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Transition from inspiral to plunge in binary black hole coalescences
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Combining recent techniques giving nonperturbative resummed estimates of the damping and conservative
parts of the two-body dynamics, we describe the transition between the adiabatic phase and the plunge, in
coalescing binary black holes with comparable masses moving on quasicircular orbits. We give initial dynami-
cal data for numerical relativity investigations, with a fraction of an orbit left, and provide, for data analysis
purposes, an estimate of the gravitational waveform emitted throughout the inspiral, plunge and coalescence
phases.

PACS number~s!: 04.30.2w, 04.25.Nx
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I. INTRODUCTION

The most promising candidate sources for ground ba
interferometric gravitational-wave~GW! detectors such a
the Laser-Interferometric Gravitational Wave Observat
~LIGO! and VIRGO are binary systems made of mass
~stellar! black holes@1–4#. Such binary black holes@with
individual masses in the range, say, (3 –15)M (# pose special
problems@3,5#.

Let us recall that gravitational radiation damping is ef
cient at circularizing such binary systems, and then driv
for a long time, a slow inspiraling quasi-circular motion
the binary system. This quasi-circular ‘‘adiabatic inspi
phase’’ is expected to terminate abruptly, and to change
some type of ‘‘plunge phase’’~leading to final coalescence!
when the binary orbit shrinks down to the last stable~circu-
lar! orbit ~LSO! defined by the conservative part of the no
linear relativistic force law between two bodies.~In the test-
mass limit, the full nonlinear relativistic force law
corresponds to geodesic motion in a Schwarzschild sp
time, and exhibits, as is well known, an LSO located atR
56GM. One expects that a comparable-mass system
still exhibit such an LSO; see below.! Now, the signal to
noise ratio~in an initial LIGO detector! for inspiral signals
from comparable-mass black hole binaries reaches amaxi-
mumfor M.28M ( , which corresponds to a GW frequenc
for the waves emitted at the LSO equal tof GW

LSO.170 Hz, a
value which is~not accidentally! very close to the location
f det.167 Hz~for initial LIGO! of the minimum of the char-
acteristic detector noise amplitudehn( f )[Af Sn( f ) ~see Fig.
1 of @5#!. Therefore the first detections will probably conce
massive systems withM;30M ( . Moreover, Ref.@5# has
shown that when the total massM[m11m2 lies in the range
(5 –40)M ( the proximity ~within a factor of;2) between
the observationally most important frequencies1 f det and the

1We neglect here the very small difference between the opti
frequencyf det for generic broad-band bursts, and the optimal f
quencyf p for inspiral signals~see@5#!.
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GW frequency at the LSO,f GW
LSO, calls both for an especially

careful treatment of the Fourier transform of the emitt
waveform and for an improved knowledge of the transiti
between the inspiral phase and the plunge phase.

The present paper will attempt to improve our knowled
of the transition between inspiral and plunge by combin
two, recently proposed,non-perturbativetechniques: Refs.
@6# and@7#. Let us first recall that, a few years ago, Will an
co-workers@8,9# tried to attack the problem of the late-tim
evolution of compact binaries~including the transition from
inspiral to plunge! by a direct use of the Damour-Deruel
@10–12# equations of motion. These equations of motion a
given in the form of aperturbativeexpansion in powers of a
small parameter«5v/c @‘‘post-Newtonian,’’ ~PN! expan-
sion#. In Ref. @8# a direct integration of these perturbativ
equations of motion~using the method of osculating ele
ments! was used, while in Ref.@9# it was proposed to im-
prove the straightforward perturbative approach by us
‘‘hybrid’’ equations of motion. The ‘‘hybrid’’ approach is a
partial re-summation approach in which the perturbati
terms in the equations of motion which survive in the te
mass limit @n[m1m2 /(m11m2)2→0# are replaced by the
known, exact ‘‘Schwarzschild terms,’’ while th
n-dependent terms are left as a perturbative expansion. B
the robustness@13,14# and the consistency@6# of the hybrid
approach of@9# have been questioned.@In particular, it was
pointed out in Ref.@6# that, in this approach, the supposed
small ‘‘n corrections’’ represent, in several cases, a v
large ~larger than 100%! modification of the corresponding
n-independent terms.# Another sign of the unreliability of the
hybrid approach is the fact that the recent study@15,16# of
the location of the LSO at the third post-Newtonian~3PN!
accuracy has qualitatively confirmed the 2PN-level results
the non-perturbative techniques to be discussed be
~namely that the LSO is ‘‘lower than 6GM’’ !, thereby cast-
ing doubt on the most striking prediction of the hybrid a
proach~an LSO ‘‘higher than 6GM, ’’ i.e. with a lower or-
bital frequency!.

In contrast with the perturbative approach of@8# and the
partially re-summed approach of@9#, the present paper wil
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rely on the systematic use of non-perturbative re-summa
techniques. The basic philosophy underlying our approac
the following. We are interested in understanding, in qua
tative detail, the combined influence on the inspiral→
plunge transition of radiation reaction and of non-linear
fects in the force law forcomparable-massbinary systems
@i.e. for systems for whichn[m1m2 /(m11m2)2 is around2

1/4#.
At present there exists no method for deriving, from fi

principles, non-perturbative expressions for the two-bo
equations of motion, especially in the case of interest wh
4n is nota small parameter. As a substitute we shall comb
two different re-summation techniques that have been
cently introduced to deal with two separate aspects of
problem we wish to tackle.

The first re-summation technique, introduced in@6#, al-
lows one to get a non-perturbative,n-dependent, estimate o
the rate of loss of angular momentum~under gravitational
damping! in quasi-circular, comparable-mass binaries. T
idea of @6# is three pronged:~i! to work with an invariant
function of an invariant argument,F(v), ~ii ! to inject some
plausible information about the meromorphic structure
this function, and, finally,~iii ! to use Pade´ approximants to
estimateF(v) from the first few known terms in the pertu
bative ~PN! expansion ofF(v). The second re-summatio
technique, introduced in@7#, allows one to derive a non
perturbative,n-dependent, estimate of the~conservative part
of the! nonlinear force law determining the motion of com
parable binaries. The idea of@7# is to map the real two-body
problem on a simpler effective one-body problem, i.e. on
problem of the motion of a particle of massm[m1m2 /(m1

1m2) in some ‘‘effective’’ background metricgmn
eff (xl). The

possibility ~and uniqueness, given some natural requireme!
of such a mapping, real→ effective, was proved at the 2PN
level in @7#. The extension of this approach at the 3PN le
has been recently discussed@15,16# on the basis of the 3PN
dynamics recently derived by Jaranowski and Scha¨fer @17#.
At the 2PN level then-dependent terms in the effective me
ric were found to be numerically so small~around the LSO!
that the need for a further~Padé-type! re-summing of the
effective metric coefficients did not arise.@However, note
that Ref.@16# has introduced, at 2PN and 3PN, the furth
idea of a specific, Pade´ improvement ofgmn

eff (xl).# In this
paper we shall show how one can combine the method
@6# and @7# to derive a full force law~including radiation
reaction! describing the quasi-circular motion o
comparable-mass binaries. Our approach is intended to a
to any value ofn, but is restricted to consideringquasi-

circular motions, where the radial velocityṘ is much
smaller than the circular oneRẇ. As we shall see, we sha
consistently check that the conditionṘ!Rẇ holds true not
only during the adiabatic inspiral, but also during the tran

2Note that becausen, considered as a function of the rat
m1 /m2, reaches itsmaximumnmax51/4 for m1 /m251, it stays
numerically near 1/4 even for mass ratios quite different from
e.g., even form1 /m253, 4n50.75.
06401
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tion to the plunge, and even during most of the plunge.
We apply our method, in this paper, to deriving two so

of results which are of direct interest to the ongoing effort
detect gravitational waves. First, we shall give initial d
namical data~i.e. initial positions and momenta! for binary
black holes that have just started their plunge motion. T
idea here is that numerical relativity will probably not b
able, before quite a few years, to accurately evolve bin
systems over many~or even;10) orbits. This is why we
propose a method for computing accurate initial dynami
data at a moment so late in the evolution that there rem
~when 4n;1) less than one orbit to evolve.~In the equal-
mass case,n51/4, we shall compute data.0.6 orbit before
‘‘coalescence.’’! Our contention~whose robustness we sha
try to establish! is that suitably re-summed versions ofana-
lytic ~PN! results allow one to push the evolution that fa
~We shall use here 2.5PN-accurate information for angu
momentum loss and 2PN-accurate information for the c
servative force law. However, as shown in@6# and @15,16#
our method can be pushed to higher accuracy when the
respondingly needed PN results become unambiguo
known.! Note that this attitude is opposite to the one taken
@3# in which it was assumed that ‘‘there is little hope, via P
Padéapproximants, to evolve’’ a binary system up to th
moment where it can provide initial data for the final coale
cence. Let us, however, immediately add that the pres
paper is still incomplete, in that we give only dynamical da
(q1 , q2 ,p1 ,p2) but we do not solve the remaining problem
constructing the initial gravitational data„gi j (x),Ki j (x)… de-
termined ~in principle! by (qa ,pa) ~given, say, some no
incoming-radiation condition!. We shall leave this~impor-
tant! issue to future work.

The second aim of this work is to provide, for data ana
sis purposes, some estimate of the complete waveform e
ted by the coalescence of two black holes~with negligible
spins!. We do not claim that this part of the work will be a
accurate as the first one. The idea here is to provide a~hope-
fully ;10% accurate! guess of the complete waveform, wit
its transition from an inspiral phase to a plunge one, follow
by a coalescence ending in a stationary final state. In view
the recent realization@5# of the crucial importance of the
details of the transition to the plunge for the construction
faithful GW templates~for massive binaries with 5M (&M
&40M () even an approximate knowledge of the comple
waveform will be a valuable information for data analys
~e.g. to test the accuracy of present templates and/or to
pose more accurate or, at least, more robust, templates!.

While preparing this work for publication, we learned
the existence of an independent work of Ori and Thorne@18#
which deals with the transition between the inspiral and
plunge in the test mass limit (n→0).

II. CONSERVATIVE PART
OF THE TWO-BODY FORCE LAW

In this section, we recall the non-perturbative construct
of the ~conservative! two-body force law given in Ref.@7#.
There it was shown that the conservative part~i.e. without
radiation damping! of the dynamics of a binary system, rep
:
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TRANSITION FROM INSPIRAL TO PLUNGE IN . . . PHYSICAL REVIEW D62 064015
resented in Arnowitt-Deser-Misner~ADM ! phase-space co
ordinates (q1

ADM ,q2
ADM ,p1

ADM ,p2
ADM), could be mapped~at

the 2PN level!, via the combination of an energy map,Eeff

5 f (Ereal), and a canonical transformation, (qa
ADM ,pa

ADM)
→(qa ,pa), a51,2, into the simpler dynamics of the geod
sic motion of a particle of massm5m1m2 /(m11m2) in
some effective background geometrygmn

eff (x):

dseff
2 5gmn

eff ~xl!dxmdxn52A~R!c2dt21B~R!dR2

1C~R!R2~du21sin2udw2!. ~2.1!

~See@16# for the generalization of this approach to the 3P
level.! Here the coordinates (R,u,w) are polar coordinates in
the effectiveproblem~describing the relative motion!. They
are related in the standard way (Qx5Rsinu cosw, Qy

5R sinu sinw, Qz5Rcosu) to the ~relative! effective Carte-
sian coordinatesQ5q12q2, whereq1 andq2 are the effec-
tive coordinates of each body. One works in the center
mass frame of the binary system, i.e.p11p2505p1

ADM

1p2
ADM . The canonical conjugate of the relative positionQ

is the relative momentumP5p152p2. In most of this paper
we shall work with the effective phase-space coordina
(Q,P) @or rather with scaled versions of their polar3 counter-
parts (R,u,w;PR ,Pu ,Pw)#. We shall only discuss at the en
how to construct the more physically relevant ADM pha
space coordinates (qa

ADM ,pa
ADM) from (Q,P).

In absence of damping~to be added later!, the evolution
~with respect to the real ADM time coordinatet real) of (Q,P)
is given by Hamilton’s equations

dQi

dtreal
2

]H real
improved~Q,P!

