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Abstract We investigated the merits of radiocarbon measurements for estimating soil organic matter
(SOM) turnover and vertical transport for a temperate deciduous forest in Germany. Eleven parameters,
defining decomposition and transport in the soil carbon model SOMPROF, were estimated using a Bayesian
approach based on organic carbon measurements and radiocarbon concentration of SOM and
heterotrophic respiration. The addition of radiocarbon data had strong effects on the parameters, most
importantly a reduction of the decomposition and production rate of the slowest SOM pool by an order
of magnitude, and a similar reduction in advective SOM transport. The modified parameters further led
to changes in the partitioning of SOM over the different model pools. The calibration results were
subsequently used to perform transient soil carbon projections for the period 1901–2100. These simulations
were run with parameter sets from calibrations both with and without radiocarbon. The results show an
increase over time of topsoil carbon and a decrease in the subsoil, adding to a net gain overall. Near the
end of the 21st century, total carbon stocks stabilize and—for the radiocarbon-constrained model—start
to decrease. However, the changes are small compared to the total stocks. The model results for the
calibrations with and without radiocarbon are in general quite similar, but the latter shows notably higher
heterotrophic respiration fluxes. Constraining the model with radiocarbon yielded only a small reduction
of uncertainty for the total carbon stocks, while for the individual depth compartments, the uncertainty
was increased.

1. Introduction

Recent studies have called attention to the soil as an important source of uncertainty in the prediction of
terrestrial carbon cycling [Sitch et al., 2008; Jones and Falloon, 2009; Arora and Matthews, 2009; Todd-Brown
et al., 2013; Wieder et al., 2013]. For example, based on a reanalysis of results from Friedlingstein et al. [2006],
Jones and Falloon [2009] concluded that the spread of future predicted land carbon storage by earth system
models is explained for a large part by varying trajectories of global soil carbon stocks. A similar result was
found by Sitch et al. [2008] in an intercomparison study of dynamic global vegetation models. Because of the
large amount of carbon stored globally in soils, uncertainty in representation of soil carbon cycling in earth
system models can propagate to considerable variation in predicted atmospheric CO2 and climate change.

In the context of climate change, the main purpose of a soil carbon model is to predict carbon storage in
and fluxes from the soil in response to environmental factors. Therefore, soil carbon models applied at large
scale have typically been calibrated to reproduce observed or at least reasonable carbon stocks and het-
erotrophic respiration fluxes. Since soil organic matter (SOM) comprises a mixture of materials with different
turnover times, it is usually modeled as several pools with different turnover rates. The number of pools
varies widely, but most models include at least three SOM fractions in order to adequately represent the
spectrum of turnover rates observed in reality [Manzoni and Porporato, 2009]. Since each pool requires one
or more parameters to characterize its behavior, the degrees of freedom of a soil carbon model increase
rapidly with each additional pool. Consequently, measured carbon stocks and fluxes alone are in general not
sufficient to estimate all parameters of a multipool soil carbon model. Depending on the number of pools,
one or more additional sources of information characterizing the organic matter turnover are required.
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In absence of such data, a clear best parameter set may not exist. Instead, there may be one or more large
regions in parameter space that yield optimal, or almost optimal, fit to observations [Braakhekke et al., 2013].
Selecting a single parameter set in such a region may result in a model that is right for the wrong reason and
gives biased predictions when extrapolated to different conditions [Medlyn et al., 2005; Beven, 2006; Tang
and Zhuang, 2008].

The cosmogenic carbon isotope 14C, generally referred to as radiocarbon, has proven to be an ideal tool for
quantifying SOM turnover [Gaudinski et al., 2000; Trumbore, 2009]. Because of its relatively constant natural
formation rate, the availability of accurate past records of atmospheric concentrations, and its long half-life
of 5730 years, it can represent the decomposition rates of the most stable organic matter fractions. Further-
more, the large increase of the atmospheric radiocarbon fraction due to nuclear weapons testing in the
1960s allows it to be used for quantifying decadal turnover rates as well. Hence, it has been used exten-
sively for calibrating and evaluating soil carbon models [Jenkinson and Coleman, 1994; Michalzik et al., 2003;
Petersen et al., 2005; Jenkinson and Coleman, 2008].

Studies in which radiocarbon was measured at multiple levels in the soil profile have shown that SOM gen-
erally becomes older with depth [Trumbore et al., 1995; Rumpel et al., 2002; Schrumpf et al., 2013]. It has
been suggested that certain mechanisms that cause stabilization of organic matter are comparatively more
important in the subsoil [Rumpel et al., 2012]. Examples of such mechanisms include sorption to minerals
[Eusterhues et al., 2003], energy or nutrient limitation of microbes [Fontaine et al., 2007; Fierer et al., 2003],
and spatial inaccessibility of SOM [Chabbi et al., 2009]. Conversely, the radiocarbon depth gradient may also
be explained by vertical transport of SOM. Since transport rates are generally quite low, the time needed
for material to reach deeper levels will cause a vertical age gradient [Kaiser and Kalbitz, 2012]. Furthermore,
downward migration presumably leads to vertical segregation of organic matter, causing slower fractions to
become more prominent with depth. The main cause of changes in SOM dynamics along the profile is not
well known and presumably differs between sites. However, a multipool soil carbon model will inevitably
show decreasing average turnover rates with depth, when combined with vertical transport [Elzein and
Balesdent, 1995]. This suggests that profile measurements of SOM and radiocarbon may provide addi-
tional constraint on turnover rates, if combined with a vertical transport model. On the other hand, since
SOM transport rates are poorly known, they need to be estimated in addition, which partially negates the
improved constraint on the decomposition parameters.

We aimed to study the merits of radiocarbon measurements for characterizing SOM turnover and verti-
cal transport in a temperate deciduous forest in Germany. To this end, radiocarbon activity of soil organic
matter and heterotrophic respiration were used together with organic carbon measurements to estimate
parameters of the soil carbon model SOMPROF with a Bayesian calibration approach. SOMPROF [Braakhekke
et al., 2011] is a vertically explicit SOM model that simulates the distribution of organic matter over the min-
eral soil profile and surface organic layers. It is based on simple but explicit representations of bioturbation
(mixing by the soil fauna), liquid phase transport, (root) litter input, and decomposition. A previous calibra-
tion study for the same site without radiocarbon indicated that the vertical SOM profile can be explained
in several ways [Braakhekke et al., 2013]. Here, we used a reduced version of the model and studied how
the addition of radiocarbon data affects the parameters by performing calibrations with and without these
observations. The calibrations were performed in a Bayesian framework with Monte Carlo inversion, allow-
ing full characterization of parameter distributions and inclusion of prior knowledge. Furthermore, it was
studied how the updated parameters and their uncertainty affect predictions of future soil carbon cycling
under conditions of climate change. Based on the results of the calibrations, an ensemble of forward simu-
lations until 2100 were run, using litter fluxes and soil climate predicted by the land surface model JSBACH
[Raddatz et al., 2007].

