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Abstract. Fully-ionised carbon impurity flow is studied in ion-root, neutral
beam heated plasmas by means of Charge Exchange Recombination Spectroscopy
(CXRS) in the TJ-II stellarator. Perpendicular flows are found to be in reasonable
agreement with neoclassical calculations of the radial electric field. The parallel
flow of the impurity is obtained at two locations of the same flux surface after
subtraction of the calculated Pfirsch-Schlüter parallel velocity. For the medium
density plasmas studied, n̄e∈ (1.2−2.4)×1019 m−3, the measured impurity flow
is found to be inconsistent with a total incompressible flow, i.e. ∇ · uz 6= 0,
thus implying a non-constant impurity density on those flux surfaces. The
experimentally observed velocity deviations are compared with the parallel return
flow calculated from a modelled impurity density redistribution driven by ion-
impurity friction. Although the calculated return flow substantially modifies the
incompressible velocity pattern, the modifications at the precise locations of the
CXRS measurements are generally smaller in magnitude and opposite in sign
as compared to the experimentally observed deviations. Small inhomogeneities
of the electrostatic potential in a surface are also shown to affect the impurity
redistribution but do not provide a better understanding of the measurements.

PACS numbers: 52.25.Vy, 52.30.-q, 52.55.Hc, 52.70.Kz, 52.25.Dg

1. Introduction

The flow of mass along flux surfaces in magnetically confined plasmas has come to
be regarded as an important factor in determining plasma stability, radial transport
and performance of these devices. The E×B flow pattern is of particular importance
with regard to transport. Indeed, a sufficiently strong radial velocity shear is generally
accepted as reducing turbulence and transport [1]. The flow patterns of the different
species present in the plasma (main ions, electrons and impurity ions) deviate from
the E × B flow and from each other through their different diamagnetic velocity
components and parallel force balances. These diamagnetic and parallel flows give
rise to currents that are a fundamental part of the stellarator MHD equilibrium
in high-beta reactor-relevant plasmas. Parallel currents are generally split into
Pfirsch-Schlüter (PS) and parallel mass flows. The former arises in response to the
compressibility of the perpendicular diamagnetic current and carries no net toroidal
current, but can nevertheless cause a radial (Shafranov) shift of magnetic surfaces as
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the pressure gradient increases. The reduction of this current is a design requirement
of modern stellarators because of its detrimental effect on high beta stability and
neoclassical transport [2]. On the other hand, the bootstrap current carries a net
toroidal current‡ and can potentially change the iota profile, which is of particular
importance for island divertor configurations in stellarators and is taken advantage
of in tokamak non-inductive scenarios. For these reasons experimental validation of
first-principle theory-based models of plasma flows and currents is of considerable
importance. In reference [4] measurements of fully ionised carbon impurity flow were
undertaken using Charge Exchange Recombination Spectroscopy [5] (CXRS) in low
density, Electron Cyclotron Resonance heated plasmas in the TJ-II stellarator. It
was verified that the in-surface variation of the parallel impurity flow was consistent
with an incompressible total flow tangent to flux surfaces. In addition, the measured
perpendicular and parallel mass flows were compared with neoclassical calculations of
the radial electric field and ion parallel mass flow, finding a good agreement in those
low density plasmas.

In this work, CXRS measurements of C6+ flows in Neutral Beam Injection (NBI)
heated, ion-root plasmas of the TJ-II stellarator are presented. As indicated in
reference [4] significant and reproducible deviations in the measured impurity flow
from an incompressible pattern are observed as density increases, which points to a
redistribution of impurity density within the flux surfaces. We present these flow
measurements and compare the observed deviations with the parallel return flow from
a modelled impurity density redistribution driven by ion-impurity friction [6]. Such
a friction model was adapted to a general stellarator geometry with the bulk ions
in the Pfirsch-Schlüter regime of collisionality in reference [7] and is extended here
for main ions in the plateau regime, provided the ion temperature gradient is small
(a plausible assumption for the plasmas under consideration). The calculated return
flow substantially modifies the incompressible velocity pattern, being comparable to
the impurity parallel PS flow. However, it is shown that the calculated modifications
at the precise locations of the CXRS measurements are small in comparison to the
measured in-surface variations of impurity parallel flow and in the opposite direction
for most cases. The inclusion of inertial and parallel electric field forces in the parallel
momentum balance does not provide a better understanding of the experimental
observations.

The fact that impurity density inhomogeneities can alter the radial transport of
impurities [6] makes the understanding of these inhomogeneities particularly relevant.
Also, from the data interpretation point of view, the parallel return flows associated
to the density inhomogeneity might complicate the comparison of CXRS rotation
measurements to standard neoclassical theory, particularly in the presence of large
main-ion gradients [8, 9]. Observations of in-out flow variations have been reported
in the CHS stellarator [10] and the C-Mod and ASDEX-U tokamaks [11, 12], which
have been recently shown to be caused by a poloidal redistribution of the impurities
with direct impurity density measurements [13, 14]. In this work we restrict ourselves
to the discussion of flow deviations from incompressibility as an indirect measure of
the C6+ density inhomogeneity, since several instrumental uncertainties of the TJ-
II CXRS system prevent the interpretation of signal intensities as relative density
measurements. On the other hand, parallel and perpendicular impurity flows and

‡ In the parallel mass flow we therefore include all the relevant parallel forces that determine the
parallel flows of the different species, e.g. the NBI-driven currents. It is also noted that, to some
extent, the split of the parallel currents is a matter of convention [3].
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temperatures are routinely provided by the CXRS system and have been shown to be
in fair agreement with other diagnostics and/or neoclassical theory predictions [4, 15].

This paper is organised as follows: in section 2, the diagnostic set-up and geometry
are presented together with the methodology used to relate the flow fields to the CXRS
velocity measurements through the appropriate geometric quantities. In section 3
the impurity flow measurements and their compressible asymmetries are described.
These asymmetries are compared with the results of an ion-impurity friction model
in section 4, where modifications to the incompressible impurity flow pattern, caused
by an in-surface impurity density variation, are detailed. In section 5 the validity of
the friction model is examined and the impurity parallel force balance is extended to
account for inhomogeneities of the electrostatic potential within a magnetic surface.
Finally, conclusions are drawn in section 6.

2. Diagnostic set-up and data analysis

The CXRS process of interest in TJ-II involves electron capture from accelerated
hydrogen by fully ionized carbon ions into a highly excited state of C5+, followed by
spontaneous decay via photon emission, i.e. the C VI line at 529.07 nm (n = 8→ 7).
For this, a compact Diagnostic Neutral Beam Injector (DNBI) provides a 5 ms long
pulse of neutral hydrogen accelerated to 30 keV. Its 1/e-radius at focus is 21 mm [16].