]Pi
50, ~2.2!

dPi

dtreal
1

]H real
improved~Q,P!

]Qi
50, ~2.3!

where thereal ~i.e. giving the t real evolution and the rea
two-body energy! improved ~i.e. representing a non
r-

06401
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perturbative re-summed estimate of the real PN Hamiltoni!
Hamiltonian reads

H real
improved~Q,P!5Mc2A112nS Heff~Q,P!2mc2

mc2 D
~2.4!

and

Heff~Q,P!5mc2AA~Q!F11
~n•P!2

m2c2B~Q!
1

~n3P!2

m2c2C~Q!
G .

~2.5!

Here Q[Ad i j Q
iQj5R, ni5Qi /Q is the unit vector in the

radial direction, and the scalar and vector products are
formed as in Euclidean space. Henceforth, we shall post
[t real, H[H real

improved and use the following notation:

M[m11m2 , m[
m1m2

M
, n[

m

M
[

m1m2

~m11m2!2
.

~2.6!

In polar coordinates, restricting ourselves to planar motion
the equatorial planeu5p/2 and to the Schwarzschild gaug
@C(Q)51#, we get the equations of motion

dR

dt
5

]H

]PR
~R,PR ,Pw!, ~2.7!

dw

dt
5

]H

]Pw
~R,PR ,Pw!, ~2.8!

dPR

dt
1

]H

]R
~R,PR ,Pw!50, ~2.9!

dPw

dt
50, ~2.10!

with
H~R,PR ,Pw!5Mc2A112nFAA~R!S 11
PR

2

m2c2B~R!
1

Pw
2

m2c2R2D 21G . ~2.11!
As in any~non-degenerate! Hamiltonian system, this conse
vative dynamics is equivalent to a Lagrangian dynamics

L real
improved~Q,Q̇!5PiQ̇

i2H real
improved~Q,P!, ~2.12!

3Note that we have the usual relations, such asPR5ni Pi , with
ni5Qi /R, andPw5QxPy2QyPx .
with Pi(Q̇) obtained by solvingQ̇i5]H/]Pi . The Lagrang-
ian equations of motion read

d

dt

]L real
improved

]Q̇i
2

]L real
improved

]Qi
50. ~2.13!

To simplify the notation we denoteL[L real
improved.

Finally, the 2PN-accurate metric coefficientsA(R),
B(R), Eq. ~2.1! @in the Schwarzschild gauge whereC(R)
[1#, read
5-3
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A~R!512
2GM

c2R
12nS GM

c2R
D 3

, ~2.14!

B~R![D~R!/A~R!, ~2.15!

with

D~R!5126nS GM

c2R
D 2

. ~2.16!

Note that it was recently suggested@16# ~because of the slow
convergence of the 3PN contributions! to replace the
straightforward expression~2.14! by a suitably Pade´ approxi-
mated version, namely ~at 2PN! AP2

(R)5122u(1

1nu2)21, whereu[GM/c2R. However, we have checke
that this refinement has only a very minor effect on the
sults to be discussed below.

The re-summed~conservative! dynamics defined by the
Hamiltonian ~2.11! contains a LSO which is an-deformed
version of the well-known Schwarzschild LSO. Let us rec
that the radius of the LSO is obtained by imposing the ex
tence of an inflection point in the effective potenti
H(R,PR50,J) for the radial motion:

]H

]R
~R,PR50,J!505

]2H

]R2
~R,PR50,J!, ~2.17!

where the total angular momentumJ[Pw stays fixed. Equa-
tion ~2.17! has a solution inR ~for each value ofn) only for
some specific value ofJ5J LSO(n). In terms of the rescaled
variables r[c2R/GM, j [cJ/(mGM), v̂[GMẇ/c3, the
LSO quantities defined, in the equal-mass casen51/4, by
the Hamiltonian~2.11!, take the following values@7#:

r LSO~1/4!55.718, j LSO~1/4!53.404,

v̂LSO~1/4!50.07340,
Ereal

LSO~1/4!2Mc2

Mc2
520.01501.

~2.18!

Note that the comparable-mass LSO is slightly more inwa
~both in terms of the coordinateR and in the sense of havin
a higher orbital frequency! than its corresponding rescale
test-mass limit: r LSO(0)56, j LSO(0)5A1253.4641,
v̂LSO(0)5623/250.068041.

As we shall need in the following to refer to the numeric
value ofv̂LSO(n) for arbitrary values ofn, we have fitted the
result obtained by the~rather intricate! method of Ref.@7# to
a simple polynomial inn. We find

v̂LSO~n!.v0@11v1~4n!1v2~4n!2#, ~2.19!

v050.0680414, v150.0693305, v250.00935142.
~2.20!
06401
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III. INCORPORATING RADIATION REACTION EFFECTS

We wish to augment the conservative dynamics descri
in the previous section by adding, as accurately as poss
radiation reaction effects. If we were doing it in the Lagran
ian formalism we would write~in any coordinate system!

d

dt

]L

]Q̇i
2

]L

]Qi
5F i

Lag~Q,Q̇!. ~3.1!

This would define the additional damping forceF i
Lag(Q,Q̇)

needed in the Lagrangian formalism. In particular, in po
coordinates we would write~for planar motionu5p/2)

d

dt

]L

]Ṙ
2

]L

]R
5F R

Lag~R,w,Ṙ,ẇ !, ~3.2!

d

dt

]L

]ẇ
5F w

Lag~R,w,Ṙ,ẇ !. ~3.3!

We want to work in the Hamiltonian framework, hence com
ing back to the coordinatesR, PR , w and Pw and imposing
the constraint that the usual definitionPi5]L/]Q̇i hold
without corrections@which implies that the other usual rela
tions Q̇i5]H/]Pi , ]H/]Qi52]L/]Qi and Eq.~2.12! hold
too# we get

dR

dt
2

]H

]PR
~R,PR ,Pw!50, ~3.4!

dw

dt
2

]H

]Pw
~R,PR ,Pw!50, ~3.5!

dPR

dt
1

]H

]R
~R,PR ,Pw!5F R

Ham~R,w,PR ,Pw!, ~3.6!

dPw

dt
5F w

Ham~R,w,PR ,Pw!, ~3.7!

where the Hamiltonian damping forceF i
Ham(Qj ,Pj ) is nu-

merically equal to the Lagrangian one:F i
Ham(Qj ,Pj )

5F i
Lag(Qj ,Q̇j5]H/]Pj ) .

A. What do we know about the radiation reaction force?

The radiation reaction forceF was computed explicitly, at
lowest ~Newtonian! fractional order, in harmonic Cartesian
like coordinates, as part of the complete 2.5PN equation
motion, by Damour and Deruelle@10–12#. An equivalent
result was also derived within the ADM canonical formalis
by Schäfer @19–21#. At higher post-Newtonian orders on
has only an incomplete knowledge of the equations of m
tion, and one has to rely on the~assumed! balance between
energy and angular momentum losses in the system an
infinity @22,23#. To get an idea of the generic structure of t
radiation damping~in various coordinate systems and at va
5-4
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ous PN approximations! let us consider the general radiatio
reaction force written~at 1PN fractional accuracy and settin
G51) by Iyer and Will @22#:

F i
Lag5m@a~R,v !Ṙni1b~R,v !v i #, ~3.8!

a~R,v !5
8

5
n

M

R2

M

R
~A5/21A7/28 1••• !, ~3.9!

b~R,v !52
8

5
n

M

R2

M

R
~B5/21B7/28 1••• !, ~3.10!

whereR is the relative radius andv is the velocity. Then,
using post-Newtonian expressions for the energy and the
gular momentum flux at infinity, and assuming energy a
angular momentum balance, they obtained, at lowest~New-
tonian! fractional order,

A5/253~11b̄ !v21
1

3
~2316ā29b̄ !

M

R
25b̄Ṙ2,

~3.11!

B5/25~21ā !v21~22ā !
M

R
23~11ā !Ṙ2. ~3.12!

See Ref.@22# for the expressions of the 1PN-accurate rad
tion damping termsA7/2 andB7/2 in the equations of motion
@equivalent, after some reshuffling, with the Lagrangian c
tributionsA7/28 , B7/28 in Eqs.~3.9!, ~3.10!#.

The coefficientsā and b̄ that appear in Eqs.~3.11! and
~3.12! are two arbitrary gauge parameters that cannot
fixed by the energy balance method. Iyer and Will@22#
showed that this gauge freedom is equivalent to shifting
~conservative! coordinate system by small radiative corre
tions. Let us notice that the gauge dependence is redu
when considering quasi-circular orbits. Indeed, in that c
Ṙ2.0, M /R.v2 and Eqs.~3.9!, ~3.10! become~considering
only the 5/2PN terms which are sufficient for the point w
wish to make!

acirc.
8

5
n

M

R2 S M

R D 2S 32

3
12ā D , bcirc.2

32

5
n

M

R2 S M

R D 2

.

~3.13!

Hence, in the quasi-circular case the only gauge depend
left is in the coefficienta(R,v) multiplying theradial com-
ponent of the damping force (}ni). We can use this gaug
arbitrariness to set the ratio

S a

b D
circ

.2
1

2 S 16

3
1ā D ~3.14!

to any value we like. For example, by choosingā5216/3
we can setacirc50 or by choosingā5210/3 we can set
(a1b)circ 50.

Having understood the gauge dependence of the co
cienta in Eq. ~3.8! let us come back to the general structu
06401
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~3.8! @considered at any PN accuracy, with some~unknown!
coefficientsa andb#. The polar-coordinate version~for pla-
nar motionu5p/2) of the Cartesian-like Lagrangian dam
ing force ~3.8! reads as Eqs.~3.2!, ~3.3! with

F R
Lag5F i

Lag]Qi

]R
5niF i

Lag, ~3.15!

F w
Lag5F i

Lag]Qi

]w
5QxF y

Lag2QyF x
Lag. ~3.16!

This yields

F w
Lag5mbR2ẇ, F R

Lag5m~a1b!Ṙ. ~3.17!

The important information for our present purpose is t
difference between thew component of the damping force
which contains onlyb and is, therefore, gauge independen4

and theR component which contains the gauge-depend
combinationa1b. Let us note, in particular, the expressio
of the ratio

F R
Lag

F w
Lag

5S a

b
11D Ṙ

R2ẇ
. ~3.18!

In the following we shall be interested in quasi-circular m
tions with Ṙ!Rẇ. ~We shall see that this condition remain
satisfied even during part of the plunge phase.! As we see
from Eq. ~3.18!, for such motions the radial component
the damping force will contain one power of the small d
mensionless quantityṘ/(Rẇ). But we learned above, from
the gauge dependence of the lowest-order damping fo
that we can change the definition of the radial coordinate
as to set, for instance, the quantity (a/b)11 to zero ~for
circular orbits!. This means that the right-hand side~RHS! of
Eq. ~3.18! can be arranged, in the case of quasi-circular
bits, to contain three powers of the small parameterṘ/(Rẇ).
@From Eqs.~3.11!, ~3.12! we see that for quasi-circular orbit
a1b}Ṙ2.# We have checked that the reasoning ma
above, using the lowest-order gauge dependence, can be
mally extended to all higher PN orders.

The conclusion is that there should exist a special coo
nate gauge where, for quasi-circular motions, an excel
approximation to the damping force is obtained by replac
the radial component simply by zero:

F R
Lag505F R

Ham. ~3.19!

To test, a posteriori, the robustness of the approximatio
~3.19!, we shall also consider another special gauge: nam
that where (a/b)circ50. ~As we said above, this can b
achieved at lowest order by a suitable choice ofā, and this

4The discussion above concerns only the lowest-order term inb,
but we shall see below that, to all orders, the crucial combina
bR2 can, for circular orbits, be expressed in terms of invaria
quantities.
5-5
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can be extended to higher PN orders by suitable choice
higher gauge parameters.! Finally, this means that there ex
ists another coordinate gauge where, to an excellent app
mation, the radial damping force is given as

F R
Lag5F R

Ham5
Ṙ

R2ẇ
F w

Ham. ~3.20!

The results in the two gauges are compared and discuss
the end of Sec. V.

What is important for the following is that in both gaug
~3.19! and ~3.20!, knowledge of the full damping force ca
be deduced from the sole knowledge ofFw .

