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The kinetic temperature in complex plasmas is often measured using particle tracking velocimetry. Here we
introduce a criterion which minimizes the probability of faulty tracking of particles with normally distributed
random displacements in consecutive frames. Faulty particle tracking results in a measurement bias of the
deduced velocity distribution function and hence the deduced kinetic temperature. For particles with a normal
velocity distribution function, mistracking biases the obtained velocity distribution function towards small
velocities at the expense of large velocities, i.e. the inferred velocity distribution is more peaked and its tail is
less pronounced. The kinetic temperature is therefore systematically underestimated in measurements. We

give a prescription to mitigate this type of error.
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I. INTRODUCTION

Dusty particles in complex plasmas are usually
described by two different temperatures: the surface
temperature of the dust particles and and the kinetic
temperature which describes the chaotic motion of the
dust particles. Accurate knowledge of the kinetic tem-
perature is essential for heat-transfer studies in complex
plasmas' 3. Complex plasma is also used to study phase
transition in crystalline structures®® where correct
measurements of the kinetic temperature are important.
Usually, the kinetic temperature is measured by means
of high-speed cameras which record projections of dust
particle locations on the image planes of the cameras.
Then 2D projections of the trajectories can be inferred
from these images. If two or more cameras are used,
3D trajectoies can be reconstructed®!?. This method
is called particle tracking velocimetry (PTV). It is used
in fluid dynamics to study flows®1%1% in combustion
physics!'®'6, in fusion research!” 1%, and in complex

plasma physics?2022,

There are several types of errors which may occur
during PTV measurements, for example errors related
to particle acceleration?324, uncertainties in particle
positions due to finite camera resolution??, or wrongly
reconstructed particle locations as a result of mea-
surement ambiguities'®. In this paper we study the
problem of assigning trajectories to particles, i.e. finding
correspondence between indistinguishable particles in
consecutive frames which is also a source of errors.

Velocity distribution function measurements require
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correct tracking of the particles leading to correct trajec-
tory assignments. However, we will show that incorrect
tracking of particles will lead to deformation of the
velocity distribution function and hence to significant
errors in kinetic temperature measurements as well as
measurements of other quantities that depend on the
velocity distribution function. If the particles were
distinguishable, any given particle could be uniquely
identified in the next frame, and hence all particles in
one frame could be matched to a particle in the next
frame. However, if the particles are indistinguishable,
it is not possible to identify a given particle in one
frame uniquely in the next frame. Hence mismatches
of particles are bound to occur. This will lead faulty
trajectory and velocity assignments of the mismatched
particles. Therefore the velocity distribution function
will be distorted. We will show that the measured
velocity distribution function will be biased towards
smaller velocities at the expense of larger velocities,
leading to a bias towards lower kinetic temperatures.

In section II we formulate the problem and introduce a
matching criterion as the basis for its solution which we
present in section III. In section IV we derive analytical
expressions for the probabilities of correct tracking of two
particles. In section V we derive analytical expressions
for the biased distribution of their random displacements
caused by faulty tracking. These results are tested nu-
merically in section VI, where we study the probability
of mistracking and biasing the distribution function for
a large number of particles. Section VII concludes the

paper.
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Il. PROBLEM FORMULATION AND MATCHING
CRITERION

