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Abstract 

We formulate the basic postulate of pre-Big-Bang cosmology as one of "asymptotic past trivi- 
ality", by which we mean that the initial state is a generic perturbative solution of the tree-level 
low-energy effective action. Such a past-trivial "string vacuum" is made of an arbitrary ensemble 
of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, 
leading to the possible formation of many black holes hiding singular space-like hypersurfaces. 
Each such singular space-like hypersurface of gravitational collapse becomes, in the string*frame 
metric, the usual Big-Bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe 
after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review 
and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for 
collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine 
whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, 
including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. 
Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections 
recently moved to the pre-Big-Bang scenario. @ 1999 Elsevier Science B.V. 
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1. Introduction and general overview 

Superstring theory (see  Ref. [ 1 ] for a review) is the only presently known framework 

in which gravity can be consistently quantized, at least perturbatively. The well-known 

difficulties met in trying to quantize General Relativity (GR)  - or its supersymmetric  

extensions - are avoided, in string theory, by the presence of  a fundamental quantum 

of  length [2]  ~s ~ (or ')  n/2. Thus, at distances shorter than/~s, string gravity is expected 
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to be drastically different from - and in particular to be much "softer" than - General 
Relativity. 

However, as was noticed since the early days of string theory [3], a conspicuous 
difference between string and Einstein gravity persists even at low energies (large 
distances). Indeed, a striking prediction of string theory is that its "gravitational sector" 
is richer than that of GR: in particular, all versions of string theory predict the existence 
of a scalar partner of the spin-two graviton, i.e. of the metric tensor g ~ ,  the so-called 
dilaton, qS. This field plays a central r61e within string theory [ 1] since its present 
vacuum expectation value (VEV) 05now fixes the string coupling constant g2 = e,t,.ow, 
and, through it, the present values of gauge and gravitational couplings. In particular, 
it fixes the ratio of gs to the Planck length ge ~ G 1/2 by gp ,.,.., ggs. The relation 
is such that gauge and gravitational couplings unify at the string energy scale, i.e. at 
E ~ M s  ~ g M e  ~ (tr ') -j /2 ~ 3 × 1017 GeV. It thus seems that the string way to 
quantizing gravity forces this new particle/field upon us. 

We believe that the dilaton represents an interesting prediction (an opportunity rather 
than a nuisance) whose possible existence should be taken seriously, and whose ob- 
servable consequences should be carefully studied. Of course, tests of GR [4] put 
severe constraints on what the dilaton can do today. The simplest way to recover GR 
at late times is to assume [5] that ~b gets a mass from supersymmetry-breaking non- 
perturbative effects. Another possibility might be to use the string-loop modifications 
of the dilaton couplings for driving & toward a special value where it decouples from 
matter [6]. These alternatives do not rule out the possibility that the dilaton may have 
had an important r61e in the previous history of the universe. Early cosmology stands 
out as a particularly interesting arena where to study both the dynamical effects of the 
dilaton and those associated with the existence of a fundamental length in string theory. 

In a series of previous papers [7,8] a model of early string cosmology, in which 
the dilaton plays a key dynamical r61e, was introduced and developed: the so-called 
pre-Big-Bang (PBB) scenario. One of the key ideas of this scenario is to use the kinetic 
energy of the dilaton to drive a period of inflation of the universe. The motivation is 
that the presence of a (tree-level coupled) dilaton essentially destroys [9] the usual 
inflationary mechanism [ 10]: instead of driving an exponential inflationary expansion, 
a (nearly) constant vacuum energy drives the string coupling g = e 4'/2 towards small 
values, thereby causing the universe to expand only as a small power of time. If one 
takes seriously the existence of the dilaton, the PBB idea of a dilaton-driven inflation 
offers itself as one of the very few natural ways of reconciling string theory and inflation. 
Actually, the existence of inflationary solution in string cosmology is a consequence of 
its (T-)duality symmetries [ 11 ]. 

This paper develops further the PBB scenario by presenting a very general class of 
possible initial states for string cosmology, and by describing their subsequent evo- 
lution, via gravitational instability, into a multi-universe comprising (hopefully) sub- 
universes looking like ours. This picture generalizes, and makes more concrete, recent 
work [ 12,13 ] about inhomogeneous versions of pre-Big-Bang cosmology. 
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Let us first recall that an inflation driven by the kinetic energy of ~b forces both the 
coupling and the curvature to grow during inflation [7]. This implies that the initial 

state must be very perturbative in two respects: (i) it must have very small initial 
curvatures (derivatives) in string units and, (ii) it must exhibit a tiny initial coupling 
gi = e~b'/2 <~ 1. As the string coupling g2 measures the strength of quantum corrections 
(i.e. plays the r61e of h in dividing the Lagrangian: £ = g - 2 / y ) ,  quantum (string-loop) 
corrections are initially negligible. Because of (i), d corrections can also be neglected. 
In conclusion, dilaton-driven inflation must start from a regime in which the tree-level 
low-energy approximation to string theory is extremely accurate, something we may call 
an asymptotically trivial state. 

In the present paper, we consider a very general class of such "past-trivial" states. 
Actually, perturbative string theory is well defined only when one considers such classical 
states as background, or "vacuum", configurations. For the sake of simplicity the set 
of string vacua that we consider are already compactified to four dimensions and are 
truncated to the gravi-dilaton sector (antisymmetric tensor and moduli being set to 
zero). Within these limitations, the set of all perturbative string vacua coincides with 
the generic solutions of the tree-level low-energy effective action [ 14] 

,/  S~ = -~7 d g x x / G e - 4 ' [ R ( G )  +G~'O~q~O,,~] , (1.1) 

where we have denoted by G~,~ the string-frame (o'-model) metric. The generic solu- 
tion is parametrized by 6 functions of three variables. These functions can be thought 
of classically as describing the two helicity-2 modes of gravitational waves, plus the 
helicity-0 mode of dilatonic waves. (Each mode being described by two real functions 
corresponding, e.g., to the Cauchy data (~b, q~) at some initial time.) The same counting 
of the degrees of freedom in selecting string vacua can be obtained by considering 
all the marginal operators (i.e. all conformal-invariance-preserving continuous deforma- 
tions) of the conformal field theory defining the quantized string in trivial space-time. 
We therefore envisage, as initial state, the most general past-trivial classical solution 
of ( 1.1 ), i.e. an arbitrary ensemble of incoming gravitational and dilatonic waves. 

Our aim will be to show how such a stochastic bath of classical incoming waves (de- 
void of any ordinary matter) can evolve into our rich, complex, expanding universe. The 
basic mechanism we consider for turning such a trivial, inhomogeneous and anisotropic, 
initial state into a Friedmann-like cosmological universe is gravitational instability (and 
quantum particle production as far as heating up the universe is concerned [ 8] ). We 
find that, when the initial waves satisfy a certain (dimensionless) strength criterion, they 
collapse (when viewed in the Einstein conformai frame) under their own weight. When 
viewed in the (physically most appropriate) string conformal frame, each gravitational 
collapse leads to the local birth of a baby inflationary universe blistering off the initial 
vacuum. Thanks to the peculiar properties of dilaton-driven inflation (i.e. the peculiar 
properties of collapse with the equation of state p = e), each baby universe is found 
to contain a large homogeneous patch of expanding space which might constitute the 
beginning of a local Big Bang. We then expect each of these ballooning patches of 
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Fig. I. Symbolic sketch of the birth of many pre-Big-Bang bubbles from the gravitational instability of a generic 
string vacuum made of a stochastic bath of classical incoming gravitational and dilatonic waves. Each local 
Einstein-frame collapse of sufficiently strong waves forms a cosmological-like space-like singularity hidden 
behind a black hole. The parts of those classical singularities where the string coupling grows sufficiently fast 
expand, when viewed in the string frame, and generate ballooning patches of space (here schematized as the 
stretching of one spatial dimension) which are expected to evolve into many separate quasi-closed Friedmann 
hot universes. 

space to evolve into a quasi-closed Friedmann universe, z This picture is sketched in 

Figs. I and Fig. 2. In order to study in detail this scenario, we focus, in this paper, 

on the technically simplest case containing non-trivial incoming waves able to exhibit 

gravitational instability: spherically symmetric dilatonic waves, This simple toy model  

seems to contain many of  the key physical features we wish to study. 

Before entering the technicalities of  this model, let us clarify a few general method- 

ological issues. One of  the goals of  theoretical cosmology is to "explain" the surprisingly 

rich and special structure of  our universe. However, the concept of  "explanation" is nec- 

essarily dependent  on one 's  prejudices and taste. We wish only to show here how, 

modulo an "exit" assumption [8] ,  one can "explain" the appearance of  a hot, expand- 

ing homogeneous universe starting from a generic classical inhomogeneous vacuum of 

string theory. We do not claim that this scenario solves all the cosmological  "problems" 

that one may wish to address (e.g., we leave untouched here the monopole and grav- 

itini problems) .  We do not try either to "explain" the appearance of  our universe as 

a quantum fluctuation out of  "nothing". We content ourselves by assuming, as is stan- 

dard in perturbative string theory, the existence of  a classical vacuum and showing how 

gravitational instability can then generate some interesting qualitatively new structures 

akin to those of  our universe. In particular, we find it appealing to "understand" the 

striking existence of  a preferred rest frame in our universe, starting from a stochastic 

bath of  waves propagating with the velocity of  light and thereby exhibiting no clear 

split between space and time. We shall also address in this paper the question of  the 

naturalness of  our scenario. Recent papers [18,19] have insisted on the presence of  

two large numbers among the parameters defining the PBB scenario. Our answer to this 

issue (which is, anyway, an issue of  taste and not a scientifically well-posed problem) 

is twofold: on the one hand, we point out that the two large numbers in question are 

J Our picture of baby universes created by gravitational collapse is reminiscent of earlier proposals 115-17 l, 
but differs from them by our crucial use of string-theory motivated ideas. 
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Fig. 2. A representation of pre-Big-Bang bubbles similar to that of Fig. 1, but in 2 + 1 dimensions. The 
different horizontal planes represent different instants in the evolution from the asymptotic trivial past to the 
Friedmann phase. Two inflationary bubbles characterized by two different initial horizon sizes (both large in 
string units) are shown to lead to Universes of very different homogeneity scale at the time at which the 
Hubble radius reaches string-scale values (/?s = (,_9( 10 -32 cm)), 

classically undef ined and therefore irrelevant when discussing the naturalness of  a clas- 
sical v a c u u m  state; on the other hand,  we show that the selection effects associated to 

asking any such "f ine- tuning"  quest ion can render  natural  the presence of  these very 

large numbers .  

2. Asymptotic null data for past-trivial string vacua 

Motivated  by the p re -Big-Bang  idea of  an initial  weak-coupl ing,  low-curvature state 

we cons ider  the tree-level (order  g - 2 )  effective action for the gravitat ional sector of  

critical superstr ing theory, taken at lowest order in c~', Eq. (1 .1) .  We set to zero the 
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antisymmetric tensor field Bu~, and work directly in four dimensions (i.e. we assume that 
the gravitational moduli describing the six "internal dimensions" are frozen). Though 

the physical interpretation of our work is best made in terms of the original string (or  

o--model) metric G,,,, appearing in Eq. (1.1),  it will be technically convenient to work 
with the conformally related Einstein metric 

g#v = e -~6-4'''°~'~ G~,,, 16rrG = ce'e '/' .... . (2.1) 

In the following, we will set G = 1. In terms of the Einstein metric g,,~, the low-energy 
tree-level string effective action ( 1.1 ) reads 2 

1 
J d4x g/-g J R -  l cgt,~)Otz(/)] (2.2) s = !--67 

The corresponding classical field equations are 

R,,~ (2.3) = ½ a ,6 0 6, 

IS] ,;b =- V # V~ ~b = 0 ,  <2.4) 

with Eq. (2.4) actually following from Eq. (2.3) thanks to the Bianchi identity. As 
explained in the Introduction, we consider a generic solution of these classical field 
equations admitting an asymptotically trivial past. Such an asymptotic "incoming" clas- 
sical state should allow a description in terms of a superposition of ingoing gravitational 
and dilatonic waves. The work of Bondi, Sachs, Penrose [20] and many others in 
classical gravitation theory indicates that this incoming state should exhibit a regular 

past null infinity 2-- ,  and should be parametrizable by some asymptotic null data (i.e. 
conformally renormalized data on 2"-) .  In plain terms, this means the existence of  

suitable asymptotically Minkowskian 3 coordinates (x u) = (t,  x, y, z)  (which can then 
be used in the standard way to define polar coordinates r, 0, ~o and the advanced time 
v = t + r -- t ÷ (x 2 + y2 + Z 2) 1/2) such that the following expansions hold when r ---+ oo, 

at fixed v, 8 and ~: 

c b ( x a ) = & 0  + f ( v , O , ~ ) + o ( 1 " ]  , (2.5) 
Y \ r /  

guv(xa) =rlu~ + f~*v(v'O'~°) + ° ( ! )  (2.6) 

The null wave data on 2-- are: the asymptotic dilatonic wave form f (v ,  8, ~o), and the 
two polarization components f + ( v, O, ~o), f× ( v, O, ~), of the asymptotic gravitational 
wave form fz,~(v,O,~p). 4 (Introducing a local orthonormal frame e~l), e~2) on the 
sphere at infinity one usually defines f +  l = ~ ( f ( t ) ( 1 )  - - f ( 2 ) ( 2 ) ) ,  f ×  = f{l)~2)-) The 

2 We will use the signature ( - ,  + ,  + ,  + )  and the conventions R*',,p, r = O p l ' f f o -  - . . .  , R,,,, = RPl.~pv. 
3 These coordinates must be restricted by the condition that the incoming coordinate cones v ---= t + r = const. 

be asymptotically tangent to exact cones of guu ( xa ). 
4 The three functions f ,  f+ ,  f ×  of t~, 0, ~o are equivalent to six functions in IR 3, i.e. six functions of r, 0, ~o 

with r /> 0, because the advanced time v ranges over the full line ( - o ~ ,  + o o ) .  
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other o ( 1 / r )  pieces in the metric are gauge dependent, except for the "Bondi mass 

aspect" m ~  (v, 0, q0 (defined below in a simple case) whose advanced-time derivative 
is related to the (direction-dependent) incoming energy fluxes: 

O_moo(v,O, 6o ) = 1 (0v f )2  + 1 (0v f+)2  1 (c)vfx)2 +div . ,  (2.7) 
Ov ~ ~ + ~ 

where div. denotes an angular divergence, (sin 0 ) -  1 0o (sin OD ° ) + O~D ~. Instead of the 
asymptotic wave forms f ,  f+ ,  f×  (which have the dimension of length), one can work 

with the corresponding "news functions" 

N(v,O,~o) =--O,,f(v,O,~o), N+ ~-O,,f+, Nx = O v f x ,  (2.8) 

which are dimensionless, and whose squares give directly the incoming energy flux 

appearing on the r.h.s, of Eq. (2.7). 
Before specializing this generic ingoing state, let us note [ 12], the existence of two 

important global symmetries of the classical field equations, (2.3) and (2.4). They are 
invariant both under global scale transformations, and under a constant shift of 4~ : ds '2 = 
a2ds 2, (b' = qb + b. (They are also invariant under local coordinate transformations.) In 

terms of asymptotic data (whose definition requires a specific "flat" normalization of 
the coordinates at past infinity), the global symmetry transformations read 

f ( v ,  O, ~o) --o f '  (v', O, ~o) = a f ( v ' / a ,  O, ~o) , (2.9) 

f+(v ,O,  qO -~ f '+(v ' ,O,p)  =a f+(v ' /a ,O,~o) , (2.10) 

f x (v ,O,~o)  ~ ftx(v' ,O,~o) =a f x (v ' / a ,O ,~p)  (2.11) 

w i t h r - ~ r  r = a r , v ~ v ' = a v , a n d  

(bo --~ ~b; = ~b0 + b. (2.12) 

Note that the three dimensionless news functions (2.8) are numerically invariant under 

the scaling transformations: N~(J ,  O, ~) = N(v ,  O, ~o), etc., with vt = a v. 
As the full time evolution of string vacua depends only on the null data, it is a priori 

clear that the amplitude of the dimensionless news functions must play a crucial r61e 
in distinguishing "weak" incoming fields - that finally disperse again as weak outgoing 
waves - from "strong" incoming fields that undergo a gravitational instability. To study 

this difficult problem in more detail we turn in the next section to a simpler model with 
fewer degrees of freedom. 

