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Abstract

We map the general relativistic two-body problem onto that of a test parti-

cle moving in an effective external metric. This effective-one-body approach

defines, in a non-perturbative manner, the late dynamical evolution of a coa-

lescing binary system of compact objects. The transition from the adiabatic

inspiral, driven by gravitational radiation damping, to an unstable plunge,

induced by strong spacetime curvature, is predicted to occur for orbits more

tightly bound than the innermost stable circular orbit in a Schwarzschild

metric of mass M = m1 + m2. The binding energy, angular momentum and

orbital frequency of the innermost stable circular orbit for the time-symmetric

two-body problem are determined as a function of the mass ratio.
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I. INTRODUCTION

Binary systems made of compact objects (neutron stars or black holes), and driven toward

coalescence by gravitational radiation damping, are among the most promising candidate

sources for interferometric gravitational-wave detectors such as LIGO and VIRGO. It is

therefore important to study the late dynamical evolution of a coalescing binary system of

compact objects and, in particular, to estimate when occurs the transition from an adiabatic

inspiral, driven by gravitational radiation damping, to an unstable plunge, induced by strong

spacetime curvature. The global structure of the gravitational wave signal emitted by a

coalescing binary depends sensitively on the location of the transition from inspiral to plunge.

For instance, in the case of a system of two equal-mass neutron stars, if this transition occurs

for relatively loosely bound orbits, the inspiral phase will evolve into a plunge phase before

tidal disruption takes place. On the other hand, if the transition occurs for tightly bound

orbits, tidal effects will dominate the late dynamical evolution.

In this paper we introduce a novel approach to the general relativistic two-body problem.

The basic idea is to map (by a canonical transformation) the two-body problem onto an

effective one-body problem, i.e. the motion of a test particle in some effective external metric.

When turning off radiation damping, the effective metric will be a static and spherically

symmetric deformation of the Schwarzschild metric. [The deformation parameter is the

symmetric mass ratio ν ≡ m1 m2/(m1 + m2)
2.] Solving exactly the effective problem of

a test particle in this deformed Schwarzschild metric amounts to introducing a particular

non-perturbative method for re-summing the post-Newtonian expansion of the equations of

motion.

Our effective one-body approach is inspired by (though different from) an approach

to electromagnetically interacting quantum two-body problems developed in the works of

Brézin, Itzykson and Zinn-Justin [1] (see also [2]) and of Todorov and coworkers [3], [4].

Ref. [1] has shown that an approximate summation (corresponding to the eikonal approx-

imation) of the “crossed-ladder” Feynman diagrams for the quantum scattering of two

charged particles led to a “relativistic Balmer formula” for the squared mass of bound states

which correctly included recoil effects (i.e. effects linked to the finite symmetric mass ratio

ν = m1m2/(m1 + m2)
2). However, the eikonal approximation does not capture some of the

centrifugal barrier shifts which have to be added by hand through a shift n → n − ǫj of
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the principal quantum number [1], [2]. The approach of Ref. [3] is more systematic, being

based on a (Lippmann-Schwinger-type) quasi-potential equation whose solution is fitted to

the Feynman expansion of the (on-shell) scattering amplitudes 〈p′1 p′2 |S| p1 p2〉. However,

several arbitrary choices have to be made to define the (off-shell) quasi-potential equation

and the nice form of the relativistic Balmer formula proposed in Ref. [1] is recovered only

at the end, after two seemingly accidental simplifications: (i) the ratio of some compli-

cated energy-dependent quantities simplifies [5], and (ii) the second-order contribution to the

quasi-potential contributes only to third order. We note also that the extension of Todorov’s

quasi-potential approach (initially developed for quantum two-body electrodynamics) to the

gravitational two-body problem [4] leads to much more complicated expressions than the

approach developed here.

Before entering the technical details of the effective one-body approach, let us outline

the main features of our work. We use as input the explicit, post-Newtonian (PN) expanded

classical equations of motion of a gravitationally interacting system of two compact objects.

In harmonic coordinates (which are convenient to start with because they are standardly

used for computing the generation of gravitational radiation), these equations of motion

are explicitly known up to the 2.5PN level ((v/c)5-accuracy) [6], [7]. They have the form

(a, b = 1, 2)

aa = A2PN
a (zb, vb) + Areac

a (zb, vb) + O(c−6) , (1.1)

where A2PN = A0 + c−2 A2 + c−4 A4 denotes the time-symmetric part of the equations

of motion, and Areac = c−5 A5 their time-antisymmetric part. Here, za, va, aa, denote

the positions, velocities and accelerations, in harmonic coordinates, of the two bodies. [In

this work we consider only non-spinning objects.] Throughout this paper, we shall use the

following notation for the quantities related to the masses m1 and m2 of the two bodies:

M ≡ m1 + m2 , µ ≡ m1 m2

M
, ν ≡ µ

M
≡ m1 m2

(m1 + m2)2
. (1.2)

Note that the “symmetric mass ratio” ν varies between 0 (test mass limit) and 1
4

(equal mass

case).

We first focus on the time-symmetric, 2PN dynamics defined by A2PN
a (zb, vb). After

going to the center of mass frame (uniquely defined by the Poincaré symmetries of the

2PN dynamics), and after a suitable coordinate transformation (from harmonic coordinates
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to ADM coordinates za → qa), the dynamics of the relative coordinates q ≡ q1 − q2 is

defined by a 2PN Hamiltonian H(q, p). Starting from H(q, p), we shall uniquely introduce

a 2PN-accurate static and spherically symmetric “effective metric”

ds2
eff = −A(Reff) c2 dt2eff +

D(Reff)

A(Reff)
dR2

eff + R2
eff(dθ2

eff + sin2 θeff dϕ2
eff) , (1.3)

where

A(R) = 1 +
a1

c2R
+

a2

c4R2
+

a3

c6R3
, D(R) = 1 +

d1

c2R
+

d2

c4R2
, (1.4)

such that the “linearized” effective metric (defined by a1 and d1) is the linearized

Schwarzschild metric defined by the total mass M = m1 + m2, and such that the effective

Hamiltonian Heff(qeff , peff) defined by the geodesic action −
∫

µ c dseff, where µ = m1m2/M

is the reduced mass, can be mapped onto the relative-motion 2PN Hamiltonian H(q, p) by

the combination of a canonical transformation (qeff , peff) → (q, p) and of an energy trans-

formation H = f(Heff), corresponding to an energy-dependent “canonical” rescaling of the

time coordinate dteff = dt (dH/dHeff).

The effective metric so constructed is a deformation of the Schwarzschild metric, with

deformation parameter the symmetric mass ratio ν = µ/M . Considering this deformed

Schwarzschild metric as an exact external metric then defines (in the effective coordinates)

a ν-deformed Schwarzschild-like dynamics, which can be mapped back onto the original

coordinates qa or za. Our construction can be seen as a non-perturbative way of re-summing

the post-Newtonian expansion in the relativistic regime where GM/(c2|q1 −q2|) becomes of

order unity. In particular, our construction defines a specific ν-deformed innermost stable

circular orbit (ISCO). Superposing the gravitational reaction force Areac onto the “exact”

deformed-Schwarzschild dynamics (defined by mapping back the effective problem onto the

real one) finally defines, in a non-perturbative manner, a dynamical system which is a good

candidate for describing the late stages of evolution of a coalescing compact binary.

II. SECOND POST-NEWTONIAN DYNAMICS OF THE RELATIVE MOTION

OF A TWO-BODY SYSTEM

Let us recall some of the basic properties of the dynamics defined by neglecting the

time-odd reaction force in the Damour-Deruelle equations of motion (1.1). The 2PN (i.e.
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(v/c)4-accurate) truncation of these equations of motion defines a time-symmetric dynamics

which is derivable from a generalized Lagrangian L(z1, z2, v1, v2, a1, a2) [8], [7] (a function

of the harmonic positions, z1, z2, velocities v1, v2 and accelerations a1, a2). The generalized

Lagrangian L(z1, z2, v1, v2, a1, a2) is (approximately) invariant under the Poincaré group

[9]. This invariance leads (via Noether’s theorem) to the explicit construction of the usual

ten relativistic conserved quantities for a dynamical system: energy E , linear momentum P ,

angular momentum J , and center-of-mass constant K = G − P t. Because of the freedom

to perform a Poincaré transformation (in harmonic coordinates), we can go to the (2PN)

center-of-mass frame, defined such as

P = K = G = 0 . (2.1)

Refs. [10], [11] explicitly constructed the coordinate transformation between the harmonic

(or De Donder) coordinates, say zµ, used in the Damour-Deruelle equations of motion, and

the coordinates, say qµ, introduced by Arnowitt, Deser and Misner [12] in the framework of

their canonical approach to the dynamics of the gravitational field. The Lagrangian giving

the 2PN motion in ADM coordinates has the advantage of being an ordinary Lagrangian

L(q1, q2, q̇1, q̇2) (depending only on positions and velocities), which is equivalent to an ordi-

nary Hamiltonian H(q1, q2, p1, p2) [13], [14]. The explicit expression of the 2PN Hamiltonian

in ADM coordinates, H(q1, q2, p1, p2), has been derived in Ref. [11] by applying a contact

transformation

qa(t) = za(t) − δ∗za(z, v) , (2.2)

to the generalized Lagrangian L(za, va, aa). The shift δ∗ za is of order O(c−4) and is defined

in equation (35) of [10] or equations (2.4) of [11]. The contact transformation (2.2) removes

the acceleration dependence of the harmonic-coordinates Lagrangian Lharm(z, v, a) and trans-

forms it into the ADM-coordinates ordinary Lagrangian LADM(q, q̇). A further Legendre-

transform turns LADM(q1, q2, q̇1, q̇2) into the needed 2PN Hamiltonian H(q1, q2, p1, p2) in

ADM coordinates. The explicit expression of this Hamiltonian is given in equation (2.5) of

Ref. [11]. It has also been shown in Ref. [10] that the Hamiltonian H(q1, q2, p1, p2) can be

directly derived in ADM coordinates from the (not fully explicit) N -body results of Ref. [13]

by computing a certain integral entering the two-body interaction potential. [For further
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references on the general relativistic problem of motion, see the review [15]; for recent work

on the gravitational Hamiltonian see [16], [17], [18], [19].]

The ADM expression of the total Noether linear momentum P associated to the trans-

lational invariance of L(z, v, a) is simply P = p1 + p2. Therefore it is easily checked that,

in the center-of-mass frame (2.1), the relative motion is obtained by substituting in the

two-body Hamiltonian H(q1, q2, p1, p2),

p1 → P , p2 → −P , (2.3)

where P = ∂S/∂Q is the canonical momentum associated with the relative ADM position

vector Q ≡ q1 − q2. [For clarity, we modify the notation of Ref. [11] by using q1, q2, Q

and q for the ADM position coordinates which are denoted r1, r2, R and r , respectively,

in Ref. [11].]

Our technical starting point in this work will be the reduced center-of-mass 2PN Hamil-

tonian (in reduced ADM coordinates). We introduce the following reduced variables (all

defined in ADM coordinates, and in the center-of-mass frame):

q ≡ Q

GM
≡ q1 − q2

GM
, p ≡ P

µ
,

t̂ ≡ t

GM
, Ĥ ≡ HNR

µ
≡ HR − Mc2

µ
. (2.4)

In the last equation, the superscript “NR” means “non-relativistic” (i.e. after subtraction of

the appropriate rest-mass contribution), while “R” means “relativistic” (i.e. including the

appropriate rest-mass contribution). From equation (3.1) of [11] the reduced 2PN relative-

motion Hamiltonian (without the rest-mass contribution) reads

Ĥ(q, p) = Ĥ0(q, p) +
1

c2
Ĥ2(q, p) +

1

c4
Ĥ4(q, p) , (2.5)

where

Ĥ0(q, p) =
1

2
p2 − 1

q
, (2.6a)

Ĥ2(q, p) = −1

8
(1 − 3ν) p4 − 1

2q
[(3 + ν) p2 + ν(n · p)2] +

1

2q2
, (2.6b)

Ĥ4(q, p) =
1

16
(1 − 5ν + 5ν2) p6

+
1

8q
[(5 − 20ν − 3ν2) p4 − 2ν2 p2(n · p)2 − 3ν2(n · p)4]

+
1

2q2
[(5 + 8ν) p2 + 3ν (n · p)2] − 1

4q3
(1 + 3ν) , (2.6c)
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in which q ≡ |q| ≡ (q2)1/2 and n ≡ q/q. When convenient, we shall also use the notation r

for the reduced radial separation q (and R for the unreduced one Q). [As in Eqs. (2.8)–(2.12)

below.]

The relative-motion Hamiltonian (2.5) is invariant under time translations and space

rotations. The associated conserved quantities are the reduced center-of-mass (c.m.) energy

and angular momentum of the binary system:

Ĥ (q, p) = ÊNR ≡ ENR
c.m.

µ
, q × p = j ≡ J c.m.

