original problem Az = b. To use the
preconditioned CGM (PCGM), we have to check the symmetricity of the
preconditioned system to the inner product.

18



4 The multigrid method

The motivation of the multigrid method is the fact that simple iterative
methods, such as Jacobi and Gauss-Seidel methods, reduce well the high-
frequency error but have difficulties to reduce the low-frequency error, which
can be well approximated after projection on a coarser level problem. We
illustrate the basic idea of the V-cycle multigrid method in Fig. 8.

A Multigrid V-cycle

smoother |

Finest Grid

Restriction
transfer from fine
to coarse grid

coarse grid has fewer 3 f"’l,
cells (less work and

storage required) ) . Fl

First Coarse Grid /l Prolongation

. /' transfer from coarse
\ / to fine grid

Recursively apply \ /

this idea until we have an < /

easy problem to solve D

Figure 8: Basic idea of the multigrid method.

As shown in Fig. 8, the multigrid method consists of two main steps, one
is the smoothing operator and the other is the intergrid transfer operator.
As the smoothing operator, we can use any type of iterative method includ-
ing, Richardson type (simplest one), Jacobi iteration, Gauss-Seidel iteration,
Kaczmarz iteration, and incomplete LU decomposition (probably the most
complex one) method. But, the smoothing operator has to be easily imple-
mented and be able to reduce effectively the high frequency error. So the
typically preferred smoothing operator is the Gauss-Seidel method.

The other important ingredient are the intergrid transfer operators,
which consists of the prolongation and the restriction operator. These op-

19



erators depend on the geometry and functional spaces being used (e.g. the
conforming or the nonconforming method), discretization schemes (e.g. the
FEM, the finite difference method, the FVM, or the covolume method),
and the cell-centered or the vertex-centered scheme, etc. There are natu-
ral intergrid transfer operators for the conforming and inherited functional
spaces. For the nonconforming method or non-inherited functional spaces,
we could define the intergrid transfer operators in several different ways,
e.g., geometrical based for the FEM [11] and control volume based for the
FVM.

Even if we do not have any geometric information, we can define the
intergrid transfer operators according to the properties of a linear operator,
i.e., the algebraic multigrid method. This method is a black-box method
and requires more effort to develop efficient intergrid transfer operators.

For now, we review the analysis of the multigrid method for the linear fi-
nite element method and consider its efficient implementation on a massively
parallel computer.

4.1 Basic analysis

The multigrid method for the linear finite element method with different
smoothing operators is well-analysed in the literature. So, we briefly review
it and mention the latest analysis theorem [1].

First, we consider the abstract framework for the trial function spaces
{Vk}gzl. Let Iy : Via_1 — Vi be the natural injection operator. Then we
have

ag(Iyw, [yw) = ag—1(w,w), Yw € Vi_1. (4.1)

Let Ay (k =1,...,J) be the matrix representations of the form a(-,-)x
on Vi x Vi with respect to a certain discrete inner product (-,-);. Define
Py 1 : Vi — Vi1 by

(Ag—1Ppqw,v)k—1 = (Apw, Iv)g, Y, € Vi_q,w € V. (4.2)
The restriction operators P,&l : Uy — Up_1 are defined by
(Ixv,w), = (U,P;g,lw)kq, Yo € Vi_1,Vw € V.
Now the discretized equation can be rewritten as
Ajguy = f, (4.3)

where f; is the vector representation of f.
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It is easy to see that I P,_1 is a symmetric operator with respect to the
a(-, )y form.

Finally, let S : V& — Vi for k = 1,...,J be the linear smoothing
operators, let SkT denote the adjoint of Ry with respect to the (-,-); inner

product, and deﬁne
S l odd
S]S;l) == { ks ’

SkT, [ even.

Following reference [1], the multigrid operator By : Vi — Vj is defined
recursively as follows.

Multigrid Algorithm 3.1. Let 1 < k < J and p be a positive integer.
Set By = Ay 1 Assume that Bjy_; has been defined and define Byg for
g € Vi, by

(1) Set 2 = 0 and ¢° = 0.
(2) Define 2! for I = 1,...,m(k) by

xl — xlfl + S;iHm(k))(g _ Akxlfl).

(3) Define y™*) = zm(*) 4 [, qP, where ¢' for i = 1,...,p is defined by
¢ = ¢+ Bea [Py (g — Agae™®)) — Ag1g .
(4) Define 4 for I = m(k) +1,...,2m(k) by
v =y ST g - A,

(5) Set Bpg = y*>™*),

In the multigrid algorithm 3.1, m(k) gives the number of pre- and post-
smoothing iterations and can vary as a function of k. If p = 1, we have a V-
cycle multigrid algorithm. If p = 2, we have a W-cycle multigrid algorithm.
Other versions of multigrid algorithms without pre- or post-smoothing can
be analyzed similarly. For variable V-cycle multigrid algorithm the number

of smoothing m(k) increases exponentially as k decreases (i.e., p = 1 and
m(k) = 277F).

Theorem 4.1 Let {Vi}, k = 1,...,J be the set fo the usual conforming
finite element space and let Sy, be the Jacobi or Gauss-Seidel method. Then
there exists a 6 < 1 such that the following estimate holds.

|CLJ((I - BJAk)U, (I — BJAJ)’U)| < 52CLJ(U, U), Vv e Vj. (4.4)
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Remark about the W-cycle and the variable V-cycle algorithms
For simplicity, we presented the proof for the V-cycle method with one
smoothing since the theoretical analysis does not give an improved rate of
convergence for either p > 1 or m(k) > 1.

4.2 Reducing the number of cores on lower levels

The main issue of the parallelization of the multigrid method is the computa-
tion time spent on the coarser levels. In general, the ratio of communication
to computation on a coarse level grid is larger than on a fine level grid.
Because the multigrid method works on both the coarse and the fine grid
levels, to get good scaling performance, we should avoid operating on the
coarser levels if possible. Usually, the W-cycle and the variable V-cycle
multigrid method require more work on the coarser level problems, so we
consider only the parallelization of the V-cycle multigrid method.