2. Methods
2.1. Site Description
The study site is located in a deciduous old-growth forest in the Hainich national park in Germany
(51◦4′45.36′′ N; 10◦27′7.20′′ E). The climate is temperate subcontinental with an average annual precipita-
tion of 800 mm and average temperature of 7–8◦C. The main tree species are beech (Fagus sylvatica) and ash
(Fraxinus excelsior), and the soil is covered by herbaceous vegetation (Allium ursinum, Mercurialis perennis,
Anemone nemorosa) from April to October [Knohl et al., 2003]. The main soil type is Cambisol [IUSS Work-
ing Group WRB, 2007], formed in loess on limestone bedrock with a depth of 50–70 cm. The soils are fertile,
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Figure 1. Structure of the SOMPROF model.

with a high clay content (loamy clay texture) and pH (pH-H2O 5.9–7.8; T. Persson, personal communication,
2011). The humus type is mull with a thin organic layer of 3–5 cm, and a well-developed A horizon of
5–10 cm, indicating a high biological activity and fast decomposition. Approximately 90% of the root
biomass occurs above 40cm depth.

Soil temperature and moisture are measured continuously at half-hourly intervals. From this data, average
annual cycles of soil temperature and moisture were derived, which were used in the simulations (support-
ing information Figures S1 and S2). Although there is no permanent water table, soil moisture in the subsoil
is persistently higher due to the obstructing effect of the bedrock.

Prior to the establishment of the national park in 1997, the forest was used by the military for approxi-
mately 60 years. Hence, the site has been unmanaged for at least 70 years. In the preceding centuries, the
forest was used extensively as coppice. Currently, the ages of the trees cover a wide range of up to
250 years. Large amounts of standing dead wood and woody debris on the forest floor attest to the forest’s
unmanaged character.

2.2. Model Description and Simulation Setup
The SOMPROF model and simulation setup have previously been described elsewhere [Braakhekke et al.,
2011, 2013]. Hence, we only provide a general description of the model here and focus on the changes with
respect to these publications.

SOMPROF simulates organic carbon stocks and mass fractions in the mineral soil and three surface organic
horizons: L, F, and H (Figure 1). The model accounts for organic matter (OM) input by roots and aboveground
litter fall, decomposition, and two mechanisms for vertical OM transport: bioturbation (mixing of the soil by
the soil fauna) and movement with the liquid phase. The model further includes a module simulating the
profile of excess lead-210 (210Pbex), a radiogenic isotope which can be used as a tracer for SOM transport.

The version of SOMPROF used in this study contains four OM pools: aboveground litter (AGL), nonleach-
able fast organic matter (NLF), nonleachable slow organic matter (NLS), and leachable slow organic matter
(LS). Decomposition of the OM pools is simulated as first-order kinetics, controlled by the decomposition
rate k (yr−1). The decomposition rate is dependent on soil temperature and moisture but otherwise inde-
pendent of depth. The decomposition flux is partitioned by transfer coefficients into a fraction (𝛼) that
flows to more decomposed pools and a fraction (1 − 𝛼) that is lost as CO2 (heterotrophic respiration). Pre-
viously, the NLF pool was split into two pools: fragmented litter, which represented fresh litter transformed
after a first decomposition step, and root litter, representing organic matter input by roots. In a calibration
study [Braakhekke et al., 2013], it was found that the observations could constrain the decomposition rate
coefficient for only one of these two pools, which suggests that one of them is redundant. Since the two
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pools are very similar in terms of quality and transport behavior, we chose to merge them into the NLF pool
since this removes three parameters.

Organic matter input occurs as aboveground litter in the L horizon and over the whole profile due to input
from roots as nonleachable fast OM. Root input is vertically distributed according to a function of depth,
starting at the top of the F horizon and exponentially declining, determined by a shape parameter 𝛽 (m−1).

The organic horizons are treated as homogenous connected reservoirs. Decomposition products formed in
the L and F layers are assumed to flow to the underlying horizon. Additional downward transport between
horizons and into the mineral soil occurs by bioturbation, which is represented as a fixed (zeroth order)
downward flux (the bioturbation rate B kg m−2 yr−1), distributed over the pools according to their mass frac-
tions. Aboveground litter is the only pool not moved by bioturbation, and as such is only present in the
L horizon. Liquid phase transport is not considered for the organic layer: all leachable material is assumed
to flow immediately to the mineral soil. In the mineral soil, bioturbation is simulated as a diffusion process,
with the diffusivity DBT determined by the bioturbation rate and the mixing length lm (m) according to

DBT = 1
2

B
𝜌

lm , (1)

where 𝜌 is the bulk density, which may vary with depth. For the simulations for the calibrations, 𝜌 was based
on local measurements, while in the projection simulations (section 2.5), it was determined from the local
organic matter fraction using a pedotransfer function from Federer et al. [1993]. Transport of organic matter
with the liquid phase is only considered for the mineral soil and may lead to loss of organic matter over the
lower boundary. It is simulated as an advection process, controlled by the advection rate v (m yr−1). Only the
leachable slow organic matter pool is subject to advection. The parameters controlling vertical transport,
B, lm, and v, are all assumed to be constant with depth, although diffusivity may be variable due to bulk
density differences.

The simulations for the calibrations covered the period 1810–2009, with monthly time steps. The model was
forced by repeated average annual cycles of litter fluxes and soil temperature and moisture, which were
derived from in situ measurements [Braakhekke et al., 2013]. Lead-210 input was held constant at 1; the
absolute values were not required since both the modeled and measured 210Pbex profile were normalized
with respect to the value at the soil surface [Braakhekke et al., 2013]. The depth of the lower boundary was
set at 70 cm, which is the approximate depth of the bedrock (see section 2.1). Additional model input is
presented in supporting information Table S1. The forcing for the radiocarbon model is discussed below.

In view of the high age of the Hainich forest and the absence of any known major land-use changes in the
past (see section 2.1), it was assumed that the soil is in steady state at the start of the simulation, for average
constant forcing. A Newton-Raphson root-finding algorithm [Press et al., 1996, Ch. 9] was used to directly
estimate the steady state for given parameter values.
2.2.1. Radiocarbon Simulation
Radiocarbon (14C) is a cosmogenic radioisotope formed in the upper atmosphere by interactions between
cosmic radiation and atmospheric nitrogen. Additionally, aboveground nuclear weapons testing, mostly
during the 1960s, produced a large amount of radiocarbon, roughly doubling the atmospheric activity in
less than 10 years (the “bomb-peak”; c.f. supporting information Figure S3). The

14C
12C

ratio of carbon incorpo-
rated in organic tissue is determined by the atmospheric ratio at the time of fixation, as well as fractionation
effects due to the mass difference between the isotopes. Since the exchange with the atmosphere ceases
after uptake, the radiocarbon activity of fixed carbon is influenced only by radioactive decay and mixing
with other organic carbon sources. This allows radiocarbon to be used as a tracer to quantify carbon flows
and average turnover rates. Particularly valuable in the context of soil carbon cycling is the combined use of
radiocarbon of SOM and of heterotrophic respiration. These two variables contain information on turnover
rates of slow and fast fractions, respectively [Sierra et al., 2012].