µGM
. (2.7)

A convenient way of solving the 2PN relative-motion dynamics is to use the Hamilton-Jacobi

approach. The motion in the plane of the relative trajectory is obtained, in polar coordinates

qx = r cos ϕ , qy = r sin ϕ , qz = 0 , (2.8)

by separating the time and angular coordinates in the (planar) reduced action

Ŝ ≡ S

µGM
= −ÊNR t̂ + j ϕ + Ŝr(r, ÊNR, j) . (2.9)

The time-independent Hamilton-Jacobi equation ĤNR(q, p) = ÊNR with p = ∂Ŝ/∂q can be

(iteratively) solved with respect to (dŜr/dr)2 with a result of the form

Ŝr(r, ÊNR, j) =

∫
dr

√
R(r, ÊNR, j) . (2.10)

The radial “effective potential” R(r, ÊNR, j) is a fifth-order polynomial in 1/r ≡ 1/q which

is explicitly written down in equations (3.4) of [11]. In this section, we shall only need the

corresponding (integrated) radial action variable

ir ≡
IR

µGM
≡ 2

2π

∫ rmax

rmin

dr

√
R(r, ÊNR, j) . (2.11)

The function ir(ÊNR, j) has been computed, at the 2PN accuracy, in Ref. [11] (see equation

(3.10) there). To clarify some issues connected with the fact that the natural scalings in the

“effective one-body problem” (to be considered below) differ from those in the present, real

two-body problem, let us quote the expression of the unscaled radial action variable

IR = α ir =
2

2π

∫ Rmax

Rmin

dR
dSR(R, ENR,J )

dR
, (2.12)
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in terms of the unscaled variables ENR = µ ÊNR and J = α j. Here R = Q = G M r = G M q,

and we introduced the shorthand notation

α ≡ µ GM = G m1 m2 (2.13)

for the gravitational two-body coupling constant. We have

IR(ENR,J ) =
α µ1/2

√
−2 ENR

[
1 +

(
15

4
− ν

4

) ENR

µc2
+

(
35

32
+

15

16
ν +

3

32
ν2

)(ENR

µc2

)2
]

− J +
α2

c2J

[
3 +

(
15

2
− 3ν

) ENR

µ c2

]
+

(
35

4
− 5

2
ν

)
α4

c4 J 3
. (2.14)

Equation (2.14) can also be solved with respect to ENR ≡ ER−Mc2 with the (2PN-accurate)

result (see equation (3.13) of Ref. [11])

ER(N ,J ) = Mc2 − 1

2

µα2

N 2

[
1 +

α2

c2

(
6

NJ − 1

4

15 − ν

N 2

)

+
α4

c4

(
5

2

7 − 2ν

NJ 3
+

27

N 2J 2
− 3

2

35 − 4ν

N 3J +
1

8

145 − 15ν + ν2

N 4

)]
, (2.15)

where N denotes the Delaunay action variable N ≡ IR + J . The notation is chosen so as

to evoke the one often used in the quantum Coulomb problem. Indeed, the classical action

variables IR and J , or their combinations N = IR + J and J , are adiabatic invariants

which, according to the Bohr-Sommerfeld rules, become (approximately) quantized in units

of ~ for the corresponding quantum bound states. More precisely N /~ becomes the “principal

quantum number” and J /~ the total angular-momentum quantum number. The fact that

the Newtonian-level non-relativistic energy ENR = −1
2
µα2/N 2 + O(c−2) depends only on

the combination N = IR + J is the famous special degeneracy of the Coulomb problem.

Note that 1PN (and 2PN) effects lift this degeneracy by bringing an extra dependence on

J . There remains, however, the degeneracy associated with the spherical symmetry of the

problem, which implies that the energy does not depend on the “magnetic quantum number”,

i.e. on M = Jz, but only on the magnitude of the angular momentum vector J =
√

J 2.

Though we shall only be interested in the classical gravitational two-body problem, it is

conceptually useful to think in terms of the associated quantum problem. From this point of

view, the formula (2.15) describes, when N /~ and J /~ take (non zero) integer values, all the

quantum energy levels as a function of the parameters M = m1 +m2, µ = m1 m2/(m1 +m2),

α = G m1 m2 and ν = µ/M . It is to be noted that the function ER(N ,J ) describing the

energy levels is a coordinate-invariant object.
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III. SECOND POST-NEWTONIAN ENERGY LEVELS OF THE EFFECTIVE

ONE-BODY PROBLEM

The “energy levels” (2.15) summarize, at the 2PN accuracy, the dynamics obtained by

eliminating the field variables gµν(x) in the total action of a gravitationally interacting binary

system

Stot[z
µ
1 , zµ

2 , gµν ] = −
∫

m1 c ds1 −
∫

m2 c ds2 + Sfield[gµν(x)] , (3.1)

where ds1 =
√
−gµν(zλ

1 ) dzµ
1 dzν

1 and where Sfield[gµν(x)] is the (gauge-fixed) Einstein-Hilbert

action for the gravitational field. Let Sreal[z
µ
1 , zµ

2 ] be the Fokker-type action obtained by

(formally) integrating out gµν(x) in (3.1). [See, e.g., [10] for more details on Fokker-type

actions. As we work here only at the 2PN level, and take advantage of the explicit results

of Refs. [8], [7], we do not need to enter the subtleties of the elimination of the field degrees

of freedom, which are probably best treated within the ADM approach. See [20], [14].]

The basic idea of the present work is to, somehow, associate to the “real” two-body

dynamics Sreal[z
µ
1 , zµ

2 ] some “effective” one-body dynamics in an external spacetime, as de-

scribed by the action

Seff [zµ
0 ] = −

∫
m0 c ds0 , (3.2)

where ds0 =
√

−geff
µν(z

λ
0 ) dzµ

0 dzν
0 , with some spherically symmetric static effective metric

ds2
eff = geff

µν(x
λ
eff) dxµ

eff dxν
eff = −A(Reff) c2 dt2eff + B(Reff) dR2

eff

+ C(Reff) R2
eff(dθ2

eff + sin2 θeff dϕ2
eff) . (3.3)

To ease the notation we shall, henceforth in this section, suppress the subscript “eff” on the

coordinates used in the effective problem. [Later in this paper we shall explicitly relate the

coordinates zµ
0 of the effective particle to the coordinates zµ

1 , zν
2 of the two real particles.]

The metric functions A(R), B(R), C(R) will be constructed in the form of an expansion in

1/R:

A(R) = 1 +
a1

c2R
+

a2

c4R2
+

a3

c6R3
+ · · · ,

B(R) = 1 +
b1

c2R
+

b2

c4R2
+ · · · . (3.4)
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Beware that the variable R in Eqs. (3.4) denotes (in this section) the effective radial coordi-

nate, which differs from the real ADM separation Q = RADM = GMr used in the previous

section (e.g. in the definition of IR). We indicate in Eq. (3.4) the terms that we shall need

at the 2PN level. The third function C(R) entering the effective metric will be either fixed

to CS(R) ≡ 1 (in “Schwarzschild” coordinates), or to satisfy CI(R) ≡ B(R) (in “Isotropic”

coordinates).

There are two mass parameters entering the effective problem: (i) the mass m0 of the

effective particle, and (ii) some mass parameter M0 used to scale the coefficients ai, bi entering

the effective metric. For instance, we can define M0 by conventionally setting

a1 ≡ −2 G M0 . (3.5)

By analogy to Eq. (2.15), we can summarize, in a coordinate-invariant manner, the

dynamics of the effective one-body problem (3.2)–(3.4) by considering the “energy levels” of

the bound states of the particle m0 in the metric geff
µν :

ER
0 = m0 c2 + ENR

0 = F(N0,J0; m0, ai, bi) . (3.6)

Here, the relativistic effective energy ER
0 and the effective action variables N0, J0 are unam-

biguously defined by the action (3.2). Namely, we can separate the effective Hamilton-Jacobi

equation

gµν
eff

∂Seff

∂xµ

∂Seff

∂xν
+ m2

0 c2 = 0 , (3.7)

by writing (considering, for simplicity, only motions in the equatorial plane θ = π
2
)

Seff = −E0 t + J0 ϕ + S0
R(R, E0,J0) . (3.8)

To abbreviate the notation we suppress the superscript “R” on the relativistic effective

energy E0. Inserting Eq. (3.8) in Eq. (3.7) yields

− 1

A(R)

E2
0

c2
+

1

B(R)

(
dS0

R

dR

)2

+
J 2

0

C(R) R2
+ m2

0 c2 = 0 , (3.9)

and therefore

S0
R(R, E0,J0) =

∫
dR
√

R0(R, E0,J0) , (3.10)
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where

R0(R, E0,J0) ≡
B(R)

A(R)

E2
0

c2
− B(R)

(
m2

0 c2 +
J 2

0

C(R) R2

)
. (3.11)

The effective radial action variable I0
R is then defined as

I0
R(E0,J0) ≡

2

2π

∫ Rmax

Rmin

dR
√

R0(R, E0,J0) , (3.12)

while the effective “principal” action variable N0 is defined as the combination N0 ≡ I0
R +J0.

To obtain the effective “energy levels” E0 = F(N0,J0) one needs to compute the definite

radial integral (3.12). Ref. [11] (extending some classic work of Sommerfeld, used in the old

quantum theory) has shown how to compute the PN expansion of the radial integral (3.12)

to any order in the 1/R expansions (3.4). At the present 2PN order, Ref. [11] gave a general

formula (their equation (3.9)) which can be straightforwardly applied to our case.

As we said above, the function describing the “energy levels”, E0 = F(N0,J0), is a

coordinate-invariant construct. As a check on our calculations, we have computed it (or

rather, we have computed the radial action I0
R(E0,J0)) in the two preferred coordinate gauges

for a spherically symmetric metric: the “Schwarzschild gauge” and the “Isotropic” one. If

(ai, bi) denote the expansion coefficients (3.4) in the Schwarzschild gauge (CS(R) ≡ 1), we

find (at the 2PN accuracy)

I0
R(E0,J0) =

m
3/2
0√

−2 ENR
0

[
A + B

ENR
0

m0 c2
+ C

( ENR
0

m0 c2

)2
]
−J0

+
m2

0

c2 J0

[
D + E

ENR
0

m0 c2

]
+

m4
0

c4 J 3
0

F , (3.13)

where ENR
0 ≡ E0 − m0 c2, and where

A = −1

2
a1 , B = b1 −

7

8
a1 , C =

b1

4
− 19

64
a1 ,

D =
a2

1

2
− a2

2
− a1b1

4
, E = a2

1 − a2 −
a1b1

2
− b2

1

8
+

b2

2
,

F =
1

64
[24 a4

1 − 48 a2
1 a2 + 8 a2

2 + 16 a1 a3 − 8 a3
1 b1 + 8 a1 a2 b1 − a2

1 b2
1 + 4 a2

1 b2] . (3.14)

Denoting by (ãi, b̃i) the expansion coefficients (3.4) in the Isotropic gauge (CI(R) ≡
BI(R)), we find, by calculating I0

R directly in the isotropic gauge, that the coefficients
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A, B, . . . , F entering Eq. (3.13) have the following (slightly simpler) expressions in terms

of ãi and b̃i:

A = −1

2
ã1 , B = b̃1 −

7

8
ã1 , C =

b̃1

4
− 19

64
ã1 ,

D =
ã2

1

2
− ã2

2
− ã1b̃1

2
, E = ã2

1 − ã2 − ã1b̃1 + b̃2 ,

F =
1

8
[3 ã4

1 − 6 ã2
1 ã2 + ã2

2 + 2 ã1 ã3 − 4 ã3
1 b̃1 + 4 ã1 ã2 b̃1 + ã2

1 b̃2
1 + 2 ã2

1 b̃2] . (3.15)

The numerical values of the coefficients A, B, . . . , F are checked to be coordinate-invariant

by using the following relation between the (ai, bi) and the (ãi, b̃i) (which is easily derived

either by integrating dRI/RI =
√

BS(RS) dRS/RS or by using the algebraic link RS =

RI

√
BI(RI))

ã1 = a1 , b̃1 = b1 ,

ã2 = a2 −
1

2
a1 b1 , b̃2 =

1

2
b2 −

1

8
b2
1 ,

ã3 = a3 − a2 b1 +
7

16
a1 b2

1 −
1

4
a1 b2 . (3.16)

Finally, solving iteratively Eq. (3.13) with respect to ENR
0 , we find the analog of Eq. (2.15),

i.e. the explicit formula giving the effective “energy levels”. It is convenient to write it in

terms of N0 ≡ I0
R + J0, of the coupling constant

α0 ≡ G M0 m0 , (3.17)

where M0 is defined by Eq. (3.5), and of the (GM0)-rescaled, dimensionless expansion coef-

ficients âi and b̂i, of the Schwarzschild gauge:

âi ≡ ai/(GM0)
i , b̂i ≡ bi/(GM0)

i , (3.18)

with â1 ≡ −2.

We find

E0(N0,J0) = m0 c2 − 1

2

m0 α2
0

N 2
0

[
1 +

α2
0

c2

(
C3,1

N0J0
+

C4,0

N 2
0

)

+
α4

0

c4

(
C3,3

N0J 3
0

+
C4,2

N 2
0 J 2

0

+
C5,1

N 3
0 J0

+
C6,0

N 4
0

)]
, (3.19)

where the coefficients Cp,q (which parametrize the contributions ∝ −1
2
(α0/c)

p+q N−p
0 J −q

0 to

E0/m0 c2) are given by
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C3,1 = 2D̂ , C4,0 = −B̂ ,

C3,3 = 2F̂ , C4,2 = 3D̂2 ,

C5,1 = −(4B̂ D̂ + Ê) , C6,0 =
1

4

(
5B̂2 + 2Ĉ

)
. (3.20)

Here, the dimensionless quantities B̂, Ĉ, D̂, Ê, F̂ are the GM0-rescaled versions of the co-

efficients of Eq. (3.13), given by replacing the ai’s by âi in Eqs. (3.14). For instance,

B̂ = b̂1 − 7/8 â1 = b̂1 + 7/4, etc..

IV. RELATING THE “REAL” AND THE “EFFECTIVE” ENERGY LEVELS,

AND DETERMINING THE EFFECTIVE METRIC

We still have to define the precise rules by which we wish to relate the real two-body

problem to the effective one-body one. If we think in quantum terms, there is a natural

correspondence between N and N0, and J and J0, which are quantized in units of ~. It is

therefore very natural to require the identification

N = N0 , J = J0 , (4.1)

between the real action variables and the effective ones, and we will do so in the following.