Before doing so, let us comment on the "classicality" of an "in state" defined by 

some news functions (2.8). The classical fields (2.5), (2.6) deviate less and less from 
a trivial background (090, ~ )  as r ~ cc (with fixed v, 0 and ~o). One might then 
worry that, sufficiently near Z - ,  quantum fluctuations ~bq, h q  might start to dominate 
over the classical deviations ~b c - ~b(x) - ~b0, h ~  ~_ g ~  - rh, v. To ease this worry let 
us compute the mean number of quanta in the incoming waves (2.5), (2.6). Consider 
for simplicity the case of an incoming spherically symmetric dilatonic wave Si c = 
f ( v ) / r  + o ( 1 / r ) .  Such an incoming wave has evidently the same mean number of 
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quanta as the corresponding outgoing 5 wave ~bCut, with asymptotic behaviour ~bCut = 

- f ( u ) / r  + o ( l / r ) ,  on 2 -+ (r  --~ oo, with u =_ t - r,O and ~o fixed). As is well 
known [21] ,  a classical outgoing wave can be viewed, quantum mechanically, as a 

coherent state in the incoming Fock space defined by the oscillator decomposition 

of  the quantum field ~. Instead of  parametrizing q~Cut by the waveform f ( u ) ,  one can 

parametrize it by an effective source J ( x  a) such that ~bout(x ) = f d4x I Pret(X-X t) J (x l ) ,  
w h e r e  Pret is the (action-normalized) retarded propagator of  the field ~b. (We use a 

normalization such that S = -½ q9 P - l ~ b  + J~b.) The mean number of  quanta in the 

coherent state associated to a classical source J ( x )  has been computed in [21] for 

the electromagnetic case, and in [22] for generic massless fields. It reads (with p x _= 
p x  - w t )  

7 7 " /  d4p 3" 2, 
n = {-TgF )4 k - p )  n Y ( e ) ,  J ( p )  =- f d4xe -iv* J(x), (2.13) 

where 7"4 denotes the residue of  the propagator of  the corresponding field, defined such 

that the field equation P-~ ~b = J reads I-q~b = -7"4 J. (In the normalization of  the present 

paper 7"4 = 16zrG.) Inserting J ( x )  = - ( 4  G) -1 f ( t )  8 (3) (x )  into Eq. (2.13) yields 

j 1 / dw [2 1 dw 1 [2 
= ~  ~ o a l f ( o )  - 2Gh ~ - w l N ( w )  ' 

0 0 

(2.14) 

where N ( w )  - f d t e i ° ' t N ( t )  is the one-dimensional Fourier transform of  the news 

function N ( t )  = f ' ( t ) .  In order of  magnitude, if we consider a pulse-like waveform 

f ( t ) ,  with characteristic duration At ~ go, and characteristic dimensionless news ampli- 

tude Nc ~ fc/gc, the corresponding mean number of quanta is 

n ~  - --N e2 ( 2 . 1 5 )  

In the present paper, we shall consider incoming news functions with amplitude Nc " 1 
and scale of  variation gc >> gs. Moreover, in order to ensure a sufficient amount of  
inflation, the initial value of  the string coupling g2 = eO0 has to be << 1. Therefore, 

Eq. (2.15) shows that such incoming states can be viewed as highly classical coherent 
states, made of an enormous number of  elementary ~b-quanta: ~ >>> 1. This quantitative 

fact clearly shows that there is no need to worry about the effect of  quantum fluctuations, 

even near 2"- where dpcn ~ f ( v ) / r  ~ O. In the case of  the negative-curvature Friedmann- 
dilaton solution this fact has been recently confirmed by an explicit calculation of  scalar 

and tensor quantum fluctuations [23].  

5 In keeping with usual physical intuition, it is more convenient to work with an auxiliary problem where a 
classical source generates an outgoing wave which superposes onto the quantum fluctuations of an incoming 
vacuum state. 
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3. Equations for a spherically symmetric pre-Big-Bang 

283 

The simplest non-trivial model which can exhibit the transition between weak, stable 

data, and gravitationally unstable ones is the spherically symmetric Einstein-dilaton sys- 
tem. The null wave data for this system comprise only an angle-independent asymptotic 
dilatonic wave form f(v), corresponding to the dimensionless news function 

N(v) = ~,f(v).  (3.1) 

The spherically symmetric Einstein-dilaton system has been thoroughly studied by many 

authors with the strongest analytic results appearing in papers by Christodoulou [24-26].  
A convenient system of coordinates is the double null system, (u, v), such that 

q9 = ~b(u,v) ,  (3.2) 

ds  2 = - ~ ( 2 2 ( u ,  u) du dv + r2(u,  v) do) 2 , ( 3 . 3 )  

where dto 2 = dO2+ s in20d~ 2. The field equations are conveniently re-expressed in 

terms of the three functions &(u, v), r(u, v) and re(u, v), where the local mass function 
re(u, v) is defined by 6 

l 2m 4 ( 0 ~ ) ( O r )  
=_ g.V (Our) (&r )  = - ~ - g  ~vv (3.4) 

r v u 

One gets the following set of evolution equations for m, r and ~b: 

(Or) (am) ( 2~_mr ) r2 (&b'~2 
2 ~u ,, -~u ,= 1-  -4 \au / ,  ' (3.5) 

(Or) (Ore) ( 2 m )  r 2 (0q~'~ 2 
2 -~v . -~v = 1 - - -  -4 \Ov /u '  (3.6) 

r OuOv r - 2m ,, . (3.7) 
O2(b (Or) (Ock)  ( O r ) ( & b )  

r oucgv+ -~u v-~v  u+ ~v u -~u ,.=0" (3.8) 

This double-null evolution system is form-invariant under independent local repar- 
ametrizations of u and v: u' = U(u), v' = V(v). To freeze this gauge freedom it is 
convenient to require that u = v on the central worldline of symmetry r = 0 (as long as 
it is a regular part of space-time), and that v and r asymptotically behave like ingoing 
Bondi coordinates on 2"- (see below). 

The quantity 

2m(u,v) 
/z (u ,v)  - - -  (3.9) 

r 

6 In order to avoid confusion we indicate, in standard notation, the variable kept fixed under differentiation. 
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plays a crucial r61e in the problem. Following Ref. [26], we shall sometimes call it the 
"mass ratio". If /z stays everywhere below 1, the field configuration will not collapse but 
will finally disperse itself as outgoing waves at infinity. By contrast, if the mass ratio/z 
can reach anywhere the value l, this signals the formation of an apparent horizon -4. 
The location of the apparent horizon is indeed defined by the equation 

.4: #(u,v) = 1. (3.10) 

The above statements are substantiated by some rigorous inequalities [26] stating that 

< 0 ,  ~>0, (3.11) 

(Or) (am) 
~vv (1 - / z )  ~> O, N (1 - / z )  ~< O. (3.12t 

U l' 

Thus, in weak-field regions (/z < 1 ), (a,,r), > 0, while, as/x > 1, (,3,,r), < 0, meaning 
that the outgoing radial null rays ("photons") emitted by the sphere r = const, become 
convergent, instead of having their usual behaviour. 

It has been shown long ago that the presence of trapped surfaces implies the existence 
of some (possibly weak) type of geometric singularity [27,28]. In the case of the 
spherically symmetric Einstein-dilaton system, it has been possible to prove [25] that 
the presence of trapped surfaces (i.e. of an apparent horizon .4 (3.10), the boundary 
of the trapped region) implies the existence of a future space-like singular boundary/3 
of space-time where the curvature blows up. Both ..4 and/3 are "invisible" from future 
null infinity (2 -+), being hidden behind an event horizon 7-/ (a null hypersurface). See 
Fig. 3. 

One of our main purposes in this work is to give the conditions that the incoming 
dilatonic news function N(v) must satisfy in order to create an apparent horizon, and 
thereby to lead to some localized gravitational collapse. Before addressing this problem 
let us complete the description of the toy model by re-expressing it in terms of the 
ingoing Bondi coordinates (v, r). The metric can now be written in the form 

a s 2 = _  ( l 2m(v, r ) ) r  e2g('"r) dv2+2e/3('~'r)dvdr+r2d°~2' (3.13) 

and the field equations (3.5)-(3.8) become 

(Off) r 2 ( Od? ) 2 
r -~r ~,= 4 k, arJ, ' 

7 \ a r / , '  

r2 I(aq~2+e¢l ( 1 -  2~mr ) (~r),, (~v)  2 ( ~ ) r = e - g ' - 2  [\Ovj  r r] 

(3.14) 

(3.151 

(3.16) 
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weak-jield exparlsion 

0 cosmological regime 

Fig. 3. Schematic representation of the space-time generated by the collapse of a spherically symmetric pulse 

of dilatonic waves. An incoming pulse of scalar news N(u), which grows by O( 1) on an advanced-time 

scale !‘i, collapses to a space-like singularity 13 after having formed an apparent horizon A hidden behind the 

event horizon ‘H. In the vicinity of A and 7-1, there is an abrupt transition between a weak-field region (dark 

shading) where the perturbation series (4.1)-(4.3) holds, and a strong-field one (light shading) where the 

cosmological-like expansion (5.34)-(5.36) holds. 

Eqs. (3.14), (3.15) imply 

& (e P([,J) (r - Zm)) = eP(l,,r) . (3.18) 

In this coordinate system one can solve for the two functions p( u, r) and ,x( u, r) 

(or m( u, r)) by quadratures in terms of the third unknown function $(u, r). Indeed, 

imposing that the coordinate system be asymptotically flat at Z- (i.e. that /3( u, r) --+ 0 

as Y + 00)) one first finds from Eq. (3.14) 

where 

F(lJ,r) z; WJ 2 ( ) dr [,’ 

Eq. (3.15) can then be integrated to give 

pL(u,r) = 
[ 2m, (u) - Jr’” dr' F( u, r’) eP(L’*r’) I 

r eP(l~J) 

(3.19) 

(3.20) 

(3.21) 

where the “integration constant” 
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moo(v) -- lim m(v,r)  (3.22) 
r ---* o o  

denotes the incoming Bondi mass. By the Bondi energy-flux formula (2.7), which is 
also the limiting form of (3.16) for r --+ oo, moo(v) is given in terms of the news 
function by 

If  j" (c~f(ut)'~ 2 moo(v) = a dvt N2(J )  = I dr' \ ~ /I ' 

- -  O 0  - -  ( ? g O  

(3.23) 

where we have inserted the asymptotic behaviour of & on 2--, 

dp(v,r) = & 0 +  f ( 7  ) + o ( ! )  , (3.24) 

and assumed that N(v)  decays sufficiently fast as v ~ -o ~  (i.e. near past time-like 
infinity). From Eqs. (3.19) and (3.21) we find the leading asymptotic behaviour of the 

metric coefficients to be 

2m(v,r)r - 1  --2moo(V)r + ° ( 1 )  ' (3.25) 

e/3('"r)=l-q-(_9(~5) . (3.26) 

4. Data strength criterion for gravitational instability 

The purpose of this section is to outline the condition that the initial data, i.e. the 
wave form f ( u )  or the news function N(v) =- f ' ( v ) ,  must satisfy in order to undergo, 
or not undergo, gravitational collapse. A lot of mathematical work has been done on this 
issue [24-26]. In particular, Ref. [24] and Ref. [26] gave two different "no collapse" 
criteria ensuring that the field configuration never collapses and finally disperses out as 
weak outgoing waves if some functional of the data is small enough. On the other hand, 
Ref. [25] gave a sufficient "collapse" criterion ensuring that the field configuration 
will collapse, if some functional of the data is large enough, thereby giving birth to a 
curvature singularity hidden behind a horizon. The problem with these nice and important 
mathematical results is threefold: (i) these criteria are sufficient but not necessary, so that 
they cannot answer our problem of finding (if possible) a sharp criterion distinguishing 
weak-field from strong-field data; (ii) the various measures of the "strength" of the data 
given in Refs. [24,25] and Ref. [26] are quite unrelated to each other and do not point 
clearly toward any sharp "strength criterion"; and (iii) these criteria are not expressed 
in terms of the asymptotic null data N(v).  

Our aim here is not to compete with Refs. [24-26] on the grounds of mathematical 
rigour, but to complement these results by a non-rigorous study which leads to the 
iterative computation of a sharp strength criterion, i.e. a functional S [ f ] ,  such that 
data satisfying ,5 < 1 finally disperse out at infinity, while data satisfying ,5 > 1 are 
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gravitationally unstable and partly collapse to form a singularity. We will then compare 

our strength functional S with the rigorous, but less explicit results of Ref. [25]. Note 

that the emphasis here is not on the question of whether the created singularity is hidden 
beyond a global event horizon when seen from outside, but rather on the quantitative 
criterion ensuring that past trivial data give birth to a space-like singularity which we 
shall later interpret as a budding pre-Big-Bang cosmological universe. 

