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The  nonlinear  growth  of  the internal  kink  mode  is  studied  numerically  using

reduced MHD equations in cylinder geometry.  For low Lundquist numbers, S<107, the

already  well  known  results  have  been  reproduced:  a  m/n=1/1  magnetic  island  (m:

poloidal,  n:  toroidal  mode  number) grows  while  the  original  core  shrinks  until  full

reconnection is achieved.  For higher S values, however, the dynamics is found to be

qualitatively different from the well-known Kadomtsev's model (B. B. Kadomtsev, Sov.

J. Plasma Phys. 1 (1975) 389). The growth of the 1/1 island causes the development of a

very thin current sheet which becomes tearing unstable. The current sheet is thus broken

up  and secondary islands  (plasmoids)  form.  These  plasmoids  strongly  speed  up the

reconnection and eventually  coalesce  into one  secondary  island.  The formation of  a

large secondary island stops the fast  reconnection process,  leading even  to  a  partial

reversal of this process. The final state of sawtooth reconnection is thus no longer an

axis-symmetric equilibrium as in case of complete reconnection for low S value, but a

helical equilibrium with two coexisting magnetic islands.
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1.  Introduction 

Magnetic  reconnection  is  a  fundamental  plasma  phenomenon  observed,  e.g.,  in

solar  flares,  magnetotail  and  fusion  devices.  Common  to  all  these  reconnection

phenomena in such low collisionality plasmas is that a simple MHD description leads to

reconnection times orders of magnitude longer than the observed time scales.  This is

also true for the fast reconnection events typical for tokamak plasmas, the sawteeth [1]. 

Sawteeth are quasi-periodic events,  that flatten the plasma pressure profile inside

the q=1 surface on a very short time scale due to fast growing magnetic island caused by

the m/n=1/1 internal kink mode [2] (q being the safety factor, and m and n the poloidal

and toroidal mode numbers, respectively). Large amplitude sawtooth crashes are able to

even  trigger  additional  instabilities  such  as  neoclassical  tearing  modes (NTMs)  that

degrade the plasma confinement also outside the q=1 surface. 

Since  their first discovery [l], sawtooth instabilities have attracted much research

interest [2-23]. Using a Sweet-Parker type analysis [24,25], the sawtooth crash time has

been found by Kadomtsev to be about (tAtR)1/2, where tA is the Alf e� n time, and tR is the

resistive time [2]. While the sawtooth crash times observed in small tokamaks with quite

resistive  plasmas  can  be explained  by  the  Kadomtsev model [2],  experimental

measurements in high temperature tokamak plasmas resulted in crash times of the order

of  100  ms  [3-5], being  much shorter than predicted by  Kadomtsev. Therefore, several

extensions  of  the  theoretical  model  beyond  resistive  MHD  have  been  considered,

including the electron inertia  effect  [6], anomalous current diffusion [7-l0],  finite ion

Larmor radius [12, 14-16] and the parallel electron viscosity [17], to understand the fast

growth of the m/n=1/1 island. 

Besides the reconnection rates, some other  observations are often in contradiction

with  theoretical  results.  For  example,  partial  reconnection  is  often  observed  in

2



experiments  [19],  while  resistive  MHD  simulations  so  far  always  lead  to  full

reconnection. 

In this paper, reduced MHD simulations for sawtooth crashes  are performed with

Lundquist  numbers  S  up  to  values  as  characteristic  for  high-temperature  tokamak

plasmas.  It  will  be  shown  that  the  dynamics  for  low  and  high  S  numbers  differ

significantly.  For high S numbers  very thin current sheets occur that become tearing

unstable.  The current  sheets  are thus broken  up and  secondary  islands  form.  These

islands finally coalesce into one secondary island. A sufficiently large secondary island

eventually stops the fast reconnection process, leading even to a partial reversal of this

process.  The final state of sawtooth reconnection is thus no longer an axis-symmetric

equilibrium  as  in  case  of  complete  reconnection  for  low  S  number,  but  a  helical

equilibrium with two coexisting magnetic islands.

