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Reduction of the two-body dynamics to a one-body description in classical electrodynamics

Alessandra Buonanno
Theoretical Astrophysics and Relativity Group, California Institute of Technology, Pasadena, California 91125

~Received 7 April 2000; published 25 October 2000!

We discuss the mapping of the conservative part of two-body electrodynamics onto that of a test charged
particle moving in some external electromagnetic field, taking into account recoil effects and relativistic
corrections up to second post-Coulombian order. Unlike the results recently obtained in general relativity, we
find that in classical electrodynamics it is not possible to implement the matching without introducing external
parameters in the effective electromagnetic field. Relaxing the assumption that the effective test particle moves
in a flat spacetime provides a feasible way out.

PACS number~s!: 04.20.Fy
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I. INTRODUCTION

Recently, a novel approach to the two-body problem
general relativity has been introduced@1#. The main motiva-
tion of that investigation rests on better understanding
late dynamical evolution of a coalescing binary system m
of compact bodies of comparable masses, such as black h
and/or neutron stars. In fact, these astrophysical system
among the most promising candidate sources for the de
tion of gravitational-waves with the future terrestrial inte
ferometers such as the Laser Interferometric Gravitatio
Wave Observatory~LIGO! and Virgo. The basic idea pur
sued in@1#, in part inspired by some results obtained in qua
tum electrodynamics@2,3#, was to map the conservative two
body dynamics~henceforth denoted as the ‘‘real’’ dynamic!
onto an effective one-body one, where a test particle mo
in an effective external metric. As long as radiation react
effects are not taken into account, the effective metric is
a deformation of the Schwarzschild metric with deformati
parametern5m/M , where m is the reduced mass of th
binary system andM its total mass. The ‘‘effective’’ descrip
tion should be viewed as a way of re-summing in a no
perturbative manner the badly convergent post-Newton
expanded dynamics of the ‘‘real’’ description. The results
@1# were restricted to the second post-Newtonian level~2PN!
and the analysis was mainly focused on the conservative
of the dynamics. More recently, a feasible way of incorp
rating radiation reaction effects has been proposed@4# and
the extension of the aforesaid approach to 3PN order
been investigated@5#.

The purpose of the present paper is to test the robust
of the basic idea underlying the mapping of the two-bo
problem onto an effective one-body one, by applying it
classical electrodynamics. We limit to the conservative p
of the dynamics of the bound states of two charged partic
up to second post-Coulombian order~2PC!, and we take into
account recoil effects. We investigate the possibility of d
scribing the exchange of energies between the two bodie
the ‘‘real’’ problem through an ‘‘effective’’ auxiliary de-
scription, where a test particle moves in some external ef
tive electromagnetic field. Generically, we expect that t
electromagnetic field will be a deformation of the Coulom
potential with deformation parametern5m/M , wherem is
0556-2821/2000/62~10!/104022~10!/$15.00 62 1040
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the usual reduced mass of the two charged particles anM
the total mass of the system. We shall see that the matc
is also possible introducing in the effective description eith
a n-dependent vector potential or a deformed flat metric w
deformation parametern.

As already mentioned, the idea of reducing the relativis
two-body dynamics onto a relativistic one-body one w
originally introduced in quantum electrodynamics. In pa
ticular, in @2# the authors, taking into account recoil effec
resummed in the eikonal approximation the ‘‘crosse
ladder’’ Feynman diagrams for the scattering of two relat
istic particles and mapped the one-body relativistic Balm
formula onto the two-body relativistic one. This metho
gives the correct quantum energy levels at least up to 1
order, but some of the centrifugal barrier effects have to
added by hand. Todorovet al. @3# developed a more system
atic approach, based on the Lyppmann-Schwinger qu
potential equation, which also gives correct results for
quantum energy levels, including the main parts of the rad
tive effects of the Lamb shift. Nevertheless, this last a
proach @3# rests on some choices for the quasi-poten
equation which are not very well justified and introduces
the effective description various energy-dependent qua
ties. In the following, whenever it is possible, we will com
pare our results in classical electrodynamics with the pre
ous analysis for the corresponding quantum proble
Finally, note that, the aim of this paper is not to obtain n
results with respect to the quantum energy-levels of
bound states of a two-body charged system, which is w
known to be a hard problem@6#. On the other hand, the
present work wants to investigate, in the context of class
electrodynamics, the basic idea of reducing the two-bo
dynamics onto a one-body one, recently introduced in g
eral relativity @1#.

The outline of the paper is as follows. In Sec. II we r
view the relativistic two-body problem up to 2PC order a
summarize its dynamics in a coordinate-invariant man
evaluating, within the Hamilton-Jacobi framework, th
‘‘energy-levels’’ of the bound states. In Sec. III we introdu
the ‘‘effective’’ one-body description and define the ‘‘rules
needed to map the ‘‘real’’ onto the ‘‘effective’’ problem
Then, in Secs. III A, III B and III C we analyze three feasib
©2000 The American Physical Society22-1
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manners of implementing the matching. Finally, Sec.
summarizes our main conclusions.