4.1. Perturbative analysis in the weak-field region 

In view of the discussion of the previous section, the transition between "weak" and 

"strong" fields is sharply signaled by the appearance of an apparent horizon, i.e. of 
space-time points where /z =- 2m/r reaches the "critical" value 1. Therefore, starting 

from the weak-field region near 2"-, we can define the strength functional by computing 
/z(u, c) as a functional of the null incoming data and by studying if and when it can 
exceed the critical value. Specifically, we can set up a perturbation analysis of the 
Einstein-dilaton system in some weak-field domain connected to 2"-, and see for what 

data it suggests that /x will exceed somewhere the value 1. The expected domain of 
validity of such a weak-field expansion is sketched in Fig. 3. 

The (u, v) system, Eqs. (3.2) and (3.3), lends itself easily to a perturbative treatment 
in the strength of ~b. We think here of introducing a formal parameter, say ,~, in the 

asymptotic data by f ( v )  --~ A f ( v )  and of constructing the full solution fb(u, v), r(u, v), 
m(u, v), as a (formal) power series in ,~ (or by some better iteration method): 

~ ( U ,  U) ~ q~(U, U) -- qb 0 = Aq~l q- A3t~3 -q- A5q~5 q- . . . .  (4.1) 

r(u, c) = ½ (v - u) + A 2 r2 + A 4 r4 + . . . .  (4.2) 

m(u,v) = A2m2 + A4m4 + . . .  (4.3) 

Indeed, knowing qb to order A 2p-I and r to order ,~2p-2 we can use Eq. (3.5) or (3.6) 

to compute by quadrature m to order a 2p. We can then rewrite Eqs. (3.7), (3.8) as 

cg.,,(r-~) =o)r-&, O.,~r=wr, (4.4) 

where 

t x Our O~.r 
oJ_= i - g  r 2 ' (4.5) 

and therefore the right-hand sides of Eqs. (4.4) are known to (relative) order A2p. Solv- 
ing Eq. (4.4), then yields ~ and r to the next order in ,~ (,~2p+l and A zp, respectively). 

To be more explicit, Eqs. (4.4) are of the form 

a:,,, 0 ( u ,  v) = o'(u,  v ) ,  (4.6) 

where the "source" tr = w~p is known at each order in A from the lower-order expression 
of ~ and ~, and where the "field" if(u, v) is restricted to vanish on the central worldline 
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of symmetry v = u (where r = 0, and q~ is regular in the weak-field domain). The generic 

equation (4.6) can then be solved by introducing the retarded Green function 

G ( u , v ; u ' , v ' )  = O ( u -  u') O ( u -  v') - O ( v -  u') O ( u -  v') , (4.7) 

0,,. G(u,  v; u', u') = ~(u - u')  6(u - u') . (4.8) 

This is the unique Green function in the domain v/> u, v' ~> u t which vanishes at v = u, 

and whose support in the source point ( d ,  v ~) lies in the past of  the field point (u, v). 
The general solution of  (4.6) can then be written as 

/ /  O ( u , u )  a, bin(U,V) + du' dv' G ( u , c ; u  ,v ' )  o ' (u ' ,v ' )  , (4.9) 
I , I  ~u t 

where ~/'in(u, v) is the free "incoming" field, satisfying 0u~, 0in = 0 and vanishing when 

v = u, i.e. 

~0in (U, V) = gin (V) -- gin (u) . (4.10) 

The incoming waveform gin(V) is uniquely fixed by the incoming data on 2"-. For 
i (v - u )  (we recall that in instance, for r (u ,  u) asymptotic flatness gives rin(U, V) = 

flat space u = t + r and u = t - r) ,  while for ~b(u,v) - d~(u,v) - cPo the asymp- 

totic expansion (3.24) (in which f ( v )  was supposed to vanish as v ~ -cx~) yields 

qSin(u,v) = 2 ( f ( v )  - f ( u ) ) / ( u  - u). 
In principle, this perturbative algorithm allows one to compute the mass rat io/z(u,  v) = 

2 m / r  to any order in A: 

t z (u , v )  = A2 tz2 + A4/z4 + . . .  (4.11) 

Evidently, the convergence of  this series becomes very doubtful when /z can reach 
values of  order unity, which is precisely when an apparent horizon is formed. One 

would need some resummation technique to better locate the apparent horizon condition 

/z(v ,u)  = 1. However, we find interesting to have, in principle, a way of  explicitly 

computing successive approximations to the possible location of  an apparent horizon, 

starting only from the incoming wave data f ( v ) .  

4.2. Strength criterion at quadratic order 

Let us compute explicitly the lowest-order approximation to (4.11) (we henceforth 

set A = 1 for simplicity). It is obtained by inserting the zeroth-order result ro(u, v) = 
L (v - u) and the first-order one for q~, 
2 

~ l ( u , u )  = ~ b l ( u , v ) - ~ b o -  f ( v ) - f ( u )  _ 2 [ f ( v ) - f ( u ) ] ,  (4.12) 
r 0 v - -  u 

into Eq. (3.5) or Eq. (3.6). This yields (with f ( v )  =- Of/Or) 
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(4.13) 

(4.14) 

The compatibility of the two equations is easily checked, e.g., by using 

&(ri(&& )*) = ~04,#144h = -&(tfi(44% )*) , (4.15) 

which expresses the “conservation” of the @energy tensor in the (u, u) plane. Noting 

that m(u, u) must vanish (by regularity of r = 0 in the weak-field domain) at the centre 

u = u one gets, by quadrature, the following explicit result for m2: 

mz(u,u) = %(u,u) - $ roi$, (4.16) 

where 

(4.17) 

Note that Eq. (4.16) decomposes m2 (u, u) in a “conserved” piece rj2( u, u) = g(u) -g(u) 

(with J,,.& = 0) and a &dependent one. This is an integrated form of the local 

“conservation” law (4.15) of the @-energy tensor. Using (4.16) one gets a very simple 

result for the quadratic approximation to the mass ratio ,u = 2m/r, namely 

L’ 

p*(u,u) = 1 
V-U .I 

dxf’2(x) - 

[ 

f(u) - f(u) 2 
0-U 1 . N (4.18) 

Let us introduce a simple notation for the average of any function g(x) over the interval 

[u,ul: 

Then the mass ratio, at quadratic order, can be simply written in terms of the scalar 

news function N(u) = f’(u) : 

P2(4U) = (N2) lu,rl - ((N,u,1g)2 3 (4.20) 

= ((N(x) - (N)IWl )2)X~,W~, 7 (4.21) 

= Var (N(.x))x~~u.ll~ , (4.22) 

where Var (g) tu,c,~ denotes the “variance” of the function g(x) over the interval [u, u] , 
i.e. the average squared deviation from the mean. 

As indicated above, having obtained p to second order, say 

p2 = V(u, u) - var (N) [U,Pl 3 
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one can then proceed to compute r and ~b to higher orders. Namely, from Eq. (4.9),  

[ V ( u , v ) ]  
2r(u,v) =v - u - G * L V~_u 3 + O ( A  4) , (4.23) 

[ f ( v ) - f ( u ) J  ( rdp ) (u , v )= f ( v ) -  f ( u ) - G .  V(u,v) - ~ 2 ~ T  + O ( A 5 ) '  (4.24) 

where the star denotes a convolution. Then, one can get from these results m4, and 
thereby /z4, by simple quadratures. In the following we shall only use the quadratic 
approximation to # ,  though we are aware that when the initial data are strong enough to 

become gravitationally unstable, higher-order contributions to /z  are probably comparable 
to/z2. 

Finally, at quadratic order, we can define the strength of some initial data simply as 
the supremum of the variance of the news over arbitrary intervals, 

$2 = s u p / z 2  = sup Var(N(x))x~l , ,~, l .  (4.25) 
. , r  

At this order $2 < l means that /z2(u,  v) stays always below one, i.e. that no trapped 
region is created, and that the field is expected to disperse, while ,92 > 1 signals the 
formation, somewhere, of  trapped spheres, and therefore (by the results of  Ref. [25] )  
the formation of  a singularity. To be more exact we should actually define, in anal- 

ogy with (4.25),  a quantity S2p = supY'~= 1/x2k, at any finite order in the weak-field 
expansion, and state our collapse criterion as the inequality: 

$2 p > C2p,  C2 p p~o~ 1. (4.26) 

In practice, even if we do not expect it to be quantitatively exact, we will use the 

criterion (4.26) with p = 1, taking C2 -- 1, hoping that it will be qualitatively correct in 
capturing the features of  the news function which are generically important for producing 
a gravitational collapse. Let us note that the functional ,92 is (like N) dimensionless 
(and therefore scale invariant) and that it is non-local. We note also that it is invariant 
under a constant shift of  N, N(u)  --~ N(u)  + a, which corresponds to adding a linear 

drift in f : f ( v )  ---, f ( v )  + av + b. Such a shift is (formally) equivalent, in view of 
Eq. (4.12),  to a constant shift of  ~b0 ---, &0 + 2a. 

The non-locality of  $2 is physically interesting because it indicates that it is not 

the instantaneous level of  the energy flux N2(v)  which really matters, but rather the 
possibility of  having a flux which varies by ,.o 100% over some interval of  advanced time. 
This non-locality defines also some characteristic scales associated with the collapse 
(when ,92 > 1). Indeed, if, by causality, we consider increasing values of  v, and 
define S2(U ) ---- supu,u<~,,Var(N)lu.vl, the first value of v for which S2(v)  exceeds 1 
defines an advanced characteristic time when the collapse occurs, and the corresponding 
maximizing interval [u, v] defines a characteristic time scale of  ( in)homogeneity.  (Note 
that /x2(u,  v),  Eq. (4.22),  vanishes when u = v, and vanishes also generally when u ---. 
- o o  if N(u) tends to a limit at - o c . )  
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Let us also mention that our strength functional (4.25) is superficially similar to 

the one recently introduced by Christodoulou [26] to characterize sufficiently weak 

(i.e. non-collapsing) data. In the lowest-order approximation his criterion measures the 
strength of the data by ]2 = T V ( N ( x ) ) ,  where TV denotes the total variation (i.e. 

essentially V = f~+~ dviNP(v) l ) .  Like our variance, this is a measure of  the variation of 
N ( v )  with, however, a crucial difference. I f  V were a good criterion for measuring the 

strength of possibly strong data, we would conclude that a news function which oscillates 
with a very small amplitude for a very long time will be gravitationally unstable, while 
our criterion indicates that it will not, which seems physically more plausible. We hope 

that our strength functional (4.25) will suggest new gravitational stability theorems to 
mathematicians. 

4.3. Comparison with a collapse criterion o f  Christodoulou 

To check the reasonableness of  our quadratic strength criterion (4.25),  (4.26) we have 
compared it with the rigorous, but only sufficient, collapse criterion of Christodoulou 
[ 25 ], and we have applied it to two simple exact solutions. Ref. [25 ] gives the following 

sufficient criterion on the strength of characteristic data considered at some finite retarded 
time u:  

2Am [r-~2 ( r l )  6rl 1 
d---~" ~> log ~ r  + - - -  1 , (4.27) 

r 2  

where rl <~ r2, r2 <~ 3r t /2 ,  are two spheres, Ar = r2 - r l  is the width of the "annular" 
region between the two spheres, and Am = m2 -- ml =- re(u, r 2 )  - -  re(u,  r l )  is the mass 
"contained" between the two spheres, i.e. more precisely the energy flux through the 

outgoing null cone u = const., between rl and r2. Explicitly, from Eq. (3.15) in (u, r)  

coordinates, we have 

"i r'( 2Am = dr  ~- 1 - (4.28) 
U 

rl  

We can approximately express this criterion in terms of the incoming null data N ( v )  = 

f ( v )  if we assume that the outgoing cone u = const, is in the weak-field domain, so 

that we can replace ~b on the r.h.s, of  Eq. (4.28) by d) = r - I  [ f ( u  + 2r)  - f ( u )  ]. Then 

the l.h.s, of  Eq. (4.27) becomes (at quadratic order) 

2zlm M ( u ,  u 2 )  - M(u ,  vl ) 
- (4.29) 

Zl r  v2  - -  Vl 

where 

M ( u , v )  -- (v - u) Var(N)l, . , ,  1 -- i dx  ( N ( x )  - (N)lu.vl) 2 . (4.30) 

U 

Therefore, in this approximation, the criterion of Ref. [25] becomes (with v0 = u) 
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M(vo, v2) - M(vo, vl ) 
3vo, vl, v2 : >~ C(vo, vl, v2) , (4.31) 

U2 - -  U1 

with the constraints 2v2 - 3vl ~< -vo,  vl ~< v2, and the definition 

v, -vo  [ ~'l-vo ~ 6(vl-~o) 
C(vo, v l ,v2)  -- - -  log t j + 1. (4.32) 

~2 - v0 \ 2 (72 -- 71 ) v2 - v0 

If  v0 is at the boundary of  its allowed domain, i.e. if vo = 3vl - 2v2, this criterion is 
fully compatible with ours since C(vo, Vl, v2) = 3 implying through Eq. (4.30) 

Var(N)[,.o.,.2r ~> 1 +  3Var(N)l,.o,,,i ~> 1. (4.33) 

In the opposite case (v0 large and negative) we think that the criterion (4.31) is also 

compatible, for generic news functions, with the general form suggested above, i.e. 

' ' -  )~ 3v  I v 2 Var(N) . . . .  (N 2 , Iv,,,2l )l,'~,,'~l -- (N ,,~.,,~1 ~> C2, (4.34) 

with some positive constant C2 of  order unity. We first note that one should probably im- 

pose the physically reasonable condition that N(v)  decays 7 sufficiently fast as v ---+ - o o  

(faster than Iv[ -V2) to ensure that the integrated incoming energy flux f,,_o dvN2(v) 
is finite. (This constraint freezes the freedom to shift N ( v )  by a constant.) 