What is a priori less clear is the relation between the real masses and energies, m1, m2,

ER
real = (m1 + m2) c2 + ENR

real, and the effective ones, m0, M0, E0 = m0 c2 + ENR
0 . The usual

non-relativistic definition of an effective dynamics associated to the relative motion of a

(Galileo-invariant) two-body system introduces an effective particle whose position q0 is

the relative position, q0 = q1 − q2, whose inertial mass mNR
0 is the “reduced” mass µ ≡

m1 m2/(m1+m2), and whose potential energy is the potential energy of the system, Veff(q0) =

Vreal(q1 − q2). In the present case of a gravitationally interacting two-body system, with

V NR
real = −G m1 m2/|q1 − q2|, this would determine

mNR
0 = µ , and MNR

0 = m1 + m2 ≡ M , (4.2)

such that αreal = G m1 m2 = α0 = G MNR
0 mNR

0 . The non-relativistic identifications (4.2) are,

however, paradoxical within a relativistic framework, even if they are modified by “relativistic

corrections”, so that, say, m0 = µ + O(c−2), M0 = M + O(c−2), because the reference level

(and accumulation point for N ,J → ∞) of the real relativistic levels (2.15) will be the
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total rest-mass-energy Mc2, and will therefore be completely different from the reference

level m0 c2 ≃ µ c2 of the effective relativistic energy levels. This difference in the relativistic

reference energy level shows that, while it is very natural to require the straightforward

identifications (4.1) of the action variables, the mapping between Ereal and E0 must be more

subtle.

One might a priori think that the most natural relativistic generalization of the usual

non-relativistic rules for defining an effective one-body problem consists in requiring that

E0(N0,J0) = Ereal(N ,J ) − c0 , (4.3)

with a properly chosen constant c0 = M c2 − m0 c2 taking care of the shift in reference

level. The rule (4.3) is equivalent to requiring the identification of the “non-relativistic”

Hamiltonians (with subtraction of the rest-mass contribution)

HNR
0 (q′, p′) = HNR

real(q, p) , (4.4)

where the canonical coordinates in each problem must be mapped (because of the identifi-

cation (4.1)) by a canonical transformation,

∑

i

pi dqi =
∑

i

p′i dq′i + dg(q, q′) , (4.5)

with some “generating function” g(q, q′).

We have explored the naive identification (4.3), or (4.4), and found that it was unsatis-

factory. Indeed, one finds that it is impossible to require simultaneously that: (i) the energy

levels coincide modulo an overall shift (4.3), (ii) the effective mass m0 coincides with the

usual reduced mass µ = m1 m2/(m1 + m2), and (iii) the effective metric (3.3) depends only

on m1 and m2. [This impossibility comes from the fact that the requirement (4.4) is a very

strong constraint which imposes more equations than unknowns.] If one insists on imposing

the naive identification (4.3) there is a price to pay: one must drop at least one of the re-

quirements (ii) or (iii). Various possibilities are discussed in the Appendices of this paper.

One possibility is to drop the requirement that m0 = µ. As discussed in App. A, we find

that there is a unique choice of masses in the effective problem, namely

m0 = µ ξ−2 , GM0 = GM ξ3 , (4.6)

with
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ξ2 =
1

5

[
2
√

100 + 30ν + 4ν2 − 15 + ν
]

, (4.7)

which is compatible with the requirements (i) and (iii) above. However, we feel that it is

quite unnatural to introduce an effective mass m0 which differs from µ even in the non-

relativistic limit c → +∞. We feel also that this possibility is so constrained that it is only

available at the 2PN level and will not be generalizable to higher post-Newtonian orders.

A second (formal) possibility is to introduce some energy dependence, either in m0, say

m0 = µ

(
1 + β1

ENR
0

µ c2
+ β2

(ENR
0

µ c2

)2

+ · · ·
)

, (4.8)

or in the effective metric (3.3). Namely, the various coefficients a1, b1, a2, b2, a3, . . . in Eq. (3.4)

can be expanded as

a1(E0) = a
(0)
1 + a

(2)
1

ENR
0

m0 c2
+ a

(4)
1

( ENR
0

m0 c2

)2

+ · · · , (4.9)

etc. These possibilities are discussed, for completeness, in App. B.

Though the trick of introducing an energy dependence in (both) m0 and the effective

potential has been advocated, and used, in the quasi-potential approach of Todorov [3], [4],

we feel that it is unsatisfactory. Conceptually, it obscures very much the nature of the map-

ping between the two problems, and, technically, it renders very difficult the generalization

(we are interested in) to the case where radiation damping is taken into account (and where

the energy is no longer conserved). We find much more satisfactory to drop the naive re-

quirement (4.3), and to replace it by the more general requirement that there exist a certain

one-to-one mapping between the real energy levels and the effective ones, say

E0(N0,J0) = f [Ereal(N ,J )] . (4.10)

In explicit, expanded form, the requirement (4.10) yields a deformed version of Eq. (4.3):

ENR
0

m0 c2
=

ENR
real

µ c2

(
1 + α1

ENR
real

µ c2
+ α2

(ENR
real

µ c2

)2

+ · · ·
)

. (4.11)

Here, we assume that the standard identification (4.3) holds (together with m0 = µ+O(c−2))

in the non-relativistic limit c → ∞.

We are going to show that the a priori arbitrary function f , i.e. the parameters α1, α2, . . .

can be uniquely selected (at the 2PN level) by imposing the following physically natural
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requirements: (a) the mass of the effective test particle coincides with the usual reduced

mass,

m0 = µ , (4.12)

and, (b) the linearized (“one-graviton-exchange”) effective metric coincides with the lin-

earized Schwarzschild metric with mass M ≡ m1 + m2, i.e.

a1 = −2GM , b1 = 2GM . (4.13)

Note that the requirement (4.12) is actually imposed by dimensional analysis as soon as one

requires m0 = µ +O(c−2). Indeed, as we bar any dependence on the energy, it is impossible

to write any correction terms O(c−2) in the link between m0 and µ. The requirement (4.13) is

very natural when one thinks that the role of the effective metric is to reproduce, at all orders

in the coupling constant G, the interaction generated by exchanging gravitons between two

masses m1 and m2. The “one-graviton-exchange” interaction (linear in G m1 m2) depends

only on the (Lorentz-invariant) relative velocity and corresponds to a linearized Schwarzschild

effective metric in the test-mass limit ν → 0. As the coefficient −1
2
a1 is fixed (by dimensional

analysis, as above) to its non-relativistic value −1
2
a1 m0 = G M0 m0 = G m1 m2, it is very

natural not to deform the coefficient b1 by ν-dependent corrections.

Let us now prove the consistency of the requirements (4.12), (4.13) and determine the

energy mapping f . We can start from the result (3.13), in which one replaces ENR
0 by the

expansion (4.11). This leads again to an expression of the form (3.13), with ENR
0 replaced

by ENR
real. One can simplify this expression by working with scaled variables:

Î0
R ≡ I0

R

α0
, Îreal

R ≡ Ireal
R

α
≡ ir , E0 ≡

ENR
0

m0
, Ereal ≡

ENR
real

µ
,

j0 ≡
J0

α0
, j ≡ J

α
. (4.14)

Here α0 ≡ GM0 m0 and α ≡ GM µ ≡ G m1 m2 as above. We use also the scaled metric

coefficients âi and b̂i of Eq. (3.18). Let us note, in passing, that, very generally, the di-

mensionless quantity Ê0/c
2 ≡ E0/(m0 c2) = 1 + c−2 E0 is expressible entirely in terms of the

dimensionless scaled action variables Î0
a/c = I0

a/(α0 c) and of the dimensionless scaled metric

coefficients âi, b̂i. [This scaling behavior can be proved very easily by scaling from the start

the effective action S0 = −
∫

m0 c dseff
0 = −α0 c

∫
dŝeff

0 with dŝ2
0 ≡ (GM0)

−2 ds2
0, and by using

scaled coordinates: R̂ = R/GM0, t̂ = t/GM0.]
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Let us now make use of the assumptions m0 = µ and GM0 ≡ −1
2
a1 = GM (so that

α0 = GM0 m0 = GM µ = α). But, let us not yet assume the second equation (4.13), i.e. let

us assume â1 ≡ −2, but let us not yet assume any value for b̂1 ≡ b1/GM0 ≡ b1/GM . Within

these assumptions, the scaled version of the result (3.13), with ENR
0 replaced by (4.11), reads

Î0
R(E0(Ereal), j0) = −j0 +

1√−2Ereal

[
Â + B̂′ Ereal

c2
+ Ĉ ′

(
Ereal

c2

)2
]

+
1

c2j0

[
D̂ + Ê

Ereal

c2

]
+

1

c4j3
0

F̂ , (4.15)

where

Â = −1

2
â1 = 1 , B̂′ =

7

4
+ b̂1 −

α1

2
,

Ĉ ′ =
19

32
+

b̂1

4
+

α1

2

(
b̂1 +

7

4

)
+

3

8
α2

1 −
α2

2
, (4.16)

and where D̂, Ê and F̂ are obtained from the expressions (3.14) by the replacements ai → âi,

bi → b̂i (with â1 = −2). Finally, identifying [I0
R(E0,J0)]

E0=f(Ereal)
J0=Jreal

with IR(Ereal,Jreal), or

equivalently Î0
R(E0(Ereal), j0) with ÎR(Ereal, j0), yields five equations to be satisfied, namely

the equations stating that B̂′, Ĉ ′, D̂, Ê and F̂ coincide with the corresponding coefficients

in Eq. (2.14). The explicit form of these equations is

7

4
+ b̂1 −

α1

2
=

15

4
− ν

4
, (4.17)

19

32
+

b̂1

4
+

α1

2

(
b̂1 +

7

4

)
+

3

8
α2

1 −
α2

2
=

35

32
+

15

16
ν +

3

32
ν2 , (4.18)

2 − â2

2
+

b̂1

2
= 3 , (4.19)

4 − â2 + b̂1 −
b̂2
1

8
+

b̂2

2
=

15

2
− 3ν , (4.20)

6 − 3 â2 +
â2

2

8
− â3

2
+ b̂1 −

1

4
â2 b̂1 −

b̂2
1

16
+

b̂2

4
=

35

4
− 5

2
ν . (4.21)

Note that the subsystem made of the two equations (4.17), (4.18) (corresponding to B̂′

and Ĉ ′) contains the three unknowns b̂1, α1, α2, while the three equations (4.19)–(4.21)

(corresponding to D̂, Ê and F̂ ) contains the unknowns b̂1, b̂2, â2, â3. In this section we shall

consider only the first (“BC”) subsystem, leaving the “DEF” system to the next section.

It is easily seen that the BC subsystem would admit no solution in b̂1 if we were to

impose α1 = α2 = 0. This proves the assertion made above that one needs a non trivial
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energy mapping E0 = f(Ereal). On the other hand, if we introduce the two free parameters α1,

α2 the BC subsystem becomes an indeterminate system of two equations for three unknowns.

As argued above, it is physically very natural to impose that the linearized effective metric

coincides with the linearized Schwarzschild metric, i.e. that

b̂1 = 2 . (4.22)

Then the BC system (4.17), (4.18) admits the unique solution:

α1 =
ν

2
, α2 = 0 . (4.23)

This solution corresponds to the link

ENR
0

m0 c2
=

ENR
real

µ c2

(
1 +

ν

2

ENR
real

µ c2

)
, (4.24)

which is equivalent to

E0

m0 c2
≡ E2

real − m2
1 c4 − m2

2 c4

2 m1 m2 c4
. (4.25)

Remarkably, the map (4.25) between the real total relativistic energy Ereal = M c2 + ENR
real,

and the effective relativistic energy E0 = m0 c2 + ENR
0 coincides with the one introduced

by Brézin, Itzykson and Zinn-Justin [1], which maps very simply the one-body relativistic

Balmer formula onto the two-body one (in quantum electrodynamics). The same map was

also recently used by Damour, Iyer and Sathyaprakash [21]. There it was emphasized that

the function ϕ(s) of the Mandelstam invariant s = E2
real appearing on the R.H.S. of Eq. (4.25)

is the most natural symmetric function of the asymptotic1 4-momenta pµ
1 , pµ

2 of a two-particle

system which reduces, in the test-mass limit m2 ≪ m1, to the energy of m2 in the rest-frame

of m1. Indeed, (setting here c = 1 for simplicity)

ϕ(s) ≡ s − m2
1 − m2

2

2 m1 m2
=

−(p1 + p2)
2 − m2

1 − m2
2

2 m1 m2
= − p1 · p2

m1 m2
. (4.26)

Finally, we have two a priori independent motivations for using the function ϕ(s), i.e. the link

(4.25), to map the real two-body energy onto the effective one-body one: (i) the simplicity,

1We consider here scattering states. By analytic continuation in s, the function ϕ(s) is naturally

expected to play a special role in the energetics of two-body bound states.
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and the symmetry, of the expression (4.26) which generalizes the test-mass conserved energy

E0/m0 = −Kµ pµ
0/m0 (where Kµ is the Killing vector defined by the time direction of the

background field) (see [21]), and (ii) the fact that it corresponds to a linearized effective

metric coinciding with the linearized Schwarzschild metric. Actually, these two facts are

not really independent, because (as discussed in [1] and [2]) they correspond heuristically to

saying that the “effective interaction” is the interaction felt by any of the two particles in

the rest frame of the other particle.

Summarizing: The rules we shall assume for relating the real two-body problem to the

effective one-body one are Eqs. (4.1) (or equivalently the condition (4.5) that the phase-space

coordinates are canonically mapped), and Eq. (4.25).