SOMPROF was extended with a module simulating radiocarbon cycling in soil organic matter (Figure 1). The
radiocarbon calculations were based on units of percent modern, corrected for the decay of the standard
since 1950 [Stuiver and Polach, 1977]. This quantity is directly proportional to the true radiocarbon activity.
Measurements and model results are reported as Δ14C, which is more a common unit in soil science. Input of
radiocarbon into the soil profile was determined as the product of the litter flux and the atmospheric radio-
carbon fraction at a fixed lag period before the simulation time. This lag time accounts for the time spent
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Table 1. Measured Variables Used in the Calibrationa

Name No. of Depth Increments Measurement Year(s) Total No. of Data Points

C stockb 3 2004, 2009 60
C fractionc 7 2004, 2007 136
Effective decomposition rate coefficientd 9 2004 89
Lead-210 activityc,e 7 2001 7
Total heterotrophic respirationf 1 2000–2007 8
Radiocarbon of SOM up to 9 2001, 2004, 2009 112
Radiocarbon of heterotrophic respirationc,d,e 4 2001 4

aDepth increments refer both to layers in the mineral soil as well as organic horizons. Total No. of Data Points represents
the sum over all years, depth increments, and replicates. Note that the radiocarbon measurements were only included for cal-
ibration wC14.

bL, F/H horizons, and total mineral soil.
cOnly for the mineral soil.
dBased on lab incubations.
eFujiyoshi and Sawamura [2004].
fKutsch et al. [2010].
gHahn and Buchmann [2004].

by the carbon in the vegetation. The lag time for root litter was estimated at 8 years, based on literature
[Gaudinski et al., 2000] and local radiocarbon measurements of roots (data not shown). For aboveground
litter, a lag time of 1 year was used. Several records of atmospheric radiocarbon activity were combined to
construct a time series for the radiocarbon fraction of the litter input [Stuiver et al., 1998; Reimer et al., 2004;
Levin and Kromer, 2004; Hua and Barbetti, 2004, I. Levin, personal communication, 2011]. The initial condi-
tions at the start of the simulation were calculated based on a fixed input equal to the average of the last
5000 years before the simulation (Δ14C =10.02‰). For the simulation period (1810–2009), a time series of
variable atmospheric radiocarbon content was used (supporting information Figure S3).

Once present in the soil, radiocarbon follows all flows of organic carbon represented in the model: decom-
position, heterotrophic respiration, bioturbation, and liquid phase transport. Additionally, radiocarbon is lost
by radioactive decay at a rate of 1.21×10−4yr−1. For the organic layer, all radiocarbon flows were determined
simply by multiplying the organic carbon fluxes from a given pool by its radiocarbon fraction. For the min-
eral soil, separate partial differential equations were composed for each pool which account for all relevant
processes. These equations were solved numerically using the same techniques as used for organic carbon.

2.3. Observations Used in the Calibration
Measurements of seven variables were used in the calibration (Table 1). For several variables, multiple val-
ues were included, representing different replicates, depths, or points in time. Model-data fit was calculated
for model predictions at the sampling time of the corresponding measurements. Most observations can be
expected to have right-skewed distributions since they have a theoretical lower bound at zero and large
spatial variance. Therefore, all measurement variables, except lead-210, were log-transformed for the calibra-
tion, in order to bring their distributions closer to normal. Since the lead-210 data used here are the fraction
in excess to the amount that was formed in situ, this quantity may also be negative [Braakhekke et al., 2013];
hence, it was not log transformed.

C stocks and mass fractions were measured in 2004 and 2009 for up to seven depth levels and 10 replicates
[Schrumpf et al., 2011]. Effective decomposition rate coefficients were determined from respired CO2 dur-
ing lab incubations of samples taken in 2004 [Kutsch et al., 2010]. Measurements of lead-210 activity were
taken from Fujiyoshi and Sawamura [2004] and were normalized and corrected for in situ formed lead-210,
as described in Braakhekke et al. [2013]. Total average heterotrophic respiration for the years 2000–2007 was
taken from Kutsch et al. [2010] who estimated it using field measurements of soil respiration and a model
for autotrophic respiration. Radiocarbon measurements of both SOM and heterotrophic respiration in 2001
were taken from Hahn and Buchmann [2004]. Additionally, measurements of radiocarbon of SOM for 2004
and 2009 were included (M. Schrumpf et al., Single-pool models underestimate exchange of old for new
organic carbon in forest topsoils, in prep.).
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Table 2. The Model Parameters Estimated in the Calibrationa

Parameter Symbol Units Prior Distribution Upper Bound

Decomposition Rate Coefficients at 10◦C and Optimal Soil Moisture

Aboveground litter kAGL yr−1 Log− (−0.23, 0.74) 3
Nonleachable fast OM kNLF yr−1 Log− (−0.23, 0.74) 3
Nonleachable slow OM kNLS yr−1 Log− (−2.23, 1.00) 3
Leachable slow OM kLS yr−1 Log− (−2.23, 1.00) 3

Transfer Coefficients

Aboveground litter–nonleachable 𝛼AGL→NLF - Logit− (0.43, 0.95) 1
fast OM
Nonleachable fast OM–nonleachable 𝛼NLF→NLS - Logit− (−0.93, 0.98) 1,

(
1 − 𝛼NLF→LS

)
slow OM
Nonleachable fast OM–leachable 𝛼NLF→LS - Logit− (−0.93, 0.98) 1,

(
1 − 𝛼NLF→NLS

)
slow OM

Transport Parameters

Bioturbation rate B kg m−2 yr−1 uniform 3
Mixing length lm m uniform 3
Liquid phase transport v m yr−1 uniform 0.1
(advection) rate

Shape parameter for root 𝛽 m−1  (7, 1.2) 14
litter input profile

aThe lower bound for all parameters is zero; the upper bound is given in the table.

2.4. Bayesian Calibration
Eleven model parameters were estimated: seven parameters related to decomposition, three parameters
related to transport, and one parameter quantifying the vertical distribution of root litter input (Table 2).