When - vo  is large, the question remains, however, to know how fast the function 

N ( v )  decays when t,I - v (for vo < v < vj) becomes much larger than v2 - vl. Let 

us first consider the physically generic case where N ( v )  decays in a reasonably fast 

manner, say faster than a power ]vl-" with K of  order unity. Then choosing v0 in the 

criterion (4.31) just large enough to allow one to neglect N(vo) with respect to N ( v ) ,  

say (vj - v 0 )  ~ ( v 2 -  Ul) >( 10 I / ' ,  corresponding to N(vo) = 0 . 1 N ( v l ) ,  the l.h.s, of  

Eq. (4.31) becomes approximately 

2Am ~_ ( N 2 } [ v , , , , 2 1  ' (4.35) 
Ar 

while the function C on the r.h.s., which grows only logarithmically with vo, becomes 

( ) c(v0 ,v , ,v2)  _~log \ 2 ~ 2 - - ~ )  + 5 .  (4.36) 

Therefore, a function of  the type NK(v) ~ c [ ( v 2 -  v ) / ( v 2 -  vj)] -K (when v ~< vl < 
v2) with c 2 > 5 + (log 10)/K will fulfill the criterion (4.31). To see whether this is 

compatible with our criterion (4.34) we have studied (analytically and numerically) 
the variance, over arbitrary intervals ' ' [ V  1 , t ) 2 ] ,  of the function N~(v) .  We found that the 

inequality (4.34) is satisfied for a constant C2 ('¢) which is of  order unity if K stays of  
order unity. (For instance, in the extreme case K = 1/2 corresponding to a logarithmically 
divergent incoming energy flux, we find C~ U2) ~ 0.2.) We note, however, that if one 

7 Actually, when comparing our criterion (based on asymptotic null data) to that of Ref. [26] (based on 
characteristic data taken at a finite retarded time u = vo) we can consider, without loss of generality, that the 
news function N(v) vanishes identically for v ~< vo. 
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considers extremely slow decays of  N ( v ) ,  i.e. very small exponents K ~ 0 (completed 

by a faster decay, or an exact vanishing, before some large negative cutoff Vc ), the 

constant C2 ( ' )  needed on the r.h.s, of  the variance criterion (4.34) tends to zero. This 
signals a limitation of applicability of  our simple variance criterion based only on the 

quadratic order approx imat ion / ,  =/z2 +/./,4 + . . .  " ~  /-/,2. Indeed, one can check that, in 
such an extreme situation/z2 is abnormally cancelled, while/z4 will be of  order unity. 
However, we believe that for generic, non-extremely slowly varying news functions, the 

simple "rule of  thumb" (4.34) is a reasonable approximation to the (unknown) exact 
collapse criterion. To further check the reasonableness of  our criterion (4.25) we turn 
our attention to some exact solutions. 

4.4. Exact  solutions 

A first exact, dynamical Einstein-dilaton solution is defined by a news function con- 

sisting of  the simple step function 

N ( v )  = p O(v)  . (4.37) 

The corresponding solution has been independently derived by many authors [29].  
Here, p is a real parameter and the value IPl = 1 defines the threshold for gravitational 

instability: no singularity occurs for IPl < 1, while [Pl /> 1 causes the birth of  singularity. 
The metric for this solution takes the form (note that ,(2 = 1 ) 

ds 2 = - d u  dv + r 2 doo  2 , (4.38) 

with the solutions for ~b, r and m given as follows: 

~b = 0 ,  r = ½ ( v -  u) , m = 0 ,  for v < 0 ,  (4.39) 

while, for v ~> 0, 

r2(u,  v) - I v2 - g  [ ( l - p 2 )  _ 2 v u + u  2] 

-a-' [ ( 1 - p ) v - u ]  [(1 + p ) v - u ]  , (4.41) 

p 2 u v  
m ( u , v ) -  - -  , (4.42) 

8r 

p2 u V (4.43) 
/Z(U,V) = [(1 - - p 2 )  v 2 - - 2 U U + U 2 ]  " 

Let us note that the perturbation-theory value o f / z  for v > 0, is 

p Z u v  
/x2(U,V) = V a r [ p S ( x ) ] l , , , ,  I - ( v _ u ) ~ O ( - u ) .  (4.44) 

The maximum value of /z2,  reached for u = - v ,  is p2 /4 .  This shows that, as expected, 
the quadratic order criterion (4.25) is only valid as an order of  magnitude, but is 
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quantitatively modified by higher-order corrections. This example,  and a related general 

theorem of  Christodoulou [26] ,  suggest that, if the exact criterion were of  the type 

I (Note that this value is also compatible with ,92 = C2, the constant C2 should equal ~. 

the constant C~ J/z) ~ 0.2 appropriate to I~'I-J/2 decay.) 

A second exact solution [ 30,18] is a negative-curvature Friedmann-like homogeneous 

universe. It is defined by the following null data on 2-- (for v < 0) 

v5 
f O 0  - N ( c )  = - - .  (4.45) 

U ' U 2 

Here we view this solution as defined by incoming wave data in a flat Minkowski 

background. Actually the data are regular only in some advanced cone v = T + R < 0, 

and blow up when z; = 0. Here, T and R = ~ X  2 + y2 q_ Z 2 a re  usual Minkowski-l ike 

coordinates in the asymptotic past. In terms of  such coordinates the exact solution reads 

( w h e n  T 2 - R 2 < 1) 

E '1 ds 2= 1 (T 2 -R2)2 [ - d T  2 + d X  2 + d Y  2 + d Z  2], (4.46) 

( T 2 - R 2 - 1 )  (4.47) 
=-vSIog N R Tl 

Note that, for simplicity, we have set here ~b0 = O, and we have also set the length scale 

appearing in f ( v )  = -V'-Jg~}/v to go = 1. We shall come back later to the cosmological  

significance of  this solution. Let us only note here that, in terms of  the null coordinates 

u = T -  R , L; = T + R,  (4.48) 

the exact mass ratio reads 

u v (v - u) 2 (4.49) 
# ( u , v ) -  (u 2 v 2 _ 1 ) 2 ,  

while, starting from (4.45) ,  one obtains 

(t '  - u) 2 (4.50) 
/,Za(U,U) = Var(N)[, , , ,  I - u3u3 

One finds that a strength criterion of  the form sup,~<,,/z2(u, v) = C2 is first satisfied (as 

one increases v from - o e )  when v = c'.2, with u = u.2, where 

( 2 7 ~ 2 )  1/4 v.2 = - g o  , u.2 = 3v.2. (4.51)  

For C2 of  order 1, this is in qualitative agreement with the exact result that the apparent 

horizon is located at 

1 I 
uA = ~ , rA ---- ~ ( 1 --  U4) 3/2 , (4.52) 

so that the apparent horizon and the singularity are first "seen" at O. exact= --gO. 
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5. Transition from the weak-field to the cosmological regime 

295 

The following general picture emerges from the previous sections: Let us consider as 
"in state" a generic classical string vacuum, which can be described as a superposition of 

incoming wave packets of gravitational and dilatonic fields. This "in state" can be nicely 
parametrized by three asymptotic ingoing, dimensionless news functions N ( v , O , ~ ) ,  

N+(v, 0, ~p), N× (v,/9, ~p). When all the news stay always significantly below 1, this "in 
state" will evolve into a similar trivial "out state" made of outgoing wave packets. On 

the other hand, when the news functions reach values of order l, and more precisely 
when some global measure of the variation s of the news functions, similar to the 

variance (4.25), exceeds some critical value of order unity, the "in state" will become 
gravitationally unstable during its evolution and will give birth to one or several black 
holes, i.e. one or several singularities hidden behind outgoing null surfaces (event 
horizons). Seen from the outside of these black holes, the "out" string vacuum will 

finally look, like the "in" one, as a superposition of outgoing waves. However, the story 

is very different if we look inside these black holes and shift back to the physically 

more appropriate string conformal frame. First, we note that the structure of black 
hole singularities in Einstein's theory (with matter satisfying p < e) is a matter of 
debate. The work of Belinsky, Khalatnikov and Lifshitz [ 31 ] has suggested the generic 
appearance of an oscillating space-like singularity. However, the consistency of this 

picture is unclear as the infinitely many oscillations keep space being as curved (and 

"turbulent" [32,33]) as time. Happily, the basic gravitational sector of string theory 
is generically consistent with a much simpler picture. Indeed, it has been proven long 

ago by Belinsky and Khalatnikov [34] that adding a massless scalar field (which can 
be thought of as adding matter with p = e as equation of state) drastically alters the 
BKL solution by ultimately quenching the oscillatory behaviour to end up with a much 
simpler, monotonic approach to a space-like singularity. When described in the string 
frame, the Einstein-frame collapse towards a space-like singularity will represent (if ~b 
grows fast enough toward the singularity) a super-inflationary expansion of space. The 

picture is therefore that inside each black hole, the regions near the singularity where 
~b grows sufficiently fast will blister off the initial trivial vacuum as many separate pre- 
Big-Bangs. These inflating patches are surrounded by non-inflating, or deflating (i.e. 
without fastly increasing ~b) patches, and therefore globally look like approximately 
closed Friedmann-LemaTtre hot universes. This picture is sketched in Fig. l and Fig. 2. 

We expect such quasi-closed universes to recollapse in a finite, though very long, time 
(which is consistent with the fact that, seen from the outside, the black holes therein 
contained must evaporate in a finite time). To firm up this picture let us study in detail 
the appearance of the singularity in the simple toy model of Section 3. 

8 The argument that the collapse criterion should be (at least) invariant under constant shifts of all the news 
functions (corresponding to classically trivial shifts of the background fields g~v, ~bo) indicates that only the 
global changes of the news matter. 
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5.1. Negative-curvature Friedmann-dilaton solution 

We have already seen that in the toy model there is an infinitely extended incoming 
region where the fields are weak and can be described as perturbations upon the in- 

coming background values (g° v = rh,,,, ,;b0). One expects that the perturbation algorithm 
described in Section 4.1 becomes unreliable when corrections become of order unity. 
In particular, one generically expects that the apparent horizon / ,  =- 2 m / r  -- l will 

roughly divide space-time in two domains: the perturbative incoming weak-field domain 
where /* (u ,  v) << 1, and a strong-field domain w h e r e / , ( u ,  v) >> l. (Actually, we shall 

see below that the precise boundary of the domain of validity of  perturbation theory 
may also depend on other quantities than just # . )  This separation in two domains is 

represented in Fig. 3. 

For guidance let us study in detail this separation in two domains in the case of  the 
k = - I  Friedmann-dilaton solution [30,18]. Let us first write explicitly the solution 
(4.46) and (4.47) in (u ,v )  coordinates 

[ u v -  1] 
ds2=- f22 (u , v )  dudv+r2d to2 ,  q~(u,v) = --X/3 log [UV+ l J  , (5.1) 

( ' )  , ( , )  f22 (U, U) = 1 - - - - - ~ U  2 , r Z ( u , v ) = ~  1 - - - - ~ U  2 ( U - - V )  2 , (5 .2 )  

u v ( v -  u) 2 2m (u3v - 1) ( u v  3 - 1) 
# ( u , v ) -  (u2v 2 1) 2 , 1 - (5.3) - r (u2v  2 -  1) 2 

The perturbative algorithm of Section 4.1 gives 

,,) 
&(u, v) ~ 1 + (5.4) uv ~ ~-~-~ ' 

' ( ~ - u ) ( l  ' ' ) (5.5) r ( u , v ) " ~  7 2 u 2 v  2 ' 

which agree with the expansions of  Eqs. (5.2) and (5.3).  One sees that perturbation 

theory is numerically valid up to, say, uv <~ x/2, at which point there is an abrupt 
transition towards the cosmological singularity located at uv = 1. Though the transition 
surface uv ~ v/2 globally differs from the apparent horizon # ( u ,  v) = l, we note that 
our criterion points out to a specific event (u.2, v.2) on the apparent horizon .,4 (the 
point where .,4 is first "seen" from infinity) which lies, roughly, at the intersection 
of .4 and of the transition surface. This confirms that our criterion is able, at least 
in order of  magnitude, to correctly pinpoint when and where one should shift from 
the perturbative regime to a different, cosmological-type description. In the case of  the 
solution Eqs. (5 .1 ) - (5 .3 ) ,  one sees better the cosmological nature of  the strong-field 
domain by introducing the following coordinates: 

u = - e  -'7+( = T - R ,  v = - e  - ' 7 - (  = T + R,  (5.6) 

satisfying the useful relations 
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- T = e  - 7  cosh~:, R = e  - 7  s inh~,  (5.7) 

O, = e 7 - ~  (07  - O~) ,  0,, = e 7+~ (07 + 0~),  (5.8) 

e - 2 7  = u v ,  e2~: = u .  (5.9) 
O 

In terms of the coordinates (r;, ~) the solution reads [30,18] 

d s  2 = a2(r/)  [ -dr /2  4- d~ :2 4- sinh 2 ~:dw 2] , 

a2(r/)  = 4 c o s h ' q  s i n h ( - r / )  , e -4' = ( sinhr/ '~ vg 
\ cosh r; ] 

(5.1o) 

(5.11) 

We note that the solution is regular in the domain - c ~  < r; < 0, 0 ~< ( < + ~  (which 
corresponds to the past of  the hyperboloid T 2 - R 2 = 1 in Minkowski-like coordinates) 
and that a space-like singularity is reached at r / =  0 (i.e. uv  = T 2 - R 2 = 1). Let us also 

note the expressions 

r 2 ( ( ,  r/) = a 2 (r/) sinh 2 (: = 4 cosh r/sinh ( - r / )  sinh 2 (:, (5.12) 

(5.13) 
2 m  

1 - sinh z ~: [coth 2 ~ - coth 2 2~7] 
F 

telling us that the apparent horizon is located at 27/= - ( .  Near the singularity, 7/--+ 0 - ,  

the dilaton blows up logarithmically while the metric coefficients have the following 

(5.14) 

power-law behaviours: 

~b ,-~ - x / 3  l o g ( - n ) ,  

r 2 (~:, r / )  ~ - 4 7 / s i n h  2 s c . 

$'22(•, 7~) ~ a 2 ( r / )  ~ - 4 r ; ,  

Before leaving this example we wish to emphasize some features of  it which appear to 
follow from its homogeneity and could be misleading for the general case. The singular 

boundary terminates, in this case, on Z - ,  instead of on 2 "+, as one generically expects. 
The apparent reason for this is the singularity in the flux at v = 0 which creates a future 
boundary on 27-. We believe that, in this case, a better description of physics is obtained 
by going to new non-Minkowskian coordinates of  Milne's type (see Ref. [12] )  which 

automatically incorporate the singularity on 27-. However, if one restricts oneself to 
more regular initial data, having a finite integrated energy flux (generalized pulse-like 

data),  the singular boundary should never come back to 27-. (At most, it could end at 
space-like infinity t °,  for non-integrable total energy flux). 