B. Non-perturbative estimate of the angular momentum
reaction force along quasi-circular orbits

The analysis of the previous subsection has shown
the crucial equation in which one should accurately incor
rate radiation reaction effects is

dPw

dt
5F w

Ham~R,w,PR ,Pw!. ~3.21!

As Pw is just the total angular momentum of the binary sy
tem, Eq.~3.21! expresses the rate of loss of angular mom
tum under gravitational radiation reaction. As usual we sh
estimate the RHSFw5F w

Ham5F w
Lag ~remember thatF Ham

and F Lag differ only in the arguments in which they ar
expressed! by assuming that there is a balance between
mechanical angular momentum lost by the system and
flux of angular momentum at infinity in the form of gravita
tional waves. In the case of quasi-circular orbits of inter
here we expect that, to a good approximation,Fw will not
depend explicitly onw and will, therefore, be expressible i
terms of the orbit-averaged flux of angular momentum
Moreover, in the case of quasi-circular orbits there is
simple relation between angular momentum loss and en
loss. Indeed, the rate of energy loss along any orbit, in p
coordinates, is given by

dE
dt

5
dH

dt
5ṘFR1ẇFw , ~3.22!

and in particular along quasi-circular orbit we have@remem-
bering Eq.~3.18!#

S dH

dt D
quasi-circ

.ẇF w
circ 1O~Ṙ2!. ~3.23!

Finally, if we know some good estimate of the~averaged!
energy loss along circular orbits, say

S dH

dt D
circ

.2Fcirc~ ẇ !, ~3.24!

we can obtain a good estimate of the neededw-reactive force
06401
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F w
circ.2

Fcirc~ ẇ !

ẇ
. ~3.25!

The problem of giving a non-perturbative, re-summed e
mate of the energy loss rate~or ‘‘flux function’’ ! along cir-
cular orbits, sayFcirc , has been recently tackled by Damou
Iyer and Sathyaprakash@6#. By combining several of the
non-perturbative techniques recalled above@to work with an
invariant function F(v), to use some global information
about F(v) in the complexv plane, to use Pade´ approxi-
mants# Ref. @6# came up with the following expression fo
Fcirc , considered as a function of the gauge-invariant o
servable:

vv[~GMv/c3!1/3, v[ẇ, ~3.26!

namely,

Fcirc5FDIS~vv!5
32

5G
n2vv

10 f̂ DIS~vv ;n!

12vv /vpole~n!
. ~3.27!

Here, and in the following, we setc51 to simplify formulas.
The functionf̂ DIS(vv ;n) entering Eq.~3.27! is the ‘‘factored
flux function’’ of @6#, scaled to the Newtonian~quadrupole!
flux ~hence the caret onf DIS). It was shown in@6# that the
sequence of near-diagonal Pade´ approximants off̂ DIS(v) ex-
hibits a very good convergence~at least in then50 limit
where high-order PN expansions are known@24#! toward the
exact result~numerically known whenn50 @25#!. On this
basis, it was argued in@6# that, in the comparable-mass cas
nÞ0, our ‘‘best estimate’’ off̂ is obtained by Pade´ approxi-
mating the currently most complete post-Newtonian resu
namely the 2.5PN ones@26#. This yields a result of the form

f̂ DIS~v;n!5
1

11
c1v

11
c2v

11
c3v

11
c4v

11c5v

, ~3.28!

where the dimensionless coefficientsci depend only onn.
Theck’s are some explicit functions of the coefficientsf k of
the straightforward Taylor expansion off̂ (v). In turn, the
f k’s, being defined by the identity~whereT means ‘‘Taylor
expansion’’!

T@ f̂ ~v !#[TF S 12
v

vpole
D F̂~v !G511 f 1v1 f 2v21•••,

~3.29!

are given by

f k5Fk2Fk21 /vpole ~3.30!

in terms of the Taylor coefficients of the usual~Newton-
normalized! flux function:
5-6
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T@ F̂~v !#[TF 5G

32n2v10
F~v !G511F2v21F3v31•••.

~3.31!

~Note thatF150, but thatf 1521/vpoleÞ0.! More explic-
itly we have

F252
1247

336
2

35

12
n, F354p, ~3.32!

F452
44711

9072
1

9271

504
n1

65

18
n2,

F552S 8191

672
1

535

24
n Dp, ~3.33!

and

c152 f 1 , c25 f 12
f 2

f 1
, c35

f 1f 32 f 2
2

f 1~ f 1
22 f 2!

, ~3.34!

c452
f 1@ f 2

31 f 3
21 f 1

2f 42 f 2~2 f 1f 31 f 4!#

~ f 1
22 f 2!~ f 1f 32 f 2

2!
, ~3.35!

c552
~ f 1

22 f 2!~2 f 3
312 f 2f 3f 42 f 1f 4

22 f 2
2f 51 f 1f 3f 5!

~ f 1f 32 f 2
2!@ f 2

31 f 3
21 f 1

2f 42 f 2~2 f 1f 31 f 4!#
.

~3.36!

As is clear from these expressions, they depend on the
nition used for the quantityvpole(n) which represents a
n-dependent estimate of the location of the ‘‘pole’’ inFcirc ,
which coincides~see the discussion in@6#! with the location
of the ‘‘light ring’’ or last unstable circular orbit (Rlight ring

Schw

53GM in the n→0 limit!. Actually, as we shall use th
Padé representation only above and around the L
(RLSO

Schw56GM whenn50) the precise choice ofvpole(n) is
probably not crucial@as long as it stays near its knownn
50 limit: vpole(n50)51/A3#. In this work, we shall follow
Ref. @6# and use the pole location they obtained from Pa´
approximating their ‘‘new’’ energy functione(x), namely

vpole
DIS5

1

A3A 11
1

3
n

12
35

36
n

. ~3.37!

Then, combining Eqs.~3.25!, ~3.26! and~3.27! we define our
best estimate of thew component of the radiation reactiv
force along quasi-circular orbits as

F w
circ[2

GM

vv
3

FDIS~vv!52
32

5
mnvv

7 f̂ DIS~vv ;n!

12vv /vpole
DIS~n!

.

~3.38!

To simplify the notation we shall work in the following with
reduced quantities, that is
06401
fi-

e

r[
R

GM
, pr[

PR

m
, pw[

Pw

mGM
5

J
mGM

[ j ,

~3.39!

t̂[
t

GM
, Ĥ[

H real
improved

m
, Ĥeff[

Heff

m
.

~3.40!

Finally, the dynamics, including radiation reaction, in r
scaled coordinates, is explicitly described by the followi
system of equations@in the ‘‘canonical’’ case where Eq
~3.19! holds#:

dr

d t̂
5

]Ĥ

]pr
~r ,pr ,pw!, ~3.41!

dw

d t̂
5v̂[

]Ĥ

]pw
~r ,pr ,pw!, ~3.42!

dpr

d t̂
1

]Ĥ

]r
~r ,pr ,pw!50, ~3.43!

dpw

d t̂
5F̂w„v̂~r ,pr ,pw!…, ~3.44!

with

Ĥ5
1

n
A112nFAA~r !S 11

pr
2

B~r !
1

pw
2

r 2 D 21G ,

~3.45!

F̂w~vv[v̂1/3!5
Fw

m
52

32

5
nvv

7 f̂ DIS~vv ;n!

12vv /vpole
DIS~n!

,

~3.46!

and where in Eq.~3.45! we use the scaled versions of o
current best estimate of the effective metric coefficie
A(r ), B(r ) @see@7# and Eqs.~2.14!–~2.16! above#, that is

A~r ![12
2

r
1

2n

r 3
, B~r ![

1

A~r ! S 12
6n

r 2 D . ~3.47!

Note that the argumentvv enteringF̂w , Eq.~3.46!, is simply
defined asvv[v̂1/3, wherev̂[v(GM) is the function ofr,
pr and pw defined by Eq. ~3.42!, i.e. v̂(r ,pr ,pw)
[]Ĥ(r ,pr ,pw)/]pw .

IV. TRANSITION BETWEEN INSPIRAL AND PLUNGE

The first-order evolution system~3.41!–~3.44! defines our
proposed best estimate for completing the usually conside
‘‘adiabatic’’ inspiral evolution into a system which exhibits
smooth transition between inspiral and plunge. The res
this paper will be devoted to extracting some of the imp
tant information contained in this new evolution system. B
5-7
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ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 62 064015
fore coming to grips with such detailed information, it
useful to have a first visual impression of the physics c
tained in our system~3.41!–~3.44!. To do this we plot in the
top panel of Fig. 1 the result of a full numerical evolution
Eqs. ~3.41!–~3.44! in the equal-mass case (n51/4). We
started the evolution atr 515, w50 and used as initial val
ues forpw andpr the ones provided by the adiabatic appro
mation @see Eqs.~4.6! and ~4.13! below#. The dashed circle
in this plot indicates the radial coordinate location of t
LSO defined by the conservative part of the dynamics, i.e
the HamiltonianĤ(r ,pr ,pw). More precisely this ‘‘r -LSO’’
is simply defined~for any n) by r 5r LSO(n), wherer LSO(n)

is the solution of Eq.~2.17!. In particular,r LSO( 1
4 )55.718,

as recalled in Eq.~2.18!. Note that, in the presence of radi
tion reaction effects, there is an arbitrariness in what o
would like to mean by saying that ‘‘the system is crossi
the LSO.’’ Indeed, we could define the ‘‘LSO crossing’’ i
several inequivalent ways, notably,~i! r-LSO: the time when
r 5r LSO(n); ~ii ! j-LSO: the time whenpw[ j 5 j LSO(n); ~iii !
v-LSO: the time whendw/d t̂[v̂5v̂LSO(n). @The ‘‘LSO’’

FIG. 1. In the top panel we show the inspiraling circular~rela-
tive! orbit for n51/4. The location of ther-LSO, defined by the
conservative part of the dynamics, is also indicated. In the bot
panel we compare the two kinetic contributions that enter
Hamiltonian: the ‘‘radial’’ and the ‘‘azimuthal’’ one. The figure
shows that the assumption we made of quasi-circularity,
pr

2/B(r )!pw
2/r 2, is well satisfied throughout the transition from th

adiabatic phase to the plunge.
06401
-

y

e

functions ofn being defined by solving Eq.~2.17!; see Eq.
~2.18!.# This arbitrariness is not a problem. Our new evo
tion system ~3.41!–~3.44! describes a smooth transitio
‘‘through’’ the formally defined ‘‘old’’ LSO, and does not
care about old definitions. In other words, whenn is finite,
and especially whenn.1/4 ~which, one should remember, i
expected to be anaccumulation pointof observed values o
n; see footnote 2 above!, the smooth transition process blu
the notion of LSO. It is only forn!1 ~see below! that one
recovers a sharp transition near theH-defined LSO. In the
bottom panel of Fig. 1 we compare the two kinetic contrib
tions to the Hamiltonian~3.45!: the ‘‘azimuthal’’ contribu-
tion pw

2/r 2 and the ‘‘radial’’ contributionpr
2/B(r ). One sees

in this figure that our basic assumption of quasi-circular
@which, at the level ofĤ, meanspr

2/B(r )!pw
2/r 2# is well

satisfied throughout the transition. In fact, even down tor
.3.79 one haspr

2/B(r ),0.1pw
2/r 2. The radial kinetic en-

ergy would become equal to the azimuthal one only bel
r 53. We shall, anyway, not use, in the following, our sy
tem below the~usual! ‘‘light ring’’ r .3 ~where pr

2/B(r )
.0.30pw

2/r 2).
We exhibit more quantitative results on the transition b

tween the inspiral and the plunge in Figs. 2 and 3. Th
figures plot the values of several physical quantities~energy,
angular momentum, radial velocity and radial coordina!
computed at thev-LSO @i.e. whenv5vLSO(n)# after inte-
gration of the system~3.41!–~3.44!. The energy which is
plotted is the reduced non-relativistic real energy, i.e. (Ereal
2M )/m. ~In the test-mass limit, this reduced energy equ
A8/921520.057191.!

Having obtained, through Figs. 2 and 3, a first impress
of the physics of the inspiral→ plunge transition, we shal
now study in more detail this transition, notably by compa
ing it with various analytical approximations. The first a
proximation we shall consider is the current standard o
used for dealing with the inspiral phase: the adiabatic
proximation.