Let us consider a group of indistinguishable particles

in a volume viewed by several cameras. The cameras
are synchronized and take a series of 2D images of pro-
jections of particle positions on their image planes. For
simplicity we assume here that the particle positions in
3D can be unambiguously reconstructed from a set of si-
multaneously acquired 2D camera images which we refer
to as frame. To deduce the particle trajectories, particles
in consecutive frames have to be matched. If they were
distinguishable, this would be easy. But since they are in-
distinguishable, it is impossible to identify any given par-
ticle in the next frame. The problem of particle tracking
is formulated as a search of 3D trajectories of individ-
ually moving particles from a sequence of frames. We
assume that no particles leave or enter the observation
volume. Particle trajectories can be deduced from co-
ordinates in consecutive frames. In the case of regular
motion one can predict the coordinates of the particles
in the next frame from their deduced velocities in previ-
ous frames and aid the correct matching of particles in
consecutive frames. The tracking problem arises when
the particles randomly deviate from their predicted tra-
jectories. A possible tracking error can be especially sig-
nificant when the random deviation is comparable with
or larger than the inter-particle distance. In this paper
we give a particle matching criterion to ensure the sta-
tistically optimal tracking of chaotically moving particles
for any inter-particle distance. We derive expressions for
the bias of statistical parameters of measured trajectories
which deviate from the real trajectories.
Further analysis deals with the chaotic component of
the particle motion whereas we subtract out the regular
component of the motion. The regular component can
be found by extrapolation of particle coordinates from
their coordinates in previous frames and and their in-
stantaneous velocities in the previous frame. Random
differences between extrapolated particle positions and
actual particle positions are referred to as jumps between
frames. These jumps make up the chaotic component of
the particle motion.

11l. MATCHING CRITERION

When jumps are much smaller than inter-particle dis-
tances, a particle trajectory can be efficiently recon-
structed just by choosing the particle that is closest to
its predicted position. However, if the particle jump size
is comparable to the inter-particle distance, such a sim-
ple assignment is not possible. For jumps of arbitrary
length, in particular large jumps comparable to the inter-
particle distance, we formulate the matching condition as
a minimization problem as follows. We consider a normal

isotropic distribution of particle jumps:

1) = e (~ o) 1)

where s is the projected displacement from the predicted
particle position. A? is its variance and scales inversely
with the frame rate of detection cameras.

N particles in two consecutive frames can be matched in
N! possible ways. The probability density of one par-
ticular way is the product of the probability densities of
jumps for all N particles. Hence the probability density
Py, of a particular way k becomes:
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The realization with maximum probability density is the
one with least squared sum of jumps, and hence the
matching criterion becomes:

N
minimize: Sz = Z Z S?jk; (3)

i=1 j=z,y,2

where S? stands for the sum of squared jump lengths
of all particles from one frame to the k** of N! possible
permutations of particles in the successive frame.

IV. PROBABILITY OF PARTICLE MISTRACKING

The matching criterion in equation 3 provides the sta-
tistically best way of tracking the particles recorded in
two consecutive frames. However, this does not imply
that all particles are tracked correctly. We illustrate and
quantify a systematic tracking error in the case of just
two particles in the following. Consider the situation de-
picted in figure 1. The filled red and the empty blue
circles denote two particles at two instances. Continuous
arrows show true jumps of the particles of the same color.
However, according to the matching criterion, the tra-
jectory reconstruction algorithm would assign the filled
red particle as empty blue and the empty blue particle
as filled red in the next time step. Dashed lines indi-
cate faulty trajectories which appear as a result of such
a switching event.

Now we quantify the probability of this event. Let the
particles be distributed uniformly in space and jumps in
two consecutive frames be distributed normally (section
III). Suppose that the distance between the particles is
r. Now, we construct a new Cartesian coordinate system
so that its origin is located halfway between the particles.
Particle 1 has coordinates (—7/2,0,0) and particle 2 has
coordinates (r/2,0,0). The probabilities for particle 1 to
change its current position to the range between (z1, z1+
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FIG. 1. Demonstration of faulty particle matching leading to
faulty trajectories for both particles. Filled red and empty
blue circles represent two particles in two consecutive frames
at times ¢t and t + 6t. Continuous arrows denote true direc-
tions of movement. Dashed arrows represent faulty trajecto-
ries that are assigned by the algorithm.

where erf stands for the error-function. The integration
is done using?®. The probability of correct tracking is:

P12c =1- Plgi =0.5+ 0.5erf (i) (6)

For A >> r, Pj5. converges to 0.5, corresponding to the
50% chance to match 2 particles correctly if the jump
size is much larger than the inter-particle distance.