5.2. K a s n e r - l i k e  b e h a v i o u r  o f  E i n s t e i n - d i l a t o n  s i n g u l a r i t i e s  

Coming back to the generic case of  an arbitrary Einstein-dilaton cosmological sin- 
gularity, previous works [12] have shown that, in a suitable synchronous coordinate 
system (Gauss coordinates),  the asymptotic behaviour of  the string-frame metric near 
the singularity reads (in any space-time dimension D)  
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D--I 

ass ~ -dt2s + Z ( - t s ) Z " c ~ ( E ~ ' ( x )  dxi) 2 , (5.15) 
o = l  

~b(x, t) = ~b(x, 0) + o-(x) l o g ( - t s ) ,  (5.16) 

where E~'(x) is some (D - l)-bein and where (1 ~ a ~< D - 1) 

D--I D-I 

In the Einstein frame this asymptotic behaviour reads 

ds 2 ~ - d t  2 + ~ - ] ( - t e )  za'~X) (e~'(x) dxi) 2 , (5.18) 

~b(x, t) = ~b(x, 0) + y ( x )  l o g ( - t e ) ,  (5.19) 

where e~(x) is proportional to E~'(x) and where 

D--I I D --__~1 
Aa = 1, y = ± v ~  1 - h 2. (5.20) 

O =  ] O =  I 

The "Kasner" exponents, a,, in the string frame or &, in the Einstein frame, can vary 

continuously along the singularity. The string parametrization is the most global one 
as it shows that oeu runs freely over a unit sphere in IR D-1 while the exponent for e 4' 

is a linear function of  the "vector" aa. In the Einstein frame, the exponents ha are 

restricted by the linear equality y],, ,~,, = 1 and the quadratic constraint y],, h, 2, ~< I. A 

convenient geometric representation of  these constraints, when D = 4, is to consider 

(in analogy with Mandelstam's variables s , t , u )  that the 3 ,~a's represent, in some 

Euclidean plane, the orthogonal distances of  a point A from the three sides of  an 

equilateral triangle (counted positively when A is inside the triangle). The quadratic 

constraint then means that A is restricted to stay inside the circle circumscribing the 

triangle. The sign ambiguity in Eq. (5.20) means that the parameter space is in fact a 

two-sided disk, namely the two faces of a coin circumscribed around the triangle. See 

Fig. 4. 
The link between the two seemingly very different parameter spaces (the string-frame 

sphere parametrized by the ce's and the Einstein-frame two-sided disk parametrized by 

the/ l ' s )  is geometrically very simple: one obtains the disk by a stereographic projection 
of  the sphere, from the projection centre (o4) = (1 ,1 ,  1) (outside the sphere) onto the 

plane dual to this centre (i.e. the plane spanning the circle of  tangency to the sphere of  

the straight lines issued from oe~). Algebraically (in any-space-time dimension D)  

o~,(D - 2) - o- x/2 (D - 2) o" 
h,, = , 9' = , (5.21) 

D - 2 - o -  D - 2 - o "  

where o- = (~-]u tea) - 1. Note that there is no sign ambiguity in the map ao ~ ha. 
Coming back to the case D = 4, as a,, runs over a unit sphere in IR 3, &, covers twice 
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(t,0,o;0) 
~ +cio ) -oQ, 

(1 -_  i~ ÷gg ' - ~  

(0,1,0;0) .V~0,1/2,1/2;+__.1 j / ~ .  (0,0,1;0) +l ) -- 1 

(-- 1/3,2/3,2/3;0) 0 

Fig. 4. Geometric representation of the Einstein-frame Kasner exponents (AI, ,~z, ,~3; Y) of Einstein-dilaton 
cosmological singularities. The three ,Vs, such that ~ a  Aa = 1 are the orthogonal distances to the three sides 

of an equilateral triangle. The constraint y = ::kx/2 ~/1 - ~ a  "t2 restricts the representative A of ,ta to stay 
on a two-sided disk circumscribed around the triangle. The pure-Einstein cases (y = 0) correspond to the 
circumscribing circle. In the spherically symmetric case (A2 = ~3), A runs over a bissectrix of the triangle. 
The basic parameter ot of Eqs. (5.24) and (5.33) runs over a full real line (shown folded on the right of the 
figure ) and is mapped to the bissectrix via horizontal lines. 

~c  

Fig. 5. Geometrical representation of the link between the two-sided disk of Fig. 4 on which the Ein- 
stein-frame Kasner exponents Aa live, and the sphere, ~ a  a~ = 1, on which the string-frame Kasner exponents 
(Otl,Ot2, ot3) live. The map a ,  --+ Aa is a stereographic projection, from the centre (a  c) = (1, 1, 1). The 
upper side of the disk comes from the projection of the polar cap o -- (~-~a aa) - 1 > 0 located on the same 
side as ot c, while the lower side of the disk comes from projection of the anfipolar cap tr < 0. The points 
or+ on the polar cap, and a _  on the antipolar cap, are both projected on the same point A of the disk. The 
tangents to the sphere issued from a c touch the sphere along the circle limiting the disk (on which or = 0). 

the  d isk  c i r c u m s c r i b e d  to an  equi la te ra l  t r iangle .  E a c h  side o f  the  d i sk  is the  image ,  

v ia  the  s t e r e o g r a p h i c  p ro jec t ion ,  o f  a po la r  ( t r  > 0)  or  an t ipo la r  (o" < 0)  " c a p "  o f  

the  sphere .  Th i s  g e o m e t r i c a l  p ic tu re  o f  the  l ink  b e t w e e n  the  a - s p h e r e  and  the  two-s ided  

, t -d isk  is r e p r e s e n t e d  in Fig.  5. I t  is useful  to keep  in m i n d  this  geome t r i ca l  p ic ture  

b e c a u s e  it s h o w s  c lear ly  tha t  one  can  c o n t i n u o u s l y  pass  f r o m  one  s ide o f  the  d i sk  to 
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the other, i.e. the sign of  the Einstein-frame "Kasner" exponent of  e ~' ~ ( - t E ) r  <x~ 

(which is the same as the sign of its string-frame Kasner exponent o-, see Eq. (5 .21))  

can change as one moves along the singularity. Note also that the sign of the quantity 

o'0 -= ~-~'~,, aa  can change along the singularity. It is positive on the "upper hemisphere" 
in Fig. 5 (the half of  the sphere directed toward oF), and negative on the "lower 

hemisphere". The sign of  the quantity o-0 is important because it determines whether 
(on average) space expands or not (in string units): if o-0 < 0 (respectively > 0) 
the string-unit proper volume of  a given coordinate spatial patch expands (respectively 

shrinks) toward the singularity. Because of the link o- - o'0 - 1 between o'0 and the 

Kasner exponent of  g2 = e ~ ~ (_ts) ,~,  a necessary condition for having an expanding 
space is to have a sufficiently fast growth of the string coupling: o- < - 1 .  (In fact one 

needs a faster growth than that if one insists that all three dimensions of  our space have 

expanded).  Physically this means a very striking inhomogeneity near the singularity. 

Our mechanism generates at the singularity a "patchwork" of physically very different 
sub-universes (with different signs for various Kasner exponents).  Only some of these 
patches (with sufficiently fast growing string coupling) can represent genuine pre-Big- 
Bangs. Finally, we note that Belinsky and Khalatnikov [34] have proven that, in the 
generic case, the Einstein-frame Kasner exponents (Ai,/~2, ,~3) must all be positive for 

the ultimate stable asymptotic approach to the singularity. This corresponds to A being 
inside the triangle of  Fig. 4, i.e. in the hatched region of Fig. 5. However, this generic 

restriction does not apply in the special case of  our toy model as we explain below. 

5.3. Behaviour near the singularity in inhomogeneous, spherically symmetric solutions 

Let us now restrict ourselves to our toy model and study its cosmological-like be- 
haviour near the singularity. First, we note that spherical symmetry will impose that 
two of the metric Kasner exponents (those corresponding to the O and ~o directions) 
must be equal, say ,t2 = /13. Geometrically, this means that the Einstein-frame Kasner 
exponents run only over the intersection of the above two-sided disk with a bissectrix 

of  the triangle. Second, we note that because of the vanishing, in spherical symmetry, 

of  the crucial dreibein connection coefficient el • ( V  × e l ) ,  generically responsible for 
causing the expansion in the (radial) direction 1 to oscillate as t --~ 0 -  [31],  a negative 
value of ,~l, corresponding to an expansion in the radial direction, is allowed as ulti- 
mate asymptotic behaviour. As a consequence, even the portion of the bissectrix outside 
the triangle is allowed as asymptotic state. We shall prove directly this fact below by 
constructing a consistent expansion near the singularity for A1 of any sign. 

The mass-evolution equations (3.5),  (3.6),  together with Eqs. (3.11),  (3.12) show 
that, starting from some regular event at the centre, r = O, where m = 0, the mass 
re(u, v) will grow if we follow a outgoing characteristic (i.e. a null geodesic) u = const. 
If  this characteristic crosses the apparent horizon .,4, Eqs. (3.11),  (3.12) then show that 
m(u, u) continues to grow within the trapped region T ( 2 m / r  > 1) if one moves along 
either (future) outgoing or ingoing characteristics. This means that, within 7-, re(u, v) 
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grows in all future directions. As the space-like singularity 9 /3 lies in the future of T,  

we see that the mass function will necessarily grow toward B, and therefore, either will 

tend to a finite limit on /3, or it will tend monotonically to +c¢ as r ~ 0 with fixed 
v (or u). Motivated by the Kasner-like behaviours (5.18) and (5.19) we expect the 
following generic asymptotic behaviour of m on the singularity (here written in (v, r) 
coordinates) 

( r '~  -~2o') 
m(v,r) ~ C,,,(v) \~oJ as r --+ 0 , v  fixed (5.22) 

with some real v-dependent exponent a2(v) .  (Here go denotes some convenient length 

scale.) It follows that/* = 2m/r always tends to +oo on /3 (even when m tends to a 
finite limit). This suggests that we can consistently compute the structure of the fields 
near/3 by using an "anti-weak-field" approximation scheme in which/* >> 1 (instead of 

the weak-field algorithm of Section 4.1 where we used/* << 1). The expected domain 
of validity of such an "anti-weak-field", or "cosmological-like", expansion is sketched 

in Fig. 3. 
To leading order in this large-/, limit, Eq. (3.15) yields 

1 ( &b "~2=_(01ogm'~ 
\ a l o g r J , ,  \ a l o g r J ,  ' 

(5.23) 

O3/~ 03 0 ) 2 

& log m 1 8~ &b 
- (5.25) 

c~v 2 & log r &v 

This relation is identically satisfied at order r ° log r, and yields at order r ° 

8 log (7,, c~C~ 
- - -  a ( v ) - -  (5.26) 

8v &v 

Using now Eq. (3.14), written as 

(5.27) 

9 We consider here only the "noncentral" singularity, i.e. the part of the singularity which can be reached by 
future outgoing characteristics issued from the regular centre r = 0. As shown by Ref. [26] there exists also, 
at the "intersection" between the regular centre and/3, a singularity reachable only via ingoing characteristics. 
Note that r(u, ,,) tends to zero both at the centre and at the singularity (central or noncentral). 

from which we obtain the following asymptotic behaviour of ~b on/3 

~b(r, v) ~ 2a (v )  logr  + C~(v). (5.24) 

We see now that the basic Kasner-like-exponent on/3  is half the coefficient of log r in 
~b(r, v) as r --+ 0, with fixed v. The Kasner-like exponent of m(v, r) is the square of that 
basic exponent. Moreover, the function Cm(v) appearing in the asymptotic behaviour 
of re(v, r) on the singularity is not independent from the functions ce(v) and C~(v). 
Indeed, to leading order, Eq. (3.16) reads 
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we further get the asymptotic behaviour o f /3 (v ,  r)  

,8(v, r) ~-, a2 (v )  log r  + C/3(v)  . (5.28) 

Finally, it is easy to see that the asymptotic behaviour of  the metric on /3 in ( v , r )  

coordinates 

d s  2 ~ _ _  
2C,._(v) e2Ca(,, ) ( r ' ]  a2(''' 

r \ g o /  
dv2+2eCe(")  ( ~ 0 )  

Ot2(l ' ) 

d v  d r  + r 2 d w  2 , 

(5.29) 

is indeed of the expected Kasner form (5.18) by introducing the cosmological time 

( r ' ~  ½(,,2(,')+I) 
( - t )  ~ r \ g o /  " (5.30) 

The transformed metric reads, to dominant order as r --+ 0, i.e. t --~ 0 - ,  

r e  - c~  dr '~  
d s  2 ~ - d t  2 + C p ( v )  ( - t )  2a'('') dv  + ~Tn, J 

+C,o(t:') ( - t )  2&O') [dO 2 + sin e 0 d~p 2 ] , (5.31 ) 

~b ~ y ( v )  log( - t ) ,  (5.32) 

a 2 ( U )  - -  I 2 4ae(v) 
Al(t. ')  - a2(v  ) + 3 ' A2(v) - a2 (v  ) + 3 ' y ( v )  - oe2(v) + 3 ' (5.33) 

The basic parameter a ( v )  runs over the real line - o o  < a < +oo.  One easily checks 
that the relations (5.20) are satisfied. Some cases having a particular significance are 
illustrated in Fig. 4: When a = 0, one gets (A,, a2, A3) = ( - ½ ,  2, 2) and y = 0 which 

describes a Schwarzschild-like singularity (when viewed with a cosmological eye).  
When oe = 4-1, one gets (A,,A2, A3) = (0, ½, ½) and y = ±1 which is locally similar 
to the scale-invariant solution [29] also described earlier. When a = +v"3, one gets 

( a l ,  a2, & )  = (~, ½, .{) and y = ! 2 / x / 5  which describes an isotropic cosmological 
singularity of  the type of the exact solution [ 30,18] we discussed above. As illustrated 
in Fig. 4, when a runs over ]R its image, defined by Eq. (5.33),  runs twice over the 

bissectrix of  the Mandelstam triangle (intersected with the circumbscribed disk). The 
only pure-Einstein case (y  = 0) reached at finite a is the Schwarzschild-like case 
a = 0. In principle, another pure-Einstein behaviour occurs when loci --+ oo, leading to 
( a i ,  A2, A3 ) = ( 1,0, 0) i.e. d s  2 ~ - d t  2 + t 2 d p  2 + do) 2 = - d r  2 + d ~  2 + dO 2 q- sin 2 0 dq~ 2. 

This would be an Einstein-cylinder-like universe. We believe, however, that ]a(v)]  will 
stay bounded ( ] a (v ) ]  < aM < +oo)  as v runs over /3  and that the only Einstein-like 
case will be crossed when a ( v )  changes along/3.  