In addition to the execution time on the coarser levels, we have to con-
sider the solving time on the coarsest level. As a coarsest level solver, we
can use either a Krylov subspace method or a direct method. The solving
time of both methods increases with the problem size. So in considering the
solution time of the coarsest level we need to find the optimal coarsening
level, as well as the ratio of the communication to computation on each level.

As we studied in [12], we can use a small number of cores to perform
computations for the coarser levels from a certain level on. We can use
different numbers of cores on the coarser levels according to the problem
size on that level. But such an implementation would be very complex and
would have only a small benefit as there would be significant overhead due
to the gathering of the data on the executing cores. So, among all possible
algorithms, we consider the one which executes only on one core after having
gathered all data. Such a variation of the multigrid algorithm can solve the
coarsest level problem on one core only, independent on the total number of
cores. We illustrate this enhanced multigrid algorithm in Fig. 9.

In a real parallel implementation, we could use MPI _Reduce to gather
all the data to one core and then MPI Bcast to send the results of the
coarser level multigrid method to all cores. Instead of having only one
core solving the coarser level problems whilst the other cores are idling,
we choose to replicate the computation of the coarser levels on each core;
subsequently we use these results for computations on the finer levels. In
the current implementation, we use MPI_Allreduce instead of combinations
of MPI_Reduce and MPI Bcast and as it usually yields a better performance,
depending on the MPI implementation on a given machine.
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Figure 9: The V-cycle multigrid algorithm including single core levels.

In general, the balance between computation and communication costs is
highly dependent on the machine architecture and problem sizes. Hence, we
need to determine the level at which we need to stop coarsening according
to the number of cores on each machine and problem size.
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5 Overlapping domain decomposition methods

The domain decomposition methods (DDMs) have been developed to solve
large problems by decomposing them into many smaller ones. As a result,
these methods lead to intrinsically parallel algorithms. The required number
of iterations of the two-level DDM does not depend on the number of sub-
domains, therefore many computational scientists are researching on this
topic.

The earliest known DDM was introduced by Schwarz in 1870 [23]. Though
not originally intended as a numerical method, the classical alternating
Schwarz method might be used to solve elliptic boundary value problems
on a domain which is the union of two sub-domains by alternatively solving
the same elliptic boundary problem restricted to the individual sub-domain.
In this section we review the Schwarz methods and its convergence analy-
sis and consider the issues of a real implementation on a massively parallel
computer.

5.1 Schwarz method

I'y

Iy

Figure 10: A typical example domain of an overlapping DDM with two
sub-domains.
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Suppose that € has the covering set {£2;,1 < ¢ < N} with
a=Ja,
i

as shown in Figs. 10 and 11.
To solve Eq. (2.1), we consider the following local problems; Solve ugq,
with
a(z,y)ug, — V- b(z,y)Vug, =f, in Q;,
uQ, =0, on 9€; N 0N, (5.1)
uQ, =ug, on JQ;\ 0Q,
for some wug.
By using the same arguments and discretization schemes as in Section
2, we can write (5.1) by
Ag,ug, = fla, (5.2)
for Ag, : Vo, — Vo, and Vg, is a linear finite element space defined on
;. From the linear functional property, we know that there are projection
(interpolation) operators
RQZ. : VJ — VQi.
First, we consider an alternating (multiplicative) Schwarz method which

solves (5.1). For a given initial solution u°, we get u?ljl by solving the
following problems

CL(IE, y)u?)jl -V b($7 y)vugjl = f7 in in
ugjl =0, on 0§2; N 0N,
el {ugjl, on 0€; N €Y and j < 4,

u’éj, on 9€; N €Y and j > 4,
(5.3)
fori=1,...,N.
We can write the alternating Schwarz method in the following way;
"™ —u® = (I — Pqy) - (I — Po,)(u™ —u°)

where Po, = RQZ,A()}R&_AJ fori=1,...,N.
Next, we consider an additive Schwarz method.

For a given initial solution u°, we get ugjl by solving the following
problems
a(x, y)u?zj_l -V b(.%', y)Vugjl - f7 in Qi>
ugjrl =0, on 0€; N 01, (5.4)
ut! =up,, ondYNQy,
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(b) Separated by sub-domains

Figure 11: Overlapping sub-domains with 2h-width (e: real nodes, A: ori-
gin).
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for i = 1,...,N. Using the above notation, we can write the additive
Schwarz method as

N
"t —f = Z (RgiAéilRQiAJ) (u" — u"). (5.5)
=1

The overlapping Schwarz method, when used in conjunction with the
Krylov subspace method, has the following four properties of convergence
behavior:

e the number of iterations grows as 1/H;,

e if § is kept proportional to H;, the number of iterations is bounded
independently of h and H;/h,

e the number of iterations for the multiplicative Schwarz method is
roughly half of that needed for the additive Schwarz method, and

e convergence is poor for § = 0 but improves rapidly as § is increased,

where h is the fine mesh size, § is the overlapping size of sub-domains,
and H; is the domain size of the sub-domains.

5.2 Two-level Schwarz method

We consider the two-level overlapping method. This method is given in
terms of overlapping partitions of €2, so-called sub-domains ;, 7 =1,..., N,
which themselves are unions of finite elements. They have diameters of order
H; and all attended by a coarse shape-regular mesh with mesh size H as
shown in Fig. 12. The mesh size H of the coarse mesh need not be related
to the diameters H; nor the mesh size h.

We define a coarser level finite element space Vp, a bilinear operator
Agq, : Vo = Vo, and a projection Rq, : V; — Vp. Then we have a two-level
additive Schwarz method, as in (5.5) by

u" = = Pog(u™ — ) (5.6)

where Pyq = Y2V (RgiAijQiA J).
From previous analysis results on the two level overlapping method [3,
25, 26], we have the following theorem.
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Figure 12: Two level mesh.

Theorem 5.1 The condition number of the additive Schwarz operator sat-
isfies

H
k(Pad) <C<1+5>>
where C' is independent of h, H, and §.

Theorem 5.1 shows that the condition number of P,4 does not depend
on the number of sub-domains which is a required property for scalable
programs on a massively parallel computer.

5.3 Implementation issues

In this subsection we consider the implementation on a massively parallel
computer.