A. Comparison with the adiabatic approximation

Let us compare the exact numerical evolution with t
usual adiabatic approximation to inspiral motion. This a
proximation is defined by saying that the~effective! body
follows an adiabatic sequence of exact circular orbits wh
energy is slowly drained out by gravitational radiation. It
obtained from Eqs.~3.41!, ~3.44!, by neglectingpr

2 , i.e. by

setting pr50. Noticing that ]Ĥ/]pr52pr]Ĥ/]pr
2}pr we

get thatdr/d t̂ vanishes linearly withpr . The first equation
~3.41! is then formally satisfied withpr505 ṙ . Imposing
now pr50 in Eqs.~3.42! and ~3.43! we obtain two further
equations:

]Ĥ0

]r
~r ,pw!50, ~4.1!

v̂5
]Ĥ0

]pw
~r ,pw!, ~4.2!

m
e

.

5-8
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where we define

Ĥ0~r ,pw![Ĥ~r ,pr50,pw!

5
1

n
A112nFAA~r !S 11

pw
2

r 2 D 21G .

~4.3!

Equation~4.1! provides a link betweenr and pw[ j in the
adiabatic limit. From the structure~3.45! of Ĥ, it is easily
seen that Eq.~4.1! is equivalent to looking for the minimum
say ~for convenience! in the variableu[1/r , of the ‘‘radial
potential’’

FIG. 2. Variation withn of the v-LSO values of the real re
duced non-relativistic energyEreal

NR/m5(Ereal2M )/m ~on the top!,
and of the real angular momentumj 5Pw /(mGM) ~on the bottom!,
computed integrating the full dynamics, i.e. with radiation react
effects included.
06401
Wj~u!5A~u!@11 j 2u2#. ~4.4!

Solving ]uWj (u)50 gives a parametric representation ofj 2

in terms ofu:

j adiab
2 ~u!52

A8~u!

„u2A~u!…8
, ~4.5!

where the prime denotesd/du. In the case where the func
tion A is given by Eq.~3.47!, i.e. A(u)5122u12nu3, Eq.
~4.5! yields, in term of the orignal~reduced! radial variable
r 51/u,

j adiab
2 ~r !5

r 2~r 223n!

r 323r 215n
. ~4.6!

FIG. 3. v-LSO values of the radial velocity~on the top! and of
the radial position~on the bottom! versusn, derived integrating the
full dynamical evolution.
5-9
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ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 62 064015
Note that there exist real circular orbits~though possibly un-
stable ones! as long asj adiab

2 (r ).0, i.e. as long asr 323r 2

15n.0. In fact the positive, real solution inr of

@r 323r 215n# light ring50 ~4.7!

defines the light ring or last unstable circular orbit@with
j 2(r light ring)51`#. We find r light ring.2.84563 in the case
n51/4. Equation~4.2! then gives the parametric represen
tion of v̂5v(GM) throughout the adiabatic phase for circ
lar orbits:

v̂adiab~r !5
1

r 3/2

A123n/r 2

A112n@Az~r !21#

, ~4.8!

wherez(r ) denotes the following quantity:

z~r ![Ĥeff
2 ~r ,pr50,pw5 j adiab!5

r 3A2~r !

r 323r 215n
. ~4.9!

Note that the effective one-body description seems to
come somewhat unsatisfactory at the light ring~at least for
exactly circular orbits!. Indeed, we see from Eqs.~4.8! and
~4.9! that the blowup ofz(r ), i.e. of the effective energy, a
the light ring, Eq. ~4.7!, implies that the real orbital fre
quency of circular orbits,v̂circ(r ), Eq. ~4.8!, tends to zero at
the light ring. This is probably an unphysical behavior@from
the test-mass limit, one expects the orbital frequency to h
a non-zero limit at the light ring; see, e.g., Ref.@6# where
Padéapproximants are used to compute a finite value
v̂ light ring(n)#. The other factors in Eq.~4.8! imply, as ex-
pected, a regularincreaseof v̂(r ) as r decreases below th
LSO. Pending the construction of an improved version of
effective one-body approach which would be better behav
we have decided, when dealing with the evolution of t
system~3.41!–~3.44!, to stop the simulation at the light ring
@In our simulations of plunging orbits the effective ener
stays bounded, but the orbital frequencyv̂( t̂ ) levels off very
close to the light ring.#

Finally Eq. ~3.44! becomes, in the adiabatic limit,

d j

d t̂
5F̂wS ]Ĥ0

]pw
~r , j ! D . ~4.10!

Then usingd j /d t̂5(d j /dr)(dr/d t̂) and dw5v̂d t̂ we can
solve the motion in the adiabatic limit by quadratures:

d t̂adiab5S d jadiab

dr D dr

F̂w„v̂adiab~r !…
, ~4.11!

dwadiab5S d jadiab

dr D v̂adiab~r !

F̂w„v̂adiab~r !…
dr. ~4.12!

The radial velocityv r[dr/d t̂, as a function of the paramete
r, in the adiabatic limit, is given by
06401
-

e-

ve

f

e
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e

v r
adiab5

F̂w„v̂adiab~r !…

d jadiab /dr
. ~4.13!

Note thatv r
adiab formally tends to2` when r→r LSO @in-

deed, j adiab(r ) reaches, by definition, a minimum atr
5r LSO#. This shows that the adiabatic approximation
meaningful only during the inspiral phase~i.e. ‘‘above’’ the
LSO!. In Figs. 4 and 5 we compare, forn51/4, the number
of gravitational cycles, defined byNGW5wGW/(2p)
5w/p, the orbital angular frequencyv @or, equivalently, the
gravitational wave frequency,f GW5vGW/(2p)5v/p#, and
the radial velocity, computed with the exact equations
motion and in the adiabatic limit, as well as the gravitation
waveform. These figures show that, in the equal-mass c
n51/4, the adiabatic approximation starts to significan
deviate from the exact evolution quite before one reaches
LSO. Figure 4 is normalized so thatNGW

adiab andNGW
exact coin-

cide for large values ofR/GM, and thatNGW
adiabbe zero at the

r-LSO. For instance, we find that the number of GW cyc
given by the adiabatic approximation differs from the exa

FIG. 4. We compare the number of gravitational cycles~on the
top! and the radial velocity~on the bottom!, computed with the
exact evolution and within the adiabatic approximation, vers
R/GM.
5-10



s
se

re

n

ve-

on

s

om-
r a
han
see
the
n a

of

n

e,

e
l

s-
ot
ab

e

TRANSITION FROM INSPIRAL TO PLUNGE IN . . . PHYSICAL REVIEW D62 064015
number already by 0.1 whenr .8.8, and thatNGW
exact(r LSO)

50.9013. The top panel of Fig. 5 contrastsv/vLSO

(5 f GW/ f GW LSO
Schw where f GW LSO

Schw 5623/2/GMp is the fiducial
Schwarzschild LSO GW frequency!, computed with the ex-
act evolution and within the adiabatic approximation, a
function of time. Note that, for the horizontal axis, we u
v̂LSO(0)( t̂2 t̂LSO), wherev̂LSO(0)5p f̂ GW LSO

Schw 5623/2 @pro-

vided by then→0 limit of Eq. ~2.19!# and t̂LSO is defined as
the time at which the adiabatic solution reaches ther-LSO
position. Finally, in the bottom panel of Fig. 5 we compa
the last few GW cycles of the exact and the adiabaticre-
stricted waveform, i.e. h(t)[v2cosfGW(t), with v
5(dw/d t̂)1/3 andfGW52w, in the crucial interesting region
around the LSO. Byadiabaticrestricted waveform we mea
the restricted waveform in whichw( t̂ )5wadiab( t̂ ) is derived

FIG. 5. We contrast the orbital frequency~on the top!, divided

by the Schwarzschild valuev̂LSO(0)5623/2, and the restricted
waveform~on the bottom!, evaluated with the exact dynamical sy
tem and within the adiabatic approximation. Note that in both pl
the quantities are given as a function of the rescaled time vari

v̂LSO(0)( t̂2 t̂LSO), where t̂LSO is defined as the time at which th
adiabatic solution reaches ther-LSO position.
06401
a

by integrating the two equations~4.11! and ~4.12! @which
give a parametric representation oft̂adiab(r ) andŵadiab(r ) in
terms of the auxiliary parameterr #.

Note in Fig. 5 that the dephasing between the two wa
forms becomes visible somewhat before the LSO~we shall
dwell more on this subject in Sec. V!. Note also that the time
when the adiabatic evolution reaches the LSO~‘‘adiabatic
LSO’’ ! corresponds to a time when the exact evoluti
reaches a frequencyv.0.80vLSO(0), i.e. a time signifi-
cantly beforethe v-LSO. This is why there are more cycle
after the adiabatic LSO in Fig. 5~more than two cycles! than
there will be after the~exact! v-LSO ~we shall see below
that NGW

after LSO52Norbit
after LSO51.2048 forn51/4).

B. The ṙ -linearized approximation

The previous subsection has shown the severe shortc
ings of the adiabatic approximation. Let us now conside
second analytical approximation which is more accurate t
the adiabatic one, and which, in particular, allows one to
analytically what happens during the transition between
inspiral and the plunge. This approximation is based o
simple linearization with respect to the radial velocitydr/d t̂,
which is small during the inspiral, as well as the beginning
the plunge.

As Ĥ depends quadratically onpr andpr!1 we pose

Cr~r , j ![F 1

pr

]Ĥ

]pr
~r ,pr , j !G

pr→0

5
1

nĤ0~r , j !

1

Ĥeff
0 ~r , j !

A2~r !

126n/r 2
~4.14!

~note thatCr is a positive quantity!, where

Ĥeff
0 ~r , j !5Ĥeff~r ,pr50,j !5AA~r !S 11

j 2

r 2D .

~4.15!

Then, modulopr
2 fractional effects that we neglect, we ca

write

dr

d t̂
.Cr~r , j !pr . ~4.16!

Differentiating twice the above equation with respect to tim
we obtain

d2pr

d t̂2
.

1

Cr~r , j !

d3r

d t̂3
, ~4.17!

when neglecting some nonlinear terms}(dr/d t̂)2 and
(dr/d t̂)(d j /d t̂). On the other hand, taking the derivativ
with respect to time of Eq.~3.43! and neglecting fractiona
corrections ofO(pr

2), we end up with

s
le
5-11
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ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 62 064015
d2pr

d t̂2
52

d

d t̂

]Ĥ

]r
~r ,pr ,pw!.2

]2Ĥ0

]r 2

dr

d t̂
2

]2Ĥ0

]r ] j
F̂w .

~4.18!

To get an autonomous system we further approximatej by
solving for j in the lowest-order approximation to Eq.~3.43!,
obtained by neglecting bothpr anddpr /d t̂. In other words,
j (r ) is obtained, as in adiabatic approximation, by solvi
Eq. ~4.1!. Finally, j . j adiab(r ), as given by Eq.~4.6!. We
define

v r
2~r ![Cr„r , j adiab~r !…

]2Ĥ0

]r 2
„r , j adiab~r !…

5
1

n2Ĥ0
2~r , j adiab!

r 526r 413nr 3120nr 2230n2

r 6~r 226n!
,

~4.19!

Br~r ![Cr„r , j adiab~r !…
]2Ĥ0

]r ] j
„r , j adiab~r !…F̂w„v̂adiab~r !…

52
2 j adiab~r !

n2Ĥ0
2~r , j adiab!

~r 323r 215n!2

r 7~r 226n!
F̂w„v̂adiab~r !…,

~4.20!

@where the replacementsj→ j adiab(r ) are done after the par
tial differentiations#. It is easily seen that the quantit
]2Ĥ0/]r ] j is negative, so that (F̂w being also negative! the
quantityBr given by Eq.~4.20! is positive.

Combining Eqs.~4.17! and ~4.18!, we finally derive the
following third order differential equation inr:

d3r

d t̂3
1v r

2~r !
dr

d t̂
.2Br~r !. ~4.21!