Correctly performed instrument wavelength calibration and optical alignment are
essential to minimize the CXRS experimental uncertainties. For the first case, a neon
pencil lamp is inserted between each light collection lens and corresponding fibre head
between discharges to determine the wavelength dispersion at the focal plane for each
fibre. In addition, corrections are made for fine-structure, Zeeman broadening and the
so-called pseudo-velocities [17] before Doppler shifts and widths are determined. The
uncertainties associated with the integration of geometrical quantities along sight lines
are also accounted for. See reference [4] for a complete description. In this way, the
uncertainty achieved in measured velocity is 1 to 2 km s−1 (except at the innermost
toroidal line sight where it increases by times 2 or 3 due to poor photon statistics).

The procedure for aligning the diagnostic is detailed in section 2.1 of reference [4].
The location of the flux surfaces is known accurately from the vacuum field. Note
that the helical axis of TJ-II makes the Shafranov shift very small ( 3 mm) even for
1 beta values (see e.g., A. Varias et al. NF 30, (1990), 2597. ”Ideal Mercier Stability
for the TJ-II Flexible Heliac”).. This shift is much less than the spot size of the
fibers.. Consequently, the inboard and outboard measurements are directly mapped
to flux coordinates using the known magnetic field geometry, and in contrast to the
tokamak experiments [11, 12, 14], no additional relative shift between the inboard and
outboard measurements is needed to align the carbon temperature profiles. Moreover,
an additional check to confirm the goodness of the toroidal ρ mapping is made. For
this, the spectrograph grating (set at 529 nm [16]) was exchanged for one centred
at 656.2 nm. Then, by injecting the DNBI beam into the vacuum chamber with no
magnetic fields, spectra with Doppler-shifted Hα line emission from the beam were
collected and analysed. Hence, by determining the Doppler shift of the beam Hα for
each sight line, the corresponding beam velocity was calculated without correcting
for the beam to sight line angle. Knowing the beam energy, the beam to sight
line angles were determined and the beam/sight line intersection points could be
determined. These intersection points were compared with the values obtained using
the illumination method described in [4] thereby confirming the uncertainties in the
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alignment of toroidal fibres, i.e. ∼ ±3 mm. Note: the separation between toroidal
sightlines, ≥ 3 cm, is fixed by the fibre bundle and focusing lens.
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Figure 1. Schematic diagram of CXRS diagnostic sightlines with a poloidal
cut of several magnetic surfaces of TJ-II. The inboard and outboard regions
of measurement are highlighted. The magnetic surfaces in which poloidal and
toroidal outboard measurements are coincident, ρ ∼ 0.2, 0.4 and 0.6, are coloured
in red, blue and black, respectively.

A schematic layout of the diagnostic sightlines is presented in figure 1, together
with a poloidal cut of several magnetic surfaces of TJ-II. The plasma minor radius
region spanned by nearly symmetric poloidal views is ρ ∈ (0.25, 0.85) in the magnetic
configurations studied in this work. Here the normalised radius is defined as ρ ≡√
V/V0, where V and V0 are the volumes enclosed by the surface of interest and

the last closed magnetic surface, respectively. In the figure only the bottom poloidal
array is presented for clarity (see reference [4] for details). On the other hand, the
toroidal fibres cover both sides of the magnetic axis, from ρ ∼ −0.75 to ρ = 0.6 at
10 locations (in figure 1 the toroidal sightlines, plotted as open circles, go outside the
page). The region in which both poloidal and toroidal measurements are taken is
labelled as outboard, while the zone where only toroidal measurements are made is
labelled as inboard. The nomenclature ρ ≥ 0 (outboard) and ρ ≤ 0 (inboard) is also
utilized to define these regions.

In the outboard region, poloidal and toroidal fibres view the same surfaces at
ρ ∼ 0.2, 0.4 and 0.6, see figure 1. Therefore, the 2D-flow velocity is completely
determined at these locations. The redundant inboard-toroidal measurements have
been recently used to demonstrate that, in low density TJ-II plasmas (with line-
averaged electron densities n̄e ≤ 10−19 m−3), impurity rotation is incompressible
and follows neoclassical theory [4]. The general form of the impurity flows and the
methodology used to asses their incompressibility is described next.
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2.1. Spatial variation of the flow

From the radial force balance for a single species s it follows that the perpendicular
velocity is given by the E×B and diamagnetic flows [19],

us⊥ =
B

B2
×
(
∇Φ +

1

nsqs
∇ps

)
+O(δ2

svs). (1)

where ns, qs = eZ and vs =
√

2Ts/ms are the density, charge and thermal velocity
of the species s, and δs = ρs/L is the gyro-radius over system scale ratio. In the
following the subscript i is used for main-ions and z for impurities with charge Z.
The impurity diamagnetic term in equation (1) is usually neglected against the E×B
flow, that is generally comparable to the main ion diamagnetic term. We will adopt
this approximation for the C6+ ions used in our measurements. The perpendicular
impurity ion flow is then given by

uz⊥ = Ez
B×∇ρ
B2

, Ez =
dΦ

dρ
(2)

where Φ is the electric potential. We have neglected any parallel variation of Φ against
the radial variation in this expression. From main ions, the perpendicular diamagnetic
flow is included in Ei(ρ) = dΦ/dρ+ (nie)

−1dpi/dρ
Given the form of the perpendicular s flow, the parallel component is obtained

from the (steady-state) s number conservation, ∇ · (nsus) = 0. If density of s
is constant on flux surfaces then ∇ · us = 0 and a local parallel flow (Pfirsch-
Schlüter) must compensate for the compression of the perpendicular flows. The general
expression of the parallel flow is then (see e.g. [4, 20])

us‖ = (Es(ρ)h+ Λs(ρ)) B, (3)

with the function h(ρ, θ, φ) (θ, φ: poloidal and toroidal angles) satisfying

B · ∇h =
2

B2
B×∇ρ · ∇ (lnB) .

The integration constant for h is fixed by the condition 〈hB2〉 = 0. With this choice
the flux-constant Λs(ρ) in (3) is given by Λs = 〈us · B〉/〈B2〉, where 〈·〉 denotes a
flux-surface average. The first term on the right of equation (3), uPS = EshB, is the
well-known Pfirsch-Schlüter. Hereafter, ΛsB is referred as the parallel mass flow of
the s species, i.e. the parallel flow without the PS contribution.