V. THE EFFECTIVE ONE-BODY METRIC AND THE DYNAMICS IT DEFINES

Having specified the rules linking the real two-body problem to the effective one-body

one, we can now proceed to the determination of the effective metric (at the 2PN level). We

shall work in Schwarzschild coordinates:

ds2
eff = −A(R) c2 dt2 + B(R) dR2 + R2(dθ2 + sin2 θ dϕ2) , (5.1)

with A(R) and B(R) constructed as expansions of the form (3.4). It will be useful to rewrite

also the effective metric in the form

ds2
eff = −A(R) c2 dt2 +

D(R)

A(R)
dR2 + R2(dθ2 + sin2 θ dϕ2) , (5.2)

in which we factorize, à la Schwarzschild, g−1
00 in front of the dR2 term, and consider that,

besides A(R), the second function constructed as an expansion in 1/R is

D(R) = A(R) B(R) = 1 +
d1

c2 R
+

d2

c4 R2
+ · · · , (5.3)

where

d1 = a1 + b1 , d2 = a2 + a1 b1 + b2 . (5.4)

To determine the effective metric, i.e. the coefficients âi and b̂i, or equivalently âi and

d̂i ≡ di/(GM)i, we insert the known values of b̂1, α1 and α2 (namely b̂1 = 2, α1 = ν/2,

α2 = 0) into the remaining equations (4.19)–(4.21) (“DEF system”). This yields three
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equations for the three unknowns â2, b̂2 and â3. The unique solution of this DEF system

reads

â2 = 0 , â3 = 2ν , b̂2 = 4 − 6ν . (5.5)

In other words, our natural assumptions (4.12), (4.13) have led us uniquely to the simple

energy map (4.25) and to an effective one-body metric given by

A(R) = 1 − 2GM

c2 R
+ 2ν

(
GM

c2 R

)3

+ · · · , (5.6)

B(R) = 1 +
2GM

c2 R
+ (4 − 6ν)

(
GM

c2 R

)2

+ · · · , (5.7)

D(R) = 1 − 6ν

(
GM

c2 R

)2

+ · · · . (5.8)

The simplicity of the final results (5.6)–(5.8) is striking. The effective metric (5.2) is a

simple deformation of the Schwarzschild metric (As(R) = 1 − 2GM/c2 R, Ds(R) = 1) with

deformation parameter ν. Note also that there are no ν-dependent corrections to A(R) at

the 1PN level, i.e. no ν(GM/c2 R)2 contribution to A(R). The first ν-dependent corrections

enter at the 2PN level. Remembering that the (2PN) effective metric fully encodes the

information contained in the complicated 2PN expressions (2.14) or (2.15), it is remarkable

that the metric coefficients (5.6)–(5.8) be so simple. The previous approach of Ref. [4] led

to much more complicated expressions at the 1PN level (to which it was limited).

In this paper, we propose to trust the physical consequences of the effective metric (5.2),

with A(R) given by Eq. (5.6) and D(R) given by Eq. (5.8), even in the region where R

is of order of a few times GM/c2. Note that even in the extreme case where ν = 1/4

and R ≃ 2 GM/c2 the ν-dependent additional terms entering the effective metric remain

relatively small: Indeed, in this case, δνA(R) = 2ν(GM/c2 R)3 = 1/16 and −δνD(R) =

6ν (GM/c2 R)2 = 3/8. We expect, therefore, that it should be a fortiori possible to trust the

predictions of the effective metric (5.2) near the innermost stable circular orbit, i.e. around

R ≃ 6 GM/c2 (where δνA(R) ≃ 2 × 10−3 and −δνD(R) ≃ 4 × 10−2). Note that this nice

feature of having only a small deformation of Schwarzschild, even when ν = 1/4, is not

shared by the “hybrid” approach of Kidder, Will and Wiseman [22]. Indeed, as emphasized

in Ref. [21], the ν-deformations considered in the hybrid approach are, for some coefficients,

larger than unity when ν = 1/4. This is related to the fact pointed out by Schäfer and Wex
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[23], [24] that, by applying the hybrid approach of [22] to the Hamiltonian, instead of the

equations of motion, one gets significantly different predictions.

Let us note also that, if we decide to write the effective metric in the form (5.2), the

existence of a simple zero in the function A(R), say A(RH) = 0, implies (if D(RH) 6= 0,

and D(R) > 0 for R > RH) that the hypersurface R = RH is (like in the undeformed

Schwarzschild case) a regular (Killing) horizon. As usual, one can define Kruskal-like coor-

dinates to see explicitly the regular nature of the horizon R = RH (made of two intersecting

null hypersurfaces). In our case, one checks easily that the function A2PN(R) defined by

the first three terms on the R.H.S. of (5.6) admits a simple zero2 at some RH(ν), when

0 ≤ ν ≤ 1
4
. The position RH(ν) of this “effective horizon” smoothly, and monotonically,

evolves with the deformation parameter ν between RH(0) = 2GM/c2 and

RH (1/4) ≃ 0.9277
(
2GM/c2

)
. (5.9)

This relatively small change of the horizon toward a smaller value, i.e. a smaller horizon area

(to quote an invariant measure of the location of the horizon), suggests that the dynamics

of trajectories in the effective metric will also be only a small deformation of the standard

Schwarzschild case.

One of the main aims of the present work is indeed to study the dynamics (and the

energetics) in the effective metric (5.2). In particular, as gravitational radiation damping is

known to circularize binary orbits, we are especially interested in studying the stable circular

orbits in the effective metric. A convenient tool for doing this is to introduce an effective

potential [28], [29]. Note that the Hamilton-Jacobi equation (3.9) yields

( E0

m0 c2

)2

= WJ0
(R) +

A(R)

B(R)

(
PR

m0 c

)2

≥ WJ0
(R) , (5.10)

where PR ≡ ∂Seff/∂R is the effective radial momentum, and where the “effective radial

potential” WJ0
(R) is defined as

WJ0
(R) ≡ A(R)

[
1 +

(J0/m0 c)2

C(R) R2

]
. (5.11)

2 We consider here only the zero of A2PN(R) which is continuously connected to the usual horizon

RS
H = 2GM/c2 when ν → 0.
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We read also from Eq. (5.10) the relativistic effective Hamiltonian

HR
0 (R, PR, Pϕ) = m0 c2

√

A(R)

[
1 +

P 2
R

m2
0 c2 B(R)

+
P 2

ϕ

m2
0 c2 C(R) R2

]
,

≡ m0 c2

√

WPϕ
(R) +

A(R)

B(R)

(
PR

m0 c

)2

. (5.12)

The coordinate angular frequency along circular orbits is obtained by differentiating the

Hamiltonian, that is

ω0 ≡
(

dϕ

dt

)

circ

=

(
∂HR

0 (R, PR, Pϕ)

∂Pϕ

)

PR=0

, (5.13)

which gives explicitly (using Pϕ = J0)

ω0 =
J0

m0 C(R) R2

√
A(R)√

1 +
J 2

0

m2

0
c2 C(R) R2

. (5.14)

Eqs. (5.11) and (5.14) are valid in an arbitrary radial coordinate gauge, but we shall use

them in the Schwarzschild gauge where the metric coefficient C(R) ≡ 1. Note that W (R)

and ω0 then depend only on the metric coefficient A(R). In dimensionless scaled variables

R̂ ≡ c2 R/(GM), j0 ≡ cJ0/(GM µ), ω̂0 ≡ GMω0/c
3 (in our case M0 = M and m0 = µ), the

effective potential and the orbital frequency (along circular orbits) are quite simple:

Wj0(R̂) = A(R̂)

[
1 +

j2
0

R̂2

]
,

ω̂0 =
j0

R̂2

√
A(R̂)

√
1 +

j2

0

R̂2

. (5.15)

If we define the 2PN-accurate A(R) by the straightforward truncation of Eq. (5.6), namely

A2PN(R̂) = 1 − 2

R̂
+

2ν

R̂3
, (5.16)

Wj0 is a fifth-order polynomial in u ≡ 1/R̂ ≡ GM/(c2R). As the analytical study of

the extrema of Wj0 is rather complicated, we have used a numerical approach. When ν

varies between 0 and 1/4, Wj0 evolves into a smoothly deformed version of the standard

Schwarzschild effective potential. To illustrate this fact, we plot in Fig. 1 Wj0(R̂) for ν = 1
4

and for various values of the dimensionless angular momentum j0. Note that the latter
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FIG. 1. The effective radial potential Wj(R) (at the 2PN level and for ν = 1/4) versus the

dimensionless radial variable c2R/(GM) for three different values of the dimensionless angular

momentum j = cJreal/(GMµ). Note that the effective radial potential tends to one for R → ∞.

The stable circular orbits are located at the minima of the effective potential and are indicated by

heavy black circles. The innermost stable circular orbit corresponds to the critical value j∗. In the

case of the j1 curve the orbit of a particle with energy ER
0 = Ê0 is an elliptical rosette.

quantity coincides (in view of our rules) with the corresponding real two-body dimensionless

angular momentum j:

j0 ≡
cJ0

G M0 m0
=

cJreal

G M µ
≡ j . (5.17)

[Note that our definition of the j’s differs by a factor c from the one used in the previous

section.]

As usual, because of the inequality (5.10), when j and Ê0 ≡ E0/(m0 c2) are fixed, the

trajectory of a particle following a geodesic in the effective metric (5.2) can be qualitatively

read on Fig. 1. For instance, in the case illustrated for the j1 curve (ER
0 ≡ Ê0 line), the

orbit will be an elliptical rosette, with the radial variable oscillating between a minimum

and a maximum (solid line in Fig. 1). The stable circular orbits are located at the minima

of the effective potential (the maxima being unstable circular orbits). The innermost stable
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circular orbit (ISCO) corresponds to the critical value j∗ of the angular momentum where

the maximum and the minimum of the effective potential fuse together to form an horizontal

inflection point:

∂ Wj∗

∂R̂∗

= 0 =
∂2 Wj∗

∂R̂2
∗

. (5.18)

Let us, for comparison with our deformed case, recall the standard results for circular orbits

in a Schwarzschild spacetime [28], [29]. With the notation u ≡ GM0/c
2 R (for a Schwarzschild

metric of mass M0), the location, orbital frequency3, and energy of circular orbits are given,

when j varies, by

u =
1

6

[
1 −

√
1 − 12

j2

]
, (5.19)

ω̂S ≡ GM0

c3
ω = u3/2 , (5.20)

ÊS ≡
( E0

m0 c2

)S

= j(1 − 2u) u1/2 . (5.21)

The ISCO corresponds to the critical values

jS
∗ =

√
12 , uS

∗ =
1

6
, ω̂S

∗ =
1

6
√

6
, ÊS

∗ =

√
8

9
. (5.22)

In the deformed Schwarzschild case defined by Eq. (5.16), the ISCO for the extreme case

ν = 1
4

is numerically found to correspond to the values

j2PN
∗ ≡

(
cJreal

GMµ

)

ISCO

= 3.404 = 0.983 jS
∗ , (5.23)

u2PN
0∗ ≡

(
GM

c2 R

)

ISCO

= 0.1749 = 1.049 uS
∗ , (5.24)

ω̂2PN
0∗ ≡

(
GM ω0

c3

)

ISCO

= 0.07230 = 1.063 ω̂S
∗ , (5.25)

Ê2PN
0∗ ≡

( E0

µ c2

)

ISCO

= 0.94040 = 0.99744 ÊS
∗ . (5.26)

3Here, as well as in Eqs. (5.25) and (5.31) below, ω denotes the angular frequency dϕ/dt on a

circular orbit (in the equatorial plane).
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Note that the Schwarzschild-coordinate radius of the effective ISCO is (when ν = 1/4)

RISCO = 5.718 GM/c2, i.e. lower than the standard Schwarzschild value 6 GM/c2 corre-

sponding to the total mass M = m1 + m2. This is consistent with the fact that the effective

horizon was drawn in below 2GM/c2 when ν was turned on. Note, however, that the three

quantities u2PN
0 , ω2PN

0 and E2PN
0 entering equations (5.24)–(5.26) are mathematical quanti-

ties defined in the effective problem, and not physical quantities defined in the real problem

(hence the subscript 0 added as a warning). [By contrast, j2PN, Eq. (5.23) is directly related

to the real, two-body angular momentum.] For physical (and astrophysical) purposes, we

need to transform the information contained in Eqs. (5.24)–(5.26) into numbers concerning

physical quantities defined in the real, two-body problem. For the energy, this is achieved (by

definition) by using Eq. (4.25) to compute the real, two-body total energy Ereal. Explicitly,

the solution of Eq. (4.25) is (see also [21])

Ereal = M c2

√

1 + 2ν

(E0 − m0 c2

m0 c2

)
. (5.27)

We need also to transform the effective orbital frequency ω0. This is easily done as follows.

We know that the Hamiltonians of the real and effective problems are related by a mapping

Hreal (I
real
a ) = h(H0(I

0
a)) , (5.28)

where a = R, θ, ϕ (for the 3-dimensional problem), and where the function h (the inverse of

the function f of Eq. (4.10)) is, in our case, explicitly defined by Eq. (5.27). On the other

hand, we know that the action variables are identically mapped onto each other: I0
a = Ireal

a

(canonical transformation). The frequency of the motion of any separated degree of freedom

is given by the general formulas ω0
a = ∂ H0(I

0)/∂ I0
a , ωreal

a = ∂ Hreal(I
real)/∂ Ireal

a , where the

Hamiltonians are considered as functions of the canonically conjugate action-angle variables

(Ia, θa) (remembering that for such integrable systems, the Hamiltonian does not depend on

the θ’s). Therefore the frequencies of the real problem are all obtained from the frequencies

of the effective one by a common, energy-dependent factor

ωreal
a

ω0
a

=
dt0

dtreal
=

dHreal

dH0
=

∂ h(H0)

∂ H0
. (5.29)

In our case this “blue shift”4 factor reads

4For bound states, ωreal > ω0.
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FIG. 2. Variation with ν (at the 2PN level) of the ISCO values of the real non-relativistic

energy Ereal ≡ ÊNR
real ≡ (Ereal − M c2)/µc2 (on the left) and of the real angular momen-

tum j ≡ cJreal/GMµ (on the right), divided by the corresponding Schwarzschild values

|ES| ≡ |ÊNR
S | = 1 −

√
8/9 ≃ 0.05719 and jS =

√
12, respectively.