II. TWO-BODY DYNAMICS UP TO SECOND
POST-COULOMBIAN ORDER

It was realized long ago that, in relativistic dynamics,
the position variables that are used to describe a system
charged interacting particles are the coordinates assoc
with a Lorentz frame,1 then all higher time derivatives mus
appear in the Lagrangian@8#. To get an ‘‘ordinary’’ Lagrang-
ian it is necessary to introduce canonical position variab
different from the Lorentz coordinates@8#. At 2PC order the
acceleration dependent Lagrangian was originally derived
Golubenkov and Smorodinskii@10#. If one eliminates in that
Lagrangian the higher time derivatives by using the equa
10402
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of motion of lower orders then, as pointed out in@8,11#, one
does not obtain the correct equations of motion in a Lore
frame. To eliminate correctly the accelerations one can
the method of ‘‘redefinition of position variables,’’ intro
duced by Damour and Scha¨fer in @9#, which consists in ap-
pealing to a contact transformation induced by a change
coordinates from the Wheeler-Feynman coordinate sys
~Lorentz frame! @12# to a well defined asymptotically inertia
frame @13#. More explicitly, the acceleration dependent L
grangian at 2PC order is given by@9#

L̃~z1 ,z2 ,v1 ,v2 ,a1 ,a2!5L̃01
1

c2
L̃21

1

c4
L̃4 , ~2.1!

with
e

ian
L̃05
1

2
m1v1

21
1

2
m2v2

22
e1e2

R
, ~2.2!

L̃15
1

8
m1v1

41
1

8
m2v2

41
e1e2

2R
@v1•v21~ ñ•v1!~ ñ•v2!#, ~2.3!

L̃45
1

16
m1v1

61
1

16
m2v2

62
e1e2

8 H R@3~a1•a2!2~ ñ•a1!~ ñ•a2!#12@~v1•a2!~ ñ•v1!2~v2•a1!~ ñ•v2!#1~ ñ•a1!@v2
2

2~ ñ•v2!2#2~ ñ•a2!@v1
22~ ñ•v1!2#1

1

R
@v1

2v2
222~v1•v2!22v1

2~ ñ•v2!22v2
2~ ñ•v1!213~ ñ•v1!2~ ñ•v2!2#J , ~2.4!

whereR5z12z2 , ñ5R/R, v i5 żi andai5v̇ i . In @9#, Damour and Scha¨fer after having critically discussed and clarified th
various results previously derived in the literature@14#, worked out the contact transformations,

q15z12
1

c4

e1e2

4m1
H ~ ñ•v2!v21ñF1

2
@~ ñ•v2!22v2

2#1
e1e2

m2RG J , ~2.5!

q25z21
1

c4

e1e2

4m2
H ~ ñ•v1!v11ñF1

2
@~ ñ•v1!22v1

2#1
e1e2

m1RG J , ~2.6!

which allow to eliminate the accelerations appearing in Eqs.~2.2!–~2.4!. Hence, the final acceleration independent Lagrang
at 2PC order is given by@9#

L~q1 ,q2 ,q̇1 ,q̇2!5L01
1

c2
L21

1

c4
L4 , ~2.7!

with

L05
1

2
m1q̇1

21
1

2
m2q̇2

22
e1e2

q
, ~2.8!

L25
1

8
m1q̇1

41
1

8
m2q̇2

41
e1e2

2q
@ q̇1•q̇21~n•q̇1!~n•q̇2!#, ~2.9!

1For coordinates belonging to a Lorentz frame we mean coordinates which transform as linear representation of the Poincare´ group @9#.
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L45
1

16
m1q̇1

61
1

16
m2q̇2

62
e1e2

8q H q̇1
2q̇2

222~ q̇1•q̇2!213~n•q̇1!2~n•q̇2!22~n•q̇1!2q̇2
2

2~n•q̇2!2q̇1
21

e1e2

m2q
@ q̇1

223~n•q̇1!2#1
e1e2

m1q
@ q̇2

223~n•q̇2!2#2
2~e1e2!2

m1m2q2 J , ~2.10!

whereq5q12q2 andn5q/q. Applying the Legendre transformation toL, we derive~in full agreement with@9#!

H~q1 ,q2 ,p1 ,p2!5H01
1

c2
H21

1

c4
H4 , ~2.11!

where

H05
1

2 S p1
2

m1
1

p2
2

m2
D 1

e1e2

q
, ~2.12!

H252
1

8 S p1
4

m1
3

1
p2

4

m2
3D 2

e1e2

2m1m2q
@p1•p21~n•p1!~n•p2!#, ~2.13!

H45
1

16S p1
6

m1
5

1
p2

6

m2
5D 1

e1e2

m1m2q H 3~n•p1!2~n•p2!2

8m1m2
2

p1
2~n•p2!2

8m1m2
2

p2
2~n•p1!2

8m1m2

1
1

4
@~n•p1!~n•p2!1~p1•p2!#S p1

2

m1
2

1
p2

2

m2
2D 2

~p1•p2!2

4m1m2
1

p1
2p2

2

8m1m2
1

e1e2

q S p1
2

m1
1

p2
2

m2
D 2

~e1e2!2

4q2 J . ~2.14!