In our previous work [4] we showed that the above expressions for an
incompressible impurity flow pattern agreed well with the C6+ CXRS measurements
in low density plasmas. The so-obtained Ez(ψ) and Λz(ψ) were found to be agreement
with neoclassical calculations of the ambipolar radial electric field and main ion parallel
mass flow, 〈ui · B〉/〈B2〉, respectively. For the higher density plasmas under study
in this work we observe a systematic deviation of the parallel flows from the form
given by equation (3). The deviation is interpreted to be caused by variations of
impurity density nz within the flux surfaces, in which case the reduction of the number
conservation condition to the incompressibility of total impurity flows no longer holds.
We treat this situation by allowing the function Λz to have angular dependencies. To
quantify the deviations it is convenient to define an impurity parallel return flow
as Λ(ρ, θ, φ) = Λz(ρ, θ, φ) − Λi(ρ), which is associated with parallel gradients of the
impurity density. With this particular choice, impurity flows are written as the sum
of an incompressible flow,

uz0 = Ez
B×∇ρ
B2

+ (Λi + Ezh) B, (4)



Compressible impurity flow in the TJ-II stellarator 6

plus the return flow, ΛB, which compensates for the impurity density redistribution,
i.e.

uz = uz0 + Λ(ρ, θ, φ)B. (5)

Note that this velocity field is the same as that given by equations (2) and (3), but
with Λz(ρ, θ, φ) = Λ(ρ, θ, φ) + Λi(ρ). The case Λ = 0 reduces to an incompressible
flow pattern with the z impurities dragged by the ion parallel flow, i.e. Λz = Λi(ρ).

2.2. Data analysis

The data analysis here presented is an adaptation of that of ref. [4] to account for
the possible compressible variations of the parallel impurity flow just discussed. The
method makes use of the three independent flow measurements performed at the same
flux surface (two of them also at the same point in the surface, refer to figure 1) to
obtain independent measurements of the parallel impurity flow Λz at two locations of
the same flux surface. The logic can be summarised as follows: first the intersecting
poloidal and toroidal outboard sight lines are used to extract the local parallel and
perpendicular flows. The perpendicular flow provides a direct estimate of Ez(ρ), which
is then used to subtract the Pfirsch-Schlütercomponent from the parallel velocity to
get a first measurement of ΛOut

z = Λz(ρ, θ
Out, φOut). The obtained value of Ez(ρ) can

also be used to calculate the projections of the perpendicular and parallel Pfirsch-
Schlüterflows on the inboard toroidal measurement at the same flux surface. After
subtraction of these projections we obtain a second value, ΛIn

z = Λz(ρ, θ
In, φIn), of the

parallel mass flow of the impurity ion.
To make the above description more explicit we define the dimensionless vector

f as

f = − 〈B〉〈|∇ρ|〉

(
B×∇ρ
B2

+ hB

)
(6)

and the average radial electric field and perpendicular velocity as Er(ρ) ≡
−〈|∇ρ|〉dΦ/dρ and U⊥(ρ) ≡ Er/〈B〉 respectively. The impurity flow given by
equation (5) is expressed as

uz = fU⊥ + ΛzB. (7)

Once the value of U⊥(ρ) is calculated from the intersecting poloidal and toroidal sight
lines at the outboard region, the quantity Λz(ρ, θ, φ) is obtained after projecting this
flow onto the toroidal sight lines,

Λz =
ut − ftU⊥

Bt
. (8)

Here, the sub-index t indicates the projection of a vector (u, f and B) in the toroidal
viewing direction, et. Finally, the differences in the parallel mass flow (divided by the
local magnetic field strength) are

∆Λz = ∆

(
ut

Bt

)
− U⊥∆

(
ft

Bt

)
, (9)

where ∆(X) ≡ XIn −XOut. Note that the differences in the impurity parallel mass
flow equal those of the impurity return flow defined in equation (5), i.e. ∆Λz = ∆Λ.
Therefore, if flows are incompressible, Λz is a flux function proportional to the Ub(ρ)
defined in [4]. The in-out differences in Λz (see figure 3 of section 3) can then be
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compared with the symmetry in Ub profiles found in low density density plasmas
(figures 7 and 10 of that reference).

The perpendicular flow constant U⊥ is obtained at three radial positions (ρ ∼
0.2, 0.4 and 0.6, see figure 1). We use these values together with the condition
U⊥(0) = 0 to interpolate U⊥ at the radial locations of all CXRS toroidal measurement
and obtain a Λz profile from equation (8). Figure 3 shows several examples of these
profiles, that are discussed in the next section.

3. Experimental results

In this work, two close magnetic configurations are considered: 100 44 64 and
100 40 63. Here, the nomenclature reflects currents in the central, helical and vertical
coils, respectively. On-axis magnetic field is about 1 T. The vacuum rotational
transform, ῑ, covers the range 1.55 ≤ ῑ ≤ 1.65 and 1.509 ≤ ῑ ≤ 1.608, and the
volumes are 1.098 and 1.043 m3, respectively. These two configurations have been
studied in references [21] and [22] from the neoclassical point of view. For similar
plasma profiles and momentum input, no qualitative differences are predicted in the
flows within the surface. The plasmas presented here are heated by one of the two
tangential NBI (tNBI ≤ 100 ms), either in the direction of the magnetic field (co-
injection), or in the opposite direction (counter-injection). The line averaged densities
scanned in this paper cover the range n̄e ∈ (1.2− 2.4)× 1019 m−3.
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Figure 2. Time evolution of two similar plasma discharges. In red, shot#32577
with a DNBI pulse and in blue, shot#32576 without DNBI, used to remove
the C5+ passive contribution. From top to bottom, time traces of: line
averaged electron density, n̄e; plasma current (reversed), −Ip; radiation monitors:
bolometer (solid line) and C4+ (dashed); Hα signal. The DNBI injection is shown
in grey.
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Time traces of a representative plasma discharge, #32577, in the 100 44 64
configuration are shown in figure 2. The evolution of the reference discharge (#32576)
used to remove background C5+ emission is in blue, whilst the one in which the DNBI
was fired, #32577, is in red. The time interval in which the DNBI is injected is
plotted as a grey shadow. The NBI heating causes an increase in the line-averaged
density and radiation. The radiation monitors in figure 2 correspond to a bolometer
signal (whose view-line intersects the DNBI path) and a C4+ monitor, shown as solid
and dashed lines, respectively. A small increase is observed in the bolometer signal
for discharge #32577, which corresponds to photon excitation induced by the DNBI.
Finally, the plasma current, Ip, is negative corresponding to counter-injection (a co-
injection reverses the sign of the current). The small oscillation observed in the plasma
current is produced by small variations in the current of the external coils. The good
reproducibility of the two discharges shown in figure 2 is representative of the data set
used in this work and allows an accurate subtraction of the background C5+ emission
from the active DNBI discharge.
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Figure 3. Left: profiles of the electron density (ne, in gray) and temperature (Te,
in red), together with carbon temperature profiles (Tc, in blue). Right: measured
profile of Λz , in blue, and the incompressible expectation extrapolated from the
outboard measurements, in grey. The calculated Pfirsch-Schlüter contribution is
displayed in red. The discharge #28263, in which flows were demonstrated to
be incompressible [4], is included here as a reference. The discharges #31100,
#32577 and #32580, heated with one NBI in counter-injection (consistent with
Λz < 0) are presented to highlight the reproducibility of the departure from
incompressibility observed in Λz . Discharges #31100 and #32306 were performed
in the configuration 100 40 63.