We shall often refer to Eq.~4.21! as the ‘‘linearṙ equation’’
because it was obtained by working linearly in the rad
velocity ṙ 5dr/d t̂. ~Note, however, that this is a third-orde
nonlineardifferential equation inr.! It is easily seen that the
quantity v r

2(r ) defines the square of the frequency of t
radial oscillations. As seen in Eq.~4.19! it is proportional to
the curvature of the effective radial potentialH0(r , j ) deter-
mining the radial motion. Above the LSO, i.e. whenr
.r LSO(n), the radial potential has aminimum~defining the
stable circular orbit with angular momentumj ) and, there-
fore, v r

2(r ) is positive. Whenr 5r LSO(n), the radial poten-
tial has an inflection point@see Eq.~2.17!#, and, therefore,
v r

2(r ) vanishes. Whenr ,r LSO(n), the radial potential is
concave, andv r

2(r ) becomes negative.~See, e.g., Fig. 1 of
@7# for a plot of the shape of the radial potential.!

Within the same approximation used above~i.e., essen-
tially, neglecting terms which arefractionally of order pr

2),
we can finally write the angular frequency along our qua
circular orbits as
06401
l

i-

dw

d t̂
.

]Ĥ0

] j
„r , j adiab~r !…. ~4.22!

Note thatw is obtained from this equation by a quadratu

once the radial motionr ( t̂ ) is known from the integration of
Eq. ~4.21!.

The conceptually interesting feature of the abo

‘‘ ṙ -linearized’’ approximation is the structure of Eq.~4.21!.
The previously considered ‘‘adiabatic’’ approximation corr

sponds to neglectingd3r /d t̂3 in Eq. ~4.21!. We now see that
this is a good approximation only when the characteris
frequency of variation of the radial motion, defined, say,

vcaract
2 [(d3r /d t̂3)/(dr/d t̂), is much smaller than the fre

quency of radial oscillationsv r
2 ~determined by the restoring

radial force ensuring the existence of stable circular orbi!.
As v r

2 tends to zero, before changing sign, at the LSO, i
clear that the adiabatic approximation must break do
somewhat above the LSO. When it breaks down the ‘‘ine

term’’ d3r /d t̂3 in Eq. ~4.21! becomes comparable to both th

‘‘restoring force’’ term v r
2dr/d t̂ and the ‘‘driving force’’

2Br coming from gravitational radiation damping.
In Fig. 6 we compare the number of gravitational cycl

and the radial velocity evaluated with the exact evolution a
the ṙ -linearized equations. We start the evolution atr 515
and fix the initial values ofdr/d t̂ andd2r /d t̂2 in the ‘‘adia-
batic approximation’’ defined by neglecting in Eq.~4.21! the
‘‘inertia term’’ d3r /d t̂3 ~and then by differentiating again th
resulting approximate equation!. Moreover, we normalize
NGW

linear to be zero at ther-LSO. We derive from the exac
evolution NGW

exact(r LSO)520.04223. The main conclusio

drawn from Fig. 6 is that theṙ -linearized approximation is
quite good both during the inspiral phase and, more imp
tantly, during the transition to the plunge taking place ne
the LSO. This is interesting to know because it shows t
the crucial physical effect that is lacking in the usually co
sidered adiabatic approximation is the simple ‘‘inertia term
d3r /d t̂3 in Eq. ~4.21!. Note, however, that in order to ad
this inertia term it is necessary to have in hand the Ham
tonian describing at least the slightly non-circular orbits@the
normalization of Eq.~4.21! crucially depends on the knowl
edge ofv r

2 which depends both on]Ĥ/]pr
2 and on]2Ĥ/]r 2#.

This being said, we do not, however, recommend to use
practice theṙ -linearized approximation. Indeed, we thin
that the ‘‘exact’’ system~3.41!–~3.44! is a more accurate
description of the evolution of the system because it ke
all the nonlinear effects inpr

2 . Numerically speaking, it is
essentially as easy to integrate the ‘‘exact’’ system than
ṙ -linearized approximation, so that there would be anyw
no practical advantage in downgrading the accuracy of
system~3.41!–~3.44!. However, we shall see next that th
ṙ -linearized system can be further used to lead to a sim
analytical approach to the transition to the plunge in the c
wheren!1.
5-12
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C. Universal r equation

Until now we have been considering the general c
where the symmetric mass ration[m1m2 /(m11m2)2 can
be of order of its maximum valuenmax51/4. As is clear
from the results above when 4n is of order unity thenon-
adiabatic aspects of radiation damping effects become
portant in an extended region of orderD(R/GM);1, above
the standard LSO. On the other hand, we expect that w
4n!1 the transition between the adiabatic inspiral and
plunge will be sharply localized around the standard LS
defined by Eq.~2.17!. Indeed, whenn is a small parameter
the damping forceF̂w , Eq. ~3.46!, being proportional ton,
can be treated as a perturbatively small quantity in the e
lution of the system. Consequently, the ‘‘driving force
term, 2Br , in the ṙ -linearized equation~4.21! contains the
small parametern. It is then clear that all the time deriva
tives ofr ~being driven byBr) will tend to zero withn. If the
coefficientv r

2 in Eq. ~4.21! never vanishes, it is easy to se

how one would satisfy Eq.~4.21! by solving for dr/d t̂,

FIG. 6. Contrast of the number of gravitational cycles~on the
top! and the radial velocity~on the bottom!, computed with the

exact evolution and the linear-ṙ equation, versusR/GM.
06401
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while consideringd3r /d t̂3 as a fractionally small term~to be
evaluated by further differentiatingdr/d t̂.2Br /v r

2). In

that case, one sees thatdr/d t̂ would beO(n) @andd3r /d t̂3

5O(n3)# as n→0. However, the fact thatv r
2(r ) vanishes

when r 5r LSO(n) shows that the waydr/d t̂ tends to zero
with n, near the LSO, is more subtle. Having understo
from this reasoning that, whenn→0, the interesting transi-
tion effects take place very near the LSO, we now turn t
precise analysis of this transition.

A first method for dealing~whenn→0) with this transi-
tion would be~as just sketched! to continue working with the
third-order equation~4.21!, considered in the immediat
neighborhood ofr 5r LSO(n). However, it is better~in order
not to increase the differential order! to go back to the exac
system~3.41!–~3.44! and to approximate it directly whenn
→0 andr→r LSO(n).

Let us see the consequences of the evolution~3.41!–
~3.44! when r is very nearr LSO(n). To do this it is conve-
nient to introduce some notation. Using, as we did in S
IV B, the fact thatĤ depends quadratically onpr and that
pr!1, we define

Cr
LSO~n![F 1

pr

]Ĥ

]pr
~r ,pr , j !G

pr→0

LSO

. ~4.23!

Note thatCr
LSO is a number, which depends onn.5 In terms

of the previous definition~4.14!, one has simplyCr
LSO(n)

5Cr„r LSO(n), j LSO(n)…. Explicitly, it reads

Cr
LSO~n!5F A2~r !

nĤ0~r , j !Ĥeff
0 ~r , j !~126n/r 2!

G
LSO

.

~4.24!

In the n50 limit this simplifies to

Cr
LSO~0!5

A2

3
. ~4.25!

The point in having introduced the notation~4.23! is that Eq.
~3.41! reads simply, when one is very near the LSO,

pr.
1

Cr
LSO

dr

d t̂
. ~4.26!

This allows us to recast Eq.~3.43! in the form~after neglect-
ing fractionalpr

2 terms on the RHS!

5As we considern!1, we could further take the limitn→0 in all
the quantities which have a finite limit asn50. However, in order
not to unnecessarily lose accuracy we shall not do so. For insta
we shall always consider thatr LSO(n) is computed fornÞ0,
though we shall see later that the directn dependence inr LSO(n)
@which is O(n)# is parametrically small compared to the wid
O(n2/5) of the radial axis where the transition takes place.
5-13
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1

Cr
LSO

d2r

d t̂2
.2

]Ĥ0

]r
~r , j !. ~4.27!

Here, as above,Ĥ0(r , j )[Ĥ(r ,pr50,pw[ j ). Then we ex-
pand the RHS of the above equation around the LSO; i.e.
write

r 5r LSO~n!1dr , j 5 j LSO~n!1d j . ~4.28!

Keeping the first nontrivial terms in the expansion in pow
of dr andd j @and neglecting subleading terms, such as th
of orderO(drd j ), O„(d j )2

… andO„(dr )3
…# one obtains

]Ĥ0

]r
.

1

2 S ]3Ĥ0

]r 3 D
LSO

~dr !21S ]2Ĥ0

]r ] j
D

LSO

~d j !. ~4.29!

Moreover, near the LSO we can write Eq.~3.44! as

d~d j !

d t̂
5

d j

d t̂
.F̂w~v̂LSO!, with v̂LSO5S ]Ĥ0

] j
D

LSO

.

~4.30!
lin

06401
e

s
e

This yields

d j .F̂w~v̂LSO!~ t̂2 t̂LSO!, ~4.31!

where t̂LSO is the time at whichj ( t̂ )5 j LSO(n). Let us also
define

Ar
LSO[Cr

LSOS ]3Ĥ0

]r 3 D
LSO

,

Br
LSO[Cr

LSOS ]2Ĥ0

]r ] j
D

LSO

F̂w~v̂LSO!. ~4.32!

The quantityBr
LSO is the LSO value of the quantityBr(r )

introduced in Eq.~4.20! above. The explicit values of thes
quantities are
Ar
LSO~n!5F ~r 322r 212n!~2210n j 2260nr 2160j 2r 2212j 2r 316r 4!

r 7~r 226n!~ j 21r 2!n2Ĥ0
2~r , j !

G
LSO

,

Br
LSO~n!5F2

2 j ~r 322r 212n!~r 323r 215n!

r 5~r 226n!~r 21 j 2!n2Ĥ0
2~r , j !

G
LSO

F̂w~v̂LSO!. ~4.33!
l

te

d-
In the n50 limit they simplify to

Ar
LSO~0!5

1

1296
,

Br
LSO~n! 5

n→0

2
1

72A3
nF F̂w„v̂LSO~n!;n…

n
G

n→0

51.05231024n. ~4.34!

Finally, inserting Eq.~4.31! into Eq. ~4.29!, and replacing
everything in Eq.~4.27! yields the simple equation

d2dr

d t̂2
1

1

2
Ar

LSO~dr !252Br
LSO~ t̂2 t̂LSO!. ~4.35!

This equation can be recast in a universal form by re-sca
the variablesdr andd t̂5( t̂2 t̂LSO). Indeed, posing

dr 5krr, t̂2 t̂LSO5d t̂5ktt, ~4.36!

with
g

kr[~Br
LSO!2/5~Ar

LSO!23/5, kt[~Ar
LSOBr

LSO!21/5,
~4.37!

it is straightforward to derive the following ‘‘universa
r-equation’’:

d2r

dt2
1

1

2
r252t. ~4.38!

The explicit values of the scaling coefficientskr and kt are
easily derived from our previous results. Let us only quo
explicitly their n50 limit:

kr~0!51.890n2/5, kt~0!526.19n21/5. ~4.39!

Note the interesting fractional scalingskr}n2/5, kt}n21/5.
Let us also note the autonomous~time-independent! equa-

tion obtained by taking the time derivative of Eq.~4.38!:

d3r

dt3
1r

dr

dt
521. ~4.40!

Equation~4.40! could have been directly derived by consi
ering the ṙ -linearized equation~4.21! close to r 5r LSO.
5-14



e

i

a-

b
.

s
a-

n-

our

ve

-
an

TRANSITION FROM INSPIRAL TO PLUNGE IN . . . PHYSICAL REVIEW D62 064015
There is, however, more information in Eq.~4.38! because
its derivation showed thatt50 marks the moment wher
j (t)5 j LSO(n).

The adiabatic approximation is recovered by neglecting
Eq. ~4.38! the first term on the RHS. This gives

radiab5A22t, S dr

dt D
adiab

52
1

A22t
52

1

radiab
.

~4.41!

The universalr andṙ curves and their adiabatic approxim
tions are shown in Fig. 7. We have integrated Eq.~4.38!
fixing the initial values~for large, negativet) of r and
dr/dt in the adiabatic limit provided by Eq.~4.41!. We see
from Fig. 7 that the adiabatic approximation begins to
unacceptably bad whent.21. From the integration of Eq
~4.38! we get the important numerical values

FIG. 7. The universalr and ṙ curves and their adiabatic ap
proximations. The long-dashed curve at the bottom of the top p
represents the approximate asymptotic solution~4.53!.
06401
n

e

t50: r50.8339,
dr

dt
520.8233; ~4.42!

r50: t50.8226,
dr

dt
521.267. ~4.43!