Let us denote

M5m11m2 , m5
m1m2

M
, n5

m

M
, ~2.15!

where the parametern takes values between 0 and 1/4, corresponding to the test mass limit and the equal mas
respectively. Henceforth, we shall limit to the dynamics of the bound states generated by the two charged bodies,
e1e2,0 and we pose the coupling constanta52e1e2.0. In the center of mass frame we haveP5p152p2 and introducing
the following reduced variables:

Ĥ5
H
m

, p5
P

m
, t̂5

mt

a
, r 5

mq

a
, ~2.16!

we can re-write the Hamiltonian, Eq.~2.11!, in the more convenient form

Ĥ~r,p!5
1

2
p22

1

r
2

1

8c2
~123n!p42

1

2c2

n

r
@p21~n•p!2#2

1

8c4

1

r
@3n2~n•p!41n~3n22!p4

12n~n21!p2~n•p!2#1
1

16c4
~125n15n2!p61

1

4c4

n

r 2
p21

1

4c4

n

r 3
. ~2.17!
n
iti
ul

-
rge
m.
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ite
The above Hamiltonian is invariant under time translatio
and space rotations. We denote the two conserved quant
that is the center-of-mass non-relativistic energy and ang
momentum, by

Ĥ~r,p!5 ÊNR5
Ec.m.

NR

m
, r`p5 j5

Jc.m.

a
. ~2.18!
10402
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In the following we pose E NR[Ec.m.
NR and J[Jc.m..

Using the Hamilton-Jacobi formalism, we can sum
marize in a coordinate-invariant manner the two-cha
dynamics by evaluating the ‘‘energy-levels’’ of the syste
Introducing the reduced Hamilton principal-functionŜ,
defined by (]Ŝ/]r)5p, separating the time and angular c
ordinates and restricting to the planar motion, we can wr
2-3
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Ŝ52 ÊNRt̂1 j w1Ŝr~r ,ÊNR, j !. ~2.19!

Solving the Hamilton-Jacobi equationĤ(r,p)5 ÊNR with re-
spect to (dŜr /dr)5pr5n•p, using p25(n•p)21 j2/r 2, we
get

Ŝr~r ,ÊNR, j !5E drAR~r ,ÊNR, j !, ~2.20!

whereR is a polynomial of the fifth order in 1/r , explicitly
given by

R~r ,ÊNR, j !5A1
2B

r
1

C

r 2
1

D1

r 3
1

D2

r 4
1

D3

r 5
, ~2.21!

with

A52ÊNR1
1

c2
~123n!~ ÊNR!21

1

c4
n~4n21!~ ÊNR!3, ~2.22!

B511
1

c2
~12n!ÊNR1

1

c4

n

2
~2n21!~ ÊNR!2, ~2.23!

C52 j 21
1

c2
~11n!, ~2.24!

D152
1

c2
n j 22

1

c4
n2 j 2ÊNR1

1

c4

n

2
~4n21!, ~2.25!

D252
3

c4
n2 j 2, ~2.26!

D351
3

4c4
n2 j 4. ~2.27!

For our purposes we need to compute the reduced ra
action variable

i r
real~ ÊNR, j !5

2

2pEr min

r max
drAR~r ,ÊNR, j !. ~2.28!

To evaluate the above integral we use the formula~3.9! of
Ref. @7#, derived by performing a complex contour integr
tion. The result for the radial action variableI R

real5a i r
real

reads:
10402
ial

I R
real~E NR,J!5

am1/2

A22E NRF12
1

4
~n23!

E NR

mc2

2
1

32
~526n23n2!S E NR

mc2D 2G2J

1
a2

c2J S 1

2
2

n

2

E NR

mc2D 1
1

8
~126n!

a4

c4J 3
.

~2.29!

Finally, to get the ‘‘energy-levels’’ we solve the above equ
tion in terms of the relativistic energyE R5E NR1Mc2. In-
troducing the Delaunay action variableN5I R

real1J, we get

E R~N,J!5Mc22
1

2

a2m

N 2
1

1

c2
a4mF2

1

2

1

JN 3

1
1

8
~32n!

1

N 4G1
1

c4
a6mF2

3

8

1

J 2N 4

1
1

16
~2513n2n2!

1

N 6
1

1

4
~322n!

1

JN 5

1
1

8
~6n21!

1

J 3N 3G . ~2.30!