Electron density and temperature profiles (ne and Te, respectively) are measured
by the Thomson scattering diagnostic [18], see figure 3. The discharges in the figure
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were performed in the 100 44 64 magnetic configuration, except discharges #31100
and #32306 (configuration 100 40 63). In all the discharges considered in this paper,
the electron temperature profile is approximately parabolic, with Te(0) ≈ 300 eV,
whilst the carbon temperature profile is rather flat, with 100 ≤ Tc ≤ 200 eV (it
is assumed that main ion and impurities are in thermal equilibrium). In the right
column of figure 3 the C6+ parallel mass flow, ΛzB, and PS flow, uPS = EzhB,
contributions to the total parallel velocity, u‖ = uPS+ΛzB, are shown in blue and red,
respectively (see section 2 for an explanation of the extraction of these flow components
from the experimental measurements). The direction of the bulk toroidal flow is
mainly determined by the NBI momentum injection. The incompressible expectation
extrapolated from the outboard measurements, i.e. Λz = Λz(ρ) = ΛOut

z , is shown
in grey. The discharge #28263 is heated by the co-NBI injector and shows a lower
line-averaged density (n̄e = 1.2 × 1019 m−3). For this low-density NBI discharge
flows were shown to be incompressible in reference [4], and is included here as a
reference. The measured Λz profile departs from the incompressible expectation in
the co-NBI discharge #32306 and the counter-NBI discharges #31100, #32577 and
#32580. The reproducibility of the Λz profile for these similar discharges in terms of
ne, Te and Tc profiles, but otherwise distant in time and impurity content, reinforces
the reproducibility of the observed flow deviations. The general tendency observed in
the experimental database, with few exceptions, is that the inboard parallel flow is
more positive than the outboard one, and thus, the in-out differences in the parallel
mass flow, ∆Λz from equation (9), are always positive. This observation is nearly
independent on the magnetic configuration and the direction of injection of the heating
NBIs.
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Figure 4. Comparison of the experimentally measured radial electric fields for
the outboard region, EOut

r , with the corresponding neoclassical values for several
TJ-II discharges. Dashed lines correspond to the NC value (diagonal) and the
region of confidence EOut

r = ENC
r ±1 kV m−1 (upper and lower diagonals). Here,

circles and squares represent data from the 100 44 64 and 100 40 63 magnetic
configurations, respectively. Red points indicate NBI in counter-B direction
(consistent with Λz < 0) while white points indicate co-injection. Note that
the impurity diamagnetic term is not included in computing the measured Er
(see text).

As indicated in section 2, toroidal and poloidal view lines of the CXRS system
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overlap at three locations (ρ ≈ 0.2, 0.4 and 0.6) on the outboard side of the DNBI
path. This enables unambiguous determination of the perpendicular and parallel flow
components at those locations, relying only on the assumption of a small radial flow
component compared to perpendicular and parallel flows. The perpendicular impurity
flow component is expected to be dominated by the E × B flow because of the 1/Z
factor of the diamagnetic flow. Figure 4 shows the comparison of this experimental
approximation to the radial electric field with the neoclassical expectations, calculated
as in [22]. The database shown here is comprised of 12 discharges. Data taken in
the 100 44 64 and 100 40 63 magnetic configurations are presented as circles and
squares, respectively. Note that the impurity diamagnetic term is not included in
the calculation of the experimental radial electric field, because of the uncertainties
in determining the carbon density profile in TJ-II. Nevertheless, a rough estimate
of the diamagnetic contribution (obtained from the CXRS signals while ignoring the
calibration deficiencies mentioned in section 2) typically results in absolute values ≤ 1
kV m−1 at ρ = 0.6, with little or no impact for more internal regions, as expected
from the 1/Z dependence. This estimation is consistent with the main-ion diamagnetic
velocities calculated form experimental data, |vdiam,i| ≤ 4 km s−1 for |ρ| ≤ 0.6.

Despite this uncertainty in the estimated radial electric field, we note that the
radial electric field does not enter any of the expressions for the impurity flows alone
(sections 2.1 and 4), but rather in combination with the diamagnetic component as the
total perpendicular flow. Such a velocity component is provided by the overlapping
CXRS velocity measurements through geometric factors only and is not subjected to
such uncertainties. In the following, the measured parallel mass flow deviations in the
region |ρ| ∈ (0.2, 0.6) are studied on the light of an impurity density redistribution
model.

4. Friction-driven impurity density redistribution

Impurity temperature and parallel mass flow are generally taken to be a proxy
of those of the main ions, as the impurity fluid is typically strongly collisionally
coupled to the main ion fluid. For similar temperatures (Tz ≈ Ti) and large mass
difference (mz � mi), impurity z and ion i collisionalities relate to each other through
ν̂zi = (mi/mz)

1/2(qz/qi)
2ν̂ii with ν̂ab = νabR/( ῑva) (see e.g. [23]). The pre-factor is

∼ 10 for Hydrogen plasma and C6+ impurity which, for the plateau ions characteristic
of TJ-II [22], places the impurity under study in the Pfirsch-Schlüter collisional regime.
This collisional character of medium to high-Z impurities can cause their density
variations within a surface to be comparable with the mean value on that surface [6],
and thus, the impurity parallel mass flow to differ from that of the main-ions. In order
to study the measured parallel mass flow deviations from an incompressible pattern,
the continuity equation

B · ∇
(nzuz‖

B

)
= −EzB×∇ρ · ∇

( nz
B2

)
, (10)

and the impurity parallel force balance

Tz∇‖nz = Rz‖, (11)

need to be solved for the unknown functions nz and Λz. Here, Rz‖ is the parallel
friction on the impurities. The inclusion of other forces in (11) (namely the impurity
inertia and the parallel electric field) is described and evaluated in section 5, while the
impurity parallel viscosity is neglected against the parallel impurity pressure gradient,
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∇‖pz [6]. As also shown in reference [6], the strong ion-impurity energy equilibration
keeps the impurity temperature close to the ion one and thus Tz = Ti(ρ).