The effectiveness of the multiplicative Schwarz method has been shown
theoritically and practically. But, this method needs sophisticated imple-
mentation on a parallel computer because it needs values which have to be
updated on other sub-domains as it is also the case for the Gauss-Seidel
method. So we discard the multiplicative Schwarz method.

For the additive method the condition number of P,q depends on the
overlapping width § as shown in the previous subsections. To get a good
condition number, we need a larger 6 which means more values have to be
transferred from other cores, i.e., higher costs for the data communication
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step. If we use the Schwarz additive method with minimal overlapping §
to minimize the data communication cost, the resulting method is identical
with the block Jacobi iteration which is well known. However, it is not an
efficient preconditioner for the Krylov subspace method.

The condition number of the two-level Schwarz DDM does not depend
on the number of sub-domains which is an appreciated property when it
comes to the application on massively parallel computers. But this method
needs a coarser level solver and requires a projection operator from fine level
to coarse level. Therefore, this method has the same performance issue as
the multigrid method which is related to the coarser level computations and
the coarsest level solver.

From the above mentioned reasons there is no benefit to consider the
one- and two-level Schwarz methods as an alternative coarsest level solver
for the multigrid method. So we discarded these methods.
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6 Non-overlapping DDMs

A non-overlapping DDM is the natural method for problems which have
discontinuous coefficients and should be implemented on a distributed com-
puter. The method can be classified by how the values on inner-boundary
conditions, which are defined on the common boundaries of two and more
sub-domains, are handled. The condition number of the non-overlapping
DDM has the same property as the overlapping DDM, i.e., the one-level
method depends on the number of sub-domains and the two-level method
does not. Among the many non-overlapping DDMs, BDDC and FETI-DP
are well developed two-level DDMs which have good performance on a mas-
sively parallel computer for many 2D and 3D problems. So we considered
and implemented them.

6.1 Basic non-overlapping domain decomposition methods

In this subsection we consider the basic approach of the non-overlapping
DDM and define some notations which are required to explain these meth-
ods.

Consider Eq. (2.1) on a region € with zero Dirichlet boundary condition
on 0f). Suppose that € is partitioned into N non-overlapping sub-domains

QZUQZ‘; QiﬂQj:(Z), 175],
as shown in Fig. 13. If I'; = 0; \ 01, then the interface I is defined as
r=Jm.
Under suitable regularity assumptions on f and boundaries of the sub-

domains, typically f is square-summable and the boundaries satisfy the
Lipschitz condition, (2.1) is equivalent to the following problem [26]:

a(z,y)ue, — V- b(z,y)Vug, = f in Q,
ug, =0 on 0 \ T,
uQ, = uQ; on 99, N0 C T, (6.1)
Oug, ouq

= — . on aQiﬂanCF,

J

8nQ.

(3

where ugq, is the restriction of u to €2; and ng, the outward normal to €;.
To simplify the notation we denote uq, by u; and ng, by n;.
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(a) For a case with a rectangular domain and with rectangular
sub-domains.

(b) For a case with hexagonal domain and with regular triangular
sub-domains.

Figure 13: Sub-domains of the non-overlapping DDM.
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The imposed conditions on the interface I" are called transmission con-
ditions and they are equivalent to the equality of any two independent lin-
ear combinations of the traces of the functions and their normal derivatives
(flux).

We consider a triangulation of the domain 2 and a finite element approx-
imation of the problem (6.1). We assume that the sub-domains consist of
unions of elements or, equivalently, that the sub-domain boundaries do not
cut through any elements. Such an approximation leads to a linear system

Au = f (6.2)

with a symmetric, positive definite matrix A.

Also, we classify the nodes according to their location on the sub-domain
Q;: interior nodes which are not shared with any other substructure are
denoted by I, edge nodes which are shared by two or more substructures
are denoted by I'. Also, we may distinguish corner nodes from edge nodes
which are used for a coarser problem and are denoted by €. For convenience
we denote the set of edge nodes except the corner ones by £ =T'\ € and A =
I'UE. We define a restriction operator R,, to the set o; (a« = I,I', &, E, A
andi=1,...,N).

The linear system (6.2) can be written as

() ()= (1), o

where we have partitioned the degre of freedom (DoF') into those interior to
the sub-domains and those laying on I, i.e.,

AL, 0 0 - 0 Anr
0 A% o0 - 0 Apr
o o0 o0 - AW Aryr

and A%, (= Ay,,) are symmetric, positive definite matrices of the DoF of the
interior nodes of 2; with reordering.

The Schur complement system: In the first step of many iterative
domain decomposition methods, the unknowns in the interior of the sub-
domains u; are eliminated. This corresponds to a block factorization of the
matrix of (6.3):

14 0 A[] AIF )
A=LR= _ _ 6.4
(AF[AIII Id> ( 0 AF[‘ — AF[AIIIA][‘ ( )
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and the resulting linear system is

(Aé[ éﬁ;) (:ﬁ) - (;z) (6.5)

where I3 is the identity matrix, Spr = Arr — ArjAl_IlAH‘, and gr = fr —
Ar [AI_II f1. Here Spr is called the Schur complement matrix relative to the
unknowns on I'.

We need to introduce another notation to explain the non-overlapping
DD algorithm. We consider local Neumann boundary problems

a(z,y)u; — V- b(z,y)Vu; = f in Q,
u; =0 on 08y NI,
8ui
Ong,

(6.6)

=g; on 09;\ 0.

If we add the following additional conditions on the common inner bound-
aries
ui =uj, and g =—g;j, on 08N OQY, (6.7)
then the problem (6.6) is equivalent to (6.1).
By using the FEM or FVM of Section 2, we have the following local
linear systems

AZ — I Ize> ) e < IZ> , ;= ( i > .
<AFZ~I¢ Ar,r, “ ur, 4 Jr, +9r,

In general, Ay,r, = Arrlg,, but, for the nodes in 9€; N 9, ur, # ur, and
AFiFi 7& AFij' Hence, we have AFF = sz\il AFiFi'
From (6.8), we have

where

A=A (6.9)

and we can write A° = Rgi ARq, for the projection operators Rg,.