We derived the probability of incorrect tracking accord-
ing to equation 5 for particles separated by a fixed dis-
tance r. However, a random spatial distribution of par-
ticles results in random distances between them. If the
distribution of distances between neighbouring particles
is a random variable described by the distribution func-
tion fo, the incremental probability dP; of faulty track-
ing becomes dP; = Pjo; fodr. From here on we assume

J

oo

V3

(_(931 +7”/2)2+($2—7“/2)2> _

dzy) and for particle 2 to change its current position to
the range (x2, 2 + dz2) are given by equation 4:

_dxy (1 +7/2)?

dp; = AV exp( T) (4)
_dxy (vg —7/2)?

aPe = L om P gxe )

The particles are tracked incorrectly if 1 > x5 as we
illustrate in figure 2. The probability Pjo; of incorrect
tracking of two particles separated by distance r is given
by the integration of the product of dP; and dP; in the

202

0.5 (1 — erf (i))

that particles are distributed uniformly in space in the
first frame. Hence, according to?%, the distribution of
distances between neighbouring particles is

47r)\r3> 7 %

2(r,\) = dmAar?exp | —
fa(r, A) P 3

where A is the intensity of a 3D Poisson process. A re-
lates to the mean squared distance between neighbouring
particles in the following way:

(2 = (4;’;)”%@/3% (5)

I" denotes the Gamma-function.

3

7 3.3
P.=1- /Plgifgdz = L/exp(f:L’Z) [1 + exp <327T)\Az>} dx (9)
0 0

Figure 3 shows a probability of correct tracking for
random distances of uniformly distributed particles P,
as function of normalized particle jump. The normaliza-

(

tion is done either to the fixed distance between particles
in case of fixed distance or to the root mean square dis-
tance between neighbouring particles, which relates to
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FIG. 2. Schematic of a new coordinate system and particles displacements from one frame to another.
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Particle 1 (empty

blue circles) moves in between frames to a new position between two planes © = z1 and © = x1 + dz. The displacement is

schematically depicted by the blue arrow. Particle 2

(filled red circles) moves to a new position between two planes x = z2 and

x = x2 + dz. The displacement is schematically depicted by the red arrow. In (a) z1 < z2, reconstructed trajectories of two
particles coincide with the true trajectories; (b) x1 > z2, particles 1 and 2 switch their positions in the reconstruction leading

to faulty trajectory assignments.
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FIG. 3. Probability of correct tracking calculated for parti-
cles randomly and uniformly distributed in space (red solid
line) plotted as a function of the normalized particle jump.
Circles denote the result of a numerical simulation which will
be discussed in section VI.

the intensity of the 3D Poisson process A according to
equation 8. The normalized jump sy in this case is de-
fined in equation 10.

Black circles in figure 3 denote the result of a straight-
forward numerical simulation of the matching criterion
according to equation 3. We find very good agreement
between the predicted result according to theory and the
numerical simulation.

V. EFFECT OF MISTRACKING ON MEASURED
VELOCITY DISTRIBUTION FUNCTIONS

Application of the matching criterion results in peak-
ing of tracked random velocities around zero. The pre-
dicted effect would be that the measured distribution
function is more peaked and has a smaller variance. In
the following we confirm this point quantitatively. We
would like to know the probability density of a particle
to jump from one frame to another by a distance p. The
distance to its nearest neighbour is r. Consider a spher-
ical coordinate system with the origin at the particle of
interest. The probability density function (pdf) to find
the particle at distance p from the origin consists of two
terms. The first term describes the pdf that the particle
really made a jump p and we accounted for it correctly.
The second term shows the pdf that the particle of inter-
est jumped elsewhere and its nearest neighbour jumped

_ A 1 such that we have mistaken it for the particle of interest
SN = o (10)
|
OPF(r,z,y, 2, A
(Gxayé)z ):f(x /fz—rdz+f() z—r/f
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(11)

x = pcos(¢)sin(f), y = psin(¢)sin(f), z = pcos(6)

Here f stands for the normal distribution function as

in equation 1, r is the distance between particles in the
first frame, the z-axis goes through two particles in the
first frame, 6 is the angle between the z-axis and the can-
didate particle in the next frame.
The posed problem is completely isotropic in terms of ¢
and 6 angles. Integration over them reduces the dimen-
sionality of equation 11. The analytic expression for this
integral is shown in section A.