In terms of the Λ function defined in (5) and n ≡ nz/〈nz〉 these two equations
are written as

B · ∇(nΛ) = −uz0 · ∇n, (12a)

B · ∇ lnn = γfB
2 (Aih+Bi − Λ) , (12b)

whose solubility condition is 〈ΛB2〉 = Bi(ρ)〈B2〉, see the Appendix A. The
compressible pattern (5) has been used to express the continuity equation (10) in its
form (12a). In addition, a flux-constant friction coefficient γf(ρ) and thermodynamic
forces Ai(ρ) and Bi(ρ) have been defined in (12b) as

γf ≡ miZ
2

Tiτii
, (13a)

Ai ≡
Ti

e

d lnni

dρ
− 1

2e

dTi

dρ
, (13b)

Bi ≡ −3

5

〈qi ·B〉
pi〈B2〉 , (13c)

with τii = 3(2π)3/2ε2
0m

1/2
i T

3/2
i /(nie

4 ln Λ) the ion self-collision time and qi the ion
heat flow. In deriving expression (12b) trace impurities are considered,

∑
nzZ

2 � ni,
and so the parallel friction on the impurities is approximated by that exerted by
main ions, i.e. Rz‖ ≈ Rzi‖ = −Riz‖. The ion-impurity collision operator is modelled
with a Lorentz pitch-angle scattering operator plus a term guaranteeing momentum
conservation [6]. Finally, no assumption is made on bulk ion’s collisionality since
its distribution function is expanded by Legendre and Laguerre polynomials, as is
customary in the so-called moment approach to neoclassical transport [20, 23]. Here,
the so-called 13 M approximation [24] is adopted, i.e. contributions from j>1 Laguerre
components are neglected, see the Appendix A. We note that in the axisymmetric
tokamak case, the impurity continuity equation (10) yields an algebraic relationship
between the parallel impurity flow and the impurity density (see e.g. [25]), whereas
such a simplification does not occur in general stellarator geometry [7].

The ion-impurity parallel friction is studied first in the next subsection. The
effect of a parallel electric field and impurity inertial forces are considered in section 5.
We anticipate here that the parallel momentum balance is dominated by the friction
force and that the general behaviour of the solutions is to display ∆Λz < 0, in
contrast with the measured in-out variation. This can be heuristically understood
by noting that the differences in the Pfirsch-Schlüter flow, AihB in equation (12b),
drive the impurity density redistribution. As a consequence of the in-surface density
variation, an impurity return flow ΛB is established (equation (12a)) which must act
to reduce the overall ion-impurity friction so that the density redistribution is not
further amplified. Since the term Aih on the RHS of equation (12b) is more negative
at the inboard side, the return flow Λ tends to behave similarly.

4.1. Calculation of the friction-driven impurity redistribution

The two coupled equations (12a) and (12b) can be recast as a second order partial
differential equation for the unknown function n(ρ, θ, φ) (see Appendix A). The radial
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coordinate is a parameter in those equations which involve angular derivatives only.
The required inputs are the main ion parameters (temperature Ti, density ni, parallel
mass flow Λi and flux-surface averaged parallel heat flow 〈qi · B〉) together with the
impurity perpendicular flow. The CXRS and Thomson scattering systems provide
measurements of these parameters, except for the ion parallel mass and heat flows.
The latter is calculated with DKES [26], complemented with momentum correction
techniques [27]. On the other hand, the measured Λz in the outboard region is used as a

first guess for the ion parallel mass flow to solve the differential equations, Λ
(0)
i = ΛOut

z ,
since the external input of momentum is not included in the DKES Λi calculations [21].
A new guess for the main ion parallel flow is then obtained upon subtraction of the

calculated impurity-ion flow difference, Λ(0) in our notation, i.e. Λ
(1)
i = ΛOut

z − Λ(0).
Note that at every step momentum conservation is imposed, i.e. 〈ΛB2〉 = Bi(ρ)〈B2〉
from equation (12b). The iteration of this process leads to a solution for the impurity

flow that matches the outboard CXRS measurement, Λ
(n+1)
z ≡ Λ

(n+1)
i + Λ(n) = ΛOut

z .
In practice only one iteration is necessary because the impurity return flow Λ is not
very sensitive to the ion parallel flow Λi and the outboard measurement locations
happen to be close to a stagnation point of the calculated impurity return flow, so
that Λi = ΛOut

z is already a good guess.
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Figure 5. C6+ impurity density redistribution simulation for the discharges
#25801 (left) and #32577 (right) on the surface ρ = 0.6. From top to
bottom: magnetic field strength variation, ∆B = B/〈B〉 − 1 (field lines are
plotted in white); density variation, ∆n = nz/〈nz〉 − 1; return parallel flow,
ΛB; and the differences in the Pfirsch-Schlüter velocity, ∆uPS‖ ∼ AihB. The

inboard/outboard toroidal measurement positions are shown as an open circle
and filled square, respectively.

An example of the solution is shown in figure 5 for discharge #32577 presented
in figures 2 and 3 and for the ρ = 0.6 magnetic surface. These results correspond to
fully ionised carbon C6+ impurity that is used for the CXRS measurements. From
top to bottom the relative variations of magnetic field strength B and impurity
density, the corresponding impurity return flow and the parallel friction drive AihB
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are plotted. The inboard/outboard toroidal measurement positions are shown as an
open circle and solid square, respectively. As a reference the same quantities obtained
for the low-density ECRH heated discharge #25801 are presented. The slightly hollow
density profiles in typical ECRH discharges in TJ-II results in a small and negative
thermodynamic force Ai, see equation (13a). Correspondingly, both the relative
impurity density variations and return flow are small. Plasma profiles and CXRS
flow measurements for this discharge can be found in reference [4]. In particular we
recall that the measured impurity flows were shown to be nearly incompressible for
this discharge.
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Figure 6. Mapping of C6+ impurity density redistribution simulation in the
CXRS poloidal plane of measurement for the discharge #32577. From top
to bottom: density variation, ∆n = nz/〈nz〉 − 1; impurity return flow, ΛB;
and the impurity Pfirsch-Schlüter velocity. The inboard and outboard toroidal
measurement positions are shown as open circles and filled squares, respectively.