The calibrations were performed in two setups: without radiocarbon observations (woC14) and with radio-
carbon observations (wC14), using a Bayesian approach. Bayesian calibration is aimed at deriving the
posterior distribution: a multivariate distribution of the model parameters, conditional on prior knowledge,
the model structure, and the observations. The posterior is defined (up to a constant) as the product of
prior distribution p(𝜽), which expresses knowledge about the model parameters 𝜽 prior to the calibration,
and the likelihood function p(𝐎|𝜽), which defines the probability of the measurements 𝐎, given model
parameters 𝜽 [Gelman et al., 2004]:

p(𝜽|𝐎) ∝ p(𝜽) p(𝐎|𝜽). (2)

The posterior distributions were approximated with a Markov Chain Monte Carlo approach using the
DREAM(ZS) algorithm [Laloy and Vrugt, 2012]. Additional information about the calibration can be found in
the Appendix.
2.4.1. Likelihood Function
The observations used in the study comprised several “data streams”, i.e., variables for which the distribution
of the model-data residuals is expected to be different. Measurements at different horizons/depth levels
were considered part of the same data stream, while measurements at different time points were treated as
separate data streams. The overall likelihood was defined as the product of the likelihoods for all individual
data streams:

p(𝜽|𝐎) =
I∏

i=1

pi(𝐎i|𝜽), (3)

where I is the total number of data streams. As implied by equation (3), correlations between data
streams were not considered. For all data streams a Gaussian likelihood function was used. For a data
stream i with Ni data points, the conditional likelihood function for given 𝜽 and standard deviation 𝜎i

is defined as

p(𝐎i|𝜽, 𝜎i) ∝ 𝜎
−Ni
i exp

(
− 1

2𝜎2
i

SSi(𝜽,𝐎i)

)
. (4)
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SSi(𝜽,𝐎i) is the sum of squared residuals for data stream i:

SSi(𝜽,𝐎i) =
Ni∑

n=1

(Oi,n − Mi(𝜽))2, (5)

where Oi,n is the measured value for replicate n and Mi(𝜽) is the model prediction for parameters 𝜽. Replicate
measurements, when available, were all included individually in SSi(𝜽), which means that single model pre-
dictions were compared to several observed quantities. The standard deviation of the model–data residuals
𝜎i depends on both measurement and modelling related errors and is usually not known a priori. It may be
estimated as an additional parameter during the calibration [Gelman et al., 2004], but since we are not par-
ticularly interested in 𝜎i , an expedient approach is to remove it from the likelihood function by integration
[Kavetski et al., 2006]. The resulting likelihood function represents the distribution of the residuals marginal-
ized over all values of 𝜎i . For all data streams, we chose the uninformative Jeffreys prior for 𝜎i (p(𝜎i) ∝ 1

𝜎i
).

This yields the following formulation for the marginal likelihood function:

p(𝐎i|𝜽) = SSi(𝜽,𝐎i)
− Ni

2 . (6)

2.4.2. Prior Distributions
Since the current study includes the data used by Braakhekke et al. [2013], we used the same prior dis-
tributions (except for the shape parameter for root litter input, which was previously not included). The
distributions were chosen relatively broad in order to give freedom to the parameters. Lognormal priors
were used for the decomposition rates and transport parameters, which are bounded at zero. For the trans-
fer coefficients, we used a logit-normal function, which is similar to the beta distribution and bounded
between zero and one [Mead, 1965]. Furthermore, the sum of 𝛼NLF→NLS and 𝛼NLF→LS was limited to 1. The
prior distributions are based on knowledge from previously published studies [see, e.g., Braakhekke et al.,
2011], as well as the following assumptions: (i) parameter distributions are skewed away from the (near-
est) bound [see Braakhekke et al., 2013], (ii) the probability density approaches zero near a bound, (iii) the
NLS and LS pools are more recalcitrant than AGL and NLF pools (i.e., k is lower), and (iv) the fraction of the
decomposition flux that is lost as CO2 is larger (i.e., 𝛼 is lower) for the NLS and LS pools than for the AGL and
NLF pools. Point (ii) is not strictly necessary since the model would still be plausible for, e.g., kNLF = 0 or
𝛼NLF→NLS = 1. However, the assumption is that all fluxes and pools in the model structure are relevant and
should be nonzero.

For the shape parameter of the root litter input depth function (𝛽), we assumed that the mean is suffi-
ciently far away from zero that a normal distribution can be used. The mean was set at 7 m−1, which is the
approximate value for root biomass profile at Hainich.

The priors are specified in Table 2 and depicted together with the posterior distributions in Figure 2.

2.5. Projection Simulations
In order to study soil carbon cycling under conditions of climate change, we performed model projections
for the period 1901–2100 for the same site, based on the calibration results. For both calibration setups,
an ensemble of 500 model simulations was run with parameter sets selected in regular intervals from the
posterior sample (see Appendix). The setup of these simulations was identical to those made for the calibra-
tions, with the exception that the mineral soil bulk density was calculated based on the modeled organic
matter fraction, instead of measurements.

The forcing variables for the simulation projections (above/belowground litter flux, soil moisture, and soil
temperature) were obtained from a simulation run with the ecosystem model JSBACH. Part of the MPI earth
system model, JSBACH, simulates land-atmosphere exchange of energy, water, and carbon dioxide [Raddatz
et al., 2007; Brovkin et al., 2009]. Its representation of canopy processes such as photosynthesis, respira-
tion, and transpiration is based on the BETHY model [Knorr, 2000], with several extensions to represent
phenology and carbon cycling [Raddatz et al., 2007], and soil freeze-thaw processes [Ekici et al., 2013].

The simulation with JSBACH model was performed as follows. Vegetation carbon pools were brought to
equilibrium by a 1000-year spin-up procedure using 1901–1930 climate and atmospheric carbon dioxide
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Figure 2. Violin plots of the marginal prior and posterior distributions. The three vertical lines inside the violins indicate
the median and the 95% confidence bounds.

concentration for 1901 (296 ppm). Next, the model was run with transient climate and CO2 for the period
1901–2100. The global atmospheric carbon dioxide concentration followed the CMIP5 protocol
[Meinshausen et al., 2011]. The 1901–2100 climate data set consisted of WATCH forcing data [Weedon et al.,
2010] for the period 1901–1978, bias-corrected ERA-Interim data [Dee et al., 2011] for the period 1979–2010,
and a bias-corrected outputs from the regional climate model KNMI-RACMO for the period 2011–2100.
KNMI-RACMO results come from the ENSEMBLES multimodel scenario experiment [Christensen et al., 2008].
For this experiment, the model was driven by lateral boundary conditions derived by the ECHAM5 model,
based on the SRES A1B greenhouse gas and aerosol scenario. Bias correction was applied to the ERA-Interim
and RACMO results based on the overlapping time period (1979–2010), according to Piani et al. [2010], in
order to ensure a consistent time series (C. Beer et al., Harmonized long-term climate data for assessing the
effect of changing variability on land-atmosphere CO2 fluxes, in rev. for Journal of Climate).
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Figure 3. Organic carbon measurements and corresponding model results. L, F, and H refer to the organic horizons (see
section 2.2); topsoil: 0–30 cm; subsoil: > 30 cm; OM: organic matter. All model results are ensemble means; error bars
denote one standard error of the mean for the measurements and one standard deviation (s.d.) for the model results.

3. Results
3.1. Calibration
3.1.1. Posterior Distribution
Both the calibration setup without radiocarbon (woC14) and with radiocarbon (wC14) yielded a multimodal
posterior distribution with two relevant optima. One of the modes performed clearly better in terms of the
maximum posterior density. We focus on this mode for discussing the results. The posterior distribution and
model predictions for the subdominant mode are presented in the supporting material (Figures S11–S16).