2.  Theoretical model and numerical results

The large  aspect-ratio  tokamak  approximation  is  used  for  our  simulations.  The

magnetic  field  is  defined  as  B=B0t(et-eqkt/kq)+Ñy´et,  where  y is  the  helical  flux

function,  kq=m/r  and  kt=n/R  are  the  wave  vectors  in  eq (poloidal)  and  et (toroidal)

direction, r and R are the minor and the major radius, and the subscript 0 denotes an

equilibrium quantity.  The plasma velocity is given by v=Ñf´et, where f is the stream

function.   

Ohm's law and the equation of motion in the perpendicular direction (after taking

et×Ñ×)  are solved.   Normalizing the  length  to  the  minor  radius  a,  the time t  to  the

resistive time tR=a2m0/h ( h is the plasma resistivity), the helical flux y to aB0t, and v to

a/tR, these equations become [28]
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where d/dt=¶/¶t+v^×Ñ^,  j=-Ñ^
2y-2nB0t/(mR) is the parallel plasma current density, and

U=-Ñ^
2f is the plasma vorticity. tA=a/VA is the  Alfvén time,  VA is defined using the

toroidal field, and  h is the normalized resistivity.   E0 denotes  the equilibrium electric

field,  m the normalized ion viscosity,  me the perpendicular electron viscosity, and uei is

the  electron-ion  collisional  frequency. A constant  plasma  resistivity  over  the  whole

plasma  is  assumed.  The  last  term  in  equations  (1)  and  (2)  corresponds  to  the

perpendicular electron and ion viscosity, included for improved numerical stability only.

Equations (1) and (2) are  solved by using the initial value code TM1, which has

been used for modelling the nonlinear growth of tearing modes and the plasma response

to RMPs earlier [26-28].  Extensive numerical calculations have been carried out using

different q-profiles and S values.  In order to ensure numerical convergence, the radial

grid size is taken to be in the range (2.0-6.3)´10-4a, and tens of Fourier components are

included  in  calculations.  A  finite  perpendicular  electron  viscosity  improves  the

numerical convergence, while it does not significantly affect the results if chosen not too

large. For  lower  S values, S<107,  as  reported  from earlier  simulations  [e.g.  18],  a

growing m/n=1/1 island is found, which finally occupies the whole region inside the q<1

surface. Meanwhile, the original core shrinks and eventually disappears.  For higher S

values the reconnection proceeds in a qualitatively different form. To demonstrate this,

constant-y contours are shown in the R-Z plane in figure 1 for S=2.65´107 at different

times, where R=0 corresponds to the major radius of the original magnetic axis, and Z is

the coordinate along the vertical direction, normalized to the plasma minor radius a. As

the starting point for these simulations,  a monotonic q-profile is assumed with the q=1
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surface located at rs=0.3a, and q(r=0)=0.9 at the original magnetic axis. In the simulations

m=18.8(a2/tR) and me/uei =10-4a2 are used. After an initial growth phase of the m=1 mode

a thin current layer develops at the X-point  region, which becomes tearing unstable,

leading to a break-up into 1 or several islands (figure 1a). The number of �secondary�

islands  generated increases with the S-number,  concomitant with a narrowing of  the

current layer (figure 2). Subsequently, however, these secondary islands coalesce again

to a single one independently from S. The further growth of this secondary island leads

to a squeezing of the original core, with �tertiary� islands tearing off and migrating into

the outer plasma zone (figure 1b). They convect  with them plasma and toroidal flux

from the original core region and deposit  it  in the region q >1.  The tertiary islands

dissolve there, obviously because their radial squeezing by the ambient field increases

strongly (for a given trapped helical flux) the local current density and hence the rate of

resistive flux annihilation. After this loss of plasma and toroidal flux the original core

assumes again a more circular shape (figure 1c), and the reconnection process actually

reverses. Ultimately a resistively stable helical state established, which changes only on

the global current diffusion time within the q=1 surface (figure 1d). For the final state,

using field line tracing, the q value at the magnetic axis is found to be about the same as

its original value before mode growth, as expected.