The results of the calculations of impurity density redistribution for discharge
#32577 and for several magnetic surfaces, ρ ≤ 0.8, are plotted in figure 6 for the
toroidal section of the CXRS measurements, φ = 75.5o. Again, the inboard and
outboard toroidal measurement positions are shown as open circles and filled squares,
respectively. The magnetic surfaces in which the inboard/outboard comparison is
made, namely ρ ∼ 0.2, 0.4 and 0.6, are also shown as dashed lines. The first two graphs
of the figure are the normalized impurity density redistribution, ∆n = nz/〈nz〉 − 1,
and impurity return flow, ΛB. The Pfirsch-Schlüter impurity flow, uPS

z = EzhB, is
presented at the bottom of the figure.

Some general comments on the solution can be made in light of the simulation
results shown in figures 5 and 6. For the plasma profiles of the database used in this
work, n̄e∈(1.2−2.4)×1019 m−3, carbon impurities tend to accumulate in the interior
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region of the bean-shaped plasma poloidal cross section (which is close the region of
maximum magnetic field strength in TJ-II due to the proximity of the central coil).
The resulting return flow is comparable in size to the PS impurity flow. Its angular
dependence also shows a dominant cos θ component. The difference in sign between
the PS and return parallel flows is in line with the overall tendency heuristically
described at the beginning of this section: the return flow Λ tends to compensate the
AihB friction drive in equation (12b), for in these ion-root plasmas Ai and dΦ/dρ
are of similar magnitude and different signs so that uPSz ≈ (dΦ/dρ)hB ∼ −AihB.
Consequently, the differences in the calculated impurity parallel return flow at the
locations of the CXRS measurements, ∆Λz ≡ ∆Λ from (5), are found to be negative
for the ion-root plasma discharges in our CXRS database.

4.2. Comparison with experiment
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Figure 7. Radial profiles of the friction-driven simulated (black) and
experimental (blue) differences in the parallel mass flow ∆Λz , for the same
discharges presented in figure 3.

Figure 7 shows the radial profiles of the friction-driven simulated (black) and
experimental (blue) differences in the impurity parallel mass flow, ∆Λz, for the
discharges presented in figure 3. The calculated compressible modifications to the
impurity flow become small at the locations of CXRS measurements and do not
account for the observed differences. A comparison of the experimental and theoretical
values of ∆Λz is presented in figure 8 for the same database as in figure 4. Error
bars in figures 7 and 8 come from the spread of the calculated velocities in the
measurement volumes. As discussed in section 4.1, the parallel friction term in
equation (12b) calculated from experimental profiles appears capable of producing
a measurable impurity density asymmetry and parallel return flow, even for the
internal positions considered in this work (the region of maximum gradient is typically



Compressible impurity flow in the TJ-II stellarator 15

located at ρ ∼ 0.7 − 0.8 in TJ-II plasmas). Values of ∆Λtheo
z ∼ −2 km s−1 T−1, or

larger, are found in the simulation, while the experimental differences can easily reach
∆Λexp

z ∼ 6 km s−1 T−1. The overall tendency of the calculated return flows to be
more negative in the inboard side is also clear from figure 8. Note that at the inboard
positions the impurity return flow varies sharply, see figure 5, which translates into
large error bars.
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Figure 8. Comparison of the experimental and theoretical values of ∆Λz .
It is observed that the expected and measured values are systematically in
disagreement, except for a few values. The symbols legend is the same as in
figure 4. The error bars in the simulation come from the spread of the calculated
velocities in the measurement volumes.

From this comparison it is concluded that, whereas the impurity-ion parallel
friction (in its model form in equation (12b)) is capable of causing impurity density
asymmetries and return flows of the order of magnitude of the observed in-out
flow differences, the calculated return flows do not agree with the observed in-
surface variation of the impurity parallel mass flow Λz at the locations of the CXRS
measurements for most cases. In the following section some of the assumptions made
in the model (12b) are examined, and the parallel force balance (11) is extended to
account for the impurity inertia and the effect of a parallel electric field.

5. Discussion on the validity and extensions of the model

Previous impurity parallel friction models for stellarators [7] consider main ions in the
Pfirsch-Schlüter regime. This regime is not strictly applicable to the plasmas presented
here (ni ∈ (0.5− 3)× 1019 m−3, Ti ∈ 100− 200 eV) since main ions are in the plateau
regime ν̂ii ∼ 10−1− 100 [22]. As indicated in section 4 and explained in the Appendix
A, no assumption is made in this work on bulk ion collisionality, although the main
ion distribution function is truncated in the Laguerre expansion (j ≤ 1, see Appendix
A) as in the 13 M approximation [23, 24].

In order to quantify the impact of this approximation let us consider main ions
in the Pfirsch-Schlüter regime, as in reference [7]. In this regime of collisionality
〈qi · B〉 = 0 (hence Bi = 0 in (13c)) and APS

i = (Ti/e) × (d lnni/dρ). Now, if the
j > 1 truncation is applied to the exact collisional result, the thermodynamic force Ai
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Figure 9. Mapping of C6+ impurity density redistribution and return flow in
the CXRS polodial plane of measurement for the discharge #32577. On the left,
the exact Pfirsch-Schlüter main ion distribution function is used [7].On the right,
the j > 1 truncation is applied to the PS exact result.

in (12b) results

APS, truncated
i =APS

i −
1

2e

dTi
dρ

,

which equals the general result Ai in (13c). The resultant impurity redistribution and
return flow as obtained from the exact and truncated collisional results are displayed in
the left and right columns of figure 9, respectively. As observed, the impurity density
in-surface variation reaches values up to ∆n ∼ ±20 % in the exact collisional result
while ∆n ∼ ±13 % is found when truncating the main ion distribution function. The
simulated return velocity, ΛB, is similarly affected by the truncation (values of ±6
and ±4 km s−1 are obtained in the exact and truncated friction models, respectively).
The comparison in figure 9, and the proximity of TJ-II main ion collisionalities to
the Pfirsch-Schlüter regime, indicate that the inclusion of higher order Legendre
components [24] in the modelled friction (12b) is unlikely to change the tendencies
in the simulated impurity redistribution and return flow presented in section 4. On
the other hand, the generalization of the parallel friction presented in (12b) allows us
to directly use the measured main-ion parameters (since no assumption is made on
collisionality) and to include the effect of a non-zero parallel heat flow, thus extending
previous friction models in stellarators [7].