Figure 2 shows the marginal distributions for the prior and the posterior of both calibration setups. Com-
pared to the prior, the uncertainty of all parameters was reduced, already without including radiocarbon
data. Adding radiocarbon data led to further constraint for most of the parameters, with the exception of
kAGL, 𝛼AGL→NLF, 𝛼NLF→LS, and B. Particularly strong changes are apparent for parameters related to the non-
leachable slow (NLS) organic matter pool. The mean decomposition rate coefficient (kNLS) is reduced from
5.7 × 10−3yr−1 to 4.4 × 10−4yr−1 (supporting information Table S2), corresponding an increase of turnover
time from roughly 150 year to 2000 year. Additionally, the flow from nonleachable fast (NLF) organic mat-
ter to NLS, as determined by 𝛼NLF→NLS, is strongly reduced. Hence, NLS is formed at a lower rate, but it is also
more stable. Also, the variance of kNLS and 𝛼NLF→NLS is an order of magnitude lower when radiocarbon is
included. However, the width of these distributions should be considered relative to the mean, since the two
are likely correlated over different calibrations. Hence, it is more appropriate to compare the coefficient of
variation (standard deviation relative to the mean) which shows a reduction by a factor of around 2 for the
two parameters.

A further prominent difference between the two calibrations is apparent for the advection rate v. When
radiocarbon is omitted, v has a wide distribution with the marginal mode at the upper bound, whereas with
radiocarbon data, v is strongly constrained at the lower end of the range.
3.1.2. Model Results
Figure 3 shows modeled and measured soil carbon stocks and profiles in March 2009. In both calibration
setups, the total simulated C stocks and mass fractions are well constrained, having less spread than the
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Figure 4. Simulated and measured organic carbon transport
fluxes. Model results are ensemble means averaged over the
last simulation year. Measured DOC fluxes (not used in the
calibration) were taken from Kindler et al. [2011].

observations. Addition of radiocarbon led to
a decreased fit to observed carbon stocks and
mass fractions. The vertical organic carbon
distribution became shallower, with overesti-
mated stocks in the organic layer and topsoil
and underestimated stocks in the subsoil.
Further, the distribution over the different
model pools in the topsoil changed, with
leachable slow (LS) organic matter becoming
more prominent.

Strong differences between the two calibra-
tions are also apparent for the modeled organic
matter transport fluxes by bioturbation (diffu-
sion) and liquid phase transport (advection)
(Figure 4). Addition of radiocarbon led to a
reduction of the flux rates of both mechanisms,
which can be attributed to the reduced val-
ues of B, lm, and v. We additionally plotted in
situ measured dissolved organic carbon (DOC)
fluxes from Kindler et al. [2011]. These mea-
surements were not included in the calibration,
since the representation of liquid phase trans-
port flow in SOMPROF was not intended for
simulation of DOC. However, the simulated
advective flux should roughly correspond to
DOC transport. Although the advective flux
is still overestimated compared to the obser-
vations, the strong reduction in flow due to
radiocarbon addition is a clear improvement.

Figure 5 shows the measured and modeled radiocarbon activities for both organic matter and heterotrophic
respiration. Measured radiocarbon activity of SOM in the mineral soil shows a clear negative gradient, indi-
cating that SOM age increases with depth. The model predicts a similar profile but underestimates the
radiocarbon activity in the deep soil. Measured radiocarbon activity of heterotrophic respiration is always
higher than that of SOM, which shows that respired carbon is younger than the average total organic matter.
Similar to SOM, radiocarbon activity of respired CO2 decreases with depth. Modeled radiocarbon activ-
ity of heterotrophic respiration generally agrees with the observations, although the peak at 10 cm in the
modeled vertical profile is not present for the measurements.

Figure 5 further shows strong differences between the radiocarbon profiles of the organic matter pools.
These differences are mostly explained by the decomposition rates of the pools, as well as their transport
behavior. NLS has markedly lower radiocarbon activity than the other two pools in the mineral soil, indicat-
ing it contains on average much older carbon. The profile of LS shows a clear maximum around 8 cm depth,
which is caused by the bomb peak travelling downward through the profile. Contrary to the other pools,
nonleachable fast (NLF) organic matter shows almost no vertical gradient in the mineral soil, since it origi-
nates mostly from root input, which has the same radiocarbon signal throughout the profile. Since NLS and
LS are the most abundant pools in the mineral soil, these pools determine the radiocarbon signature there,
with the importance of NLS increasing with depth. In contrast, the radiocarbon activity of heterotrophic
respiration is determined mostly by the LS pool and, near the surface, by NLF.

3.2. Projection Simulations
The JSBACH ecosystem model predicts both increasing litter fluxes and soil temperatures (Figure 6).
Changes in temperature were similar throughout the whole profile. While temperatures keep rising through-
out the simulation, litter fluxes stabilize near the end of the century. Soil moisture did not change notably
during the simulation period. Already at the start of the simulation in 1901, the litter fluxes calculated
by JSBACH are markedly higher than the in situ measurements used in the calibration (c.f. supporting
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Figure 5. Modeled and measured Δ14C for organic matter (March 2009) and heterotrophic respiration (April 2001).
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values of the individual model pools (March 2009) are depicted. Note that the comparability between the OM Δ14C and
respiration Δ14C is limited because they are shown for different years.

information Table S1). As a result, also the predicted soil carbon stocks based on the JSBACH forcing are
higher than observations (supporting information Figure S10). However, for reasons discussed in section 4.2,
we did not correct the JSBACH litter fluxes. Rather than the absolute quantities, we focus on the relative
change of simulated carbon stocks over time.

Since the strongest changes in temperature and litter fluxes occur between 1980 and 2100, we limit the
discussion of the results to this period. For both calibrations, the simulated organic carbon stocks for the
complete profile grow initially. During the second half of the 21st century, the carbon stocks level off and,
for simulation wC14, start to decrease (Figures 7a and 7b). However, the overall soil carbon gain is mainly
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Figure 6. Annual total litter fluxes (aboveground + below-
ground) and average soil temperature at 8 cm depth at Hainich
between 1901 and 2100, simulated by the JSBACH land
surface model.

caused by the topsoil; in the subsoil, stocks are
in fact decreasing. The simulated total C stock
for the two calibration setups diverge over
time, with stocks growing faster for simulation
woC14 than for wC14. Again, these differences
are mainly explained by changes in the top-
soil. The relative predictive uncertainty of the C
stocks is depicted in Figure 7c as the coefficient
of variation over the ensemble. Surprisingly,
adding radiocarbon data to the calibration
caused an increase of the relative uncertainty
for the topsoil and subsoil and organic layer,
individually. In contrast, the uncertainty for the
total soil C stock is slightly reduced (standard
deviation in 2100: 0.614 kg m−2 for calibration
woC14 and 0.525 kg m−2 for calibration wC14).
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Figure 8 shows the simulated heterotrophic respiration flux. The average respiration became notably higher
(approximately 10%) due to the addition of radiocarbon data. Furthermore, the uncertainty of the simulated
flux is strongly reduced by roughly 90%.