At 0PC order we recover the well known result of the d
generacy of the energy-levels in the Coulomb problem.
us observe that at 1PC order, identifyingN/\ with the prin-
cipal quantum-number andJ/\ with the total angular-
momentum quantum-number, we obtain that Eq.~2.30!
gives, e.g., the correct bound-state energies of the sin
states of the positronium@2,3# (e152e2 andm15m2) in the
~classical! limit J/\@1. Moreover, within the approxima
tion J/\@1, our method captures all the centrifugal barr
shifts that have to be added by hand in@2#. However, we
cannot recover from Eq.~2.30! the correct quantum energy
levels at 2PC level, because at this order radiation reac
effects should have been taken into account. Indeed, in e
trodynamics they enter at 1.5PC order, with a dipole-ty
interaction. Only if we limit to systems withe1 /m1
5e2 /m2, we can postpone radiation reaction effects at
quadrupole order, which means at 2.5 PC level. In
present work we are interested in the conservative part of
bound states dynamics, hence we do not make the restric
e1 /m15e2 /m2. The radiative corrections which contribut
to the main part of the Lamb shift have been evaluated in@3#,
using the quasi-potential approach, and are of the or
a5loga. Corrections of the ordera5, a6, a6 loga have also
been partially obtained in the literature for some quant
bound states of positronium and muonium@6#.

III. ‘‘EFFECTIVE’’ ONE-BODY DESCRIPTION

The basic idea of the present work is to map the ‘‘rea
two-body dynamics, described in the previous section, to
2-4
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‘‘effective’’ dynamics of a test particle of massm0 and
chargee0, moving in an external electromagnetic field. T
action for the test particle is given by

Seff5E S 2m0cds01
1

c
e0Am

eff~z!dzmD , ~3.1!

whereAeff
m 5(Feff ,Aeff). It is straightforward to derive tha

the effective Hamiltonian satisfies the well known equatio

~Heff2e0Feff!
2

c2
5m0

2c21S p2
e0

c
AeffD 2

. ~3.2!

The effective electromagnetic fieldAeff
m will be constructed in

the form of an expansion in the dimensionless param
a0 /(m0c2R), where a05e0

2 is the coupling constant an
a0 /(m0c2) is the classical charge radius ofm0. Hence, we
pose

Feff~R!5
e0f0

R F11f1

a0

m0c2R
1f2S a0

m0c2R
D 2

1•••G ,

~3.3!

Aeff~R!5
e0a

cR Fa01a1

a0

m0c2R
1•••G , ~3.4!

where f0 ,f1 ,f2 and a0 ,a1 are dimensionless paramete
anda is a vector with the dimension of a velocity. All thes
unknown coefficients will be fixed by the matching betwe
the ‘‘real’’ and the ‘‘effective’’ description. Note that, in the
above equations the variableR stands for the effective radia
coordinate and differs from the real separationR used in Sec.
II. Moreover, in Eqs.~3.3!,~3.4! we have indicated only the
terms we shall need up to 2PC order.

The dynamics of the one-body problem can be describ
in a coordinate-invariant manner, in the Hamilton-Jac
framework, by considering the ‘‘energy-levels’’ of the boun
states of the particlem0 in the external electromagnetic field
The Hamilton-Jacobi equation can be obtained from
~3.2! posing Heff5E0 and introducing the Hamilton
principal-function]Seff /]R5p. Limiting to the motion in the
equatorial plane (u5p/2) we can separate the variable
writing

Seff52E0t1J0w1SR
0~R,E0 ,J0!, ~3.5!

whereE0 andJ0[uJ0u are the conserved energy and ang
lar momentum defined by Eq.~3.1!. The effective radial ac-
tion variable reads

I R
eff5

2

2pERmin

Rmax
dR

dSR
0

dR
. ~3.6!
10402
er
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Like in the two-body description we can derive the ‘‘energ
levels’’ of the ‘‘effective’’ one-body problem. They can b
written as2

E0~N0,J0!5m0c22
1

2

m0a0
2

N 0
2

1
1

c2
a0

4m0S E3,1

J0N 0
3

1
E4,0

N 0
4D

1
1

c4
a0

6m0F E3,3

J 0
3N 0

3
1

E4,2

J 0
2N 0

4
1

E5,1

J0N 0
5

1
E6,0

N 0
6G ,

~3.7!

whereN05I R
eff1J0 andEi , j are combinations of the coeffi

cientsf0 ,f1 ,f2 anda0 ,a1 given in Eqs.~3.3!,~3.4!.
Let us now define the rules to match the ‘‘real’’ to th

‘‘effective’’ problem. Like in @1#, we find very natural stick-
ing with the following relations between the adiabatic inva
ants:

N5N0 , J5J0 . ~3.8!

However, the way the ‘‘energy-levels,’’ Eq.~2.30! and Eq.
~3.7!, are related is more subtle. If we simply identi
E0(J0 ,N0)5E R(J,N)1(m02M )c2, and impose that the
mass of the effective test particle coincides with the redu
mass, i.e.m05m, we obtain that already at 1PC order it
impossible to reduce the two-body dynamics to a one-b
description. Hence, following@1# we assume that there is
one-to-one mapping between the ‘‘real’’ and the ‘‘effective
energy-levels of the general form

E 0
NR

m0c2
5

E NR

mc2 F11a1

E NR

mc2
1a2S E NR

mc2D 2G , ~3.9!

wherea1 anda2 are unknown coefficients that will be fixe
by the matching. Given the aforesaid ‘‘rules,’’ we shall i
vestigate in the subsequent sections three feasible ways
mapping can be implemented. The diverse descriptions d
by the choice of the effective electromagnetic field and
spacetime metric.