We recall that t50 marks the moment wherej (t)
5 j LSO(n), while r50 corresponds tor (t)5r LSO. The val-
ues given by Eqs.~4.42! and ~4.43! can then be used to
compute corresponding values of the physical quantitier,
dr/d t̂ and j by using the following parametric represent
tions derived from our treatment above:

r ~t!5r LSO~n!1krr~t!, t̂~t!5 t̂LSO1ktt, ~4.44!

j ~t!5 j LSO~n!1F̂w~v̂LSO!ktt, S dr

d t̂
D ~t!5

kr

kt

dr

dt
.

~4.45!

Correspondingly to these approximate results forr, t̂ , j and
dr/d t̂, one can also write an approximate result for the a
gular frequency, namely

S dw

d t̂
D ~t!5v̂~t!5

]Ĥ0

] j
„r ~t!, j ~t!…

.v̂LSO~n!1S ]2Ĥ0

]r ] j
D

LSO

krr~t!

1S ]2Ĥ0

] j 2 D
LSO

F̂w
LSOktt. ~4.46!

In the approximation where we replacen by zero in all quan-
tities which have a finite limit whenn→0, the above para-
metric results give the following explicit numerical links~ex-
cept for t̂LSO which is an arbitrary integration constant!:

r ~t!5611.890n2/5r~t!1O~n!,

t̂~t!5 t̂LSO126.19n21/5t, ~4.47!

j ~t!5A1220.3436n4/5t1O~n!,

S dr

d t̂
D ~t!.0.07216n3/5

dr

dt
, ~4.48!

v̂~t!5
1

6A6
20.03214n2/5r~t!20.005062n4/5t1O~n!.

~4.49!

Note that these explicit results are less accurate than
previous implicit expressions~4.44!, ~4.45! @because of the
O(n) error terms entailed byr LSO(n)5r LSO(0)1O(n),
etc.#. For consistency with the rest of the paper, we ha
used here@as in Eq.~4.34!# the n→0 limit of the value of
n21F w

LSO defined by the 2.5PN Pade´ estimate~3.46!, namely

el
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n21F w
LSO.20.01312. Note that a more accurate value

this quantity is, according to Poisson’s numerical resu
@25#, n21F̂ w

LSO.20.01376, which is .5% larger ~in
modulus!. Note the various scalings withn implied ~when
considering a point in the transition region parametrized
some fixed numerical values ofr and t) by Eqs. ~4.44!,
~4.45!: notably dr 5O(n2/5), d j 5O(n4/5) and pr; ṙ
5O(n3/5). We shall discuss below in more detail some
these scalings.

Figure 7 vividly illustrates the fact~mentioned above! that
the definition of ‘‘LSO crossing’’ becomes ambiguous
presence of radiation damping. Indeed, for instance, the t
wherer 5r LSO(n) ~‘‘ r -LSO’’ !, i.e. the time wherer50, dif-
fers from the time wherej 5 j LSO(n) ~‘‘ j -LSO’’ !, i.e. the
time wheret50 @see also Eq.~4.42!#. An important issue is
the domain of validity of the universalr equation: i.e. the
range of values ofn for which one can use Eqs.~4.44!,
~4.45! to approximate the transition between inspiral a
plunge. We have investigated this question numerically
comparing the radial velocity computed with the ‘‘exac
evolutions~3.41!–~3.44!, and with ther equation~4.38!. Let
us define the practical limit of the domain of validity of ther

approximation by requiring that the fractional error indr/d t̂
at the~say! r-LSO be 10%. We find that this limit is reache
whenn gets as large as

nmax.0.05. ~4.50!

Therefore, the explicit expressions above can be used to
timate numerically the physical quantities in the transiti
region only for n<nmax. Note that the accuracy of ther
results above is, by construction, limited to some sm
neighborhood of the LSO. They should not be used~even if
n,nmax) to estimate, for instance, the radial velocity at
radius which is significantly different fromr LSO ~say at r
55 or r 57). To illustrate this we compare in Figs. 8 and
the radial velocity computed with the exact evolution, w

FIG. 8. Plot of the radial velocity computed both with the exa
evolution and with ther-equation in the casen50.05. The frac-
tional error indR/dt at ther-LSO is .10%.
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f
s

y

f

e

y

s-

ll

that deduced from ther equation. We examine three case
n5nmax50.05, n51022 andn51024.

Note that, though the accuracy of the approximation
fined by ther equation increases asn→0, its domain of
validity actually shrinks asn gets small. Indeed, if we keepr
finite, we see thatdr .1.890n2/5r tends to zero withn.

Before discussing the scaling predictions made by thr
approximation, let us comment on the various possible d
nitions of ‘‘LSO crossing.’’ We recall that we define~i! the
‘‘ r -LSO’’ @by the requirementr (t)5r LSO(n)#, ~ii ! the
‘‘ j -LSO’’ @ j (t)5 j LSO(n)#, and ~iii ! the ‘‘v-LSO’’ @v̂(t)
5v̂LSO(n)#. ~In addition, one can also define an ‘‘energ
LSO’’ and a ‘‘naive’’ LSO such thatR56GM.! We see
from our results above that ther-LSO corresponds~in the r
approximation! to r50, while the j-LSO corresponds tot
50 and thev-LSO to r10.1575n2/5t50. From these re-
sults and the results displayed in Fig. 7 and Eqs.~4.42! and
~4.43!, we have the following ordering between these LSO
v2LSO,r 2LSO, j 2LSO, where the order symbols refe
to the location on the radial axis. We see also that wh
n2/5!1 the v-LSO nearly coincides with ther-LSO. When

t

FIG. 9. We compare the radial velocity evaluated with the ex
dynamical system and with ther equation in the casesn50.01 and
n50.0001.
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TRANSITION FROM INSPIRAL TO PLUNGE IN . . . PHYSICAL REVIEW D62 064015
discussing scaling relations it would be essentially equiva
to use any definition of LSO crossing. For definiteness,
for consistency with the rest of this paper where we shall
it, we shall consider thev-LSO ~because it is more invari
antly defined than ther-LSO!. To sufficient approximation
for determining the leading scaling withn, we shall consider
that thev-LSO corresponds tor.0.

One of the most useful scaling law to consider is th
concerning the radial momentum at thev-LSO. Combining
Eqs.~4.26! and ~4.45! we get

pr5
1

Cr
LSO

dr

d t̂
5

1

Cr
LSO~Ar

LSO!22/5~Br
LSO!3/5

dr

dt
. ~4.51!

From Eq. ~4.43! the value ofdr/dt at the v-LSO ~i.e. r
.0) is dr/dt.20.8233. Using also the numerical valu
~taken whenn→0) of the coefficients entering Eq.~4.51!,
we get the predicted scaling

~pr !v-LSO.20.0844~4n!3/5. ~4.52!

In the left panel of Fig. 10 we compare the analytical scal
prediction, (pr)v-LSO}(4n)3/5, with the numerical results ob
tained by integrating the full evolution system~3.41!–~3.44!
down to thev-LSO. We have also computed the best fits
the data using either a formula with one free parameter
the typepr52a(4n)3/5, or with two free parameters,pr5
2a(4n)b. Note that the predicted scaling is a surprising
good fit to the exact results, even for values ofn much larger
than the domain of validity of ther equation. In fact, it is
numerically quite accurate even forn51/4. @In the one-
parameter fit, note that the best-fit coefficienta50.0750 is
11% smaller than the calculated one, Eq.~4.52!. This is be-
cause the best-fit one takes into account the values ofpr for
larger values ofn than the test-mass-limit result~4.52!.#

Another useful scaling law concerns the number of orb
remaining ‘‘after LSO crossing.’’ Let us define the numb
of orbits after LSO crossing asDw/2p where Dw is the
difference in orbital phase between the ‘‘light ring’’r
5r light ring(n) @obtained from Eq.~4.7!# and thev-LSO, v
5vLSO(n). This quantity cannot be really estimated with
the r approximation, because this approximation assum
thatdr !1. However, we can formally say that, within ther
approximation, we wish to consider the asymptotic lim
wherer tends to2` proportionally ton22/5 ~so thatdr is
finite!. The question is, therefore, what is the asymptotic
havior of the solutionr5r(t) of Eq. ~4.38! whenr→2`?
It seems that in this limit the ‘‘source term’’2t on the RHS
of Eq. ~4.38! is relatively negligible. Indeed, let us neglect
and solve the approximate equationd2r/dt21 1

2 r250. This
equation describes the motion of a particle@ r̈5
2]V(r)/]r# with potential energyV(r)5r3/6. This poten-
tial energy ~which represents the effective radial potent
near the inflection point corresponding to the LSO! is un-
boundedly negative whenr→2`. Writing the conservation
of ‘‘energy,’’ 1

2 ṙ21V(r)5const, one finds that, asr
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→2`, the kinetic energy grows without bound and appro
mately satisfies12 ṙ2'2V(r) whose solution is

r5212~t`2t!22 ~4.53!

for some constantt` . We conclude that, asr→2`, the
variablet tends to a finite limitt` . ~We find t`.3.9. The
corresponding curve is shown in the top panel of Fig.!
Therefore, from Eq.~4.53!, the total time elapsed after th

FIG. 10. Scaling laws for the radial momentum and the po
LSO number of orbits provided by ther approximation. In the top
panel we show the exact numerical results for the radial momen
obtained by integrating the full evolution system down to t
v-LSO. Two fits of the typepr52a(4n)3/5 andpr52a(4n)b are
also indicated. In the bottom panel the number of orbits remain
‘‘after LSO crossing’’ is compared with the numerical results co
puted from the exact evolution. We have indicated both the bes
to a formula of the typeDw/2p5a(4n)21/5 and of the type
Dw/2p5a(4n)b. Note that, even if the figure covers the range
values ofn up to 1/4, both fits have been evaluated including valu
only up tonmax50.05.
5-17
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LSO, t̂`2 t̂LSO, scales liken21/5. Correspondingly, within
ther approximation, the leading approximation to the orbi
phase@obtained by integrating the zeroth order term in E
~4.53!# reads

Dw

2p
5E

t̂LSO

t̂` v̂

2p
d t̂.

v̂LSO

2p
~ t̂`2 t̂LSO!

5
v̂LSO

2p
~Ar

LSOBr
LSO!21/5t` . ~4.54!

As v̂LSO admits a finite limit asn→0, we expect from Eq.
~4.54! the scaling law

Dw

2p
}~4n!21/5. ~4.55!

This prediction is compared in Fig. 10 with the numeric
results obtained by integrating the full system~3.41!–~3.44!.
As expected from the necessity to inconsistently cons
parametrically large values ofr}n22/5, this prediction is less
accurate than that obtained for the radial momentum at
v-LSO. We have indicated both the best fit to a formula
the type Dw/2p5a(4n)21/5 and the best fit toDw/2p
5a(4n)b. Note that both fits have been evaluated includ
values of n only up to nmax50.05. Indeed, as discusse
above, beyond this value the fractional error in the rad
velocity at ther LSO is ;10%.

Some comments are in order concerning these res
First, we note that althoughNLSO

after5Dw/2p tends to infinity
whenn→0, it does so very slowly so that the total numb
of orbits after the LSO is always quite small compared to
number of orbits ‘‘just before and around the LSO.’’ Let u
define the latter number asNLSO

around[ f orbit
2 / ḟ orbit 5

1
2 f GW

2 / ḟ GW

where f orbit 5
1
2 f GW5v/2p denotes the orbital frequenc

and ḟ orbit the time derivative of the orbital frequency caus
by GW damping. In the adiabatic approximation, combin
with a Newtonian approximation for both the orbital ener
and the GW flux, this number reads~see, e.g.,@5#!

NLSO
around.

2.924

4n
. ~4.56!