ωreal
a

ω0
a

=
dt0

dtreal
=

1√
1 + 2ν (E0 − m0 c2)/m0 c2

. (5.30)

As indicated in Eqs. (5.29) and (5.30) the same energy-dependent “blue shift” factor maps

the effective and the real times (along corresponding orbits). Note that we have here a

simple generalization of the spatial canonical transformation (dp ∧ dq = dp0 ∧ dq0) to the

time domain (dH ∧ dt = dH0 ∧ dt0).

Applying the transformations (5.27) and (5.29), we obtain the physical quantities5 pre-

dicted by our effective 2PN metric, still in the extreme case ν = 1/4,

5In Eq. (5.31) ωreal = dEreal/dJreal is again the angular frequency on a circular orbit. It should

not be confused with the radial (periastron to periastron) frequency ωR for non-circular, rosette

orbits.
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FIG. 3. ISCO values (at the 2PN level) of the quantity z = (GMωreal/c
3)−2/3, divided by the

Schwarzschild value zS = 6, versus ν.

ω̂2PN
real∗ =

(
GM

c3
ωreal

)

ISCO

= 1.079 ω̂S
∗ = 0.07340 , (5.31)

(E2PN
real − Mc2

µ c2

)

ISCO

= 1.050 (ÊS
∗ − 1) = −0.06005 . (5.32)

We represent in Figs. 2 and 3 the variation with ν of the ISCO values of the real non-

relativistic energy, Ereal ≡ ÊNR
real ≡ (Ereal − M c2)/µc2, the real angular momentum, j ≡

cJreal/GMµ, and of the quantity

z ≡
(

GM

c3
ωreal

)−2/3

, (5.33)

which is an invariant measure of the radial position of the orbit, and which coincides with

the scaled Schwarzschild radius R̂ = c2R/(GM) in the test-mass limit ν → 0. One checks

that our ISCO values respect the “black hole limit” Jreal < G E2
real/c

5, so that the system

does not need to radiate a lot of gravitational waves in the final coalescence before being

able to settle down as a black hole.

Let us now briefly compare our predictions with previous ones in the literature. The

first attempt to address the question of the ISCO for binary systems of comparable masses

was made by Clark and Eardley [30]. They worked only at the 1PN level, and predicted

that the ISCO should be significantly more tightly bound than in the Schwarzschild case
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(with M0 = M = m1 + m2): ENR
CE /µ c2 ≃ −0.1 when ν = 1/4, compared to ENR

Schwarz/m0 c2 =
√

8/9 − 1 ≃ −0.0572. Blackburn and Detweiler [31] used an initial value formalism (which

is only a rough approximation, even in the test-mass limit) to predict an extremely tight

ISCO when ν = 1/4 : ENR
BD/µc2 ≃ −0.7. Kidder, Will and Wiseman [22] were the first to try

to use the full 2PN information contained in the Damour-Deruelle equations of motion (1.1)

to estimate analytically the change of the ISCO brought by turning on a finite mass ratio

ν. They introduced an “hybrid” approach in which one re-sums exactly the “Schwarzschild”

(ν-independent) terms in the equations of motion, and treats the ν-dependent terms as

additional corrections. In contrast with our present 2PN-effective approach (and also with

the less reliable previous studies [30], [31]), they predict6 that, when ν increases, the ISCO

becomes markedly less tightly bound: e.g. ENR
KWW/µc2 ≃ −0.0377 when ν = 1/4. If their

trend were real, this would imply that, except for the very stiff equations of state of nuclear

matter (leading to large neutron star radii), the final plunge triggered when the ISCO is

reached by an inspiraling (1.4M⊙ + 1.4M⊙) neutron star binary would probably take place

before tidal disruption. However, both the robustness and the consistency of the hybrid

approach of [22] have been questioned. Wex and Schäfer [23] showed that the predictions

of the hybrid approach were not “robust” in that they could be significantly modified by

applying this approach to the Hamiltonian, rather than to the equations of motion. Schäfer

and Wex [24] further showed that the predictions of the hybrid approach were not robust

under a change of coordinate system. Moreover, Ref. [21] has questioned the consistency of

the hybrid approach by pointing out that the formal “ν-corrections” represent, in several

cases, a very large (larger than 100%) modification of the corresponding ν-independent terms.

This unreliability of the hybrid approach casts a doubt on the ISCO estimates of Ref. [25]

which are based on hybrid orbital terms, and which use only 1PN accuracy in most terms.

Damour, Iyer and Sathyaprakash [21] have introduced (at the 2PN level) another ana-

lytical approach to the determination of the ISCO, based on the Padé approximants of some

invariant energy function (closely related with the energy transformation (4.25)). Their

trend is consistent with the one found in the present paper, namely a more tightly bound

6 We use here the values read on the figures 3 and 4 of Ref. [22]: for ENR and (mf) = 0.00963,

which refer to a static ISCO without radiation damping.
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FIG. 4. ISCO values (for ν = 1/4) of the real non-relativistic energy E ≡ ÊNR
real, divided by

the corresponding Schwarzschild value ES ≡ ÊNR
S , versus z/zS . On the left we have compared our

predictions at the 1PN level (�) and 2PN level (�) with the results obtained in [21] (◮) and [22] (◭).

The (∗) indicates the Schwarzschild predictions. The right panel is a magnification of the part of

the left one in which we analyze the robustness of our method by exhibiting the points (•) obtained

by introducing in the effective metric reasonable 3PN and 4PN contributions: (a′4, a
′
5) = (±4,−4),

(±4, 0) and (±4,+4) in the notation of Eq. (5.34).

ISCO: for ν = 1/4, the Padé approximant approach predicts ENR
DIS/µc2 ≃ −0.0653.

Numerical methods have recently been used to try to locate the ISCO for binary neutron

stars [26], [27]. However, we do not think that the truncation of Einstein’s field equations (to a

conformally flat spatial metric) used in these works is a good approximation for close orbits.

Indeed, at the 2PN approximation, some numerically significant terms in the interaction

potential come from the transverse-traceless part of the metric [13], [7], [10]. Moreover,

the (unrealistic) assumption used in these works that the stars are corotating has probably

also a significant effect on the location of the ISCO by adding both spin-orbit and spin-spin

interaction terms.

This large scatter in the predictions for the location of the ISCO for comparable masses
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Method ENR
real/Mc2 z ω̂real f⊙ (kHz)

“Schwarzschild” −0.01430 6 0.06804 2.199

Eff. action 1PN −0.01440 5.942 0.06904 2.231

Eff. action 2PN −0.01501 5.704 0.07340 2.372

Eff. action (a′4, a
′
5) = (−4,−4) −0.01462 5.891 0.06994 2.260

Eff. action (a′4, a
′
5) = (−4, 0) −0.01469 5.854 0.07061 2.267

Eff. action (a′4, a
′
5) = (−4,+4) −0.01476 5.815 0.07131 2.304

Eff. action (a′4, a
′
5) = (+4,−4) −0.01530 5.583 0.07582 2.450

Eff. action (a′4, a
′
5) = (+4, 0) −0.01540 5.531 0.07688 2.484

Eff. action (a′4, a
′
5) = (+4,+4) −0.01551 5.475 0.07806 2.522

D.I.S. [21] −0.01633 5.036 0.08850 2.860

K.W.W. [22] −0.00943 6.49 0.0605 1.96

TABLE I. Summary of the ISCO values used in Fig. 4 (ν = 1/4). Note that we give here

ENR
real/Mc2, that is the ratio between the energy that can be radiated in gravitational waves before the

final plunge and the total mass-energy initially available. The first row refers to the naive estimate

defined by a test particle of mass µ in a Schwarzschild spacetime of mass M . We show also in the

last column the solar-mass-scaled orbital frequency f⊙ defined by freal = ωreal/(2π) ≡ f⊙ (M⊙/M).

poses the question of the “robustness” of our new, effective-action approach. The main

problem can be formulated as follows. Assuming that the effective-action approach (for

the time-symmetric part of the dynamics) makes sense at higher post-Newtonian levels, the

“exact” effective function A(R) will read

A(R) = 1 − 2

(
GM

c2 R

)
+ 2ν

(
GM

c2 R

)3

+ νa′
4

(
GM

c2 R

)4

+ νa′
5

(
GM

c2 R

)5

+ · · · . (5.34)

The question is then to know how sensitive is the location of the ISCO to the values of the

(still unknown) coefficients a′
4, a

′
5, . . .. One should have some a priori idea of the reasonable

range of values of a′
4, a

′
5, . . .. A rationale for deciding upon the reasonable values of a′

4 is the

following. At the 2PN level, it is formally equivalent to use (with u ≡ GM/c2 R) A2PN =

1−2u+2ν u3 or the factorized form A′
2PN = (1−2u)(1+2ν u3). However, A′

2PN = A2PN−4ν u4
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which corresponds to a′
4 = −4. This suggest that −4 ≤ a′

4 ≤ +4 is a reasonable range. We

shall also consider −4 ≤ a′
5 ≤ +4 as a plausible range. Note that both choices correspond to

having coefficients of un which vary between −1 and +1 when ν = 1/4. The robustness of

our effective-action predictions against the introduction of a′
4 and a′

5 is illustrated in Fig. 4.

The numerical values used in Fig. 4 are exhibited in Tab. I.

Fig. 4 plots the ratio E/|ES| where E ≡ ENR
real/µc2 ≡ (Ereal − M c2)/µc2 at the ISCO (for

ν = 1/4) and ES =
√

(8/9) − 1 ≃ −0.05719 is the corresponding “Schwarzschild” value,

versus z/zS where z is defined in Eq. (5.33), and where zS = 6. This figure compares the

predictions of Ref. [22], of Ref. [21] and of our new, effective-action prediction (at the 2PN

level). We have also added what would be the prediction of the effective-action approach at

the 1PN level. Note that, at the 1PN level, the function A(R), Eq. (5.6), exactly coincides

with the Schwarzschild one, but that the energy mapping (4.24) introduces a slight deviation

from the test-mass limit. Fig. 4 exhibits also the points obtained when considering (a′
4, a

′
5) =

(±4,−4), (±4, 0) and (±4, +4). We see on this figure that the main prediction of the present

approach (a prediction already clear from the fact that the 2PN contribution to A(R) is

fractionally small), namely that the ISCO is only slightly more bound than in the test-mass

limit, is robust under the addition of higher PN contributions. The sensitivity to a′
4 of

the binding energy is only at the ∼ 3% level (for a′
4 = ±4), while its sensitivity to the

4PN-coefficient a′
5 is further reduced to the ∼ 0.6% level (for a′

5 = ±4). Still, it would

be important to determine the 3PN coefficient a′
4 to refine the determination of the ISCO

quantities.

VI. EXPLICIT MAPPING BETWEEN THE REAL PROBLEM AND THE

EFFECTIVE ONE

The basic idea of the effective one-body approach is to map the complicated and badly-

convergent PN-expansion of the dynamics of a two-body system onto a simpler auxiliary

one-body problem. We have shown in the previous sections that by imposing some simple,

coordinate-invariant requirements, we could uniquely determine that the one-body dynamics

was defined (at the 2PN level) by geodesic motion in a certain deformed Schwarzschild

spacetime. The latter dynamics can be solved exactly by means of quadratures (e.g. by using

the Hamilton-Jacobi method, see Eqs. (3.7)–(3.12)). Note that this exact solution defines a
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particular re-summation of the original 2PN-expanded dynamics. The hope (that we tried

to subtantiate in Sec. V) is that this re-summation captures, with sufficient approximation,

the crucial non-perturbative aspects of the two-body dynamics, such as the existence of an

ISCO.

As all the current work about the equations of motion, and/or the gravitational-wave ra-

diation, of binary systems is done in some specific coordinate systems (harmonic or ADM),

we need to complete the (coordinate-invariant) work done in the previous sections by explic-

itly constructing the transformation which maps the variables entering the effective problem

onto those of the real one. We have already mentioned that the transformation between

harmonic and ADM coordinates has been explicitly worked out in Refs. [10] and [11]. Here,

we shall explicitly relate the ADM phase-space variables Q = q1 − q2 and P = ∂ S/∂ Q

of the relative motion (as defined in Sec. II above) to the coordinate and momenta of the

effective problem. More precisely, we shall construct the map

q′i = Qi(qj, pj) , p′i = Pi(q
j , pj) , (6.1)

transforming the reduced ADM relative position and momenta (qi, pi), defined in Eq. (2.4),

into the corresponding reduced cartesian-like position and momenta (q′i, p′i) canonically de-

fined by the (Schwarzschild-gauge) effective action (3.2). In other words,

q′i =
Q′i

GM
, p′i =

P ′
i

µ
, (6.2)

with Q′1 = R sin θ cos ϕ, Q′2 = R sin θ sin ϕ, Q′3 = R cos θ, and P ′
i = ∂ Seff/∂ Q′i. Here,

the “effective” coordinates R, θ, ϕ are those of Eq. (5.1) (in Schwarzschild gauge) and Seff =

−
∫

µc dseff . The corresponding effective Hamiltonian (with respect to the coordinate time t

of the effective problem) is easily found by solving gµν
eff (Q′) P ′

µ P ′
ν + m2

0 c2 = 0 in terms of the

energy E0 = −P ′
0. Transforming the usual polar-coordinate result (equivalent to Eq. (5.10))

into cartesian coordinates leads to

Heff(Q′, P ′) = µ c2

√

A(Q′)

[
1 +

(n′ · P ′)2

µ2 c2 B(Q′)
+

(n′ × P ′)2

µ2 c2

]
, (6.3)

where Q′ ≡
√

δij Q′i Q′j = R, where n′i = Q′i/Q′ is the unit vector in the radial direction,

and where the scalar and vector products are performed as in Euclidean space. When scaling

the effective coordinates as in (6.2), we need to scale correspondingly the time variable, the

Hamiltonian and the action of the effective problem:
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t̂ ≡ t

GM
, Ĥeff ≡ Heff

µ
, Ŝeff ≡ Seff

µGM
. (6.4)

Note that the effective Hamiltonian (6.3) contains the rest-mass contribution. The scaled

version of (6.3) simplifies to

Ĥeff(q′, p′) = c2

√
A(q′)

[
1 +

p′2

c2
+

(n′ · p′)2

c2

(
1

B(q′)
− 1

)]
, (6.5)

where q′ ≡
√

δij q′i q′j = R/GM and n′i ≡ q′i/q′. As was mentioned above the identification

of the action variables in the real and effective problems guarantees that the two problems are

mapped by a canonical transformation, i.e. a transformation such that Eq. (4.5) is satisfied.