2 T
B OPF(r,p,0,0,A)
= /d¢/d9 9900 sin(6)
0 0

OF(r,p, A)
dp

(12)

Integration of equation 12 over angle 6 and averaging
over p, which is distributed according to equation 7, gives
a measurable distribution of radial jumps:

(o)
6fAA—=i/ﬁFT“ L Ndr (13)
47
0

In this equation 47 is already taken into account in equa-
tion 7 for fo. Therefore the value of the integral is divided
by 4m in order to avoid accounting for it twice.
However, the measured quantity is the pdf of a projection
of an isotropic radial particle jump on one Cartesian axis,
according to the geometry of the considered problem:

W@N:%TW%M@

14
0s op p (14)

S

In the following we choose a distribution function
which we refer to as true. We sample particle jumps
from this distribution function and follow them by par-
ticle tracking. We then simulate a PTV measurement
from the known true particle trajectories. The measured
distribution function is then different from the true distri-
bution function due to the bias originating from tracking
errors. The deduced distribution function is also plotted
in figure 4. The plot shows good agreement between the
analytically obtained pdf and the pdf measured in the
numerical experiment, where two particles are tracked
for 10° frames. The calculations are done for normalized
jump sy = 2.

We fit the measured distribution with a Maxwellian
function of the form:

52 >
QAf%t

frie =A-exp < (15)

agF(T7xay>Z7A) 63F(T’ p397¢7 A)

Oxdy0z p20pof

08 = sin(9)000¢
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FIG. 4. Measured (circles) and analytically calculated (solid

line) pdfs of particle displacements. The graph is plotted for

two particles tracked over 10° frames and normalized jump
N =2.

For comparison, we introduce a quantity w which is the
ratio of squared widths of the fitted Maxwellian and the
true distribution function. It can be interpreted as the
ratio of the measured and true kinetic temperatures, if
we define the kinetic temperature as squared width of the

fitted Gaussian:
(A
o= (%)

We also compare actual second moments of measured and
true distribution functions. This can also be understood
as the ratio of the measured and true kinetic tempera-
tures, if we define the kinetic temperature as the second
moment of the measured velocity distribution function:

M2(fm)
AZ

(16)

h= (17)
where M2(f,,) denotes the second moment of the mea-
sured distribution function. We also calculate the devi-
ation of the measured distribution function from normal
by plotting its reduced moment m, which is always equal
to zero for the normal distribution:

_ MA(fm)

= M2 Y

(18)
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FIG. 5. Analysis of tracking in two particle system as a func-
tion of normalized displacement sy. (a) Ratio between mea-
sured and true second moments of the distribution function h
(blue dashed line - analytical solution, blue circles - numerical
experiment); ratio of squared widths of the fitted Gaussian to
the measured distribution function and variance of the true
distribution function w (red solid line - analytical solution,
red triangles - numerical experiment); (b) reduced moment m
of the measured distribution function of displacements (black
solid line - analytical solution, black circles - numerical ex-
periment). The numerical experiment is performed for 10°
realizations.

where M4(f,,) denotes the fourth moment of the mea-
sured distribution function. The results of the compar-
ison are shown in figure 5 as a function of dimension-
less parameter sy. Deviations of the reduced moment m
from zero show that the measured displacement distribu-
tion function is not Maxwellian, although it has similar
appearance and can be well fitted by a single normal dis-
tribution, but with different width.

In figure 5 we also compare our theoretical model
with numerical simulations in which two particles were
tracked for 10° frames. The very good agreement
between theory and the numerical simulation demon-
strates that the nature of the measurement-induced
systematic error due to faulty particle matching is well
understood. The results for the two-particle model can
also be used when more particles are present in the
frame, if the fraction of swapping trajectories of three or
more particles is negligible. The case of three or more
particles is addressed quantitatively in the next section.