The ratioNLSO
after/NLSO

around.0.3446(4n)4/5 @derived using the re-
sult of the fit, i.e.NLSO

after51.0075(4n)21/5# is thereforepara-
metrically small asn→0. This suggests that, when 4n!1,
the existence of even a formally parametrically lar
(}n21/5) absolute number of cycles left after the LSO w
have only a fractionally negligible effect on the extraction
a GW signal from the noise by means of relativistic filte
built on the adiabatic approximation, and terminated at
LSO @6,5#. On the other hand, when 4n;1 the ratio
NLSO

after/NLSO
aroundis not very small. In particular, whenn51/4 the

number of orbits after thev-LSO is equal toNLSO
after(n51/4)

50.6024 ~computed from the exact evolution!, while
NLSO

around(n51/4)52.924. The ratio between the two
NLSO

after/NLSO
around50.2060. As recently emphasized in Ref.@5#,
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the fact thatNLSO
around is not large means that the filtering o

such a signal out of the noise is a delicate matter wh
sensitively depends on the modeling of the phase evolu
near the LSO and on the modeling of what happens to
signal after LSO crossing. In Ref.@5# it was assumed that th
signal is abruptly terminated at the LSO. In a later section
shall use the tools introduced here to go beyond such
approximation and study the part of the waveform which
emitted after LSO crossing.

V. INITIAL DATA FOR NUMERICAL RELATIVITY

One of the main aims of this paper is to use the improv
approach to the transition from the inspiral to the plun
introduced above to compute initial dynamical data~i.e. ini-
tial positions and momenta! for binary black holes that have
just started their plunge motion. Ideally, we wish to gi
dynamical data for two black holes (q1 ,q2 ,p1,p2) such that
the coordinate distanceuq12q2u is ~i! large enough that one
can trust the re-summed non-perturbative technique allow
one to compute these data,~ii ! large enough to allow one to
hope to complete the present work by constructing the ini
gravitational data„gi j (x),Ki j (x)… determined~in principle!
by (qa ,pa), and, finally,~iii ! small enough to leave only les
than one orbit~at least whenn;1/4) to evolve by means o
a full 3D numerical relativity code. We think that point~i! is
satisfied if we use the Pade´-type @6# plus effective-one-body
@7# methods we have combined aboveand if we stop the
evolution of quasi-circular orbits anywhere around the LS
We shall leave point~ii !, i.e. the important task of complet
ing the present work by constructing gravitational data,
future work. However, in preparation for this task we sh
show how one can compute the dynamical data (qa,pa) in
the convenient ADM coordinates. Indeed, the coordin
conditions introduced by Arnowitt, Deser and Misner@27#
have the double advantage~a! to be linked to the 311 for-
mulation which is used in numerical relativity and~b! to be
linked to explicit, high-order post-Newtonian calculation
@17#. Concerning point~iii !, the work above shows that if we
stop the inspiral1 plunge evolution at the~invariantly de-
fined! v-LSO @i.e. whendw/dt5vLSO(n)#, there indeed re-
mains~when 4n;1) less than one orbit to go before reac
ing the light ring ~see next section for a discussion of th
importance of the light ring!. Note that there is nothing sa
cred about giving data precisely at thev-LSO. Because of
points ~i! and ~ii ! above, we wish to stay ‘‘as high as po
sible.’’ Because of point~iii !, we must, however, be just afte
LSO crossing. As was already discussed, there are sev
possible definitions of ‘‘LSO crossing.’’ Thev-LSO is the
innermost LSO~see below! and is therefore a convenien
choice ~however, there would be nothing wrong in givin
data at a slightly different place; in fact we recommend d
ing it to check the robustness of the numerical spacetim
evolved from our data!.

As just recalled we wish to~numerically! compute com-
plete dynamical data at thev-LSO and in ADM coordinates.
The evolution system~3.41!–~3.44! given above allows one
to compute dynamical data (r ,w,pr ,pw) for the relative mo-
tion described in~reduced! effectivecoordinates~i.e. the co-
5-18
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ordinates used in the effective-one-body description!. In Ref.
@7# we have shown how to map the ADM positions a
momenta (qADM,pADM) onto the effective positions and mo
menta (q,p) by means of a generating functionG(qADM,p).
Let us first recall, in order to avoid any confusion, the triv
transformations linking Cartesian-like to polar-like coord
nates, as well as those linking the original to the scaled
ordinates. We recall that we work in the center of mass fra
and that we consider planar motion in the equatorial pl
u5p/2:

Qi5q1
i 2q2

i , Pi5p1i52p2i , ~5.1!

PR5ni Pi , Pw5QxPy2QyPx, ~5.2!

qi5
Qi

GM
, pi5

Pi

m
, ~5.3!

pr5
PR

m
5nipi , pw5

Pw

mGM
5qxpy2qypx . ~5.4!

Here ni5Qi /R5qi /r is the radial unit vector (R5uQu, r
5uqu). We have alsoQx5Rcosw, Qy5Rsinw, qx5rcosw,
qy5rsinw. The relations above hold both in effective coo
dinates @denoted by (qi ,pi) without extra labels# and in
ADM coordinates (qADM

i ,pi
ADM). The link between (qi ,pi)

and (qADM
i ,pi

ADM) is defined by a generating functio
G(qADM

i ,pi) and reads

qi5qADM
i 1

]G~qADM,p!

]pi
, ~5.5!

pi
ADM5pi1

]G~qADM,p!

]qADM
i

. ~5.6!

The generating functionG has been derived up to 2PN ord
in @7# ~see Ref.@15# for the determination ofG at the 3PN
level!:

G~qADM,p!5
1

c2
G1PN~qADM,p!1

1

c4
G2PN~qADM,p!.

~5.7!

The partial derivatives needed in Eqs.~5.5!, ~5.6! read

]G1PN~q,p!

]qi
5piF2

n

2
p21S 11

n

2D 1

qG2qi~q•p!S 11
n

2D 1

q3
,

~5.8!

]G1PN~q,p!

]pi
5qiF2

n

2
p21S 11

n

2D 1

qG2pi~q•p!n,

~5.9!
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]G2PN~q,p!

]qi
5piF1

8
n~113n!p41

n

8
~225n!

p2

q
1

3

8
n~8

13n!
~q•p!2

q3
1

1

4
~127n1n2!

1

q2G1qi~q•p!

3F2
3

8
n~813n!

~q•p!2

q5
2

n

8
~225n!

p2

q3

2
1

2
~127n1n2!

1

q4G , ~5.10!

]G2PN~q,p!

]pi
5qiF1

8
n~113n!p41

n

8
~225n!

p2

q
1

3

8
n

3~813n!
~q•p!2

q3
1

1

4
~127n1n2!

1

q2G1pi

3~q•p!Fn2 ~113n!p21
n

4
~225n!

1

qG .
~5.11!

Givenqi andpi , we use first Eq.~5.5! and the values of the
partial derivatives~5.8!–~5.11! to solve numerically for
qADM

i . Then we use Eq.~5.6! to computepi
ADM :

The initial data we start with are the results of the nume
cal integration of the system~3.41!–~3.44!, i.e. the values of
r, w, pr and pw at some time in the evolution@which we
choose to be the time whenv(t)5vLSO(n)#. Actually, the
value of w is without significance and we renormalize it
the convenient valuewnew50 so that we work with
Cartesian-like data of the simple form~remember that we
work in thex-y plane,qz505pz , and that we simplify the
writing by denotingqi[qi when working in Cartesian-like
coordinates!

qx5r , qy50, px5pr , py5
pw

r
. ~5.12!

When solving, as indicated above, Eqs.~5.5!, ~5.6! to derive
qx

ADM , qy
ADM andpx

ADM , py
ADM , we get these quantities in

not optimally oriented coordinate system~i.e. though we
started withqy50, we end up withqy

ADMÞ0 because there
is a rotation between the two coordinate systems!. As the
global orientation is of no physical significance, it is conv
nient to turn the ADM coordinate system by an anglea so
thatwnew

ADM5wold
ADM2a50. In other words, after this rotation

one has, as in Eq.~5.12! above,

qx
ADM new5r ADM, qy

ADM new50,

px
ADM new5pr

ADM , py
ADM new5

pw
ADM

r ADM
. ~5.13!

The angle of rotationa is determined by
5-19
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tana5
qy

ADM old

qx
ADM old

, ~5.14!

while the more invariant quantitiesr ADM andpr
ADM are given

by

r ADM[A~qx old
ADM !21~qyold

ADM !2,

pr
ADM[

1

r ADM
~qxold

ADMpxold
ADM1qyold

ADMpyold
ADM !.

~5.15!

Note that~because of the rotational invariance ofG) all the
angular momenta coincide:

pw5pw
ADM

5qxpy2qypx

5qxold
ADMpyold

ADM2qyold
ADMpxold

ADM

5qx new
ADM pynew

ADM2qynew
ADMpxnew

ADM . ~5.16!

This relation is a useful check on the numerical precision
the solution of Eqs.~5.5!, ~5.6!.

In Table I we give initial data in ADM coordinates at th
v-LSO for five values of the parametern. We give the more
invariant quantities corresponding to the ‘‘new’’ ADM coo
dinate system Eq.~5.13!. The quantitypt

ADM denotes the
‘‘transverse’’ momentum, i.e. simplypt

ADM[pw
ADM/r ADM

[pynew
ADM . For completeness, we give also the value of

anglea, Eq. ~5.14!.
So far all the results we have discussed considered

evolution system~3.41!–~3.44! as the ‘‘exact’’ description of
the transition through the LSO. However, as discussed
Sec. III this system is more like a convenient fiducial syst
within a class of systems obtained by shifting@by O(v5/c5)
terms# the coordinate system. To test the robustness of
predictions for physical quantities at the LSO we shall n
compare the results of the fiducial system~3.41!–~3.44! with
the results obtained by the more general system~3.4!–~3.7!,
with a radial forceFR given ~in terms ofFw) by Eq. ~3.20!.
For simplicity, we consider only the~most crucial! equal-
mass case,n51/4. We find that our fiducial system~with
FR50) yields the following numerical values at thev-LSO
~when starting with an orbital phasew50 at r 515):

r 55.639, pr520.07432, ṙ 520.03563, ~5.17!

TABLE I. Initial data in ADM coordinates atv-LSO for five
representative values ofn.

n r ADM pr
ADM pt

ADM pw
ADM a

0.25 4.717 20.07570 0.7021 3.312 20.006256
0.1 4.853 20.04425 0.6997 3.396 20.001524
0.01 4.938 20.01163 0.6996 3.455 24.08831025

0.001 4.948 20.002992 0.6998 3.463 21.05431026

0.0001 4.949 20.0007592 0.6999 3.46422.67531028
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w582.72, j 53.312,
Ereal

NR

M
520.01640. ~5.18!

On the other hand, the system including the non-zero ra
force ~3.20! yields, at thev-LSO ~still starting with an or-
bital phasew50 at r 515),

r 55.638, pr520.07388, ṙ 520.03542, ~5.19!

w582.77, j 53.311,
Ereal

NR

M
520.01643. ~5.20!

As we see the differences in the numerical results are q
small. For instance, the fractional change in the~crucial! ra-
dial momentum is less than 631023. We note also that the
dephasing at the LSO is only 0.05 rad. This analysis in
cates that the results based on our fiducial system are q
robust, mainly because our basic assumption of ‘‘qua
circularity’’ ( Ṙ!Rẇ) is well satisfied during the transition
to the plunge.

VI. GRAVITATIONAL WAVE FORMS FROM INSPIRAL
TO RING DOWN

In this section, we provide, for data analysis purposes
estimate of the complete waveform emitted by the coa
cence of two black holes~with negligible spins!. This esti-
mate will be less accurate than our results above becaus
shall extend the integration of our basic system~3.41!–~3.44!
beyond its range of validity. We think, however, that even
rough estimate of the complete waveform~exhibiting the
way the inspiral waveform smoothly transforms itself in
‘‘plunge waveform’’ and then into a ‘‘merger plus ring
down’’ waveform! provides very valuable information fo
designing and testing effectual gravitational wave templa
~See, in particular, the recent work in@5# which emphasizes
the importance of the details of the transition to the plun
for the construction of faithful GW templates for massi
binaries.!