Besides the above discussion on the generalization of the ion-impurity parallel
friction, the impurity parallel force balance (11) can be extended to account for inertial
and electrostatic parallel forces as

mznzb · (uz · ∇uz) + nzZe∇‖Φ + Tz∇‖nz = Rz‖, (14)

where the first term is the impurity parallel inertia and the second one is the parallel
electric field. The former can be approximated by

mznzb · (uz · ∇uz) ≈ mznzΛ
2
iB · ∇B,
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since the local PS and return parallel flows are expected to be smaller than the main
ion parallel mass flow in internal regions |ρ| ≤ 0.4 of TJ-II NBI heated plasmas.
This same approximation leads to the centrifugal outboard accumulation of high-Z
impurities in tokamaks [28]. In order to examine the impact of the inertia on the
impurity density redistribution, let the impurity parallel force balance be dominated
by the inertia, i.e. ∇‖ lnnz = −γ2

c∇‖b2 with b ≡ B/〈B〉, γc(ρ) ≡ Λi〈B〉/vz and

vz =
√

2Tz/mz the impurity thermal velocity. Then the impurity inhomogeneity
is ∆n = exp

(
−γ2

c [b2 − 1]
)
. Note that although main ion parallel mass flows ≤ 20

km s−1 are comparable to thermal velocities ≤ 50 km s−1 (i.e. γc ≤ 0.4), the large
aspect ratio of TJ-II (b2 − 1) ∼ a/R ∼ 0.1 makes ∆n ≤ 2 % for all the plasma
minor radius (here, a∼0.2 m and R=1.5 m are the minor and major plasma radius).
Such an estimation has been confirmed numerically. Therefore, the impurity inertia
is neglected henceforth.

On the other hand, the term containing the electrostatic potential variation in
the flux surface, Φ̃ = Φ − 〈Φ〉, in equation (14) is considered. This portion of the
full electrostatic potential, Φ, results from imposing quasi-neutrality among the non-
equilibrium density pieces of the coexistent species. Furthermore the calculation,
carried out with the particle in cell code EUTERPE [29], considers adiabatic electron
response and trace impurities. Under these approximations the resulting map of Φ̃
mirrors that of the main ion density. As an example, Φ̃ is shown in figure 10 for
the discharge #32577. On the left column, Φ̃ at the surface ρ = 0.6 is represented,
while on the right Φ̃ is displayed at several magnetic surfaces, ρ ≤ 0.8, for the toroidal
section of the CXRS measurements.
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Figure 10. Simulation of the electrostatic potential inhomogeneity, Φ̃ in Volts,
for discharge #32577. (Left) In-surface variations for ρ = 0.6. (Right) Mapping
in the CXRS poloidal plane for several magnetic surfaces, ρ ≤ 0.8.

Thus, if parallel inertia is neglected, the impurity momentum balance (14) results
as

B · ∇ lnn = γfB
2 (Aih+Bi − Λ)− eZ

Tz
B · ∇Φ, (15)

The parallel momentum balance in its form (15), together with particle conservation
(12a), can be transformed into a second order partial differential equation for the
unknown n, as in section (4.1). Figure 11 displays a mapping in the CXRS poloidal
plane of measurement of the simulation results for discharge #32577 and for several
magnetic surfaces, ρ ≤ 0.8, after considering (left) only friction and (right) friction



Compressible impurity flow in the TJ-II stellarator 18

plus the ∇‖Φ forces in its model form (15). As observed, the impurity redistribution
and return flow patterns are affected by the inhomogeneity of the potential only at
external radial locations ρ > 0.7. Nevertheless the tendency to display ∆Λ < 0
remains unaltered, thus contradicting the experimental observations.
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Figure 11. Mapping in the CXRS poloidal plane of the simulated C6+ density
inhomogeneity, ∆n, and return flow, ΛB, for discharge #32577 and for several
magnetic surfaces, ρ ≤ 0.8, after considering: (left) friction only and (right) all
the relevant forces in model (15).

Finally, a possibly important omission of the impurity re-distribution model used
in this work could be the assumption of trace impurities. For the plasmas considered
here values of Zeff ∼ 1.2 − 1.6 are obtained from soft X-ray emission, which would
give rise to impurity strengths of nzZ

2/ni ∼ 0.2 − 0.6. In such a case both the
inhomogeneity of the electrostatic potential [25] and the collision operator used to
model the parallel friction on the impurities [14] would change, thus modifying the
impurity redistribution within a magnetic surface. The inclusion of these effects is out
of the scope of this paper and is left to future work.

6. Conclusions

In this work fully-ionised carbon impurity flows in ion-root, NBI heated, TJ-II plasmas
are studied by means of Charge Exchange Recombination Spectroscopy. Perpendicular
flows are found to be in reasonable agreement with neoclassical calculations of the
radial electric field. The parallel flow of the impurity is obtained at two locations
on the same flux surface and the calculated Pfirsch-Schlüter parallel velocity is
subtracted. The remaining component of the flow is systematically observed to vary
on each flux surface, pointing to a breakdown of impurity flow incompressibility in the
medium density plasmas studied. The experimentally observed velocity deviations
are compared with the parallel return flow calculated from a modelled impurity
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density redistribution driven by ion-impurity friction. Such a model is extended
to account for impurity inertia and inhomogeneities in the electrostatic potential.
The simulation results show that the parallel impurity force balance is dominated by
parallel friction for the plasmas considered here, and demonstrate that the calculated
return flow substantially modifies the incompressible velocity pattern. However, these
modifications become small at the locations of the CXRS measurements and do not
explain the in-surface variations of impurity parallel flow. The experimental validation
of theoretical models of impurity density redistribution within a flux surface is of
considerable importance as it provides an indirect validation of the model predictions
for impurity radial transport.
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Appendix A. Impurity density redistribution in a stellarator

In this appendix the parallel momentum balance (15) is derived and the method used
to solved this equation consistently with particle number conservation is detailed. The
impurity parallel momentum equation is taken to be

Tz∇‖nz + nzZe∇‖Φ = Rz‖, (A.1)

where Rz‖ is the parallel friction on the impurities and Φ the electrostatic potential.
As demonstrated in reference [6] the impurity temperature is equilibrated with the
bulk ion temperature and is therefore constant on the flux surface. As it is also shown
in [6], impurity parallel inertia and viscosity can be neglected in (A.1) if δi/(Zν̂ii)� 1.
For the plasmas considered in this work (ni ∈ (0.5−3)×1019 m−3, Ti ∈ 100−200 eV)
typical values of the normalised ion gyro-radius are δi ∼ (5− 10)× 10−3. Bulk ions in
NBI-heated TJ-II plasmas are in the plateau regime, ν̂ii∼ 10−1−100, although close
to the Pfirsch-Schlüter regime of collisionality [22]. Then, for fully-ionised carbon
impurity ions (Z = 6), δi/(Zν̂ii) ∼ 10−3−10−2. Hence, the assumptions made in
reference [6] to derive equation (A.1) are applicable in this work. Furthermore, the
expected variations of C6+ density within the surface are ñz/〈nz〉 ∼ δiν̂iiZ2 ∼ 0.1−0.5,
thus justifying the present study.