According to the handling of the transmission conditions, we classify the
non-overlapping DDMs as Dirichlet-Neumann algorithm, Neumann-Neumann
algorithm, and Dirichlet-Dirichlet algorithm. From these basic domain de-
composition methods, in an effort to overcome the difficulties in their anal-
ysis and implementation, the BDDC and the FETI-DP methods have been
developed. In the next subsections, we consider these well-developed meth-
ods and their implementation issues on a massively computer.

33



6.2 The Neumann-Neumann algorithm and BDDC

The basic Neumann-Neumann (NN) algorithm can be described as follows.

We start from an initial guess u%. For a given uf, we compute u?“ by:

NN1. Solve the Dirichlet problems on each Q;(: = 1,...,N) with data up

onT
a(z, )l =V b, y) VT = f in O,
w2 = on d;\T, (6.10)
U?H/Z = up, on I

NN2. Solve the Neumann problems on each ;(i =1,..., N) with the Neu-
mann data on I' chosen as the difference of the normal derivatives of
the solutions of the Dirichlet problems

a(z, ) = V- bz, y) Vet =0 in Q,,
T/J?H:U on 0Q; \ T,
oyr+t XL ou (6.11)
— = —2 — onT.
On; o on;
NN3. Update u?“ with the solutions of the Neumann problems
N
upt =, =0 [ Y9, (6.12)
j=1

with a suitable 6 € (0, Opax)-

In this algorithm, we impose a continuity condition on the inner bound-
ary nodes I', so we have up. = u?j = upt on the common boundary nodes
08Y; N 09 for all n.

By using matrix notation, we have, fort=1,..., N,
i n+l/2
iU“Z = f1, — Anr,ur, (6.13)

) n+1 0
(-0
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where the residual rr is defined by

N
. n+1/2 n
TF - Z (AFJIJUIJ + AF]'F]'U’F - fFJ>
j=1

By eliminating u?fl/Q and 1/JZ+1 from (6.13) and (6.14) and denoting
gr, = fFi — AFjIjAI_lej ij’ SZ = AFij - AFjIjA[_jljjAIij7 gr = Zi\il gr; and
S = Zf\il S;, the problem NN1 gives

N

r=— > (fr, - Arjlefjlfijj) — (Ar,r; — ArjIjAfjlleIjrj)U?
=1

= —(g— Sup)

which shows that the difference rr of the local fluxes is equal to minus the
residual of the Schur complement system. Using a block factorization of the
local matrix A?, the problem NN2 gives

B =S e = =57 gr — Sup).

Therefore, we have
N
up™ —upt =0 Y S| (gr — Suft)
j=1

which shows that the Neumann-Neumann algorithm is also a preconditioned
Richardson iteration for the Schur complement system with the precondi-
tioner Zjvzl st

The system A’ in (6.14) may be a symmetric and positive semi-definite
matrix. The Balancing Domain Decomposition (BDD) preconditioner was
introduced by Mandel et al. [15] and solves the difficulty of the singularity of
the generated matrix A’ of (6.14) by using the equilibrium conditions which
lead to a simple and natural construction of a coarse problem.

The Balancing Domain decomposition by constraints (BDDC) algorithm
is an algorithm for substructuring based on a constrained energy minimiza-
tion concept [6, 16, 14].

By using the notation in (6.9), the model problem (2.1) can be written
as

Au= (RTAR)u = f, (6.15)
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where

Ro, Al ..o
R=| |, A=+ -
Ra, 0o ... AN
The BDDC preconditioner for A is specified by a symmetric and posi-
tive definite weight matrix D and a constraint matrix C,. The matrix D

has the same dimensions and block diagonal structure as A and forms a
decomposition of unity in the sense that

R'DR = I.
The coarse vector u. is given by
u. = Cu

where C, specifies the constraints that are enforced between substructures
in the BDDC preconditioner. These constraints have the effect of loosely
coupling the substructures and naturally introducing a coarse problem. For
example, C, can be used to enforce equality of the substructure DoF’s av-
erages across faces, edges, or at individual DoF on substructure boundaries
usually called corners.

Let R.; select the rows of CuRZ-T with at least one non-zero entry and
define

Ra cy -+ 0
Ci=RsC,R, Ro=| :+ |, C=|: -
RcN 0 ON

The energy minimizing coarse basis functions W are obtained from the solu-
tion of the saddle-point problem

(e ©) )= (a) 019
and the coarse stiffness matrix is defined as
Se=UTAV.
Let

P, =R]A;}R;, P,=R'DYS;'WI'DR, P;=R'DQDR, (6.17)

36



where @ is defined such that
T T
A CH\ (Qg\ _ (9 S
c 0 7 0

for some p.

The BDDC preconditioner on a residual vector r can be defined as fol-
lows:

B1. Initial static condensation correction and residual update

ug = Pir, r1=1r— Aug.
B2. Coarse grid and substructure corrections and residual update
up = Pory,  ug = Psry,  ro =11 — A(ug + ug).
B3. Final static condensation correction
usz = Pyro.
B4. Preconditioned residual
Pr = ug +ui +ug + us.

Simplest real case: One of the simplest constrainted cases in 2D is the
enforced equality at individual DoF on corners which share three or more
substructures (€ in Fig. 13 (a) and e in Fig 14) and average values on edges
(E; in Fig. 13 (a) and o in Fig. 14).

Because the operator P is able to get the solutions of the local Dirichlet
boundary problem, this step is well-defined and easly to understand. So we
consider how to construct the operator S.. To do this, we have to solve the
saddle-point problem (6.16), i.e., solve the following saddle-point problems,
fori=1,...,N,

AZ)\A Ai@A CAT 0 \Ilii ‘Ij(lz\z 0 0
Ape Age 0 g Ve, Yo | _ |0 O ) (6.18)
ce 00 of|Ts, Y4 I 0
0 14 0 0 Ta TG 0 Iq
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Figure 14: Two level mesh of the non-overlapping DDM.