A. Effective scalar potential depending on the energy

In this section we study the possibility of reducing th
two-body dynamics to a one-body one introducing, in t
‘‘effective’’ description, the scalar potentialFeff displayed in
Eq. ~3.3!, and assuming that the vector potentialAeff is zero.
In this case the derivative of the radial Hamilton principa
function is given by

2Note that, if a vector potential is present, the energy-levels co
also depend on the magnetic numberJ z

0 . In the present paper whe
dealing with a vector potential~see Sec. III B! we shall assume tha
the source of the magnetic field is the angular momentum, hence
magnetic field will be perpendicular to the plane of motion. Th
choice implicitly assumesJ0[J z

0 .
2-5
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dSR
0

dR
52m0E 0

NR22m0e0Feff2
J 0

2

R2
1

~E 0
NR!2

c2

1
e0

2Feff
2

c2
2

2e0E 0
NRFeff

c2
, ~3.10!

where we have introduced the non-relativistic energyE 0
NR

5E 0
R2m0c2. Plugging the above expression in Eq.~3.6! we

get

I R
eff~E 0

NR,J0!5
a0m0

1/2

A22E 0
NRF2f02

3f0

4

E 0
NR

m0c2

1
5f0

32 S E 0
NR

m0c2D 2G2J01
a0

2

J 0c2 Ff0
2

2
2f0f1

2f0f1

E 0
NR

m0c2G1
1

8

a0
4

J 0
3c4

@f0
4212f0

3f1

18f0
2f214f0

2f1
2#. ~3.11!

Identifying Eq.~3.11! with Eq. ~2.29!, assumingm05m and
using Eqs.~3.8!,~3.9! we obtain the equations for the un
knownsf0 ,f1 ,f2 , a0 ,a1 and a1 and a2. In particular, at
0PC order we have

2f0a05a, ~3.12!

and we find quite natural to posef0521, that ise0
25a0

5a52e1e2. The equations at 1PC level are

2f0a0~2a123!5a~n23!, a0
2~f0

222f0f1!5a2,
~3.13!

while at 2PC order they read

2f0a0~5212a1212a1
2116a2!5a~526n23n2!,

~3.14!

a0
4~f0

414f0
2f1

2212f0
3f118f0

2f2!5a4~126n!, ~3.15!

f0f1a0
25

n

2
a2. ~3.16!

Let us notice that at 1PC order, Eq.~3.13! givesa15n/2 and
f150. Then at 2PC order one can solve Eqs.~3.14! and
~3.15! in terms of a2 and f2, obtaining a250 and f2
523n/4, but Eq.~3.16! is inconsistent. To solve this incom
patibility we are obliged to introduce another parameter
the ‘‘effective’’ description. A simple possibility is to sup
pose that the diverse coefficients that appear in the effec
scalar potential depend on an external parameterEext, hav-
ing the dimension of an energy, that is

f0~Eext!5f0
(0)1f0

(2) Eext

m0c2
1f0

(4)S Eext

m0c2D 2

, ~3.17!
10402
n
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f1~Eext!5f1
(0)1f1

(2) Eext

m0c2
, ~3.18!

f2~Eext!5f2
(0) . ~3.19!

We find that in order to implement the matching with th
‘‘real’’ description the parameterEext should be fixed equa
to the ‘‘effective’’ non-relativistic energy, i.e.Eext[E 0

NR. In
more detail, the introduction of an energy dependence in
coefficientsf0 ,f1 ,f2 reshuffles thec22 expansion of Eq.
~3.11!, modifying the Eqs.~3.13!–~3.16! and allowing to
solve in many ways the constraint equations. The simp
solution is envisaged by requiring that the energ
dependence enters only at 2PC order in the coefficientf1. In
this case, the solution reads

f0
(0)521, f0

(2)50, f0
(4)50, ~3.20!

f1
(0)50, f1

(2)52
n

2
, f2

(0)52
3

4
n, ~3.21!

a15
n

2
, a250. ~3.22!

To summarize, we have succeeded in mapping the two-b
dynamics onto the one of a test particle of massm05m
moving in the external scalar potential:

Feff~R,Eext!52
e0

R F12
n

2 S Eext

m0c2D S a0

m0c2R
D

2
3n

4 S a0

m0c2R
D 2G , ~3.23!

where Eext[E 0
NR. We have found that the matching

implemented relating the ‘‘real’’ and ‘‘effective’’ energy
levels by the formula

E 0
NR

m0c2
5

E NR

mc2 F11
n

2

E NR

mc2G , ~3.24!

which, as noticed in@1#, gives the following relation between
the real total relativistic energyE and the effective relativistic
energyE0:

E0

m0c2
[

E 22m1
2c42m2

2c4

2m1m2c4
. ~3.25!