We have confirmed our asymptotic analysis of the structure of  the singularity (based 
on the ans/itze (5.22),  (5.24) and (5.28) in two ways. First, we have verified that it is 
consistent with the partial, but rigorous, results given in Ref. [26].  Namely, in (u, v) 
coordinates, our ansfitze are compatible with the result that the function r Z ( u ,  v )  is  C 1 
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on B if we posit that the conformal factor behaves like 122 ~ r a2(v) - I  (while m ,-, 

r -'~2(;')). A stronger check of  our assumptions is obtained by going beyond the leading- 

order approximation, thus extending some results of  [ 12]. In analogy to Section 4.1, 

where we set up a complete perturbation algorithm in the weak-field domain, we have 

shown that, starting from the leading-order terms, Eqs. (5.22), (5.24) and (5.28), 

containing three arbitrary "seed functions", a ( v ) ,  C~(v) ,  C~(v)  (from which Cm(v) 
can be determined using Eq. (3 .16)) ,  it is possible to set-up an all-order iterative scheme 

generating a formal solution of  the spherically symmetric Einstein-dilaton system in the 

strong-field, cosmological-like domain. Note that, C~(v) being a pure gauge function 

(it suffices to introduce v; = f e c~('') dv to gauge C~(v) away),  the formal solution thus 

generated contains two physically arbitrary functions of  v, which is indeed the freedom 

that should be present in a generic solution, l° Details of  this scheme are given in 

Appendix A. We only mention here the general structure of  the expansions so generated 

near the singularity, i.e. as r --+ 0, with fixed v: (see Eq. (A.34) in the appendix) 

~(~') ~"c~2(")+1) PI(~) (log r) . (5.34) qS(v, r) = OSo(v. r) + ~ un,,, l , r 2'' 
n,m,I 

fl( v, r) = flo( v, r) + Z ~n,,,t"(8) rn(-2(,,)+l) r2m p/(B)(log r) , (5.35) 
If,hi,/ 

(m) tn(a2(t,)+l) r2m re(v, r) = too(v, r) + 2 - ,  a"ml PI (m) (log r) . (5.36) 
II.m,[ 

~¢¢'~ and the coefficients of  the polynomials Pff') Here n, m, 1 are integers with 1 ~< m, ~,,,,z 

are functions of  v, and (60,/30, m0) are the leading-order terms given by Eqs. (5.22), 
(5.24) and (5.28). This expansion actually contains two intertwined series: an expansion 
in powers of  x = r 1+=2 and a more complicated series in r 2m ( log r )  t. The second 

expansion is linked to the v-gradients of  the seed functions a ( v ) ,  C,/~(v), C~(v) ,  while 

the first expansion is present even in the simple "homogeneous" case where a,  C~, and 

C~ do not depend on v. The fact, exhibited by Eqs. (5 .34) - (5 .36) ,  that the expansion 

in the homogeneous case proceeds along powers of  r =:+t confirms a recent conjecture 

by Burko [35].  

5.4. Exact homogeneous cosmological solutions 

Let us consider in more detail the "homogeneous" case where the seed functions a,  
C~ and C~ have no spatial variation along the singularity. As it turns out, it is possible 

to resum exactly all the terms of  the "homogeneous" expansion. Indeed, the analog 
of  the Schwarzschild solution (t-independent, spherically symmetric solution) for the 

Einstein-dilaton system has been worked out analytically long ago by Just [36] (see 

also Ref. [37] ), using the special gauge where goo grr = - - 1 .  Contrary to the case of  the 

m Here, contrary to what happened above, the variable r varies only on a half-line, [v., +oo] where v. 
marks the birth of/3. As wa~s said above two functions on a half-line (or one function on the full line) is the 
con'ect genericity in our toy model. 
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Schwarzschild solution, this solution cannot be continuously extended (through a regular 

horizon) down to a cosmological singularity at r = 0. However, it is easy to see that the 

following cosmological-like background (which is related to Just's original solution by 

formally extending the radial variable ? = 1 x "below" the curvature singularity at ? = a) 

is still a solution of  the Einstein-dilaton system, 

ds2=12 dt2 - \ ~ -  x J dx  2 + x l+l' ( 1 - x )  l - b  do>2] , (5.37) 

(5.38) 

Here the (formerly radial) variable x varies between 0 and 1 and is "time-like", while 

the (formerly time) variable t is "space-like". The cosmological universe evolves from 

a Big Bang at x = 0 to a Big Crunch at x = 1. It has two arbitrary parameters, a scale 

parameter 1, and the dimensionless b, - 1  ~< b ~< 1. Near the singularity at x = 0, the 

link between b and the parametrization used above is 

~-1 l - - b  b =  l - a 2  
a = qz -~ b ' 1 + a ~----5- " (5.39) 

Note that the behaviour near the other singularity at x = 1 is obtained by changing the 

sign of  b and by changing a into - 1/or. Some cases of  this homogeneous solution are of  

special significance: b = 1 is Schwarzschild (with x = r / 2 m ) ,  b = 0 belongs to the class 

of  scale-invariant solutions [29] discussed above and b = - 1 / 2  interpolates between 

a locally isotropic cosmological solution (ce = qzv/3) at x = 0 and an anisotropic one 

(oL = +l/~v/3) at x = 1. Note that, in spite of the homogeneity and isotropy at x = 0, 

the latter special solution differs from the (everywhere) homogeneous-isotropic solution 

described earlier. 

5.5. Discussion 

Ideally, the two formal expansions we have constructed, the weak-field one, Eqs. 

(4 .1 ) - (4 .3 ) ,  and the strong-field one, Eqs. (5 .34) - (5 .36) ,  should match at some in- 

termediate hypersurface, like the apparent horizon 2 m / r  = 1 which looks like a natural 

borderline between the two near domains. If this matching were analytically doable, it 
would determine all the (so-far) arbitrary "seed functions" of  the strong-field scheme 

in terms of  the unique arbitrary function of  the weak-field one, namely the asymptotic 

waveform f ( u )  (or, equivalently, the news N(u)  --- f ' ( u ) ) .  However, it is clearly too 
naive to expect to perform this matching perturbatively: neither of  the two expansions is 
expected to be convergent 11 (they are probably only asymptotic). Even if they converge 

on some domain they probably both break down before reaching a possible overlap re- 

gion where they might be matched. At this stage, we can only state that, in principle, 

Jl The possible presence of a finite number of BKL oscillations 134] near /3 suggests that the formal 
strong-field expansion has very bad convergence properties. 
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all the seed functions of the strong-field scheme are some complicated non-linear and 

non-local functionals of N(v). It would be particularly interesting to study the func- 
tional dependence of the Kasner exponent a(v) on N(v). By causality (i.e. a domain of 
dependence argument) we know that or(v), at advanced time v, depends only on N(v ~) 
on the interval v I ~< v. When starting from a generic N(v) "of order unity", we expect 
that the resulting a(v) will also be of order unity. A physically very important issue 
is the sign of a(v),  i.e. the sign of 3/(v). Indeed cr > 0 means a decreasing ~b, while 
cr < 0 means that ~b grows near B. Let us note that, to the lowest order of weak-field 
perturbation theory, the value of {b(v, r) at the (regular) centre ( r  = 0) is 

lim ~bl(v , r )=  lim [~bi+ f ( v ) - f _ ( v - 2 r ) ]  
r----~0 r---~0 r 

= ~bi + 2 f ' ( v )  = ~bi + 2N(v ) .  (5.40) 

Here ~bi denotes the background value at past infinity. From this result we expect that, 
if N(v) is a simple Gaussian-like wave packet, N(v) = Aexp [ - ( v -  vi)2/e2i], with 

a large enough dimensionless amplitude for leading to collapse, i.e. IAI > 1, the local 
values of ~b near the collapsing central region will, at first, grow if A > 0, and decrease 
if A < 0. In this simple case, we therefore expect a(v) to have the opposite sign of A 
near the "central" region of B, i.e. for v < vi, where the gravitational instability sets in. 
But, further away on B, i.e. for v >> vi, the sign of or(v) can change. We also expect that, 
as v ~ + ~ ,  a (v )  will tend to zero, corresponding to a Schwarzschild-like singularity 
(in the case of well-localized incoming N(v) packets). This conjectured link between 
the sign of a(v) and the sign of N(v) is confirmed by the exact isotropic solution 
equation (5.1) (with a positive growing N(v) = v/-3/v 2, and cr = - v ~ ) ,  as well as by 
the scale-invariant solution equation (4.40). Some numerical calculations [35] seem to 
confirm the general picture we propose (in particular the interesting possibility that the 
sign of a(v) changes several times on /3 as v varies, before reaching a Schwarzschild- 
like asymptotic regime Ice(v) I --+ 0 as v -+ +oo) .  We plan to study in more detail these 
issues in a future publication. 

6. A Bayesian look at pre-Big-Bang's "fine-tuning" 

From its inception [38] it was pointed out that a successful pre-Big-Bang scenario 
must rely on a "reservoir" of inflationary e-folds during its perturbative phase. This is 
given by two small numbers, the initial curvature scale in string units, Hits, and the 
initial string coupling constant g~ = e ~i <<< 1. (In this section, the index i is used for 
labelling "initial" quantities.) The need of large (or small) numbers has been recently 
discussed at length [ 18,19] and used to criticize the naturalness of the PBB scenario. 
In particular, it was pointed out [ 18,19] that, as soon as one goes beyond the simple 
spatially fiat, homogeneous cosmology framework, the total duration of the perturbative 
dilaton-driven phase is finite so that the resolution of the homogeneity/flatness problems 
requires 
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gi = e ~/2 < 10-26 Li > M~. > 1019 . 
' g~ ~ H, ( 6 . 1 )  

Here, Li denotes the spatial homogeneity scale of the PBB universe at the beginning of 
its inflationary phase, and Hi > LF 1 its time-curvature scale (Hubble parameter). 

In this Section we shall systematically work with string-frame quantities, even when 
we refer to results discussed in previous sections in the Einstein frame. For instance, 
the time-scale gi, characterizing the rate of variation of the news functions around the 
advanced time vi and leading to gravitational instability, is now (locally) measured in 
string units. In any case, we are essentially working with dimensionless ratios which are 

unit-independent: (gi /g , )s  = (gi/g.,)E = gi([Ji/gVlanck)E . We wish to emphasize here that, 
by combining our stochastic-like instability picture with a Bayesian approach to the a 
posteriori probability of being in a position of asking fine-tuning questions, the issue 
of the naturalness of the PBB scenario is drastically changed. By "Bayesian approach" 
we mean taking into account the selection effect that fine-tuning questions presuppose 
the existence of a scientific civilization. As emphasized long ago by Dicke [39] and 
Carter [40], civilization-related selection effects can completely change the significance 
of large numbers or of apparent coincidences. Linde and collaborators explored several 
aspects of the Dicke-Carter "anthropic principle" within the inflationary paradigm, and 
emphasized the necessity to weigh a posteriori probabilities by the physical volume of 
inflationary patches [41]. We shall here follow Vilenkin [42], and his "principle of 
mediocrity", according to which the unnormalized a posteriori probability of a random 
scientific civilization to observe any values of the PBB parameters gi, Li and Hi is 
obtained by multiplying the corresponding a priori probability by the number of civi- 
lizations (over the whole of space and time) associated with the values gi, Li and Hi: 

./V'ci,. (gi, Li, Hi) .  

6.1. A priori and a posteriori probability distributions for  gi and Hi 

This approach can be applied to our case if we think of the initial past-trivial string 
vacuum as made of a more or less stochastic superposition of incoming waves (de- 
scribed by complicated news functions N(L,, 0, ~p), N+(u, 0, ~p), N× (v, 0, ~o) having 
many bumps, troughs and ramps). This stochastic bath of incoming waves will generate 
a rough sea of dilatonic and gravitational fields. If the input dimensionless wave forms 
can reach values of order unity, we expect that the local conditions for gravitational 
instability will be satisfied at several places in space and time. This will give birth to an 
ensemble of bubbling baby universes, with a more or less random distribution of initial 
parameters gi and Hi, and with initial spatial homogeneity scales Li ~ H Z  1 . Indeed, the 
analysis of the previous sections has shown (in our toy model) that gravitational insta- 
bility will set in on a spatio-temporai scale ~ gi when a rising wave of news function 
grows by (_9( 1 ) on an advanced-time scale gi. From our variance criterion, Eq. (4,25), 
and the rough validity of weak-field perturbation theory nearly until the sharp transition 
to a cosmological-type behaviour, the work of the previous sections has shown that 
the initial, advanced-time scale gi is propagated via ingoing characteristics with little 
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deformation down to the strong-field domain (see Fig. 3), where it appears as a spatial 
homogeneity scale, i.e. 

Li N ~i . (6.2) 

From the leading-order result (5.40) we expect the local value of the Hubble parameter 
in the corresponding cosmological-like bubble to be 

t4i ~ V / ~ ~  IN'(vi)[ ~ I g ( v i ) l  
gi ' (6.3) 

where vi denotes the advanced time at which the instability sets in. Combining (6.2) 
and (6.3) we get 

HsLi ~ Ig(vi) l  > 1. (6.4) 

These rough formulae show how, in principle, given the stochastic properties of the 
dimensionless news functions, one could deduce the distribution of Hi and Li,  naturally 
constrained by Hi Li  ~ 1. The corresponding distribution of gi is a priori independent 
from that of gi ~ Li ,  being linked to the presence of a slowly varying ("DC") component 
No in N ( v )  (by contrast to the local variations of N(c,) leading to instability): N ( v )  = 

No + fluctuations. The DC component No corresponds to ramps in f ( v ) ,  f ( v )  = No v + 

fo + fluctuations, i.e. to shifts of ~bi : ~bi --+ ~bi + 2No. Finally, we can consider that the 
initial distribution of the news functions defines an a priori probability distribution for 

gi, and Hi, 

dpprior = w i ( g i ,  L i )  dgi dL i  , (6.5) 

with Hi generically of order L/-l (because I N ( v i ) l  ~ 1 is the threshold for instability). 
An important remark must be made here. The two basic parameters we are talk- 

ing about, say gi and Li ~ H Z  1 , precisely correspond to the two global symmetries, 

Eqs. (2 .9)-(2.11)  and Eq. (2.12), of the classical string vacua: a constant shift in rb, 
and a global coordinate rescaling. If we consider that the initial state of string theory is 
classical (rather than quantum), these symmetries mean that no particular values for ~bi 
or Li are a priori preferred. One might even expect a "flat" distribution compatible with 
these global symmetries, 

d classical flat dgi dLi 
Pprior Oc. - -  - -  oc dg) id logLi .  (6.6) 

gi Li  

Evidently, the problem with such a flat distribution is that it is non-normalizable. Some 
cut-offs are needed to make sense of such a flat prior distribution but, while there are 
natural strong coupling/curvature cut-offs (the limits of validity of our approximation), 
it is not so easy to find natural small-curvature/coupling cut-offs. If we appeal to 
string theory for providing cut-offs for gi and Li, arguably the prior distribution (6.5) 
should be determined by the conjectured basic symmetries of string theory, i.e. by 
S- and T-duality. S-duality suggests that one should work with the complex quantity 
z = o + i ~- and require modular invariance in z = x + iy. This selects the Poincar~ 
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metric ds 2 = (dx  2 + d y 2 ) / y  2 as being special, and thereby defines a preferred measure 

in the fundamental domain (key-hole region) of the ( x , y )  plane: d/z = v ~ d x d y  = 

d x d y / y  2 = dx  ]dy - j  f. Integrating out the angular variable 0 over 0 ~< 0 < 2zr (which 
is the correct key-hole range when g2 < 47r, i.e. y > 1) we end up with a preferred 

probability distribution for g : d p ( g )  o( dg 2 ~x gdg, considered in the weak-coupling 

region g < 1. A similar argument based on T-duality selects as preferred probability 
distribution for the spatial length scale L :  d p ( L )  o~ dL  -2 o( ~-3  dL, where L-= L/g,. 