It will be more convenient to replace the generating function g(q, q′) of Eq. (4.5) by the new

generating function G̃(q, p′) = g(q, q′) + p′i q
′i such that

pi dqi + q′i dp′i = d G̃(q, p′) . (6.6)

We can further separate G̃(q, p′) into G̃id(q, p
′) ≡ qi p′i, which generates the identity trans-

formation, and an additional (perturbative) contribution G(q, p′):

G̃(q, p′) = qi p′i + G(q, p′) , G(q, p′) =
1

c2
G1PN(q, p′) +

1

c4
G2PN(q, p′) . (6.7)

Eqs. (6.6), (6.7) yield the link

q′i = qi +
∂ G(q, p′)

∂ p′i
, p′i = pi −

∂ G(q, p′)

∂ qi
. (6.8)

Note that Eqs. (6.8) are exact and determine q′ and p in function of q and p′. We have,

however, written them in a form appropriate for determining, by successive iteration, q′

and p′ in function of q and p. If needed (e.g. for applications of the present work to the

direct numerical calculation of the effective dynamics in the original q, p coordinates), it is

numerically fast to iterate Eqs. (6.8) to get Eqs. (6.1). For our present purpose we need an

explicit analytical approximation of Eqs. (6.1) at the 2PN level. Remembering that G starts

at order 1/c2, one easily finds that

q′i = qi +
∂ G(q, p)

∂ pi

− ∂ G(q, p)

∂ qj

∂2 G(q, p)

∂ pj ∂ pi

+ O
(

1

c6

)
,

p′i = pi −
∂ G(q, p)

∂ qi
+

∂ G(q, p)

∂ qj

∂2 G(q, p)

∂ pj ∂ qi
+ O

(
1

c6

)
. (6.9)
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In the terms linear in G(q, p) one needs to use the full (1PN + 2PN) expression of G(q, p),

while in the quadratic terms it is enough to use G1PN/c2.

To determine the generating function G(q, p) we need to write the equation stating that,

under the canonical transformation (6.8), the effective Hamiltonian Heff(q′, p′) is mapped

into a function of q and p which is linked to the real (relativistic) Hamiltonian HR
real(q, p)

by our rule (4.25). If we write this link in terms of the reduced effective Hamiltonian (6.5),

and of the reduced, non-relativistic real Hamiltonian ĤNR
real ≡ (HR

real − Mc2)/µ (the same as

Ĥ appearing in Eqs. (2.5), (2.6) above), it reads

1 +
ĤNR

real(q, p)

c2

(
1 +

ν

2

ĤNR
real(q, p)

c2

)
=

1

c2
Ĥeff [q′(q, p), p′(q, p)] . (6.10)

Actually, we found more convenient to work with the square of Eq. (6.10), so as to get

rid of the square root in Ĥeff , Eq. (6.5). Hence, writing (half) the square of Eq. (6.10),

and Taylor-expanding Ĥeff [q′(q, p), p′(q, p)] using Eqs. (6.7)–(6.9), we get at order 1/c4, the

following partial differential equation for G1PN(q, p)

∂ ĤNewt

∂ qi

∂ G1PN

∂ pi
− ∂ ĤNewt

∂ pi

∂ G1PN

∂ qi
=

ν

2
p4 − (1 + ν)

p2

q
+
(
1 − ν

2

) (n · p)2

q
+
(
1 +

ν

2

) 1

q2
,

(6.11)

where we have denoted the Newtonian Hamiltonian as ĤNewt ≡ Ĥ0 = p2/2 − 1/q (see

Eq. (2.6a)). At order 1/c6, a more complex calculation gives the partial differential equation

for G2PN(q, p)

∂ ĤNewt

∂ qi

∂ G2PN

∂ pi
− ∂ ĤNewt

∂ pi

∂ G2PN

∂ qi
=

ν

2
Ĥ3

0 + (1 + ν) Ĥ0 Ĥ2 + Ĥ4 − (2 + 3 ν)
(n · p)2

q2

− ν

q3
+

∂ R
∂ qi

∂ G1PN

∂ pi
− ∂ R

∂ pi

∂ G1PN

∂ qi
+

∂ G1PN

∂ qj

∂2 G1PN

∂ pj ∂ pi

∂ ĤNewt

∂ qi
− ∂ G1PN

∂ qj

∂2 G1PN

∂ pj ∂ qi

∂ ĤNewt

∂ pi

− 1

2

∂ G1PN

∂ pi

∂ G1PN

∂ pj

∂2 ĤNewt

∂ qi ∂ qj
− 1

2

∂ G1PN

∂ qi

∂ G1PN

∂ qj

∂2 ĤNewt

∂ pi ∂ pj
, (6.12)

where Ĥ2 and Ĥ4 are given by Eqs. (2.6b), (2.6c), while

R =
1

q
((n · p)2 + p2) . (6.13)

The partial differential equations (6.11) and (6.12) have the general form
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∂ ĤNewt

∂ qi

∂ Gn

∂ pi
− ∂ ĤNewt

∂ pi

∂ Gn

∂ qi
=

qi

q3

∂ Gn

∂ pi
− pi

∂ Gn

∂ qi
= Kn(q, p) , (6.14)

where, at each PN order n = 1PN or 2PN, the R.H.S. is a known source term Kn(q, p). Note

that the L.H.S. of Eq. (6.14) is the Poisson bracket {ĤNewt, Gn}, or, equivalently, minus the

time derivative of Gn along the Newtonian motion. It is easily checked that the solution

of Eq. (6.14) is unique modulo the addition of terms generating a constant time shift or a

spatial rotation. [Indeed, the homogeneous scalar solutions of Eq. (6.14) must correspond

to the scalar constants of motion of the Keplerian motion: ĤNewt(q, p) and (q × p)2.] If

we require (as we can) that G(q, p) changes sign when q or (separately) p change sign, the

generating function is uniquely fixed. In particular, at 1PN level, by looking at the structure

of the source terms, i.e. the R.H.S. of Eq. (6.11), we can prove in advance that G1PN must

be of the form

G1PN(q, p) = (q · p)

[
α1 p2 +

β1

q

]
. (6.15)

Inserting Eq. (6.15) in the equation to be satisfied (6.11) gives a system of four equations

for the two unknown coefficients α1 and β1. Two of these equations give directly the values

α1 and β1,

α1 = −ν

2
, β1 = 1 +

ν

2
, (6.16)

while the two redundant equations,

α1 − β1 = −1 − ν , 2 α1 + β1 = 1 − ν

2
, (6.17)

are identically satisfied by the solution (6.16).

Using these 1PN-results we can go further and evaluate the 2PN-source term K2(q, p) in

Eq. (6.14):

K2(q, p) = −ν

8
(1 + 3 ν) p6 +

ν

8
(−1 + 8 ν)

p4

q
− ν

4
(9 + ν)

(n · p)2 p2

q
+

3

8
ν (8 + 3 ν)

(n · p)4

q

+
1

8
(−2 + 16 ν − 7 ν2)

p2

q2
+

1

8
(4 + 3 ν2)

(n · p)2

q2
+

1

4
(1 − 7 ν + ν2)

1

q3
. (6.18)

By looking at the structures in Eq. (6.18) we deduce that the most general form of G2PN is

G2PN(q, p) = (q · p)

[
α2 p4 +

1

q
(β2 p2 + γ2(n · p)2) +

δ2

q2

]
. (6.19)
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Inserting the Ansatz (6.19), and the 1PN-results, in Eq. (6.12), we get again more equations

than unknowns:

−α2 +
ν

8
+

3

8
ν2 = 0 , α2 − β2 +

ν

8
− ν2 = 0 ,

4 α2 + β2 − 3 γ2 +
9

4
ν +

ν2

4
= 0 , 3 γ2 − 3 ν − 9

8
ν2 = 0 ,

1

4
+ β2 − δ2 − 2 ν +

7

8
ν2 = 0 , −1

2
+ 2 β2 + 2 δ2 + 3 γ2 −

3

8
ν2 = 0 ,

−1

4
+ δ2 +

7

4
ν − ν2

4
= 0 . (6.20)

As it should (in view of the work of the previous sections) one finds that all the redundant

equations can be satisfied. The final, unique solutions for the coefficients α2, β2, γ2 and δ2

are:

α2 =
ν + 3ν2

8
, β2 =

2ν − 5ν2

8
,

γ2 =
8ν + 3ν2

8
, δ2 =

1 − 7ν + ν2

4
. (6.21)

Finally, we give the explicit form of the canonical transformation between the coordinates

(q, p) and (q′, p′) at the 2PN level (see Eq. (6.9)):

q′ i − qi =
1

c2

[(
1 +

ν

2

) qi

q
− ν

2
qi p2 − ν pi (q · p)

]

+
1

c4

[
ν
(
1 +

ν

8

) qi (q · p)2

q3
+

ν

4

(
5 − ν

2

) qi p2

q
+

3

2
ν
(
1 − ν

2

) pi (q · p)

q

+
1

4

(
1 − 7 ν + ν2

) qi

q2
+

ν

8
(1 − ν) qi p4 +

ν

2
(1 + ν) pi p2 (q · p)

]
, (6.22)

p′i − pi =
1

c2

[
−
(
1 +

ν

2

) pi

q
+

ν

2
pi p

2 +
(
1 +

ν

2

) qi (q · p)

q3

]

+
1

c4

[
ν

8
(−1 + 3 ν) pi p

4 +
1

4
(3 + 11 ν)

pi

q2
− 3

4
ν
(
3 +

ν

2

) pi p
2

q

+
1

4
(−2 − 18 ν + ν2)

qi (q · p)

q4
+

ν

8
(10 − ν)

qi (q · p) p2

q3

− ν

8
(16 + 5 ν)

pi (q · p)2

q3
+

3

8
ν (8 + 3 ν)

qi (q · p)3

q5

]
. (6.23)

Note that the ν → 0 limit of Eq. (6.22) gives q′i = (1 + 1/(2c2q))2 qi which is (as it should)

the relation between “Schwarzschild” (q′) and “Isotropic” (q) quasi-cartesian coordinates in

a Schwarzschild spacetime. [In this case, ADM = Isotropic]. As a check on Eqs. (6.22),
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(6.23) we have verified that (at the 2PN level) q′ × p′ coincides with q × p. [They should

coincide exactly, when solving exactly Eqs. (6.8) with any (spherically symmetric) generating

function G(q, p).] Let us quote, for completeness, the partial derivatives of the generating

function G = c−2 G1PN + c−4 G2PN, that must be used to solve by successive iterations the

exact equations (6.8) and determine q′ and p′ in terms of q and p:

∂G1PN(q, p)

∂qi
= −ν

2
pi p

2 +
(
1 +

ν

2

) pi

q
−
(
1 +

ν

2

) qi (q · p)

q3
, (6.24)

∂G1PN(q, p)

∂pi

= −ν

2
qi p2 +

(
1 +

ν

2

) qi

q
− ν pi (q · p) , (6.25)

∂G2PN(q, p)

∂qi
=

1

8
ν (1 + 3 ν) pi p

4 +
ν

8
(2 − 5 ν)

pi p
2

q
+

3

8
ν (8 + 3 ν)

pi (q · p)2

q3

− 3

8
ν (8 + 3 ν)

qi (q · p)3

q5
+

1

4
(1 − 7 ν + ν2)

pi

q2
− ν

8
(2 − 5 ν)

qi (q · p) p2

q3

− 1

2
(1 − 7 ν + ν2)

qi (q · p)

q4
, (6.26)

∂G2PN(q, p)

∂pi
=

1

8
ν (1 + 3 ν) qi p4 +

ν

8
(2 − 5 ν)

qi p2

q
+

3

8
ν (8 + 3 ν)

qi (q · p)2

q3

+
1

4
(1 − 7 ν + ν2)

qi

q2
+

ν

2
(1 + 3 ν) pi p2 (q · p) +

ν

4
(2 − 5 ν)

pi (q · p)

q
. (6.27)

VII. INCLUSION OF RADIATION REACTION EFFECTS AND TRANSITION

BETWEEN INSPIRAL AND PLUNGE

In the preceding sections we have limited our attention to the conservative (time-

symmetric) part of the dynamics of a two-body system, i.e. the one defined, at the 2PN

level, by neglecting Areac
a in Eq. (1.1). We expect that the separation of the dynamics in

a conservative part plus a reactive part, makes sense also at higher PN orders (though it

probably gets blurred at some high PN level). However, there exists, at present, no algo-

rithm defining precisely this separation. Anyway we shall content ourselves here to working

at the 2.5PN level where this separation is well-defined, as shown in Eq. (1.1). When dealing

with the relative motion we find it convenient to continue using an Hamiltonian formalism.