From (6.18), we have

g, =0,
e, = la,

S
Vg, = —(Aa) 0L TS,

e -
UG, = —(Aha) " (Agy + CL YY),

Te, = —Ahe Vi, — Abe,
CAVS, = 14,

and
TS, = —(Ch(ah) 10y ) = —8,
T3, = —(CA( ) TICR ) TICR (AR ) T Al = —STC (A)) 1ALy,
1.e.,
wE, = (44,) 1L S
g, = ()7 (1= O SO (A ) A
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where St = (Ci (4%, )~tCi )L,
Then we define the global coarse matrix

N e i 7 e c i 7
e g0 [Ah, ALy (YR, TS, [ Se S

c E : c T P 7 i T ; 5
‘I’Ai I4 AA¢ Am 0 I4 Sec Ste

i=1
where
Sio= 8"
Ste = S'Ch(A4A) " Aga,

i i i T i \— i =1 T qiig i \— i
See = Age — Aga (( ha) = (Al TICLT STC (Aky) 1) CA-

In a similar way, we have to solve (6.18) for each i and Qg = z, i.e.,

Ay Apy G100\ (o
Ale Abe 0 Ia| |z
cy 0 0 0 Hi
0o I, 0 o0/ \¢
T
(

and have z¢, = 0, p; = S'C%" (A% ,) " tga,, and

A,
Je,
0
0

i =1 T qivi i \—
Ay = (I—( AA) 1CA 50/\)( An) 19A¢-

The above matrices A% \(i = 1,..., N) are symmetric and positive defi-
nite matrices, so we can solve the local problems by either a direct method

or an iterative method.

6.3 The Dirichlet-Dirichlet algorithm and FETI-DP

We consider the Dirichlet-Dirichlet algorithm. We start from an initial guess
A = 6Ar, (6 is +1 or —1) of the flux on I'. For given A, we compute the

following steps:

DD1. Solve Neumann problems on each ;(i =1, ..

tives A\f on I’

a(z, y)ul ™ =V b, y)Vu T =

qu—l/Q -0
+1/2
out
6ni r
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DD2. Solve Dirichlet problems on each Q;(: = 1,...,N) with the Dirich-
let boundary data on I' chosen as the difference of the trace of the
solutions of DD1

a(w, y)gi ™t = V- bz, y) Vet =0 in €,

Pl =0 on 9 \ T,

(2

N (6.20)
%H‘l - u?H/Q — U?H/Z/Np onT
j=1

where N1 is the number of sub-domains which share the node of T'.

DD3. Update flux )\?H with the values on I' of the normal derivatives of the
solutions of DD2

awn—f—l awn—l—l
AP =2 -0 | =5 J r 21
r ( o, + on, on (6.21)
with a suitable 6 € (0, Omax)-
By using matrix notation, we have, for i =1,..., N,

<AU AIF) U, 1/2 — ( i > , (6.22)

App App u?j / fr+ N

; ; al 1/2
U = A | S a2 (6.23)
j=1
AL = A0 =0 |3 At 4 Abp | S st (6.24)
j=1 j=1

where 6; is +1 or —1.

The Finite Element Tearing and Interconnecting (FETI) method is one
of the Dirichlet-Dirichlet type algorithms and uses Lagrange multipliers A
to impose the continuity on the inner boundary nodes, which have the same
roles as the flux Ar [8].

We have the following saddle point problem:

G %)) -() (6.25)
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where

Ay 0 ... 0
|0 A 0 4 <A1i11 An-a)
a T\, Arr)
0 0 AN
o 0 . 0
0 6 . 0
B=(By By ... By), B;i=(0 Br,), Br,= :
0 0 0
and 6 is 1 or —1.
By block Gauss elimination, we have
A BT u f
<0 —BA—lBT> (A) N (BA—1f> ' (6.26)
The FETI method solves the following problem to get A
BA™'BTN=-BA™lf. (6.27)

To solve (6.27), we may use the preconditioned CG method. After getting
A we can get the solution u by

u=A"f - BTN).

But, the matrix A; which comes from the Neumann boundary problem is
usually a symmetric and positive semi-definite matrix. To avoid the singu-
larity of the matrix, the FETIT-DP method [7, 16, 13] imposes the continuity
on the corner nodes which belong to more than two sub-domains (as shown
in Fig. 14 o). Then we have

Ana AL, BT\ [ua Ia
Aern Age O ug | = | fe (6.28)
B 0 0 A 0

Eliminating ua by one step of the block Gaussian elimination, we obtain
the reduced system

( See _AQAAA}\BT> <U¢> _ (fc - AcAAA}\fA> (6.29)
~-BAGAL, —BA BT A —BA fa

where Sge = Age — AQAAX}\AEA'
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By also eliminating the ug we obtain the reduced system
FA=d (6.30)
where
F = BA\B" + BA At Seg Aen Ay BT = BA™'BT
d = BAy\ fa — BA{ N AGASee (fe — AenAjrfa) = BAT!J.

In (6.27) and (6.30), BA~'BT and F have less DoF than A in (2.13) because
the number of DoF is given by the number of nodes on the inner-boundary.
But, these matrices are more dense than A and globally defined, symmetric,
positive definite matrices. From the construction of these matrices we can
perform matrix-vector multiplication locally. So we can solve (6.27) and
(6.30) by using iterative methods such as PCGM with a locally defined
preconditioner.
Preconditioner: We define a Dirichlet preconditioner for (6.30) as

F-lziB 0 0\ pr (6.31)
b —~ " \0 Sgpgp '

where
Spr = Kpp — KigK;' Kip

and a lumped preconditioner as

F*l—NBO 0 BT 6.32
=280 Ky (6.32)

as defined in [7].

The lumped preconditioner is obtained by simplifying the primal Schur
complement of the Dirichlet preconditioner to its leading term Kgg. This
simplification reduces the arithmetic complexity of the preconditioner step.
The Dirichlet preconditioner is mathematically optimal. It is computation-
ally more expensive than the lumped preconditioner, but it is computa-
tionally more efficient for plate and shell problems. On the other hand, the
lumped preconditioner is not mathematically optimal, but it is computation-
ally more efficient than the Dirichlet preconditioner for second-order prob-
lems. The required number of iterations for the PCGM with the Dirichlet
preconditioner is smaller than with the lumped preconditioner as expected.
The solution times of the PCGM have the same property, so we use the
PCGM with the Dirichlet preconditioner for FETI-DP.
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After solving (6.30), we can get finally the solution u by the following
computations

U = Sge:l (f@ - ACAAX}\fA + A@AAX}XBT/\) (6.33)
up = Ax L (fa — Afpyue — BTN). (6.34)
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7 Numerical experiments

In this section, we consider the numerical experimental results of the scal-
ing properties of the matrix-vector multiplication, the CGM, the parallel
multigrid method, the BDDC, and the FETI-DP.