The above equation has a rather interesting property. In
limit m1!m2 the effective energy of the effective partic
equals the energy of the particle 1 in the rest frame of p
ticle 2 ~and reciprocally ifm2!m1). Moreover, the result
~3.25! coincides with the one derived in Ref.@2# in the con-
text of quantum electrodynamics. We find quite remarka
that our way of relating the ‘‘real’’ and ‘‘effective’’ energy-
levels agrees with the one introduced in@2#. Nevertheless,
we consider the dependence on the energy of the effec
2-6
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scalar potential, Eq.~3.23!, quite unsatisfactory, though en
visaged by Todorovet al. @3# in the quasi-potential approach
Indeed, in our context the presence of an external param
in the scalar potential obscures the nature of the mapping
complicates the possibility of incorporating radiation rea
tion effects. Certainly, this cannot be achieved straightf
wardly in the way suggested in@4# for the gravitational case

As a final remark, let us note that if we were using t
effective description introduced in the quasi-potential a
proach by Todorovet al. @3#, we should have considered
test particle with effective mass,meff , and effective energy
Eeff , given by

meff~Ereal!5
m1m2c2

Ereal
, Eeff[

E real
2 2m1

2c42m2
2c4

2Ereal
.

~3.26!

We have investigated the possibility of introducing an e
ergy dependence in the effective mass of the test particle
we found that, in this case, it is not possible to overcome
inconsistency in the matching equations that raised at 2
order. A way out could be to introduce also an energy
pendence in the effective couplingaeff , but we find this
possibility not very appealing.

B. Effective vector potential depending on the angular
momentum

We have seen in the previous section that, at 2PC leve
order to cope with an inconsistency of the constraint eq
tions, we were obliged to introduce an external paramete
the coefficients of the scalar potential. In this section
shall investigate the possibility of overcoming the above
consistency by introducing, in the ‘‘effective’’ description,
scalar potentialFeff , independent of any external paramet
and a vector potentialAeff which will depend on an externa
vector Jext. In order to implement the matching, we ha
found that it is sufficient to limit to the following form of the
vector potential@see Eq.~3.4!#:

Aeff5
e0~Jext̀ R!

m0cR3 Fa01a1

a0

m0c2R
1•••G , ~3.27!
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whereJext is supposed to be perpendicular to the plane
motion.3 In the Hamilton-Jacobi framework, restricting tou
5p/2, we have

p5
]Seff

]R
5êR

]Seff

]R
1êw

1

R

]Seff

]w
, ~3.28!

whereêR andêw are vectors of the orthonormal basis. Due
the particular choice of the vectorJext we made, the follow-
ing equation holds:

Aeff5
e0Jextêw

m0cR2 Fa01a1

a0

m0c2R
1•••G , ~3.29!

where Jext5uJextu. Finally, using ]Seff /]w5J0 @see Eq.
~3.5!#, we get

p•Aeff5
e0JextJ0

m0cR3 Fa01a1

a0

m0c2R
1•••G ,

Aeff
2 5

e0
2Jext

2 a0
2

m0
2c2R4

1•••. ~3.30!

Note the crucial fact that, with the very special choice of t
vector potential we made,p•Aeff does not depend onpR .
Plugging the above expressions in the Hamilton-Jacobi eq
tion, Eq. ~3.2!, with Heff5E 0

NR1m0
2c2 we obtain

dSR
0

dR
52m0E 0

NR22m0e0Feff2
J 0

2

R2
1

~E 0
NR!2

c2
1

e0
2Feff

2

c2

2
2e0E 0

NRFeff

c2
1

2J0Jext

R2 Fa0

a0

m0c2R
1a1S a0

m0c2R
D 2G

2
Jext

2

R2
a0

2S a0

m0c2R
D 2

, ~3.31!

whereFeff is given by Eq.~3.3!. Evaluating the radial action
variable@see Eq.~3.6!# we finally get
I R
eff~E 0

NR,J0 ,Jext!5
a0m0

1/2

A22E 0
NRF2f02

3f0

4

E 0
NR

m0c2
1

5f0

32 S E 0
NR

m0c2D 2G2J01
a0

2

J 0c2 Ff0
2

2
2f0f12f0a0

Jext

J0

1
E 0

NR

m0c2 S 2f0f12f0a0

Jext

J0
1a1

Jext

J0
1a0

2
Jext

2

J 0
2 D G1

1

8

a0
4

J 0
3c4 Ff0

4212f0
3f118f0

2f2

14f0
2f1

2124f0
2f1a0

Jext

J0
212f0

3a0

Jext

J0
112f0

2a1

Jext

J0
124f0

2a0
2

Jext
2

J 0
2G . ~3.32!