Schäfer [20], [14], [18] has shown how to treat radiation reaction effects within the ADM

canonical formalism. His result (at the 2.5PN level) is that it is enough to use as Hamilto-
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nian for the dynamics of two masses a time-dependent Hamiltonian obtained by adding to

the conservative 2PN Hamiltonian H2PN(q1, q2, p1, p2) the following “reactive” Hamiltonian

Hreac(q1, q2, p1, p2; t) = −hTT reac
ij (t)

[
pi

1 pj
1

2m1
+

pi
2 pj

2

2m2
− 1

2
G m1 m2

(qi
1 − qi

2)(q
j
1 − qj

2)

|q1 − q2|3

]
, (7.1)

where

hTT reac
ij (t) = −4

5

G

c5

d3 Qij(t)

dt3
, (7.2)

Qij denoting the quadrupole moment of the two-body system

Qij(t) =
∑

a=1,2

ma

(
qi
a qj

a −
1

3
q2

a δij

)
. (7.3)

Note that hTT reac
ij in Eq. (7.1) should be treated as a given, time-dependent external field,

considered as being independent of the canonical variables qa, pa. In other words, when

writing the canonical equations of motion q̇ = ∂ Htot/∂ p, ṗ = −∂ Htot/∂ q, one should

consider only the explicit q−p dependence appearing in the square bracket on the R.H.S. of

Eq. (7.1). After differentiation with respect to q and p one can insert the explicit phase-space

expression of the third time derivative of Qij(t) (obtained, with sufficient precision, by using

the Newtonian-level dynamics, i.e. by computing a repeated Poisson bracket of Qij(q, p)

with HNewton(q, p)).

Finally, we propose to graft radiation-reaction effects onto the non-perturbatively re-

summed conservative dynamics defined by our effective-action approach in the following

way. The total Hamiltonian for the relative motion Q, P in ADM coordinates is

Htot(Q, P ; t) = H improved
real (Q, P ) + Hreac(Q, P ; t) , (7.4)

where the “improved 2PN” Hamiltonian is that defined by solving Eq. (4.25) for Ereal = HR
real,

i.e.

H improved
real (Q, P )

M c2
=

√

1 + 2ν

(
Heff(Q′(Q, P ), P ′(Q, P ))

µ c2
− 1

)
, (7.5)

on the R.H.S. of which one must transform, by the canonical transformation discussed in

Sec. VI, the (exact) effective Hamiltonian defined by Eq. (6.3). In the latter, we propose to

use our current best estimates of the effective metric coefficients A(Q′), B(Q′), namely
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A(Q′) ≡ 1 − 2GM

c2 Q′
+ 2ν

(
GM

c2 Q′

)3

,

B(Q′) ≡ A−1(Q′)

[
1 − 6ν

(
GM

c2 Q′

)2
]

. (7.6)

On the other hand the “reactive” contribution to the total Hamiltonian (7.4) is the center

of mass reduction (p1 = −p2 = P , Q = q1 − q2) of Eq. (7.1).

In terms of reduced variables (q = Q/GM, p = P/µ) and of the non-relativistic reduced

Hamiltonian, ĤNR
real ≡ (HR

real − Mc2)/µ, our proposal reads

ĤNR
tot (q, p; t) = ĤNR improved

real (q, p) + Ĥreac(q, p; t) , (7.7)

with

ĤNR improved
real (q, p) ≡ c2

ν

[√
1 + 2ν

[
1

c2
Ĥeff(q′(q, p), p′(q, p)) − 1

]
− 1

]
, (7.8)

where Ĥeff(q′, p′) is defined by inserting (7.6) into Eq. (6.5), and with

Ĥreac(q, p; t) = −hTT reac
ij (t)

[
1

2
pi pj − 1

2

qi qj

q3

]
, (7.9)

hTT reac
ij (t) = − 4

5 c5

ν

q2

[
−4(pi nj + pj ni) + 6 ni nj(n · p) +

2

3
(n · p) δij

]
, (7.10)

where ni ≡ qi/q. As explained above, the quantity hTT reac
ij (t) should not be differentiated

with respect to q and p when writing the equations of motion

q̇i =
∂ ĤNR improved

real (q, p)

∂ pi
+

∂ Ĥreac(q, p; hTT reac
ij (t))

∂ pi
,

ṗi = −∂ ĤNR improved
real (q, p)

∂ qi
− ∂ Ĥreac(q, p; hTT reac

ij (t))

∂ qi
. (7.11)

When inserting, after differentiation, Eq. (7.10), the equations of motion (7.11) become an

explicit, autonomous (time-independent) evolution equation in phase space: ẋ = f(x) where

x = (qi, pi). From the study in Sec. V above of the circular orbits defined by the exact, non-

perturbative Hamiltonian Heff , we expect that the combined dynamics (7.11) will exhibit a

transition from inspiral to plunge when q = |q| (which decreases under radiation damping)

reaches the image in the q − p phase space of the ISCO, studied above in q′, p′ coordinates.
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FIG. 5. Inspiraling circular orbits in (q′, p′) coordinates including radiation reaction effects for

ν = 0.1 (left panel) and ν = 1/4 (right panel). The location of the ISCO and of the horizon are

indicated.

We have in mind here quasi-circular, inspiraling orbits (circularized by radiation reaction),

though, evidently, our approach can be used to study all possible orbits. We further expect

that, when ν ≪ 1 the inspiral will be very slow (the reaction Hamiltonian being proportional

to ν, see Eq. (7.10)) and therefore the transition to plunge will be quite sharp, and well

located at the ISCO. When ν = 1/4 the radiation reaction effects are numerically smallish,

but not parametrically small at the ISCO, and the transition to plunge cannot be expected

to be very sharp. These expected behaviors are illustrated in Fig. 5.

For simplicity, we have computed the orbits exhibited in these figures in q′ space, neglect-

ing the (formally 3.5PN) effect of the (q, p) → (q′, p′) transformation on the reactive part of

the equations of motion. [Thanks to the canonical invariance of the Hamilton equations of

motion, the crucial conservative part of the evolution in q′, p′ space is simply obtained from

the Hamiltonian ĤNR improved
real (q′, p′) defined by keeping the variables q′ and p′ on the R.H.S.

of Eq. (7.8).]

Let us finally mention another possibility for incorporating radiation reaction effects

directly in the effective one-body dynamics. In the q − p coordinates the (2.5PN) reaction

Hamiltonian (7.1) can be simply seen as due to perturbing the Euclidean metric g0
ij = δij

appearing in the lowest order Newtonian Hamiltonian (qi
ab ≡ qi

a − qi
b)

HNewtonian(qa, pa) =
∑

a

gij
0 pai paj

2ma
−
∑

a<b

G ma mb

(g0
ij qi

ab qj
ab)

1/2
, (7.12)
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by taking into account the near zone radiative field:

gij ≃ g0
ij + hTT reac

ij (t) , gij ≃ gij
0 − hij TT

reac (t) . (7.13)

By mapping back (through our (qp) ↔ (q′p′) link) the metric perturbation hTT reac
ij onto

the effective problem, one might try to incorporate reaction effects by defining a suitable

“reactive” perturbation of our effective metric:

gµν(q
′) = geff

µν(q
′) + δreac geff

µν(q
′) . (7.14)

This approach might be useful for trying to go beyond the 2.5PN level discussed here and to

define a “re-summed” version of reaction effects. Alternatively, if one has at one’s disposal a

more complete PN-expanded reactive force expressed in the original q coordinates [32], one

can, following the strategy proposed in Eq. (7.4), graft this improved (perturbative) reactive

force onto the non-perturbatively improved conservative force defined by mapping back our

effective dynamics onto the q coordinates.

VIII. CONCLUSIONS

We have introduced a novel approach to studying the late dynamical evolution of a

coalescing binary system of compact objects. This approach is based on mapping (by a

canonical transformation) the dynamics of the relative motion of a two-body system, with

comparable masses m1, m2, onto the dynamics of one particle of mass µ = m1 m2/(m1 +m2)

moving in some effective metric dseff . When neglecting radiation reaction, the mapping rules

between the two problems are best interpreted in quantum terms (mapping between the

discrete energy spectrum of bound states). They involve a physically natural transformation

of the energy axis between the two problems, stating essentially that the effective energy of

the effective particle is the energy of particle 1 in the rest-frame of particle 2 (or reciprocally),

see Eq. (4.26). The usefulness of this energy mapping was previously emphasized both in

quantum two-body problems [1], and in classical ones [21].

Starting from the currently most accurate knowledge of two-body dynamics [6], [7], we

have shown that, when neglecting radiation reaction, our rules uniquely determine the effec-

tive metric geff
µν(q

′) in which the effective particle moves. This metric is a simple deformation

of a Schwarzschild metric of mass M = m1+m2, with deformation parameter ν = µ/M . Our
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suggestion is then to define (as is done in quantum two-body problems [1], [3]) a particular

non-perturbative re-summation of the usual, badly convergent, post-Newtonian-expanded

dynamics by considering the dynamics defined by the effective metric as exact. This def-

inition leads, in particular, to specific predictions for the characteristics of the innermost

stable circular orbit (ISCO) for comparable-mass systems. In agreement with some previous

predictions (notably one based on Padé approximants [21]), but in disagreement with the

predictions of the “hybrid” approach of Ref. [22], we predict an ISCO which is more tightly

bound than the usual test-mass-in-Schwarzschild one. The invariant physical characteristics

of our predicted ISCO are given in Eqs. (5.31) and (5.32), see also Tab. I. Note in par-

ticular that the binding energy at the ISCO is robustly predicted to be ENR
real ≃ −1.5%Mc2

(for equal-mass systems; ν = 1/4), while the orbital frequency at the ISCO is numerically

predicted to be (again for ν = 1/4)

f ISCO = 2372 Hertz

(
M⊙

M

)
. (8.1)

Note that this corresponds to ∼ 847 Hertz for (1.4M⊙, 1.4M⊙) neutron star systems.

We have argued, by studying the effects of higher (time-symmetric) post-Newtonian

contributions, that our predictions for the characteristics of the ISCO are rather robust

(especially when compared to the scatter of previous predictions). See Fig. 4 and Tab. I.

We note, however, that the knowledge of the 3PN dynamics (currently in progress [19],

[33]) would significantly reduce the present (2PN-based) uncertainty on the knowledge of

the effective metric.

The coordinate separation, in effective Schwarzschild coordinates, corresponding to the

ISCO is Q′ = R ≃ 5.72 GM/c2, i.e. ∼ 23.6 km for a (1.4M⊙, 1.4M⊙) neutron star system

(from our canonical transformation (6.8), this corresponds to an ADM-coordinate relative

separation of Q ≃ 4.79 GM/c2). This value is near the sum of the nominal radii of (iso-

lated) neutron stars for most nuclear equations of state [34]. This suggests that the inspiral

phase of coalescing neutron star systems might terminate into tidal disruption (or at least

tidally-dominated dynamics) without going through a well-defined plunge phase. Fully rel-

ativistic 3D numerical simulations are needed to investigate this question. We note that a

positive aspect of having (as predicted here) a rather low ISCO is that the end of the inspiral

phase might well be very sensitive to the nuclear equation of state, so that LIGO/VIRGO

observations might teach us something new about dense nuclear matter.
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Finally, we have proposed two ways of adding radiation reaction effects to our effective

one-body dynamics. The most straightforward one consists in directly combining radiation

effects determined in the real two-body problem with the non-perturbative conservative dy-

namics (which, in particular, features a dynamical instability at our ISCO) obtained by

mapping the effective dynamics onto some standard (ADM or harmonic) two-body coordi-

nate system: see Eq. (7.7). A more subtle approach, which needs to be further developed,

would consist in adding radiation reaction effects at the level of the effective metric itself, see

Eq. (7.14). We have illustrated in Fig. 5 the transition from inspiral to plunge implied by (an

approximation to) Eq. (7.7). In principle, this transition, and in particular the frequency at

the ISCO, will be observable in gravitational wave observations of systems containing black

holes.

We hope that the approach presented here will also be of value for supplementing nu-

merical relativity investigations. Indeed, our main (hopeful) claim is that the effective one-

body dynamics is a “good” non-perturbative re-summation of the standard post-Newtonian-

expanded results. Therefore, it gives a simple way of boosting up the accuracy of many

PN-expanded results. [We leave to future work a more systematic analysis of the extension

of our approach to higher post-Newtonian orders.] Effectively, this extends the validity of

the post-Newtonian expansions in a new way (e.g., different from Padé approximants7). In

particular, our results could be used to define initial conditions for two-body systems very

near, or even at the ISCO, thereby cutting down significantly the numerical work needed to

evolve fully relativistic 3D binary-system simulations.

As a final remark, let us note that many extensions of the approach presented here are

possible. In particular, the addition of the (classical) spin degrees of freedom to the effective

one-body problem (in the effective metric and/or in the effective particle) suggests itself as

an interesting issue (with possibly important physical consequences).

7It should be, however, possible to combine the effective one-body approach with Padé approxi-

mants, thereby defining an even better scheme.

43



ACKNOWLEDGMENTS

We thank Gerhard Schäfer for useful comments.