is considered in the weak-o--model-coupling region L, ~> 1. In conclusion, this type of 

argument would suggest the following normalizable, factorized prior distribution: 

dp S-T-dual prior O( (gi dgi) ~,[-3 dZi oc. gi dgi ~1i d~li,  (6.7) 

with 0 < gi ~ 1, 0 < Hi - Hi~M,. = ~ - l  < 1. 
For the sake of generality, we wish to leave open the nature of the prior distribution, 

and thus consider the general class of prior probability distributions: 

dpprior o( ga dgi Hi b dHi ,  (6.8) 

with arbitrary powers a and b. 
Any given initial distribution, say (6.8), will generate a corresponding ensemble of 

PBB inflationary bubbles. We assume, as usual, the existence of a successful "exit" 
mechanism by which dilaton-driven inflation, with growing g and H finally "exits" into 

a standard hot Big Bang, i.e. a radiation-dominated Friedmann universe. Current ideas 
about how this might happen [43] assume that the Hubble parameter reaches values of 
order of the string mass Ms, i.e. Hs --- Hs/M~ ~ 1, before the string coupling constant 
reaches values of order unity. If the opposite were true (g ~ 1 occurring before H ~ 1), 
it is likely that quantum fluctuations would take over before H reaches the string scale, 
causing inhomogeneities to grow so large that the inflationary process "aborts" before a 

baby universe is born. In any event, we shall discard this possibility, assuming that the 
resulting cosmological universe would not evolve into anything able to harbour scientific 

civilizations. 
After/~ reaches 1 at g << 1, the evolving universe is expected to be entering a so-called 

stringy De Sitter phase, i.e. a phase during which q~ and H are constant and given by 

some fixed-point values of the order of M,: Id, I = x M s ,  and [HI = yM~ with x ,--, y ~ I. 
(See Ref. [43] for some suggestions on how to implement this mechanism.) Only the 
ratio between x and y enters our present phenomenoiogical discussion. In keeping with 
a notation used in previous papers on PBB phenomenology, we introduce the (positive) 
parameter ,8 by 

1 [ ( Ing) l  = ~ 14,1 = / 3 H  = const. (6.9) 

One finally assumes that this stringy De Sitter-like phase ends when g = e ~'/2 reaches 
values of order unity, causing the amplified vacuum fluctuations to reach the critical 
density. After this moment, g should remain fixed at about its present value, either 
because of a non-perturbative ~b-dependent potential, or possibly because of the attractor 
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mechanism of Ref. [6]. The fixing of g marks the end of the stringy modifications 

to Einstein's theory, and the beginning of standard Friedmann-like cosmology. As we 
assume that g is attracted towards a unique fixed point, the resulting Friedmann universe 
will have no free parameter which could make it different from our universe, except for 
its initial homogeneity scale L f ,  where the index f refers to the final state of the stringy 
phase. Therefore, the number of civilizations in the resulting Friedmann universe will 
be proportional to its total volume, at least for the large enough (in fact, old enough) 
universes that can harbour life 

• ~civ (g/, Hi) ~ ]2f(gi, Hi) O [ ] , ) f  - -  ~)min ] - (6.10) 

One assumes here, h la Dicke [39], that the time span during which civilizations can 
occur, being constrained by the lifetime of stars, is fixed. The minimum scale Vmin for 
a life-harbouring universe is not known precisely, though it corresponds probably to 
universes whose total lifetime before recollapse is a few billion years. In conclusion, the 
a posteriori probability for a random scientific civilization to ask fine-tuning questions 
about the values of gi and Hi is 

dppost ~ .A/'civ (gi, Hi) dpprior cx: ~f(gi,  Hi) O(Vf - -  ~)min )  d p p r i o r  • (6.11) 

6.2. Computation of the a posteriori probability distribution in four dimensions 

The computation of the final volume );f can be separated as 

121 z 3 VU = L~ = L~ -~/ .~. (6.12) 

Here, the index i refers to the (cosmological) time ti of beginning of dilaton-driven 
inflation, the index 1 refers to the time tl of transition between dilaton-driven superin- 

flation and a De Sitter-like phase, and zs = exp (H ( t 2 -  t| )) denotes the total expansion 
during the De Sitter phase. The ending t2 of the De Sitter-like phase is assumed to take 
place whence g2 ---- g(t2) "~ O(1) .  

Using the leading power-law behaviour of the cosmological evolution during the 
dilaton-driven phase, Eq. (5.15), and imposing that this phase ends when H1 ,-~ 
( - t j ) - I  ~ M,., one gets 

__  _~  ~ (~ i )  z~ V~ ' (6.13) 

where Za -- eel + ee2 + a3 is the sum of the string-frame Kasner exponents. The ee's 
are negative (expansion) and are constrained by Eq. (5.17). In the result (6.13) we 
have neglected a factor of order unity linked to the fact that the dilaton-driven inflation 
is generically anisotropic (eel v~ ee2 4: ee3) and therefore that the various Hubble 
expansion rates will reach the string scale at slightly different times. We assume here 
that a non-trivial basin of attraction from anisotropic expansion toward an isotropic 
stringy De Sitter-like phase exists as it is the case in examples [43]. 
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During the subsequent stringy De Sitter phase, the growth of g is related, according 
to Eq. (6.9) ,  to the spatial expansion by g oc a ~ so that 

02 ( g ~ ) ' / ~  
Zs . . . .  g ~ / ~  (6.14) 

al  

where we used g2 ~ 1. On the other hand, gl = g(t ,  ) is expressible, through the use of  
Eq. (5.16),  giving the evolution of g during the dilaton phase, as 

e,~,_~ = gl  t] ~ /~ .2 'a-I  -~ _ ,  . ( 6 . 1 5 )  

Finally, we express, using Li ~ HI -~, the volume at the beginning of standard cosmology 

in the form 

)2f(gi, Hi) ~ H i  -A [gl (gi, ~Ii) ]-3/~ O(1 - g~ ) , (6.16) 

with 

g~ (gi, Hi) ~ gi ~[-B,  (6.17) 

and where the exponents A and B are positive, and are given in terms of the a ' s  by 

i i S a  ( 6 . 1 8 )  A = 3 - X ~ ,  B - 2  '2_ 

If  we assume, for illustration, an a priori distribution of values of  gi and Hi of  the 
form (6.8) ,  we get for the a posteriori probability distribution of gi and Hi 

d p p o s t C x g ~ ' H ~ - a [ g i H ~ B ] - 3 / ~ O ( l - g , ( g i ,  Hi))O(12f-12,,an)dg~dffI~, (6.19) 

which can be written as 

dppost o( g~ a Z  z 0(1  - gi ) O(~t  - ])min) dgl d~li. (6.20) 

In the last form we have expressed the m e a s u r e  dppost in terms of  the two independent 

variables g, and Hi (this is convenient because of the constraint gi < I carried by the 
step function). The exponents ~ and A appearing there are 

3 
~ - a  - -- (6.21) /3' 
-- I ( a -  1) ( X a )  - i ( a +  1) - b  (6.22) A = A  - ( a +  l ) B - b = 3 + ~  5 • 

The numerical values of  the exponents B and A play a crucial r61e in determining the 
a posteriori plausibility of  our universe having evolved from the seemingly "unnatural" 

- -  A 

values (6.1).  Indeed, if A /> 1 the posterior probability distribution for Hi is peaked, 
in a non-integrable manner, at Hi = 0. Therefore, if A" ~> 1, it is natural to expect 
(within the present scenario) that the initial homogeneous patch, whose gravitational 
instability led to our universe, be extremely large compared to the string scale (and 
that the value of gi = bI~ gl with B > 0 and gl < 1 be correspondingly small).  Most 
scientific civilizations are bound to evolve in such universes. 
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Note that the duality-suggested values a = 1 and b = 1 of  Eq. (6.8) lead to A = 1 

(independently of  the a ' s )  for which such an a posteriori explanation works. From 

this point of  view one can argue that, within string theory, it is "natural" to observe 

very small numbers such as in Eq. (6.1).  The exponent ~ also plays an important r61e. 
Indeed, if ~ > - l, i.e. if 

3 
/3 > . (6.23) 

a + l  ' 

the a posteriori probability distribution for gl is integrable over its entire possible range 

(0, 1). This means that most scientific civilizations are expected to observe values 

gl = © ( 1 ) ,  corresponding to a small number of  e-folds during the stringy phase: 

z~ ~ g-~l/~ = O ( l ) .  This is a phenomenologically interesting case, because it means 
that various interesting physical phenomena taking place during the dilaton-driven phase 
(such as the quantum amplification of various fields) might leave observable imprints on 

cosmologically relevant scales. (A very long string phase would essentially iron out all 
signals coming from the dilaton phase.) It is interesting to note that, in the string-duality- 

inspired case (6.7) ,  the great divide between a short stringy phase (~ > - 1  ), and a very 
long one (~ ~< - 1 ,  implying that gl is peaked in a non-integrable manner at gl = 0) ,  

lies at /3 = 3/2,  which played already a special r61e in previous phenomenological 
studies [ 8].  

Though the case A >~ I, ~ > - 1  appears as the conceptually most interesting case for 
the pre-Big-Bang scenario, other civilization-related selection effects might also render 

the case A < 1 viable. In this case, the factors ffli--Adffli in Eq. (6.20) suggests that 

Hi should be of order unity (i.e. Li  ~ H i  -I ~ gs). However, in such a case, one must 
take into account the factor O('VT - )2rain) (which could be neglected in the previous 
discussion). This factor means that scientific civilizations should a posteriori expect to 
find themselves in the smallest possible universe compatible with their appearance. This 

probably means that they should also expect to see inhomogeneities comparable to the 

Hubble scale, and to have appeared very late in the cosmological evolution, just before 
the universe recollapses. This seems to conflict with our observations. In conclusion, 
within this model, and limiting our discussion for simplicity to the class (6.8) with a 
and b integers, one finds the favorable situation A >~ 1 realized (i.e. no a posteriori 
unnaturalness in observing very small gi and Hi) when either a = 0 and b ~ 2, or a = 1 

and b ~< 1. However, if a >~ 2, i.e. if the a priori distribution function of gi vanishes 
faster than g~ for gi --~ O, the pre-Big-Bang scenario has to face a naturalness problem. 
(This is the case for quantum fluctuations of  gi, as discussed at the end of the next 
subsection.) 

6.3. Computa t ion  o f  the a poster ior i  probabi l i ty  distribution in D dimensions  

Assuming that the results discussed so far are qualitatively correct in higher dimen- 
sions, we have generalized the above considerations to the case in which the initial 
string vacuum is extended to d spatial dimensions (say d = 9),  and where, through 
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gravitational instability, three of these dimensions are expanding and 6 are collapsing 

down to the string scale. This leads to introducing four special times: ti (beginning 

of  dilaton phase), tj ~ - t ,  (end of  the dilaton-driven power-law evolution of  space), 

t2 (when the radius of  curvature of  the collapsing dimensions become O ( g , ) ) ,  and t3 

(when g3 = C0(I)) .  In this scenario there are two stringy De Sitter-like phases: a first 

one during which the three "external" dimensions grow exponentially a o( exp (Hi t), 

while the (d  - 3) "internal" ones shrink exponentially ~ ~x exp ( - H 1  t) (and while 

= 2/31 Hi = 2/31 HI ) ,  and a second phase during which the (d  - 3) string-scale- 
curved internal dimensions have frozen while the three external ones continue to grow 

exponentially a ex exp (H2 t) (and while q~ = 2/32 H2). This scenario gives a result of  
the same form as above, namely 

(6.24) 

with 

g2(gi, kli) = gi ~17 8 , (6.25) 

and where 

A = d -  3 c e -  ( d -  3) ~ + ( 1 -  ~)  /3j 

I __ 3 I B = ~  5 a - ~ 7 ( d - - 3 ) ~ + ( l - ~ ) ~ .  

d - 3"~ 
) (6.26) --.--- 

/31 

(6.27) 

Here one has assumed for simplicity that, during the dilaton phase, the three external 

dimensions grow with the same exponent, j: ot < 0, i.e. proportionally to ( - t )  '~, while 

the (d  - 3) internal ones decrease with the same exponent ~ > 0, proportionally to 

( - t )  ~. Then, one can derive the analog of  Eq. (6.20) with gl replaced by g2 and with 

exponents 

3 
= a - - -  A = A - ( a +  l ) B - b .  (6.28) 

/32' 

Once more, A />  1 leads to no fine-tuning and ~ > - 1 to a short string phase. We shall 

not attempt a complete phenomenological discussion of  the range of  values of  a and b 

compatible with A ~> I. (This would imply exploring the parameter space of  allowed 
values for the Kasner exponents a and ~.) Let us only note here that the introduction 

of  more spatial dimensions generically helps because A (and A) now contains the 

contribution + d  = +9, say, instead of  the previous +3. In this case, even distribution 

functions vanishing faster than g] (for gi - ~  0) can make very small values of  gi be 
a posteriori preferred. The power-law enhancement brought by the volume factor Vf 

would be inadequate, however, for compensating an exponential suppression as gi ~ O, 

say o( exp ( - c / g 2 ) .  In particular, the a priori distribution of  gi and Hi cannot be the one 

12 This string-frame Kasner exponent a should not be confused with the basic parameter a(v) introduced in 
Section 5.3. 
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expected (from the Lagrangian/2 ~ e-6(V~b) 2 ~ (Vg -1 )2) for quantum fluctuations 

of g on scales Li '~ Hi -1 around the trivial ground state. Indeed, this distribution vanishes 

for small gi and small Hi as exp ( - c g T  2 H7 2) with c of order unity. This confirms the 
standard idea of the pre-Big-Bang scenario, according to which the initial state should 
be a classical string vacuum, i.e. an arbitrary classical solution of the low-energy field 

equations. 