Fig. 2 shows contours of the current density for different S values right after the

current sheet became tearing unstable:  S=2.65´107 in figure 2(a),  2.65´108 in 2(b) and

2.65´109 in 2(c), respectively.  For  the lowest S number, one finds the formation of a

single secondary island (the current sheet is broken into two parts only, as shown in Fig.

2a). For higher S values, S=2.65´108 and 2.65´109, multiple secondary islands form. No

matter how many small secondary islands appear at the beginning, however, only one

secondary island grows to large amplitude as shown in figure 1. For higher S values, the
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current sheet becomes tearing unstable already earlier in the reconnection process, i.e.

for a smaller 1/1 island. Figure 2d shows the plasma current density in the late nonlinear

phase for S=2.65´107. In this phase the contours of the current density are similar to that

of the helical flux,  indicating that the  current  density is essentially  a function of the

helical flux. This corresponds to the Rutherford regime of the m>1 tearing mode [29],

being consistent with the slow change of the island in this phase. 

Figure  3a shows the time evolution of the helical flux at the x- point, yx,  (solid

curve with circles) and the o-point, yo, (dotted curve) of the m/n=1/1 island for several

values  of  S.  The dashed  curves  correspond  to  the helical  flux at  the o-point  of the

secondary  island. During  the  reconnection  process,  yx decreases  in  time  while  yo

changes little, as expected. For low S numbers (S<107), full reconnection occurs without

the occurrence of secondary islands.  For S>107, a secondary island grows as indicated

by the dashed curve, and its growth rate is about the same as that of the 1/1 island during

its growing phase. Increasing the S value, the amount of reconnected flux decreases,

corresponding to smaller saturated 1/1 island width (see figure 4),  and the secondary

island  forms  already  at  a  smaller  reconnected  flux.  For  intermediate  S  values

(107 S<� 108), the reconnection process reverses to some extent after the formation of the

secondary island. The secondary island prevents fast full reconnection for S>107. 

Figure 3(b) is similar to 3(a) except that the helical flux at the x- point (marked as

x-3rd) and the o-point (marked as o-3rd) of the third island (as indicated in Fig. 1b)  is

shown as a function of time for S=2.65´107.  The small difference between the helical

flux at these two points is consistent with the  small island size seen in figures 1b and 1c.

The third island only exists for a short time period. It also appears for S=2.65´108, but

vanishes for S�109. The reason is probably the smaller saturated width of the 1/1 island

that prevents the squeezing of the original plasma core. 

6



The maximum (S<109) or saturated (S�109) radial island width during the island

growth,  is  shown  in  figure 4 as  function of  S.  For  S<107,  only the m/n=1/1 island

appears  with a  maximum radial  width somewhat  larger  than twice the  original  q=1

radius (2rs=0.6a). The q=1 radius of the final state is larger than the original one due to

the modification of  the plasma current  density  profiles  by the island.  For S �107,  a

secondary island forms. For S�109, the saturated widths of the 1/1 island is significantly

smaller than that for lower S values. 

The reconnection time is shown in figure 5 as function of S. The curve with circles

shows the growth time of the m/n=1/1 island from an initial width of W=0.1a up to the

maximum (S<109) or saturated (S�109) island width. The straight line with triangles is

the reconnection time calculated from Kadomtsev's model. The reconnection time agrees

with Kadomtsev's model for S<107 but is much shorter for larger S values. For these S

values,  the  formation  of  secondary  islands  accelerates  the  reconnection  process

significantly. 

3. Discussion and summary

In this paper, it is shown that at high S number the nonlinear development of the 1/1

instability becomes qualitatively different, and the scaling of reconnection rate deviates

from the Kadomtsev model.  Rather than proceeding to full reconnection, a  very thin

current sheet forms around the X-point of the 1/1 island that becomes tearing unstable

and  gives  rise  to  the  formation  of  secondary  islands  (plasmoids).  Such  a  result  is

consistent with both the analytical linear theory and numerical calculations on magnetic

reconnection in slab geometry, which show that a thin plasma  current sheet could be

unstable  to  the  tearing  mode  and  broken  up  [e.g.  30-33].  The  formation  of  these