Year AD

H
et

er
ot

ro
ph

ic
 r

es
pi

ra
tio

n 
(k

gC
 m

−
2  y

r−
1 )

1980 2000 2020 2040 2060 2080 2100
0.6

0.7

0.8

0.9

1

1.1

1.2

Without radiocarbon (woC14)
With radiocarbon (wC14)
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4. Discussion

4.1. Calibration
As mentioned earlier, the posterior distri-
bution for both calibrations has two major
optima. A similar result was obtained previ-
ously by Braakhekke et al. [2013], who found
three relevant modes (the two modes found
here correspond approximately to modes A
and B in Braakhekke et al. [2013]). The modes
differ markedly in the distribution of SOM over
the different pools and transport flux rates
(supporting information Figures S12–S14). Con-
versely, the predicted stocks in the projection
simulations are quite similar (supporting infor-
mation Figure S15). The mode for which we
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present the results above has a consistently better fit in both calibrations (log posterior density difference
of ∼7 and ∼10 for calibration woC14 and wC14, respectively), as well in several other setups that were tried.
However, it is likely that the performance difference is overestimated since a number of uncertainty sources
were not considered, most notable the forcing history and possible deviations from the steady state (see
section 4.3). Furthermore, the log posterior density is partially determined by the prior distribution, which is
subjective. Future efforts should focus on integrating additional observations that may help to identify the
correct mode, such as physical and chemical SOM fractions.

The remainder of the discussion focusses on the dominant mode. The addition of radiocarbon data to
the calibration caused major changes in the posterior distribution (Figure 2). For several parameters
(kNLS, 𝛼NLF→NLS, lm, and v), there is virtually no overlap between the marginal distributions of both calibration
setups, which indicates that the radiocarbon data are to some extent inconsistent with the other sources
of information. Analysis of the different terms of the likelihood function shows a reduced fit to the mineral
organic carbon mass fractions and the total heterotrophic respiration for the calibration with radiocarbon
data (wC14). This is also apparent from graphical inspection of these variables (Figure 3 and supporting
information Figure S6). More important, however, is the increased disagreement with the prior distributions
for kNLS and 𝛼NLF→NLS. Our prior estimates for these parameters are markedly higher than the values indicated
by the data.

These differences raise the question to what extent posterior is constrained by the prior at low values for
these parameters, since the lognormal and logit-normal distributions approach zero probability toward
zero. To asses this, an additional calibration with uniform (flat) priors was performed. The results (supporting
information Figures S8 and S9) show that the informative priors cause a slight upward shift of the poste-
rior for kNLS and 𝛼NLF→NLS but have no major effects. Nevertheless, in the future different prior distributions
may be considered. As discussed in section 2.4.2, our choice for the lognormal and logit-normal priors is
mainly motivated by the assumption that all fluxes and pools in the model are nonzero. If this assump-
tion is relaxed, a prior density function with nonzero probability at zero is appropriate, e.g., exponential or
truncated normal.

Interestingly, for some parameters the marginal distributions became wider when radiocarbon data were
added. This seems counter intuitive: additional information leads to more uncertainty. The explanation lies
in the fact that correlations between parameters are stronger for calibration wC14 (supporting information
Figure S4). This demonstrates the importance of considering the correlation structure when assessing the
information gain and when selecting a parameter set for forward simulations [Tang and Zhuang, 2008].

The addition of radiocarbon data to the calibration led to the introduction of a highly stable organic mat-
ter pool, turning over on millennial time scale. Also in previous studies it was found that a passive pool is
required in order to reproduce measured radiocarbon activity [Perruchoud et al., 1999; Gaudinski et al., 2000;
Petersen et al., 2005; Koarashi et al., 2012]. For example, the inert organic matter (IOM) pool in the soil carbon
model RothC is included primarily in order to reproduce observed radiocarbon ages [Falloon et al., 2000].
Compared to similar studies with vertically explicit models [Elzein and Balesdent, 1995; van Dam et al., 1997;
Baisden et al., 2002], our estimate of the slowest turnover rate is somewhat higher but in the same order
of magnitude.

The measured radiocarbon data show a negative depth gradient in the mineral soil (Figure 5). This gradient
need not necessarily be caused by a change in average turnover rates with depth. Due to the time needed
for vertical transport, also a homogenous SOM pool will show an age—and thus a radiocarbon—gradient
with depth (c.f. the radiocarbon profile of NLS, Figure 5). However, apparently this mechanism alone cannot
explain the observed profile. Since decomposition rates are not explicitly reduced with depth, additionally a
change in the mixing ratio of the SOM pools with depth is required. This presumably explains the increased
abundance of the leachable slow (LS) organic matter pool in the topsoil (Figure 3) and improved constraint
of the advection rate v, for calibration wC14.

In several similar previous studies, decomposition rates were explicitly decreased along the profile using a
depth dependent rate modifier [e.g., van Dam et al., 1997; Jenkinson and Coleman, 2008; Koven et al., 2013].
However, Elzein and Balesdent [1995] could satisfactorily reproduce observed radiocarbon profiles using
only selective preservation of recalcitrant compounds in combination with transport. Therefore, we chose
to keep the decomposition rate coefficient constant with depth. Changing SOM dynamics along the vertical
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profile is presumably something that needs to be better accounted for, but we believe that it is preferable
to explicitly represent the processes and interactions thought to be responsible for this, e.g., organo-mineral
interactions or energy-limitation of microbes. However, this is outside the scope of the current study.

Both the measured and modelled radiocarbon profiles display a maximum below the surface, which is
caused by the spike in the atmospheric radiocarbon activity due to nuclear weapons testing in 1964 (the
bomb peak). This peak causes a similar maximum in the vertical profile which is reduced and travelling
downward over time due to organic matter transport. In the modeled profile, the peak is located at approx-
imately 4 cm depth in the mineral soil, while for the measurements, the peak appears to be still in the F/H
horizon. This suggests that the vertical organic matter transport is overestimated by the model. The mod-
eled radiocarbon profile of heterotrophic respiration also displays a peak, located somewhat deeper (∼6cm),
indicating that labile organic matter is transported faster than the slow pools. However, for the measured
radiocarbon activity of heterotrophic respiration, the peak is absent. This may indicate that decomposi-
tion of root derived material is more important than shown by the model. On the other hand, no replicates
were available for these measurements and the lab incubations may not be fully representative for in situ
conditions (see section 4.3).

4.2. Projection Simulations
4.2.1. Simulated Soil Carbon Dynamics
As discussed in section 3.2, the litter fluxes predicted by JSBACH are markedly higher than estimates based
on in situ measurements [Kutsch et al., 2010], causing a likewise overestimation of stocks in the soil carbon
projections. An additional experiment for which the litter fluxes were corrected showed more realistic car-
bon stocks. However, we chose to show only the original results without correction, for several reasons.
First, more than in absolute quantities we are interested in the relative SOM dynamics, which change only
marginally when litter fluxes are adjusted downward. Second, the current study was performed with future
large-scale gridded simulations in mind in which the two models are coupled. In such applications, cor-
rection of fluxes based on local measurements would be infeasible and undesirable, since it would lead to
disappearance of carbon from the system, rendering the net ecosystem fluxes meaningless.