3Note that, with this choice of the vector potential the magnetic field will be perpendicular to the plane of motion.
2-7
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Let us impose that the above equation coincides with
analogous expression for the ‘‘real’’ description, given
Eq. ~2.29!. Assumingm05m and using Eqs.~3.8!,~3.9! we
derive the new constraint equations to be satisfied. At 0
order we still have2f0a05a, and we posef0521, while
at 1PC level we get

2f0a0~2a123!5a~n23!,

a0
2S f0

222f0f122f0a0

Jext

J0
D5a2. ~3.33!

The first equation in Eq.~3.33! gives a15n/2, while the
second one is automatically satisfied if we make the ra
natural requirement that either the Coulomb potential d
not have any correction at 1PC order (f150) or the vector
potential enters only at the next Coulombian order (a050).
Finally, the 2PC order constraints read

2f0a0~5212a1212a1
2116a2!5a~526n23n2!,

~3.34!

a0
4S f0

414f0
2f1

2212f0
3f118f0

2f2124f0
2f1a0

Jext

J0

212f0
3a0

Jext

J0
124f0

2a0
2
Jext

2

J 0
2

112f0
2a1

Jext

J0
D

5a4~126n!, ~3.35!

a0
2S f0f11f0a0

Jext

J0
2a1

Jext

J0
2a0

2
Jext

2

J 0
2 D 5n

a2

2
.

~3.36!

Plugging the results obtained at 0PC and 1PC order in E
~3.34!–~3.36! and assuming that the external vectorJext co-
incides with the constant of motionJ0, we end up with the
unique, rather simple solution:

f250, a152
n

2
, a250. ~3.37!

In conclusion, in this section we have obtained that at 2
order it is possible to reduce the two-charge dynamics to
one of a test particle moving in an effective electromagne
field described by a Coulomb potentialFeff(R)52e0 /R and
a vector potential dependent on the external vectorJext
([J0):

Aeff~R,Jext!52
n

2

e0a0

m0
2c3

~Jext̀ R!

R4
. ~3.38!

Moreover, quite remarkably, we have found, under rat
natural assumptions, that the one-to-one mapping betw
the ‘‘real’’ and the ‘‘effective’’ energy-levels is still given by
the formula~3.25!. However, as already discussed at the e
10402
e
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s
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of the previous section, the fact that the electromagnetic fi
still has to depend on external parameters is not very de
able. In the next section we shall investigate a feasible w
out.

C. Effective metric

So far we have seen that in order to succeed in reduc
the two-body dynamics onto a one-body description we w
obliged to introduce external parameters, which have b
identified either with the energy or the angular momentum
the test particlem0. This result is not very appealing, esp
cially when we want to incorporate radiation reaction effec
A possible way out would be to relax the hypothesis that
the one-body description the test particle move in a
spacetime. The effective spacetime metric should be view
as an effective way of describing the global exchange
energy between the two charged particles in the ‘‘real’’ d
scription.

The most general spherical symmetric metric written
Schwarzschild gauge has the form

dseff
2 52A~R!c2dt21B~R!dR21R2~du21sinu2dw2!,

~3.39!

where the coefficientsA(R) and B(R) are given as an ex
pansion in the dimensionless parametera0 /(m0c2R), that is

A~R!511A1

a0

m0c2R
1A2S a0

m0c2R
D 2

1A3S a0

m0c2R
D 3

1•••, ~3.40!

B~R!511B1

a0

m0c2R
1B2S a0

m0c2R
D 2

1•••. ~3.41!

The reduction, from the two-body problem to the one-bo
one, can simply be implemented assuming that in the ‘‘
fective’’ description only the scalar potentialFeff is different
from zero. In this case the derivative of the Hamilto
principal-function reads

dSR
0

dR
5

B~R!

c2A~R!
~E01m0c22e0Feff!

2

2
B~R!

R2
J 0

22B~R!m0
2c2, ~3.42!

and for the radial action variable we derive

I R
eff~E 0

NR,J0!5
a0m0

1/2

A22E 0
NRFA1B

E 0
NR

m0c2
1CS E 0

NR

m0c2D 2G
2J01

a0
2

J 0c2 FD1E
E 0

NR

m0c2G1
a0

4

J 0
3c4

F, ~3.43!

where the various coefficients can be written explicitly as
2-8
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A52f02
1

2
A1 , ~3.44!

B52
3

4
f01S B12

7

8
A1D , ~3.45!

C5
5

32
f01S B1

4
2

19

64
A1D , ~3.46!

D5f0S 2f12
B1

2
1A1D1

1

2
f0

22
1

4
A1B11

A1
2

2
2

A2

2
, ~3.47!

E5f0S 2f11A12
B1

2 D1A1
22A22

1

2
A1B12

B1
2

8
1

B2

2
, ~3.48!