Our ~rough! assumptions in this section will be the fo
lowing: ~i! we use the basic evolution system~3.41!–~3.44!
to describe the dynamics of the binary system from deep
the inspiral phase~say r .15) down to the ‘‘light ring’’ r
5r light ring(n).3, ~ii ! we estimate the waveform emitte
during the inspiral and the plunge by means of the us
‘‘restricted waveform’’ approximation

t̂< t̂end: hinspiral~ t̂ !5Cvv
2 ~ t̂ !cos@fGW~ t̂ !#,

vv[S dw

d t̂
D 1/3

, fGW[2w, ~6.1!

and ~iii ! we estimate the waveform emitted during the co
lescence and ringdown by matching, at a timet̂5 t̂end where
the light ring is crossed, the inspiral1 plunge waveform
~6.1! to the least-damped quasi-normal mode of a Kerr bla
hole with mass and spin equal to the total energy and ang
momentum of the plunging binary~at t̂5 t̂end):
5-20
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t̂> t̂end: hmerger~ t̂ !5Ae2( t̂2 t̂end)/tcos@vqnm~ t̂2 t̂end!1B#.
~6.2!

For convenience, we shall normalize the waveform by tak
C51 in Eq. ~6.1!. The amplitudeA and the phaseB of the
merger waveform~6.2! are then determined by requiring th
continuity of h( t̂ ) and dh/d t̂ at the matching pointt̂
5 t̂end.

Before giving technical details let us comment on o
assumptions~i!–~iii !. First, we recall that Fig. 1 had show
that the quasi-circularity conditionpr

2/B(r )!pw
2/r 2 ~which is

the basic condition determining the validity of our evolutio
system! was satisfied with good accuracy during the inspi
and the beginning of the plunge, and was still satisfi
though with less accuracy (pr

2/B&0.3pw
2/r 2 in the worst case

n51/4), down to the light ringr .3. In other words, our
work shows that the so-called ‘‘plunge’’ following the in
spiral phase is better thought of as being still a quasi-circ
inspiral motion, even down to the light ring. We therefo
expect that the usual restricted waveform~6.1! ~valid for
circular motion! will be an acceptable description of the GW
emission during the plunge. Note that we consider that
description of the amplitude of the gravitational wave
terms ofvv

2 [ẇ2/3, being simpler and more invariant, has
better chance of being correct than a description in term
some other Newtonian-like approximation to the ‘‘squar
velocity’’ such as (r ẇ)2 or 1/r . Some evidence for this faith
is given by the fact that the GW flux is surprisingly we
approximated~within 10% down to the LSO! by the usual
‘‘quadrupole formula’’ if the velocity used to define th
quadrupole formula is the invariantvv5ẇ1/3 ~see, e.g., Fig.
3 of @6#!.

Concerning the choice of the light ring for shifting th
description between a~quasi-circular! binary motion and a
deformed Kerr black hole, our motivation is twofold. Firs
in the test-mass limit,n!1, it was realized long ago, in th
first work of @28# which found the existence of a merg
signal of the type~6.2! following a plunge event, that the
basic physical reason underlying the presence of a ‘‘univ
sal’’ merger signal was that when a test particle falls bel
R.3GM, the GW it generates is strongly filtered by th
potential barrier, centered aroundR.3GM, describing the
radial propagation of gravitational waves. It was then re
ized @29# that the peaking of the potential barrier aroundR
.3GM is itself linked to the presence of an unstable ‘‘lig
storage ring’’~i.e. an unstable circular orbit for massless p
ticles! precisely atR5Rlight right53GM. A second argumen
~applying now in the equal-mass case,n51/4) indicating
that r light right(1/4).2.84563 is an acceptable divide betwe
the two-body and the perturbed-black-hole descriptio
comes from the works on the, so-called, ‘‘close limit a
proximation’’ @30#. Indeed, recent work~see the review@31#!
suggests a matching between the two-body and
perturbed-black-hole descriptions when the distance mod
m0.2. Using the formulas of Ref.@32# one finds thatm0
.2 corresponds to a coordinate distance in isotropic coo
nates of r iso.A2xGM. This corresponds to a
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Schwarzschild-like radial distanceR.r (11GM/2r )2

.2.59GM which is not very far from Rlight ring(1/4)

.2.84GM.
In keeping with our prescription of setting the divide b

tween a binary-black-hole description and a perturb
single-black-hole one, at the timet̂end, when r
.r light ring(n), it is natural to assume that the final ho
formed by the merger is a Kerr hole with massMBH and
angular momentumJBH given by

MBH

m
[Ĥend5

1

n
A112n~Ĥeff

end21!, j end[
JBH

mGM
,

~6.3!

while the dimensionless rotation parameterâ is

âBH[
JBH

GMBH
2

5
n j end

112n~Ĥeff
end21!

. ~6.4!

As the system reaches the stationary Kerr state, the n
linear dynamics of the merger becomes more and more
scribable in terms of oscillations of the black hole qua
normal modes@33#. During this phase, often called th
ringdown phase, the gravitational signal will be a superpo
tion of exponentially damped sinusoids. The gravitation
waveform will be dominated by thel 52,m52 quasi-normal
mode, which is the most slowly damped mode.

As a rough approximation we assume that the full mer
1 ring-down signal~starting when the light ring is reached!
can be represented in terms of this least damped qu
normal mode. Ifvqnm denotes the circular frequency of th
mode andt its damping time, this leads to the simple d
scription ~6.2!. The quantities (vqnm,t) are functions of
(MBH ,âBH) which have been investigated numerica
@33,34#. Using analytic fits the following expressions for th
frequency and the decay time of the quasi-normal mo
were obtained@35#:

MBHvqnm5@120.63~12â!3/10# f f~ â!, ~6.5!

tvqnm54@12â#29/20f Q~ â!, ~6.6!

where f f(â) and f Q(â) are correction factors provided b
Table II of @35#. Note that f f50.9587 andf Q51.0501 for
â51024.

We have numerically studied only the equal-mass c
n51/4. We have chosen the matching pointt̂end such that
r ( t̂end)5r light ring(1/4)52.84563. With this value oft̂end we
obtain the following values for the characteristics of t
formed black hole:

âBH50.7952, EBH50.9761M , ~6.7!

Mvqnm50.5976, M /t50.07795. ~6.8!

Note the numerical value of the quasi-normal mode f
quency
5-21
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f qnm.
vqnm

2p
51885S 10M (

MBH
DHz. ~6.9!

Our results for the waveform are shown in Figs. 11 and
In Fig. 11 we compare the inspiral1 plunge waveform~6.1!
~terminated at the light ring! to the usually considered adia
batic waveform~terminated at the ‘‘adiabatic LSO’’!. As al-
ready discussed in Sec. IV, by ‘‘adiabatic waveform’’ w
mean a restricted waveform~6.1! ~with C51) in which
w( t̂ )5wadiab( t̂ ) is defined by integrating the two equation
~4.11! and~4.12!. This figure shows that there is a significa
dephasing of the adiabatic waveform with respect to
~more! exact one already before the LSO. Moreover, the r
inspiral signal continues to increase and oscillate for.2.35
cycles after the adiabatic LSO.

FIG. 11. We compare the inspiral1 plunge waveform, termi-
nated at the light ring, to the adiabatic waveform, terminated at
adiabatic LSO.

FIG. 12. Plot of the complete waveform: inspiral and plun
followed by merger and ringdown. The locations of several poss
definitions of LSO crossing are also indicated.
06401
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In Fig. 12 we plot our estimate of the complete wavefor
inspiral and plunge~solid line! followed by merger and ring-
down ~dashed line!. We also indicated the locations of se
eral possible definitions of LSO crossing~see Sec. IV
above!. In addition to the definitions mentioned above w
also included a ‘‘naive LSO’’~defined simply byr LSO

naive[6 as
in the Schwarzschild geometry! and an energy LSO@such
that Ereal(t)5Ereal

LSO(n)#.
The corresponding numerical values of the reduced ra

coordinater are

r j-LS056.631, r LSO
naive56.000, r E-LS056.534,

~6.10!

r r-LS055.718, r v -LS055.639. ~6.11!

As mentioned above, the fact that the various definitions
the LSO differ significantly is due to the fact that whenn
51/4 the GW damping effects are rather large and blur
transition to the plunge. Note that the number of GW cyc
left after the ~exact! v-LSO ~and until the light ring! is
NGW

after52Norbit
after51.2048 ~for n51/4). As said above, this is

smaller than the~physically less relevant! number of cycles
left after the adiabatic LSO~wherev.0.80vLSO), which is
.2.35.

Even if our estimate of the waveform is admittedly roug
we think that it can play an important role for defining bett
filters for the search of signals in LIGO and VIRGO. I
particular, two features of this waveform are striking:~i! the
‘‘plunge’’ part of the waveform looks like a continuation o
the inspiral part~this is because the orbital motion remains
fact quasi-circular!, and~ii ! the adiabatic waveform gets sig
nificantly out of phase with the exact waveform before cro
ing the LSO. We shall come back in future work to th
consequences of these results for data analysis, and see
they can be used to improve upon the state-of-the-art fil
constructed in Refs.@6,5#.

VII. DISCUSSION

In this paper we have extended a methodology introdu
in previous papers@6,7#, and applied it to the study of the
transition from inspiral to plunge in coalescing binary bla
holes with comparable masses, moving on quasi-circular
bits. Our philosophy is that it is possible to use suitab
re-summed versions of post-Newtonian results to write
explicit ~analytical! system of ordinary differential equation
describing the transition to the plunge. Our explicit propo
is the evolution system~3.41!–~3.44! obtained by combining
the results of@6# for the re-summation of the gravitationa
wave damping and the results of@7# for the re-summation of
the conservative part of the dynamics of comparable-m
binaries. The basic reason why we think the simple evolut
system~3.41!–~3.44! can accurately describe the transition
the plunge is that we have consistently checked that mos
the ‘‘plunge’’ motion ~at least down toR.3GM) is in fact
very much like a quasi-circular inspiral motion@with Ṙ2

!(Rẇ)2#.
In general one needs to numerically integrate the ba

e

le
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evolution system~3.41!–~3.44! to get physical results of di
rect interest. However, we have shown that one can un
stand the various physical elements entering this system
comparing it to several simple approximations: the adiab
approximation, the ṙ -linearized one, and the univers
r-approximation~valid whenn&0.05). In particular, the lat-
ter approximation allowed us to derive some scaling la
one scaling law~which is very well satisfied, even up to th
maximum valuen51/4) states that the radial momentum
the LSO scales liken3/5, while another scaling law~accu-
rately satisfied only forn!1) states that the number o
cycles left after the LSO scales liken21/5.

The two most important consequences of the present
proach are~i! a way to compute initial dynamical dat
(q1 ,q2 ,p1 ,p2) for a comparable-mass binary black hole sy
tem, represented in ADM coordinates, such that only a fr
tion of an orbit needs to be further evolved by numeri
relativity techniques, and~ii ! an estimate of the complet
waveform emitted by a binary black hole coalescen
smoothly combining an inspiral signal, a plunge signal
merger signal and a ringdown.

However, much work remains to be done to firm up a
complete our approach. We checked the robustness of
approach by considering an as-well-justified, slightly diffe
ent evolution system. But stronger checks are called for
particular it would be quite important to extend the pres
work ~which used as input the 2.5PN-accurate damping
ev
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2PN-accurate dynamics! to higher PN levels, when they be
come fully available. We note in this respect the recent w
@16# which extended the effective-one-body approach to
3PN level.~Note in passing that quasi-static tidal interactio
between black holes enter only at the 5PN level@12#.! It is
quite important to complete our determination of initialdy-
namical data „qa ,pa… by explicitly constructing the initial
gravitational data (gi j (x),Ki j (x)) corresponding to (qa ,pa)
~and containing no free incoming radiation!. When this be-
comes available it will be possible to further check o
method~by numerically evolving spacetimes starting at va
ous stages of the plunge! and to provide more accurate es
mates of the merger waveform. Though our ‘‘light-ring
matching’’ approach to estimating the complete waveform
admittedly rough, we think it can play a useful role for da
analysis: it can be used to test the accuracy of present
plates~based on the adiabatic approximation! and allow one
to construct more accurate, or at least more robust, templa
We will come back to this issue in future work. Finally, le
us note that it would be, in principle, important to be able
extend our approach to black holes having significant intr
sic spins. We, however, anticipate that this is a highly no
trivial task.
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