The JSBACH model predicts both increasing soil temperatures and litter fluxes for the period 1901–2100
(Figure 6), the latter caused by increased vegetation productivity due to CO2 fertilization. These two trends
affect soil carbon stocks in opposite directions. However, while the litter input fluxes level off near the end of
the simulation, the temperatures keep rising. This is reflected by the dynamics of the total soil carbon pro-
jections (Figure 7): the net balance decreases in the second of half of the 21st century and, for calibration
wC14, turns negative. Similar future trajectories with initial carbon uptake, followed by levelling off or car-
bon loss, have been predicted in global simulation studies [Cramer et al., 2001; Sitch et al., 2008; Friedlingstein
et al., 2006; Jones and Falloon, 2009].

The simulated soil carbon stocks (Figure 7b) further suggest that the soil at Hainich is currently gaining car-
bon, which agrees with previous studies based on repeated inventories [Kutsch et al., 2010; Tefs and Gleixner,
2012; M. Schrumpf et al., Soil organic carbon and total nitrogen gains in an old growth deciduous forest in
Germany, in rev. for PlosOne]. Notwithstanding, there are several unconsidered sources of uncertainty that
potentially affect the simulated soil carbon stocks. First, neither SOMPROF nor the version of JSBACH used
in this study considers nitrogen cycling. It has been suggested that vegetation models that ignore nitro-
gen limitation on productivity may overestimate carbon sequestration due to climate change [Hungate et
al., 2003]. On the other hand, nitrogen deposition may lead to reduced heterotrophic respiration and soil
carbon sequestration [Janssens et al., 2010]. Second, due to insufficient data availability, the temperature
sensitivity of decomposition was not included in the calibration but held fixed at the value reported by
Lloyd and Taylor [1994]. There is still little consensus regarding exact temperature sensitivity [Davidson and
Janssens, 2006], which causes considerable uncertainty of predicted future soil carbon stocks [Jones and
Falloon, 2009].

Interestingly, the topsoil and the subsoil show opposite response to changes in forcing: topsoil C stocks
increase, while subsoil C stocks decrease. Clearly, the increased carbon input remains mostly near the sur-
face, while at deeper levels, net losses occur due to accelerated decomposition. Whether this would also
occur in reality for the given conditions is difficult to ascertain. Several mechanisms that may influence
the SOM dynamics as a function of depth are currently not represented in the model since they are poorly
understood. First, all SOM pools in the model have the same response function for temperature. In reality
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Figure 9. Posterior distribution for the ratio of 𝛼NLF→NLS and
kNLS for the two calibrations.

the temperature sensitivity of decomposition
may differ among different organic matter frac-
tions, although this is still uncertain [Conant
et al., 2011]. Second, it has been shown that
increased input of fresh litter in the subsoil
may destabilize old SOM due to priming of
microbial activity [Fontaine et al., 2007]. Third,
increased belowground productivity may lead
to deeper root distributions [Iversen, 2010],

causing also deeper input of SOM. Nevertheless, these results demonstrate that different parts of the SOM
profile can respond differently to environmental changes. Thus, topsoil carbon dynamics should not be
simply extrapolated downward in order to derive changes in the subsoil.
4.2.2. Differences Between Calibrations
An important difference between the two calibrations lies in the predicted loss of carbon over the lower
boundary by advection (Figure 4), which is unrealistically high for calibration woC14—up to 20% of the
litter input. The smaller advective flux rates for wC14 also constitute a strong improvement compared
to measured DOC fluxes. A further consequence is the markedly higher heterotrophic respiration flux
(Figure 8). This is explained by the steady state assumption applied in the calibration: since carbon leaching
is reduced, respiration much increase in order to maintain zero net carbon balance. Interestingly, com-
pared to the observations, heterotrophic respiration is overestimated in calibration wC14 (supporting
information Figure S6). This suggests that the steady state assumption is incorrect and that the soil is in fact
gaining carbon, which is in agreement with the simulated soil carbon stocks (Figure 7b). The relative con-
tributions of advection and respiration to the total loss are highly relevant for soil carbon dynamics under
climate change, because the latter is sensitive to temperature while the former is not. This presumably also
explains why calibration wC14 shows stronger carbon losses near the end of the projection simulation.
Parameter sets applied for predictive simulations should produce realistic advective losses in order to avoid
biased results.

An unexpected result is the larger spread for the carbon stocks in the organic layer, topsoil, and subsoil indi-
vidually, in calibration wC14 (Figure 7c). Remarkably, adding information to the calibration led to an increase
of predictive uncertainty for these variables. Conversely, for the total profile, the uncertainty was slightly
reduced. This indicates that the vertical distribution of SOM became more uncertain. A further explanation
may lie in the fact that the predicted amount of a SOM pool by a first-order decomposition model is ulti-
mately determined by the ratio of the input rate and the decomposition rate coefficient. Figure 9 shows the
distribution of the ratio of 𝛼NLF→NLS and kNLS, which determines the total amount of the NLS pool. The spread
for this ratio has become wider, despite the reduced spread of these parameters individually (Figure 2; c.f.
also supporting information Figure S4). This is presumably caused by disagreement between the organic
C and radiocarbon observations (see Figure 3 and section 4.1). This conflict means that for parameter
changes in certain directions a reduced fit to the organic C data is compensated by an improved fit to the
radiocarbon data. As a result, parameter sets that were previously assigned low likelihood due to poor fit to
the organic carbon data may become more probable when the radiocarbon data is included, causing the
predictive uncertainty for organic carbon to increase.

4.3. Methodological Constraints
The effective decomposition rate observations, as well as the radiocarbon activity of the heterotrophic
respiration, were derived from measured fluxes from soil samples incubated in the lab, which may not be
fully representative of conditions in the field. Simulated respiration rates were corrected for temperature
and moisture maintained during the lab incubation, but disturbance of the soil samples may have stimu-
lated respiration, leading to overestimated decomposition rates, which was not accounted for. The effective
decomposition rates are underestimated for calibration wC14 (supporting information Figure S7), which
suggests this problem is relevant here. Furthermore, the sample disturbance may also affect the radiocarbon
signal of the respired CO2 due to increased decomposition of old SOM [Fontaine et al., 2007].

For the calibration, it was assumed that the average organic carbon stocks are in steady state and that radio-
carbon is in steady state at the start of the simulation, in 1800. Furthermore, the uncertainty of the past
forcing was not considered. The Hainich forest has a relatively constant and well-known history without
major land use changes [Wäldchen et al., 2013, section 2.1]. Nevertheless, as discussed in section 4.2, model
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results and previous studies point to a positive soil carbon balance in the present. Furthermore, due to the
long turnover times of NLS for calibration wC14, forcing fluctuations may affect soil carbon stocks for hun-
dreds of years. Since the uncertainties resulting from deviations from the steady state and errors in the
forcing data were not considered, it is likely that the spread of the posterior distribution is underestimated.
Methods have been proposed to relax the steady state assumption [Wutzler and Reichstein, 2007; Yeluripati et
al., 2009; Carvalhais et al., 2010] and consider forcing input errors [Kavetski et al., 2006] which may be applied
in future studies. For now it may be advisable to artificially increase the variance of the posterior distribution,
if it is used as a prior for subsequent calibrations.