In the trace impurity limit,
∑
nzZ

2 � ni, the parallel friction on the impurities
may be approximated by [25]

Rz‖ ≈ Rzi‖ = −Riz‖ = −
∫

d3vmiv‖Ciz
{
fi1
}
, (A.2)

with fi1 the first order departure of the bulk ion distribution function from a
Maxwellian. The ion-impurity collision operator consists of a Lorentz operator plus a
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term guaranteeing momentum conservation [23]

Ciz
{
fi1
}

= νizL
{
fi1
}

+ νiz
miv‖uz‖

Ti
fi0, (A.3)

L =
1

2

∂

∂ξ

[
(1− ξ2)

∂

∂ξ

]
. (A.4)

Here, νiz = 3π1/2/(4τizx
3
i ), τiz = τiini/(nzZ

2) is the ion-impurity collision time,
xi = v/vi, vi =

√
2Ti/mi the ion thermal speed, ξ = v‖/v the pitch-angle and

fi0 = ni0/(π
3/2v3

i ) exp
(
−x2

i

)
is a flux-function Maxwellian. Since the collision

operator is self-adjoint and L{v‖} = −v‖, the term in the parallel friction force arising
from the Lorentz operator is written as

−
∫

d3vmiv‖νizL
{
fi1
}

=
3π1/2

4τiz
mivi

∫
d3v

ξ

x2
i

fi1. (A.5)

Let us consider now the expansion of fi1(x, v, ξ) in Legendre polynomials
Pl(ξ) [P0 = 1, P1 = ξ, etc.] [20]. Thanks to the orthogonality properties of the
Pl polynomials only the l = 1 component of fi1 contributes to equation (A.5).
Such component is associated with the parallel particle and heat flows (ui‖ and

qi‖, respectively) and is expanded by Laguerre (Sonine) polynomials L
(3/2)
j (x2

i )[
L

(3/2)
0 = 1, L

(3/2)
1 = −x2

i + 5/2, L
(3/2)
1 = x4

i /2− 7x2
i /2 + 15/8, etc.

]
as [20, 23]

f
(l=1)
i1 =

2

vi
ξxi

{
ui‖ − L(3/2)

1 (x2
i )

2

5

qi‖
pi

}
fi0 + f

(l=1,j≥2)
i1 . (A.6)

Here, f
(l=1,j≥2)
i1 denotes the sum of the jth Laguerre polynomial components with

j ≥ 2. The inclusion of j > 1 terms [24] is out the scope of this paper and thus

f
(l=1)
i1 ≈ f

(l=1,j≤1)
i1 is taken in equation (A.6), as it is customary in the moments

approach to neoclassical transport [23] (the so-called 13 M approximation). See the
comments in section 5 regarding the effect of this truncation. With this assumption
the parallel friction on the impurities reads

Rz‖ ≈
mini0
τiz

(
ui‖ −

3

5

qi‖
pi
− uz‖

)
, (A.7)

with uz‖ the impurity ion parallel flow. § For simplicity energy exchange is neglected,
thus making heat flows incompressible for each particle species, ∇ · qα ≈ 0. Then the
bulk ion parallel heat flow is

qi‖ =
5pi
2e

∂Ti
∂ρ

hB + 〈qi‖ ·B〉
B

〈B2〉 , (A.8)

with the function h defined in section 2.1. Using the general expression for a
compressible impurity flow, equation (5), and equation (A.8), the parallel friction
on the impurities is finally recast as

Rz‖ =
mini0
τiz

B

([
Ei − Ez −

3pi
2e

∂Ti
∂ρ

]
h− Λ− 3

5

〈qi‖ ·B〉
pi〈B2〉

)
≈ pzγfB (Aih+Bi − Λ) , (A.9)

§ Note that if the exact result for main ion distribution function in the Pfirsch-Schlüter regime is
used [7]

f
(l=1)
i1 =

2

vi
ξxi

{
ui‖ −

(
L
(3/2)
1 (x2i )−

4

15
L
(3/2)
2 (x2i )

)
2

5

qi‖

pi

}
fi0,

the pre-factor −3/5 accompanying the parallel heat flow in (A.7) must be replaced by −2/5.
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with the flux constants γf (ρ), Ai(ρ) and Bi(ρ) given by equations (13). In the last step,
the impurity diamagnetic term has been neglected against the main ion one. With
these assumptions (i.e. trace impurities,

∑
nzZ

2 � ni, and 13 M approximation,

f
(l=1)
i1 ≈ f (l=1,j≤1)

i1 ) the impurity parallel momentum balance (A.1) results

B · ∇nz = γfnzB
2 (Aih+Bi − Λ)− nz

eZ

Tz
B · ∇Φ, (A.10)

hence recovering equation (14) and the simplified form (12b), when the inhomogeneity
of the potential, Φ̃ ≡ Φ−〈Φ〉, is neglected. In stellarator geometry, equation (A.10) and
the continuity equation (10) form a coupled system [7] of partial differential equations
(PDEs). This set of equations can be expressed as a parabolic PDE in the variable
n = nz/〈nz〉

B · ∇ (B · ∇n)− gB · ∇n− γfB
2uz⊥ · ∇n− fn = 0, (A.11)

where

g(ρ, θ, φ) = B · ∇ lnB2 − eZ

Tz
B · ∇Φ +

γfB
2 {(Ai + Ez)h+Bi + Λi} , (A.12)

f(ρ, θ, φ) = γfAiB×∇ρ · ∇ lnB2 +

eZ

Tz

(
B · ∇ lnB2 −B · ∇

)
B · ∇Φ. (A.13)

Equation (A.11) is converted to an algebraic system of equations by applying finite
differences to the variable n. The angular periodicity of the TJ-II (Tθ = 2π and
Tφ = π/2) and the condition 〈n〉 = 1 are imposed. The parallel return flow ΛB is
obtained from equation (12a). The system of PDEs has also been solved by Fourier
expanding the variables in Boozer coordinates, showing consistency with the finite
differences scheme.
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