plasmoids accelerates the reconnection (see Fig.5). The number of higher order islands
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formed during the early reconnection phase increases with the S number. On a longer

time scale, only one secondary island grows into a large size. This island stops the fast

reconnection  process  and  even  slightly  reverses  it,  ultimately  leading  to  a  quasi-

stationary state. The latter persists on a long time scale, characteristic for the current re-

arrangement within the q=1 surface,  or the sawtooth period.  It  is characterized by a

persistent 2/2 component of the perturbation, which is also experimentally observed in

many cases [19,20]. In particular this would offer also an explanation for the triggering

of m/n=3/2 neoclassical tearing modes by sawteeth, which is difficult to explain by the

action of a short perturbation only during the sawtooth crash phase. It has been shown in

experiments  that  the  m/n=3/2  NTM  seeding  could  be  due  to  the  precursor  to  the

sawtooth [34]. An example of  plasmoids formation during resistive kink mode growth

was  already  shown  before  [35],  possibly  triggered  by  an  additional  tearing-like

perturbation, since the helical  flux contour becomes up-down asymmetry in the later

phase.

The presented results are very robust.  Secondary islands are always observed inde-

pendent of the initial q-profiles if the S value is sufficiently high. The results are also inde-

pendent on the perpendicular electron viscosity or ion viscosity. The critical aspect ratio of

the current  sheet  (ratio  between its poloidal  and radial  extent, calculated from the half

width of  the current  density  perturbation around the x-point)  is  found to be about  60.

Above that value we find the formation of secondary islands for S=107. 

The simulation results presented here are restricted to resistive MHD, and hence do

not include two-fluid effects, such as the parallel electron pressure gradient  (diamagnetic

drift)  and electron inertia [7-17,36].  Those effects might significantly  affect  the results

presented in this paper. Magnetic  islands generated by electron temperature gradient or

plasma turbulence could also have an effect [27,37,38]. These results remain, however, im-
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portant within the resistive MHD picture as a qualitative correction to previous simulations

at (unrealistic) lower S numbers. The well-known Kadmotsev�s model is only applicable

for low S values (S<107). 

Acknowledgement:  The  authors  would  like  to  thank  A.  Bhattacharjee  for  valuable

discussions. 
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CAPTION

Figure 1 Constant-y contours on the R-Z plane for S=2.65´107, where R=0 corresponds to the major

radius of the original magnetic axis, and Z is the coordinate along the vertical direction, normalized to the

plasma minor radius a. (a) At t=12008 tA, a small secondary island forms on the left hand side of the core

region. (b)  At  t=12527 tA,  the  original core  region is squeezed into a thin layer by the  1/1 and the

secondary island, and this layer is then broken up, leading to the third island on the upper and lower left

corner. (c) At t=12622 tA, the third island moves outwards and reconnects there. (d) At t=23890 tA, during

the phase when both the m/n=1/1 and the secondary island slowly change in time.

Figure 2 Plasma current  density  contours shortly  after  the  breaking up of  the  current  sheet  for

S=2.65´107 (a), 2.65´108 (b) and 2.65´109 (c). (d) shows the plasma current density contours at t=17325

tA in the later nonlinear phase for S=2.65´107.   

Figure 3 (a) The time evolution of the helical flux at the x- point, yx, (solid curve with circles) and

the o-point,  yo, (dotted curve) of the m/n=1/1 island for S=2.65´106,  2.65´107,  2.65´108, and 109. The

dashed curves are for the helical flux at the o-point of the secondary island. (b) Same as (a) except that the

helical flux at the x- point (marked as x-3rd) and the o-point (marked as o-3rd) of the third island is shown

for S=2.65´107.  

Figure 4 The maximum or saturated radial island width (normalized to plasma minor radius) versus

S. The curve with circles (squares) corresponds to the m/n=1/1 (secondary) island. 

Figure 5 Reconnection time (normalized to  tA)  versus  S.  The  curve  with  circles  represents  the

m/n=1/1 island growth time from the width w=0.1a up to the maximum or saturated island width. The

straight lines with triangles is calculated according to Kadomtsev's model. 
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