7. Conclusion 

We have proposed a new, concrete picture for the typical initial state of the Universe 

which can give rise to a cosmology of the so-called pre-Big-Bang type. We conceived 
this state as a very generic, past-trivial string vacuum, i.e. classically, as the most general 

solution of the low-energy tree-level string action endowed with a perturbative region in 

the asymptotic past. Such states can be parametrized (in three spatial dimensions) by 

three dimensionless "news functions": a scalar news N(v,  O, ~o) and two helicity-2 news 

N+ (v, 0, ~o) and N× (v, 0, tp). By studying the simple spherically symmetric tensor-scalar 

model we have argued that such a generic "in state" will be gravitationally unstable if 
(any of) the news functions vary (varies) by something of order unity on some scale 

Av ,-~ g. More precisely, in the spherically symmetric model, we found, at the lowest 
order of perturbation theory, that the criterion for gravitational instability is given by the 
supremum over vl and vz of the variance of the function N ( x )  over the interval [vl, v2], 
see Eq. (4.25). When this supremum exceeds a threshold of order unity, the wave packet 
"sent" between the retarded times v~ and v2 will become gravitationally unstable when, 

later, it becomes focussed at the centre. 13 We have verified that the infinite region 

between past infinity and such a centre can be described by weak-field perturbation 

theory. Then, near the centre, in a region of spatial extension Li ~ AV ~ u2 - -  vl, one 
can abruptly shift from a weak-field description to a cosmological one. One can then 

describe the further evolution of the patch Li by a complementary cosmological-like 

expansion of the type introduced by Belinsky, Khalatnikov and Lifshitz (BKL) and 
recently developed, for the PBB scenario, in [12]. We have proven to all orders of 
iteration (in our toy model) that the presence of the dilaton ensured the consistency of 
a (non-oscillatory) BKL expansion in log-corrected powers of the distance to the future 
(space-like) singularity. This result confirms the smoothing behaviour of a dilaton- 
driven superinflationary evolution. In the string frame, gravitationally unstable patches 
of vacuum, with homogeneity scale Li, will expand (if ~ is sufficiently large and 
positive) into homogeneous patches on much larger scales. These blistering patches are 

surrounded by contracting regions, where ~ is not sufficiently large and positive or 
is even negative. Many such dilaton-driven pre-Big-Bang inflationary bubbles, looking 
like closed universes, can blister off a generic past-trivial string vacuum. By taking 

13 In the absence of spherical symmetry, there may exist many "local centres" where gravitational instability 
sets in. They should each correspond to an annular section of Z-  with a (.9( 1 ) fluctuation of the news looking 
roughly spherically symmetric when viewed from some centre and in some suitably boosted Lorentz frame. 
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into account the selection effects linked to the presence of scientific civilizations, we 
have shown that it can appear a posteriori probable to observe that our universe comes 

from a very large fluctuation Li >> gs, with a very small gi. In particular, we pointed 

out that string dualities suggest an a priori distribution function for gi and L i which 
is phenomenologically encouraging in predicting a short, intermediate De Sitter-like 

stringy phase, and the a posteriori naturalness of observing L i >> gs and gi << 1. 
Our scenario contains new features that might suggest new observable signatures of 

the pre-Big-Bang idea. In particular, we expect the dilaton-driven phase to be generically 

anisotropic. It will be interesting to study the possible fossils of this anisotropy. These 
could be of two kinds: (i) a macroscopic anisotropy of space-time which is neither 
washed out by the string phase (in particular if, as we argued, such a phase should be 

short) nor by thermalization during the radiation era, and (ii) an anisotropy in some 
of the amplified quantum fluctuations due to their exit during the anisotropic dilaton- 

dominated phase (for a recent computation see Ref. [44] ). Some of these perturbations 
may isotropize after re-entry, if they are sufficiently coupled to the rest of matter, 

but others, like gravitons and axions, may be already decoupled at re-entry. In this 

case, if their spectra are sufficiently flat (e.g. for axions) they can contribute to CMB 
anisotropies in some distinctive way. We plan to come back to these important questions 

in some future work. 
Our work suggests also new types of criteria for the gravitational instability of the 

Einstein-plus-scalar system. Concentrating on some non-cumulative measure of the vari- 
ation of the news might lead to new theorems of the type of those of Refs. [25,26]. 

One of the most interesting well-posed technical problems suggested by our work is 

the study of the link between the incoming news function and the spatial dependence 
(along the singularity) of the Kasner exponents. We hope to study this problem in the 

near future. 
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Appendix A 

In this appendix we will establish the structure of the perturbative expansion near 
the singularity in the spherically symmetric model analysed in the text. We found it 
more convenient to use the (c, r) coordinate system introduced in Section 3. The field 
equations read 
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[a2~b I (O~b)] ( _ ~ )  fOZ~b'~ 2e/~ (l_m (O~b) 
2La---v-~r+r 7vv + e  t~ l -  \Tr=j+---;- r )  ~ =0, 

(A.1) 

(0/3) r (aqb) 2 (am)  (2__~m) r 2 (oqb) 2 
-~r =-4 \ 3r J ' 2 ~r = 1 -  T \Or,] " (A.2) 

Let us expand the different fields (~b,/3, m) around the leading-order solutions (5.22), 
(5.24) and (5.28) 

~b0(v, r) =C4,(v) + 2a(v)  logr ,  (A.3) 

/3o(V, r) = C~(v) + aZ(v) log r ,  (A.4) 

mo(v, r) = Cm(v) r -~2('') , (A.5) 

and define the corrections to it ~,/3 and ~ by 

qS(v,r) = ~bo(v,r) + ~b(v, r) , (A.6) 

/3(v, r )=/3o(v,  r) + f l ( v , r )  , (A.7) 

m(v,r) =mo(v,r) (1 +-~(v,r) ) . (A.8) 

Introducing the variable e a = r, and denoting differentation with respect to v by a prime, 
Eqs. (A.I) ,  (A.2) take the form 

82-~ : Scb(V, ,~) q- L~(V, A) + NL~b(V, A) (A.9) 
O1A2 

S 4,=~e-c~ [ 4 o / ( l + A )  e 2 " ~ + 2 C ; e 2 a + 2 a e c ~ e  (~%1)a] , (A.10) 

e2,~ e(a2+l a eC~ ( oz~ O'~ 
+ + + 5 -  + -YX ' 

L6 

(A . l l )  

NL4,=-~-~m e("2+1)a( - I )  \OA2 +-~- -2Cn, e~-l)(l+m) O2~OA 2 
- 

+2o~ e ( ~ + ~ )  A ( e ~  - 1 - ~ )  - ZG, ~ - ~ ]  ; 

-~  -ce - ~  =St~(v,A) + L#(v,A) + NLt~(v,A), 

, 
S#=O= L, ,  NL,= -~ \ Oh J 

+ a  -~ =S.,(v,a)+Lm(v,a)+NL.,(v,a). 

0.2 e(a2+l) )t 
an! ~ 2C., 

ere (~2+') a ( O ~ )  
Lm - 2Cm -~- 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 
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(A.17) 

In the r.h.s.'s of  Eqs. (A.9),  (A. 13) and (A.15) we have indicated by S the field- 

independent terms ("source terms"), by L the terms that are linear in the fields, but 

subleading with respect to the 1.h.s. in the limit r --+ 0 (A -+ -e<~), while by NL we 

refer to generic non-linear contributions. 

By examining the source terms and the subleading linear terms, we see that they all 

contain either an explicit factor e (a2+~) a - r<az+l) or a factor e 2'~ ----- r 2 .  To keep track 

of  the presence of  these factors (which tend to zero at the singularity) let us introduce 

two formal bookkeeping parameters: o'i associated with each occurrence of  e ('~2+1) a in 

S and L and, likewise, 0"2 associated with e 2a. In the end we shall set 0"1 = 0"2 = l, 

but the introduction of  these parameters will be useful to delineate the structure of  the 

expansion of  the fields near r = 0. 

Introducing the notation ¢k = (4>,/3, fir), considered as a column matrix, and denoting 

Da the following derivative operator with respect to A: 

{ 0 0) 
D,~ = [ - a ( v ) O a  3a 0 , (A. 18) 

\ + o + ( v ) a a  0 <~a 

we can rewrite Eqs. (A.9),  (A. 13) and (A.15) in the compact matrix form 

Da~=0- ,S~  1) +0-2s(f  ) +0",L~ ') + 0-2 L~2)+ NLe,. (g .19)  

The non-linear terms in (A. 19) depend linearly on 0"j and 0"2: NL¢,(4+, Oa¢, 02¢b, 0-1,0"2) 
= N L 2 ) +  0", NL~,'~+ 0"2 NLS-). The differential matrix system (a .19)  can be rewritten 

as an integro-differential system by introducing the "retarded" Green function G(A, A~), 

i.e. the unique inverse of  D,~ which vanishes when /V > A, 

where we indicate by * the operation of  integrating over A'. This choice of  boundary 

conditions is imposed by consistency: We defined the background solution ( A . 3 ) - ( A . 5 )  

as giving the asymptotic behaviour of  (~, /3,  m) when r -+ 0, i.e. A -+ - o c .  We must 
therefore require that the deviation field g,(A) vanish when A --+ -o<~. 

The system (A.20) can be formally solved by successive iterations, leading to a 

solution ¢p in the form of a double power series in the bookkeeping parameters o'1 

and 0-2, 

~p = ~ 0-','0-~'~k ...... (A.21) 
n,m~> I 

For instance, the first-order (in o-t and 0"2) corrections ~kl = o-1 ~klo + o'2 ~/'01, i.e. the 
next-to-leading-order terms in Eqs. (A .6 ) - (A .8 ) ,  are obtained by neglecting the L and 
NL terms. They satisfy the equations 
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c~2¢~j 
Oa z = S~(v, A), 

aa / +a(v) \-yj-/=s,,,(~,,a). 

The unique solution of this system which vanishes when ,~ --~ - 2  reads 
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(A.22) 

(A.23) 

(A.24) 

A A' h 

--0<3 --OQ --0(3 

A 

/31(v,a) = a ( v )  f b l ( v , k )  + / dk '  S /3 (v ,k ' ) ,  (A.26) 

-- O0 

a 

nq (v, A) = -ce(v)  01(v ,  A) + f dA' S,.(v, A') . (A.27) 

--0<3 

The form of this solution defines the action G* S ~ f dA' G(A, A') S(A') of the retarded 

matrix Green function G(a ,  a ' )  on any source term S(A') = (S4,(A'), S/~(,V), Sm(A')) .  
As a check on the consistency of the iteration method, note that, if one had not imposed 
any boundary conditions, the generic solution ~p~ would have contained an arbitrary 

homogeneous solution ~Phom ("zero-mode"). However, it is easy to check that the ad- 

dition of such a generic ~/'hom would be absorbable in suitable redefinitions of the 
"seed" functions o~(v),C4,(v ), C/3(v), C,,,(v) entering the background solution equa- 
tions (A.3) - (A.5) .  Finally, the explicit form of the next-to-leading order solution (with 

o'1 = 0"2 = 1 ) is 

' ce' e -c~ ce e (~2+1)a + C~e-C------~e2~ + - -  Ae 2a , (A.28) 
c, bl (v, A) - (or2 + 1 )2 Cm 4C,,, 2Cm 

/3t (v, A) = a ~bl (v, A) , (A.29) 
&,2 

(A.30) ml (v, A ) = - c e  ~bl (v, A) + e (~'2+1) a . 
2(off + 1)Cm 

Note that the coefficients of the terms proportional to e 2a and A e 2a contain derivatives 

with respect to v, hence they determine the inhomogeneous expansion near the singular- 
ity, while the terms proportional to e ('2+1) A are present also in the purely homogeneous 
case. 

Inserting the double power series expansion (A.21) into (A.19) or (A.20) yields, 
for each contribution Ohm, 

Da~bnm = s,, .... ~b, m = G * sn,,, , (A.31) 
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where the right-hand-side s,m plays, at each order, the r61e of  an effective source term 

which is (in principle) known, being some algebraico-differential expression in the 

lower-order terms ~P,,'m', with n'  + m' < n + m. Let us make the inductive assumption 

that s,,m is a sum of terms of  the form 

e,, (c~2+1)a e2,,,a Qt( A) Snnt/ = (A.32) 

with 1 ~< m, where Qt(A) is a polynomial in A of order I. (Here, n , m , l  are all 

integers.) It is straightforward to check, from the explicit action (A .25) - (A .27)  of  the 

Green function on source terms, that the solution ¢,,,,,t corresponding to any term Snml, 

Eq. (A.32),  in the r.h.s, of  Eq. (A.31) is again of the form 

~O,,,,,l = G * s,,,,,l = e" (,~-+~t a e2,,a QI( A) , (A.33) 

where 0 t (A)  is another polynomial in A, of the same order 1. Examining the explicit 

form of the L and NL terms on the r.h.s, of  Eqs. (A.9),  (A.13) and (A.15),  one can 

then prove that the induction hypothesis consistently propagates at the next order in 

n + m (still with the constraint l ~< m). 
In conclusion, coming back to the variable r, we find that the inhomogeneous ex- 

pansion near the singularity contains two intertwined series: an expansion in powers of  

r <"~+l) and one in powers of  r 2 mixed with powers of Iogr.  The solution to all orders 

will be of  the form 

~P = Z a,,mlr "("2+1) r 2'' Pt(lOgr) , (A.34) 
~, m, l~<m 

where a,,,t, and the coefficients of  the polynomial Pt, are functions of  v that in principle 

can be iteratively evaluated. As shown in Section 5.4, the full subseries )-~, a,0o r" ("2+1) 

can be exactly summed in terms of  the variable x (x ~ 0 ÷) such that r 2 = l ~ x l+b ( 1 - 
x) 1-/' with b = (1 - c e 2 ) / ( l  + ce:) (see Eqs. (5.37), (5.38)) .  On the other hand, the 

terms with m 4 : 0  are more complicated, as they contain more and more v-derivatives 
of or(l:), C,/,(v) and C~(v)  as m increases. We note, in passing, that this monotonous 

increase of  t,-derivatives shows that the series in m (and 1) (inhomogeneous expansion) 

cannot be convergent for generic (non-analytic) seed functions a (v),  C 4, (v) and C# (v). 
To complete the proof that the algorithm defining ~ solves all the initial field equations 

( 3 .14)-  (3.17), we finally need to check that the ~ ( v ,  r) constructed above satisfies the 
constraint (3.16) involving Om/3v. Let us denote the quantity which must vanish as 

(A.35) 

It is easily checked that, when the other field equations (3.14), (3.15) and (3.17) are 
satisfied, £' fulfills the following identity (which could also be derived from the Bianchi 

identities) : 
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O~ r 2 (O~p'~ 2 
0-7 + A ( v , r )  E ==- O, A ( v , r )  = ~ k.-~r ] " ( A . 3 6 )  

N o t i n g  tha t  the  coef f ic ien t  A ( v , r )  is b o u n d e d  near  r = 0 ( A ( v , r )  ,,~ ra2(")), and  

tha t  the  r e l a t ion  ( 5 . 2 6 )  ensu re s  the  v a n i s h i n g  of  C as r ~ 0, we c o n c l u d e  f r o m  the  

iden t i ty  ( A . 3 6 )  ( v i e w e d  as an  O D E  in r wi th  da ta  g iven  at r = 0)  tha t  E van i shes  

e v e r y w h e r e .  
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