APPENDIX A:

In this appendix we determine, at the 2PN level and in the Schwarzschild gauge, the

effective metric

ds2
eff = −A(R) c2 dt2 + B(R) dR2 + R2(dθ2 + sin2 θ dϕ2) , (A1)

A(R) = 1 +
a1

c2R
+

a2

c4R2
+

a3

c6R3
, B(R) = 1 +

b1

c2R
+

b2

c4R2
, (A2)

when requiring simultaneously that: a) the energy levels of the “effective” and “real”

problems coincide modulo an overall shift, i.e. E0(N0,J0) = Ereal(N ,J ) − c0, with

c0 = M c2 − m0 c2, J0 = J and N0 = N and b) the effective metric depends only on

m1 and m2. In this case, as anticipated in Sec. IV, we will see that it not possible to satisfy

the condition m0 = µ.

The radial action I0
R(E0,J0) of the “effective” description is

I0
R(E0,J0) =

α0 m
1/2
0√

−2 ENR
0

[
Â + B̂

ENR
0

m0 c2
+ Ĉ

( ENR
0

m0 c2

)2
]
−J0

+
α2

0

c2 J0

[
D̂ + Ê

ENR
0

m0 c2

]
+

α4
0

c4 J 3
0

F̂ , (A3)

where ENR
0 ≡ E0 − m0 c2, α0 ≡ GM0m0,

Â = −1

2
â1 , B̂ = b̂1 −

7

8
â1 , Ĉ =

b̂1

4
− 19

64
â1 ,

D̂ =
â2

1

2
− â2

2
− â1b̂1

4
, Ê = â2

1 − â2 −
â1b̂1

2
− b̂2

1

8
+

b̂2

2
,

F̂ =
1

64
[24 â4

1 − 48 â2
1 â2 + 8 â2

2 + 16 â1 â3 − 8 â3
1 b̂1 + 8 â1 â2 b̂1 − â2

1 b̂2
1 + 4 â2

1 b̂2] , (A4)

and we have introduced the dimensionless coefficients:

âi =
ai

(GM0)i
, b̂i =

bi

(GM0)i
. (A5)
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We define the mass M0 used to scale the coefficients ai and bi by requiring â1 ≡ −2 (i.e.

a1 ≡ −2GM0). Identifying Eq. (A3) with the radial action I0
R(ENR,J ) of the “real” problem,

i.e.

IR(ENR,J ) =
α µ1/2

√
−2 ENR

[
1 +

(
15

4
− ν

4

) ENR

µc2
+

(
35

32
+

15

16
ν +

3

32
ν2

)(ENR

µc2

)2
]

− J +
α2

c2J

[
3 +

(
15

2
− 3ν

) ENR

µ c2

]
+

(
35

4
− 5

2
ν

)
α4

c4 J 3
, (A6)

where α ≡ GMµ and ENR ≡ Ereal−M c2, yields six equations to be satisfied. The requirement

a) above implies the simple identification of the variables entering Eqs. (A3) and (A6):

ENR
0 = ENR, J0 = J , I0

R = IR. The explicit form of the equations stating that Â m
1/2
0 α0

(0PN level), B̂ m
−1/2
0 α0, D̂ α2

0 (1PN level) and Ĉ m
−3/2
0 α0, Ê α2

0/m0 and F̂ α4
0 (2PN level)

in Eq. (A3) coincide with the analogous coefficients in Eq. (A6) yields:

m
1/2
0 α0 = µ1/2 α , (A7)(
b̂1 +

7

4

)
m

−1/2
0 α0 =

1

4
(15 − ν) µ−1/2 α , (A8)

(
4 − â2 + b̂1

)
α2

0 = 6 α2 , (A9)
(

19

32
+

b̂1

4

)
m

−3/2
0 α0 =

(
35

32
+

15

16
ν +

3

32
ν2

)
µ−3/2 α , (A10)

(
4 − â2 + b̂1 −

b̂2
1

8
+

b̂2

2

)
α2

0

m0
=

(
15

2
− 3ν

)
α2

µ
, (A11)

F̂ α4
0 =

(
35

4
− 5

2
ν

)
α4 . (A12)

It is to be noted that if we impose m0 = µ and GM0 = GM (so that α0 = α) we

get an incompatibility at the 2PN level. Indeed, Eq. (A7) is satisfied and we can solve

Eqs. (A8),(A9) in terms of the 1PN-coefficients b̂1 and â2, but then the 2PN-equation

(A10), which contains only b̂1, is not satisfied. [This problem is due to the fact that

we have more equations than unknowns.] Hence, we are obliged to relax the constraint

m0 = µ. Let us introduce the parameter ξ, defined by m0 ≡ µ ξ−2. Eq. (A7) then gives

GM0 = GM ξ3. Note that we are crucially using here the fact that the Newton-order energy

levels ENR = −m0α
2
0/(2N0) + O(c−2) do not depend separately on m0 and α0 = G M0 m0,

but only on the combination m0 α2
0 = G2 M2

0 m3
0. Solving the 1PN-level Eqs. (A8), (A9) we

then get:
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b̂1 =
1

4 ξ2
(15 − 7ξ2 − ν) , â2 =

1

4 ξ2
(−9 + 9ξ2 − ν) , (A13)

while the 2PN-level Eq. (A10) gives a quadratic equation in ξ2 which fixes uniquely its value

(as well as that of the positive parameter ξ), namely

ξ2 =
µ

m0
=

1

5

[
−15 + ν + 2

√
2
√

50 + 15ν + 2ν2
]

. (A14)

Finally, the remaining 2PN equations (A11) and (A12) determine the coefficients of the

effective metric at the 2PN level

b̂2 =
1

64 ξ2

(
1185 − 978 ξ2 + 49 ξ4 − 414 ν + 14 ξ2 ν + ν2

)
, (A15)

â3 =
1

64 ξ4
(−289 + 402 ξ2 − 113 ξ4 + 158 ν + 50ξ2 ν − ν2) . (A16)

The complexity of the results (A13)–(A16), compared to the simplicity of our preferred

solution (5.6)–(5.8), convinced us that the requirement a) above should be relaxed. Also,

it seems fishy to have an effective mass m0 which differs from µ even in the non-relativistic

limit c → ∞. Finally, it is not evident that this method can be generalized to higher

post-Newtonian orders (where more redundant equations will have to be satisfied).

APPENDIX B:

In this appendix we describe an alternative, more formal method to map the “effective”

one-body problem onto the “real” two-body one. We work in the Schwarzschild gauge. Here

we require simultaneously that: a) the energy levels of the “effective” and “real” descriptions

coincide modulo an overall shift, i.e. E0(N0,J0) = Ereal(N ,J ) − c0, with c0 = M c2 − m0 c2,

J0 = J and N0 = N and b) the effective mass m0 is equal to the reduced mass µ =

m1 m2/(m1 + m2). Introducing the dimensionless quantities:

Î0
R ≡ I0

R

α0
, Îreal

R ≡ Ireal
R

α
, E0 ≡

ENR
0

m0
, Ereal ≡

ENR
real

µ
,

j0 ≡
J0

α0

, j ≡ J
α

, (B1)

where α0 ≡ GM0 m0 and α ≡ GM µ ≡ G m1 m2, we can re-write the radial action for the

“effective” problem, Eq. (3.13), in the form:
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Î0
R(E0, j0) =

1√−2 E0

[
Â + B̂

E0

c2
+ Ĉ

(
E0

c2

)2
]
− j0 +

1

c2 j0

[
D̂ + Ê

E0

c2

]
+

1

c4 j3
0

F̂ , (B2)

where

Â = −1

2
â1 , B̂ = b̂1 −

7

8
â1 , Ĉ =

b̂1

4
− 19

64
â1 ,

D̂ =
â2

1

2
− â2

2
− â1b̂1

4
, Ê = â2

1 − â2 −
â1b̂1

2
− b̂2

1

8
+

b̂2

2
,

F̂ =
1

64
[24 â4

1 − 48 â2
1 â2 + 8 â2

2 + 16 â1 â3 − 8 â3
1 b̂1 + 8 â1 â2 b̂1 − â2

1 b̂2
1 + 4 â2

1 b̂2] , (B3)

and where we have used, as above, the scaled metric coefficients

âi =
ai

(GM0)i
, b̂i =

bi

(GM0)i
. (B4)

Identifying Î0
R(E0, j0) with the analogous expression for the “real” problem,

ÎR(Ereal, j) =
1√−2 Ereal

[
1 +

(
15

4
− ν

4

)
Ereal

c2
+

(
35

32
+

15

16
ν +

3

32
ν2

)(
Ereal

c2

)2
]

− j +
1

c2j

[
3 +

(
15

2
− 3ν

)
Ereal

c2

]
+

(
35

4
− 5

2
ν

)
1

c4 j3
, (B5)

and imposing E0 = Ereal, m0 = µ, α0 = α, we get more equations to be satisfied than

unknowns,

−1

2
â1 = 1 , (B6)

b̂1 −
7

8
â1 =

1

4
(15 − ν) , (B7)

â2
1 − â2 −

â1 b̂1

2
= 6 , (B8)

−19

64
â1 +

b̂1

4
=

35

32
+

15

16
ν +

3

32
ν2 , (B9)

â2
1 − â2 −

â1 b̂1

2
− b̂2

1

8
+

b̂2

2
=

15

2
− 3ν , (B10)

F̂ =
35

4
− 5

2
ν . (B11)

Note that Eqs. (B7) and (B9) depend only on â1 and b̂1, and cannot both be satisfied. To

solve this incompatibility we consider here the possibility that the various coefficients that

appear in the effective metric depend on the energy. Namely, at the 2PN level we consider

the following expansions
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â1(E0) = â
(0)
1 + â

(2)
1

(
E0

c2

)
+ â

(4)
1

(
E0

c2

)2

, (B12)

â2(E0) = â
(0)
2 + â

(2)
2

(
E0

c2

)
, (B13)

â3(E0) = â
(0)
3 , (B14)

and

b̂1(E0) = b̂
(0)
1 + b̂

(2)
1

(
E0

c2

)
, b̂2(E0) = b̂

(0)
2 . (B15)

The introduction of an energy dependence in the coefficients âi, b̂i reshuffles the c−2 expansion

of Eq. (B2) and modifies the equations (B6)–(B11) to be satisfied. It is easy to see that the

flexibility introduced by the new coefficients â
(2n)
i , b̂

(2n)
i allows one to solve in many ways

the constraints to be satisfied. The simplest solution is obtained by requiring that the

energy-dependence enters only in â1(E0) and only at the 2PN level:

â
(2)
1 = 0 , â

(2)
2 = 0 , b̂

(2)
1 = 0 , (B16)

because in this case only Eq. (B9) gets modified. Indeed, it is straightforward to derive the

new equation replacing (B9):

− 19

64
â

(0)
1 +

b̂
(0)
1

4
− â

(4)
1

2
=

35

32
+

15

16
ν +

3

32
ν2 . (B17)

Hence, from Eqs. (B6)–(B8) we obtain the effective metric coefficients at the 1PN level:

â
(0)
1 = −2 , â

(0)
2 = −ν

4
, b̂

(0)
1 =

1

4
(8 − ν) , (B18)

while the 2PN-equations (B17) and (B11), (B12) give:

â
(4)
1 = − ν

16
(32 + 3ν) , â

(0)
3 =

ν

64
(208 − ν) , b̂

(0)
2 =

1

64
(256 − 400 ν + ν2) . (B19)

Again this solution is more complex than our preferred solution (5.6)–(5.8). Moreover we

think that the assumption of an energy dependence in the effective metric introduces a

conceptual obscurity in the entire approach: Indeed, one should introduce two separate

(effective) energies: the energy parameter E
(0)
0 appearing explicitly in geff

µν , and the conserved

energy E
(1)
0 of some individual geodesic motion in geff

µν(E
(0)
0 ). They can only be identified, a

posteriori, for each specified geodesic motion. This makes it also quite difficult to incorporate

radiation reaction effects.
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Finally, one can require that the effective metric does not depend on the energy, but that

the effective mass m0 depends on E0. One then finds the solution

m0(E0) = µ

[
1 +

ν

48
(32 + 3 ν)

(
E0

c2

)2
]

, (B20)

with a corresponding effective metric defined by the energy-independent part â
(0)
i , b̂

(0)
i of the

solution above. The objections of complexity and conceptual obscurity raised above also

apply to this energy-dependent effective-mass solution.
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[1] E. Brézin, C. Itzykson and J. Zin-Justin, Phys. Rev. D1, 2349 (1970).

[2] C. Itzykson and J.B. Zuber, Quantum Field Theory (McGraw-Hill, 1980), p. 83.

[3] I.T. Todorov, Phys. Rev. D3, 2351 (1971); V.A. Rizov, I.T. Todorov and B.L. Aneva,

Nucl. Phys. B98, 447 (1975); I.T. Todorov, Quasi-potential approach to the two-body

problem in quantum field theory, in Properties of Fundamental Interactions 9C, ed.

A. Zichichi (Editrice Compositori, Bologna, 1973), pp. 951-979.

[4] A. Maheswari, E.R. Nissimov and I.T. Todorov, Letters in Mathematical Physics 5, 359

(1981).

[5] While both the “relativistic reduced mass” mw ≡ m1 m2/w and the “energy of the

effective particle” Ew ≡
√

m2
w + b2(w2), introduced in Ref. [3], are rather complicated

functions of the total energy w =
√

s, their ratio Ew/mw simplifies to the function

ǫ ≡ (s − m2
1 − m2

2)/(2 m1 m2), implicit in Ref. [1], which we use in our approach.

[6] T. Damour and N. Deruelle, Phys. Lett. A87, 81 (1981).

[7] T. Damour, C.R. Acad. Sci. Sér. II, 294, 1355 (1982).

[8] T. Damour and N. Deruelle, C.R. Acad. Sci. Sér. III, 293, 537 (1981).

[9] T. Damour and N. Deruelle, C.R. Acad. Sci. Sér. II, 293, 877 (1981).
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