4.4. The Use of Radiocarbon Data for Constraining SOM Turnover and Transport
When radiocarbon data were omitted from the calibration, the observed C stocks and profile were well
reproduced, but with a strongly overestimated turnover rate for the slowest SOM pool. This exemplifies the
problem of an incorrect model producing correct results, as discussed in section 1. The obvious question is
to what extent this leads to incorrect predictions and if avoiding these errors warrants the considerable cost
and labour that comes with radiocarbon measurements? The future predictions for both calibration setups
diverge for the transient simulations (Figure 7b). However, in relative terms, the differences are quite small
(Figure 7a).

Nevertheless, we believe that SOM dynamics should be simulated based on accurate turnover rates, for
several reasons. First, there is in general no guarantee that biases in the parameter estimates will be small
enough that predictive errors are negligible. For other studies, the overestimation of the turnover rate may
be more severe (c.f. the Loobos site in Braakhekke et al. [2013]). Several studies have shown that the parti-
tioning of total SOM over different turnover fractions is highly relevant for transient predictions [Telles et al.,
2003; Jones et al., 2005]. Furthermore, on longer time scales or in situations with more rapid environmental
changes (e.g., land-use change or disturbances), overestimation of the transient response is more likely to
occur. Second, as previously discussed, the response of decomposition to temperature may differ between
SOM fractions [Conant et al., 2011]. If this is the case, the distribution of total SOM over the different frac-
tions is obviously highly relevant under conditions of climate change. Finally, consensus is emerging that
the notion of SOM pools with fixed, intrinsic decomposition rates is incorrect. Rather, stabilization of SOM
is the result of biological, physical, and chemical processes that may be reversible under the right condi-
tions [Schmidt et al., 2011]. Parametrization of these mechanisms and their effects on SOM decomposition
requires accurate estimation of turnover rates.

Since C stock measurements do not contain information about the dynamic behavior of soil carbon, it is
generally advisable to include one or more additional observations that directly relate to turnover when cal-
ibrating soil carbon models. This is corroborated by results of Keenan et al. [2013] who studied the value of
different observations for calibration of an ecosystem model. They concluded that soil carbon turnover rates
contributed greatly to improvement of model performance. Several candidate measurements are avail-
able, such as heterotrophic respiration rates (either in situ or in lab incubations), 13C, and observations from
chronosequences. However, in general radiocarbon is one of the best choices, particularly when dynamics
of the slowest organic matter fractions are of interest [Trumbore, 2009]. Models that represent the complete
vertical profile, such as SOMPROF, will generally require information on long time scale dynamics because of
the very low turnover rates typical in the subsoil.

The fact that radiocarbon data yielded only marginal reduction of predictive uncertainty for certain variables
in this study does not invalidate its use for constraining SOM transport and turnover. As discussed above,
this is presumably related to the model’s difficulty with fully fitting both the radiocarbon and C profile data.
Hence, the radiocarbon data showed that predictive uncertainty for the C stocks was previously underesti-
mated. It does not mean that the addition of this data led to a loss of information. Since Bayesian calibration
constitutes conditioning of the model on (new) data, the uncertainty of the combined distribution of the
predictions for all data streams cannot become higher.

Availability of soil radiocarbon data, although growing, is still limited [Becker-Heidmann and Heidmann,
2010], which hinders derivation of parameter sets for different soils and ecosystems. However, existing data
may allow derivation of typical radiocarbon profiles for certain soils and ecosystems which could be used as
observations. Furthermore, the Bayesian approach can be helpful in this respect since it allows results from
calibrations for sites where radiocarbon data are available to be reused as prior distributions for sites where
it is not.
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5. Conclusions

The addition of radiocarbon data to the calibration had large effects on the posterior parameter distribution.
Strongest changes occurred for the parameters controlling the formation and decomposition of the slow-
est organic matter pool, which were both strongly reduced. Additionally, the advection rate was reduced,
resulting in more realistic predictions of SOM transport with the liquid phase. These results demonstrate
that without constraint on long time scale turnover rates, the model may produce correct results based on
incorrect parametrization.

Future projections show increasing carbon stocks initially, with levelling off, and—for the radiocarbon con-
strained model—carbon losses, near the end of the 21st century. The modified parameters had only small
relative effects on carbon stock projections but led to markedly lower advective carbon losses and higher
heterotrophic respiration. Radiocarbon data further led to a slight reduction of predictive uncertainty for the
total carbon stock and a strong reduction for heterotrophic respiration.

Our results illustrate the risk of obtaining biased parameters, when available observations hold limited or
no information on the dynamic behavior of SOM. Despite the absence of strong changes of the model pre-
dictions, we believe that radiocarbon is a valuable tool for constraining soil carbon models, particularly
vertically explicit models such as SOMPROF.

Appendix A: Approximation of the Posterior Distribution Using Markov
Chain Monte Carlo

Since the complexity of the model precludes analytical derivation of the posterior probability density func-
tion, the distribution was approximated with a Metropolis algorithm. This algorithm samples the posterior
distribution by means of a Markov chain, which performs a random walk in parameter space. At each iter-
ation i, proposals of the parameters 𝜽∗ are generated by taking a (semi-)random step from the current
position 𝜽

i . The model is run with the proposed parameter set and the unnormalized posterior probabil-
ity density (p(𝜽)p(𝐎|𝜽)) of the proposal is evaluated. The proposal is subsequently accepted or rejected
according to the Metropolis rule, which defines the chance for acceptance as

s = min
{

p(𝐎|𝜽∗)p(𝜽∗)
p(𝐎|𝜽i)p(𝜽i)

, 1
}

. (A1)

The decision for acceptance or rejection is made using a random number from a uniform distribution on the
unit interval. In case of acceptance, the chain moves to the position of the proposal; in case of rejection, the
chain stays at the current position, which is thus sampled again.

The specific algorithm used here was DREAM(ZS) [Laloy and Vrugt, 2012], an adaptation of the DREAM
(DiffeRential Evolution Adaptive Metropolis) algorithm which uses multiple chains in parallel and automati-
cally adapts the scale and orientation of the proposal distribution. Eight chains were run for each calibration.
The convergence of the chains was evaluated using the Gelman-Rubin index [Gelman et al., 2004, Chap. 11],
which is proportional to the ratio of the between-chain variance and the within-chain variance, and declines
to 1 when the chains converge on the same distribution. All chains were run until the convergence index
was ≤ 1.01 for all parameters, with at least 100,000 iterations per chain. After the runs, a variable number
of iterations was removed from the start of each chain (the “burn-in”). Next, the remaining samples for each
chain were merged and thinned to 10,000 iterations for analysis by selecting iterations in regular intervals.
Marginal probability distributions depicted in Figure 2 were derived using kernel density estimation
[Bowman and Azzalini, 1997]. For the model results depicted in Figures 3–5, 5000 simulations were made
based on parameters sets from the Monte Carlo samples. The projection simulations were based on 500
samples. These samples were selected in regular intervals (i.e., every nth sample was selected) from the
Markov chains. This assures that dependence between the selected samples is minimal.
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