F5
1

64
~24A1

4248A1
2A218A2

2116A1A328A1
3B118A1A2B12A1

2B1
214A1

2B2!1
f0

16
~216f1A1

2124A1
318f2A118f1A2

232A1A218A314f1A1B128A1
2B114A2B12A1B1

214A1B2!1
f0

3

4
~26f114A12B1!1

f0
4

8
1

f0
2

16
~8f1

2240f1A1

132A1
2116f2220A218f1B1210A1B12B1

214B2!. ~3.49!
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The above expressions coincide with the ones obtaine
pure general relativity@1#, once the limitf0→0 is consid-
ered anda0 is identified with the analogous quantity in th
gravitational case, i.e. withGm1m2 (G is the Newton con-
stant!. Let us now equate the ‘‘real,’’ Eq.~2.29! and the
‘‘effective,’’ Eq. ~3.43!, radial action variables, assumin
that the following relations hold:J05J, m05m and Eq.
~3.9!. At 0PC order we get the constrainta0(2f02A1/2)
5a which can be naturally fulfilled imposing thatA150
and posingf0521, as above. At 1PC level we derive

22f0a0~2a123!1a0~7A128B122A1a1!52a~n23!,
~3.50!

2a0
2
„f0

21f0~2A12B122f1!…1a0
2~2A1

222A22A1B1!

52a2. ~3.51!

If we demand that at this order the scalar potential and
effective metric do not differ from the Coulomb potenti
and the flat spacetime metric, respectively, i.e. we posef1
50,A250,B150, we find that Eq.~3.50! gives a15n/2
while Eq. ~3.51! is automatically satisfied. Inserting thes
values in the constraint equations at 2PC order and impo
that there are no corrections to the Coulomb potential at
order (f250) we obtain the unique simple solution:

a250, A35n, B252n. ~3.52!

Hence, we have found that with the introduction of an effe
tive metric we are not obliged to introduce in the electrom
netic field any dependence on external parameters, ne
the energy nor the angular momentum. Moreover, up to 2
10402
in
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order we find that there is no need of modifying the Coulom
scalar potential, i.e.Feff(R)52e0 /R and the ‘‘energy-
levels’’ of the real and ‘‘effective’’ description are still re
lated by Eq.~3.25!. Finally, the external spacetime metric
simply given by

A~R!511nS a0

m0c2R
D 3

, B~R!512nS a0

m0c2R
D 2

.

~3.53!

IV. CONCLUSIONS

In this paper we have analyzed the application of a n
approach to studying the relativistic dynamics of the bou
states of two classical charged particles, with compara
masses, interacting electromagnetically. The key idea, or
nally introduced investigating the two-body problem in ge
eral relativity @1#, has been to map the ‘‘real’’ two-body
problem onto the one of a test particle moving in an exter
electromagnetic field.

We have found that the matching can be implemen
imposing the following rather natural ‘‘rules’’:~i! the adia-
batic invariantsN andJ in the two descriptions have to b
identified;~ii ! the reduced mass of the ‘‘real’’ system,m, has
to coincide with the mass of the effective particle,m0, and
~iii ! the energy axis between the two problems has to
transformed. Let us note immediately that, a bottom-line
our results has been that, in all the three cases consid
~see Secs. III A, III B and III C!, we have found quite natu
rally that the energy axis, between the two descriptions,
to change in such a way that the effective energy of
effective particle coincides with the energy of the particle
2-9
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in the rest frame of particle 2 in the limitm1!m2 ~and vice
versa! @see Eq.~3.25!#.

Nevertheless, contrary to the results obtained in gene
relativity @1#, the requirements~i!, ~ii ! and ~iii ! envisaged
above, do not fix uniquely the external electromagnetic fie
with which the effective test particlem0 interacts. In fact, we
have found that, in order to overcome an inconsistency in
constraint equations which define the matching, we had
introduce an external parameter either in the scalar poten
Eq. ~3.23!, or in the vector potential, Eq.~3.38!. These pa-
rameters have to be identified with the non-relativistic e
ergy and the angular momentum of the effective test part
m0, respectively. As pointed out above and in Ref.@1#, the
dependence of the effective electromagnetic field on so
external parameter makes the mapping between the two
scriptions quite awkward and complicates the inclusion
radiation reaction effects. A possible solution of this issue
to relax the hypothesis that the test particle moves in a
spacetime. Indeed, in this case we have found that the
ditions ~i!, ~ii ! and~iii ! fix rather naturally the external scala
potential and the effective metric. They provide, up to 2
order, an effective Coulomb potential and a rather sim
n-deformed flat metric@see Eq.~3.53!#.

Once the matching has been successfully defined, to h
T.

s
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a complete knowledge of the ‘‘real’’ dynamics through th
auxiliary ‘‘effective’’ one, we can construct, like in@1#, the
canonical transformation which relates the variables of
relative motion in the ‘‘real’’ description, to the coordinate
and momenta of the test particle in the ‘‘effective’’ problem
However, this calculation goes beyond the scope of
present paper.

Finally, a last remark. In Sec. III B we have introduced
vector potential in the effective description in such a w
that the source of the magnetic field is the angular mom
tum of the system. This study suggests the investigation
the general relativity context@1#, of relaxing the hypothesis
of mapping the ‘‘real’’ two-body dynamics onto the one of
test particle moving in a deformed Schwarzschild spaceti
Indeed, it could well be possible to match the two proble
appealing to an effective deformed Kerr spacetime.
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