As a model problem, we choose the simplest problem with a(z,y) = 0
and b(z,y) = 1.0 in (2.1), i.e., the Poisson problem. To test the numeri-
cal performance, we use the finite element discretization formula which is
identical with the finite volume discretization for the test problem. As a ter-
mination criterion for the solvers, we define a reduction of the initial residual
error on the finest level by a factor 1075.

We execute the implemented algorithm on the HELIOS machine. The
machine is dedicated to the Fusion community in Europe and Japan. It
is located in the International Fusion Energy Research Centre (IFERC) at
Aomori, Japan. IFERC is funded for EU(F4E)-Japan by the broader ap-
proach collaboration. It is made of 4410 Bullx B510 blades nodes of two
Intel Sandy-Bridge EP 2.7 GHz processors with 64 GB memory each and
connected by Infiniband QDR. So it has 70 560cores in total and a Linpack
performance of 1.23 Petaflops.

7.1 Matrix-Vector Multiplication and CGM

We consider the scaling properties of the matrix-vector multiplication which
is the basic operation of iterative methods such as CGM, GMRES, the multi-
grid methods, etc. First, we investigate the strong scaling property which
measures the solution time of a fixed problem while the number of cores is
increased. We tested four different problems with 780k, 3.1M, 12.6M, and
50M of DoF and report the results in Fig. 15. We ran 40000 times the
matrix-vector multiplication and took the average to get the execution time
for one matrix-vector multiplication. The results in Fig. 15 show that the
matrix-vector multiplication has a very good strong scaling property up to
a certain number of cores which depends on the number of DoF'.

Next, we consider the weak scaling property which measures the exe-
cution time of a fixed number of operations per core while the number of
cores and hence also the problem size are increased. We depict the time of
a matrix-vector multiplication for 2.2k, 8.5k, 33k, 132k, 527k, and 2M DoF
per core in Fig. 16. The results show that the matrix-vector multiplication
has an almost perfect weak scaling property for all cases.

Now, we consider the scaling properties of the PCGM with a Jacobi
preconditioner. It is well-known that the required number of iterations of
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Figure 15: The execution time of the matrix-vector multiplication in seconds
as a function of the number of cores for domains with 780k DoF (solid line),
3.1M DoF (e), 12.6M DoF (+), and 50M DoF (o).
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Figure 16: The execution time of the matrix-vector multiplication in seconds
as a function of the number of cores for domains with 2.2k DoF (solid line),
8.5k DoF (e), 33k DoF (+), 132k DoF (o), 527k DoF (x), and 2M DoF (o)

per core.
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the CGM increases with the number of DoF. This fact is true for the PCGM
with a Jacobi preconditioner. The Jacobi preconditioner does not depend
on the number of cores, so that the required number of iterations does not
change according to the number of cores. We report the required number of
iterations in Table 2 according to the size of the problem by denoting the
levels. We limit the maximum number of iteration to 15000. From level
13 on, we need more than 15000 iterations and report up to level 12. The
results in Table 2 show that the required number of iterations increases with
the square root of the number of DoF.

Levels DoF | iterations | iteration/ VDoF
6 12 097 213 1.937
7 48 769 411 1.861
8 195 841 809 1.812
9 784 897 1591 1.796
10 3 142 657 3056 1.724
11 12 576 769 5614 1.583
12 50 319 361 10965 1.546

Table 2: The required number of iterations for the PCGM with a Jacobi
preconditioner according to the levels.

We consider the strong and weak scaling properties of the PCGM with
a Jacobi preconditioner. For the strong scaling property, we tested four
different problems with 780k, 3.1M, 12.6M, and 50M DoF and depicted
the results in Fig. 17. The solution times decrease as the number of cores
increase up to a certain number of cores, which is 96 cores for 780k DokF,
384 cores for 3.1M DoF, and 1536 cores for 12.6M DoF. A further increase
beyond this optimal number of cores gives a degradation of the solution
times.

For the weak scaling property, we consider the solution time and the
execution time of one iteration of the PCGM. The required number of iter-
ations of the PCGM increases with the problem size as shown in Table 2,
so we can expect that the solution time will increase with the problem size.
From a certain level on we cannot solve the problem within the maximum
number of iterations. So, we consider the execution time of one iteration
of the PCGM which can be measured even if we cannot solve the problem
within our iteration constraints. We tested four cases: 2.2k DoF, 8.5k DoF,
33k DoF, and 132k DoF per core and depicted the results in Fig. 18.
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Figure 17: The solution times in seconds of the PCGM with a Jacobi pre-
conditioner as a function of the number of cores for domains with 780k DoF
(solid line), 3.1M DoF (e), 12.6M DoF (+), and 50M DoF (o).
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Figure 18: The execution time per PCGM iteration in seconds (in black) and
the solution times of the PCGM with a Jacobi preconditioner in seconds (in
red) as a function of the number of cores for domains with 2.2k DoF (solid
line), 8.5k DoF (e), 33k DoF (+), and 132k DoF (o) per core.
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The solution time increases with the number of cores, i.e., the problem
size, as shown in Fig. 18 in red. The execution times of one iteration have
a relatively good weak scaling property for all cases. Again we find a better
weak scaling property for larger numbers of DoF per core similar to the
matrix-vector mulplication results.

7.2 Scaling properties of the multigrid method

We consider the V-cycle multigrid method as a solver and as a preconditioner
for the PCGM. For the multigrid method one should test both the Gauss-
Seidel and Jacobi smoothers. However, the multigrid method with a Gauss-
Seidel smoother is better than with a Jacobi smoother. So we consider the
former only. Usually, the Jacobi smoother is used for debugging purposes in
a parallel implementation because its results does not depend on the number
of cores. In the multigrid method, we use the PCGM with symmetric Gauss-
Seidel preconditioner as a lowest level solver and run two pre-smoothing and
two post-smoothing iterations for all cases. The symmetric Gauss-Seidel
iteration runs forward and backward Gauss-Seidel iterations alternatingly.
Therefore, we swap forward and backward Gauss-Seidel iterations in both
the pre- and post-smoothing iterations.

We tested different data gathering levels on a fixed number of cores.
Without gathering the data, the feasible coarsest level of the multigrid algo-
rithm is the level that has at least one DoF per core, i.e., one cannot go to
the lower levels on the parallel algorithm. For the multigrid method with-
out gathering the data, we have to use the feasible coarsest level as lowest
level and solve exactly the lowest level problem by using the PCGM. For
the multigrid method with gathering the data, this level is the lowest gath-
ering level. So the lowest gathering level will increase with the number of
cores. We tested four different cases, 2.2k, 8.5k, 33k, and 132k DoF per core
with the lowest gathering level as gathering level and depicted the results
in Fig. 19. They show that the gathering of the data is needed for large
numbers of cores. The solution time of the solver with the gathering data
shows a significant improvement in these cases, especially for small numbers
of DoF per core.

One question which arises in this context is on which level we gather the
data for each core. To answer this question, we tested different gathering
levels on three fixed sets of cores: 384, 1536, and 6144 cores. The lowest
gathering level for 384 cores is five, for 1563 cores six, and for 6144 cores
seven. After gathering the data, we can introduce lower levels as the lowest
level of the multigrid algorithm. So the lowest level of the multigrid method
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Figure 19: The solution times in seconds of the multigrid method as a pre-
conditioner for the PCGM with the Gauss-Seidel smoother with (in black)
and without (in red) gathering data as a function of the number of cores for

domains with 2.2k DoF (solid line), 8.5k DoF (e), 33.4k DoF(+), and 132k
DoF (o) per core

can be any level from one to the gathering level.

We tested three different gathering levels for each set of cores, namely,
level 5, 6, 7 for 384 cores, level 6, 7, 8 for 1536 cores, and level 7, 8, 9 for
6144 cores. The results are depicted in Fig. 20. We chose problems which
have the same number of DoF per core because we can easily compare the
differences of their solution times.

The results in Fig. 20 show that the lowest solving level of the multigrid
method does not affect the solution time up to level five. Also, they show
that the lowest possible gathering level has always the best performance and
that the difference is more significant as the number of cores is increased.
Therefore, we can conclude that we have to use the lowest possible gathering
level as gathering level and may use any level less than six as the coarsest
solving level in the multigrid algorithm.

From now on, we choose the lowest possible gathering level and level
one as the coarsest solving level for the multigrid algorithm. In Fig. 21
we report the solution times of the solvers for a fixed problem size (strong
scaling property). The coressponding speed-up is depicted in Fig. 22. The
numerical results in Figs. 21 and 22 show an almost perfect strong scaling
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Figure 20: The solution times in seconds of the multigrid method with
gathering the data as a preconditioner for the PCGM method as a function
of the lowest level on which the direct solution is performed. Results for
different gathering levels: lowest possible gathering level (solid line), second
lowest level (e), and third lowest level (o).

property up to 1536 cores. In general, problems with a larger number of
DoF have a better strong scaling property.

For the multigrid algorithm it is nearly impossible to fix the number of
operations per core while increasing the total problem size, so we consider
a semi-weak scaling by fixing the number of DoF of the finest level on each
core. We tested six different numbers of DoF per core on the finest level,
from 2.2k DoF to 2.1M DoF and depicted the results in Fig. 23. The results
show that the multigrid method as a solver and as a preconditioner has really
good semi-weak scaling properties when the number of DoF per core is large
(see 527k DoF and 2.1M DoF per core cases). This is the typical behavior
of the multigrid algorithm, i.e., the weak scaling property becomes better as
the number of DoF per core is increased as shown in Fig. 23. In comparison
with the execution time of the matrix-vector multiplication in Fig 16 and
the execution time of one iteration of the PCGM in Fig. 18, the (semi)-weak
scaling property of the multigrid algorithm is the worst case. Especially, the
cores with a small number of DoF are affected. Nevertheless, the (semi)-
weak scaling property could be improved with a more scalable lowest level
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Figure 21: The solution times in seconds of the multigrid method as a solver
(in red) and as a preconditioner for the PCGM (in black) as a function of
the number of cores for domains with 3.1M DoF (solid line), 12.5M DoF
(o), 50M DoF (¢), 201M DoF (e), and 805M DoF (x).
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Figure 22: The speed up of the multigrid method as a solver (in red) and
as a preconditioner for the PCGM (in black) as a function of the number
of cores for domains with 3.1M DoF (solid line), 12.5M DoF (o), 50M DoF
(¢), 201M DoF (e), and 805M DoF (x).
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Figure 23: The solution times in seconds of the multigrid method as a solver
(in red) and as a preconditioner for the PCGM (in black) as a function of
the number of cores. Six different cases with fixed numbers of DoF [2.2k
DoF (solid line), 8.5k DoF (e), 33.4k DoF (+), 132k DoF (o), 527k DoF (o),
and 2.1M DoF (x)] per core on the finest level.

solver for the multigrid algorithm. This could be probably achieved by
either using an OpenMP /MPI hybridization, or processor accelerators such
as GPUs or Intel MIC cards.

7.3 Scaling properties of the BDDC and FETI-DP

In this section we consider the two-level non-overlapping DDMs, the FETI-
DP and BDDC. In similarity with the two-level Schwarz method, the re-
quired number of iterations of these two-level non-overlapping methods does
not depend on the number of sub-domains, but instead depends on the ra-
tio of the mesh size of the triangulation (fine level, h) and the size of the
sub-domains (coarse level, H). We list the required number of iterations of
the FETI-DP and BDDC in Table 3. It shows that the required number
of iterations depends on the ratio of the mesh size of the fine level to the
coarse level as it is the case for the Schwarz method, except that it does not
increase as rapidly.

To implement the FETIT-DP and BDDC methods, we have to solve lo-
cal problems with Dirichlet and/or Neumann boundary conditions on each
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h/H 1/8 1/16 1/32 1/64 1/128
# cores | FD | BD | FD [ BD | ¥D | BD | FD [ BD | FD | BD
24 12 7 [14] 8169 [18]10]20 | 12
96 15| 8 [ 17| 9 |20 | 11 |23 | 13 | 26 | 14
384 |16 | 8 | 19 | 10 | 22 | 11 | 24 | 13 | 28 | 14
1536 | 16 | 8 | 20 | 10 | 23 | 11 | 26 | 13 | 29 | 14
6144 | 16 | 8 | 19 | 10 | 23 | 11 | 26 | 13 | 30 | 14
24576 | 16 | 8 | 19 | 9 | 23 | 11 | 26 | 13 | 29 | 14

Table 3: The required number of iterations of FETI-DP and BDDC

sub-domain and one globally defined coarse level problem (S, for the BDDC
and Sge for the FETI-DP). Furthermore, we need to communicate data with
neighboring sub-domains and data on the coarse level. Solving the local
problems and communicating data with neighboring sub-domains are per-
formed in parallel. So these local steps do alter the performance by chang-
ing the number of cores. Otherwise, the dimension of the global coarse level
problem would grow as the number of cores increases. The dimensionality of
the coarse level problem used for BDDC (S,) is the same as of the coarsest
gathering level used for the multigrid method. Instead, the dimensionality
of the coarse level problem of the FETI-DP (Sg¢) is one level lower.

We use the same gathering algorithm of the multigrid method to solve
the global coarse level problem. In both FETI-DP and BBDC, every sub-
domain has some contribution to the matrices and vectors on the coarse
level and uses the solution of the coarse level problem. So we gather these
contributions on each core using MPI_Allreduce and use the solution after
solving the coarse problem without any data communication.

To solve the local and global problems, we used two direct methods,
the LAPACK (Intel MKL) library with dense matrix format and the IBM
WSMP library with sparse matrix format, and the multigrid method as
an iterative method. As we expected, the LAPACK solver is the fastest
for small number of DoF problems, whereas the multigrid method has to
be used for large number of DoF problems due to the increasing memory
consumption. For comparison to our previous results, we chose the solver
which performs best. We tested five different cases with a fixed number of
DoF per core, from 32 DoF to 8k DoF. The results in Fig. 24 show that
the FETI-DP is faster than the BDDC even though the latter requires a
smaller number of iterations, as shown in Table 3. These results also show
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Figure 24: The solution times in seconds of the BDDC (in red) and the
FETI-DP (in black) as a function of the number of cores. Five different
cases with fixed number of DoF per core are depicted [32 DoF (solid line),
128 DoF (e), 500 DoF (+), 2k DoF (¢), and 8k DoF (o) per core].
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Figure 25: The solution times in seconds of the multigrid method as a
preconditioner for the PCGM (solid line), the FETI-DP (e), the BDDC
(4), and the CGM (o) as a function of the number of cores. Two different
cases with a different number of DoF [780k DoF (in black), and 3.1M DoF
(in red)].

that the weak scaling property is improved as the number of DoF per core
is increased.

7.4 The lowest level solver

In this section we consider the lowest level solver of the parallel multigrid
method. In accordance with most structured discretization problems, we
can use any coarser level as the lowest level in our problem. But most of
the practical problems suffer from the lowest level limitation because the
solution on the lower level problem does not well approximate the solution
of the continuous problem. To solve such problems, we may use a direct
method as the lowest level solver when the size of the lowest level problem
is small enough. However, the size of the lowest level problem is usually too
large to use the direct method due to memory constrains. For such problems
we may use the CGM or DDM.

From now on, we compare the solution times of the CGM and DDM
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Figure 26: The solution times in seconds of the multigrid method as a
preconditioner for the PCGM (solid line), the FETI-DP (e), the BDDC
(4), and theCGM (o) as a function of the number of cores. Two different
cases with different fixed number of DoF per core [590 DoF (in black), and
2200 DoF (in red) per core.]

(BDDC and FETI-DP). First, we compare the solution times when the size
of the problems is fixed (strong scaling). We test two cases, one has 780k DoF
and the after 3.1M DoF and depict the results in Fig. 25 with the solution
time of the multigrid method used as a preconditioner as a reference. The
multigrid method achieves the fastest result. The FETI-DP is always faster
than the CGM and the BDDC is faster than the CGM except on the smaller
number of cores.

Next, we compare the solution times when the number of DoF per core
is fixed (weak scaling). We also test two cases, one has 590 DoF and the
after 2200 DoF per core and depict the results in Fig. 26. The multigrid
method with gathering the data is the fastest.

The results in Figs. 25 and 26 show that the FETI-DP can be used as
the lowest level solver in the multigrid method for problems which have a
large number of degree of freedom on the lowest level.
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8 Conclusions

We have implemented a sophisticated communication pattern between cores
to exchange the information necessary for the ghost nodes on a structured
triangular grid on a regular hexagonal domain. Such a communication pat-
tern has a very good parallel performance for a matrix-vector multiplication
and the CGM.

We have implemented the multigrid method as a solver and as a precondi-
tioner of the preconditioned conjugate gradient method with a Gauss-Seidel
smoother. To improve the performance on massively parallel computers, we
consider the gathering of the data for each core on a certain coarser level.
The numerical experimental results show that the performance improvement
of the gathering data algorithm is significant and the optimal data gather-
ing level is the coarsest one for a parallel multigrid method. They show also
that the multigrid algorithm has a very good semi-weak scaling property up
to 24576 cores for the larger problem sizes.

Furthermore, we implemented three different domain decomposition meth-
ods: the two-level Schwarz, the FETI-DP, and the BDDC methods. The
two-level Schwarz method appeared to be inefficient for our test problem.
In contrast, the FETI-DP and BDDC methods proved to be feasible. The
FETI-DP method showed a better perfromance than the BDDC method
and almost the same as the multigrid method for smaller problem sizes.

The multigrid method is the fastest solver for our model problem for
most of the test cases, but it needs to be improved for cases with smaller
number of degree of freedom (DoF) per core. For such problems the FETI-
DP method is not a suitable candidate as lowest level solver of the multigrid
method.
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