VI. NUMERICAL TRACKING

Analytical results from section IV are obtained for two
particles. Usually more than two particles are tracked.
Nevertheless, the two-particle case gives useful insight
into the mechanisms of particle mistracking. Here we ex-
tend our results to more than two particles by straightfor-
ward numerical implementation of the matching criterion
that we used for the analytical analysis of the probability
of correct tracking. We again assume a uniform distri-

0.57

---True
—Measured

0.4f

pdf

0.1}

Jump/<Jump 2505

FIG. 6. Measured (blue solid line) and true (red dashed line)
distributions of particle jumps, obtained for nine particles per
frame and tracked over 10° frames. Normalized jump sy = 2.
Ratio of variances h = 0.74.

bution of particles in space and random isotropic jumps
between frames.
For two particles in a frame, the maximum possible er-
ror in the kinetic temperature measurements is below
10%. However, when many particles per frame have to
be tracked, large errors can occur. Figure 6 shows an ex-
ample of a true (red dashed line) and a measured (blue
solid line) distribution function where nine particles are
tracked over 10° frames with a normalized jump size of
sy = 2. The ratio of variances of the measured and true
jump distributions is 74%. The contour plots depicted
in figure 7 show the probability of correct tracking (a),
the ratio of squared widths of the fitted Gaussian and
the true distribution function (b), the ratio of second
moments of the measured and true velocity distribution
functions (c), and the reduced moment of the measured
distribution function (d) as functions of the number of
particles and their normalized jumps. One can see that
for relatively small normalized particle jumps, the prob-
ability of correct tracking, as well as temperature ratios
are almost independent of the number of tracked parti-
cles. This observation quantifies the statement made in
section V that for relatively small normalized jumps the
probability of particle mistracking and the shape of the
measured distribution function are described analytically
by the two-particle model introduced in sections IV and
V. The form of this plot allows us to choose a working
point (i.e. lowest possible framing rate) of the instru-
ment based on expected temperature estimations and a
maximum tolerable probability of incorrect tracking.
Reduced moments, depicted in figure 7(d), show how the
measured distribution function deviates from the normal
distribution for which the reduced moment m is always
zero. For small normalized jumps, the normal distribu-
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FIG. 7. Contour plots which show the probability of correct particle tracking (a); ratio of squared widths w of the fitted
Gaussian to the measured distribution function and the true distribution function (b); ratio h of second moments of the
measured and true distribution function (c); reduced moment m of the measured distribution function (d).

tion is a good approximation for the measured distri-
bution function. For larger number of particles in the
frame, the normal distribution is a good approximation
for larger values of the normalized jumps. However, this
trend saturates when sy = 1. For larger sy the mea-
sured distribution functions deviates from the Gaussian.
The larger sy, the larger the deviation becomes.

VIl. CONCLUSIONS

We have derived a matching criterion which provides
the highest fidelity of particle tracking when the chaotic
component of particle velocities is normally distributed.
However, faulty tracking is bound to occur. We have
derived analytic expressions for the probability of
correct tracking for two particles and arbitrary jump
size. The expressions are also valid for more than two
particles assuming that the average particle jump size
between frames is smaller than the root mean square
distance between neighbouring particles. From this we
have found the effect of mistracking on the deduced

distribution function. Mistracking biases the deduced
velocity distribution function towards smaller velocities.
This bias has up to now not been considered.

We showed numerically that for small normalized
jumps mistracking between two particles is a dominant
mechanism of deformation of the measured velocity
distribution function. This allows choosing a minimum
tolerable framing rate for cameras, which is important
because the error due to finite camera resolution is
proportional to the framing rate?3.

Generally, the measured distribution function is not
Gaussian, although for small normalized jumps it is a
good approximation. However, one has to remember that
for tracking a large number of particles with non-exact
algorithms (those which do not use a straightforward
implementation of the matching criterion) the measured
distribution function can be strongly non-Maxwellian
and the difference in temperature definition (i.e. the
second moment of the measured velocity distribution
function or the squared width of the fitted Maxwellian
distribution) can make a substantial difference.



On bias of kinetic temperature measurements in complex plasmas 8

ACKNOWLEDGMENTS

Dmitry Moseev was supported by the EFDA fellow-
ship.

Appendix A: Analytical expression

The probability density to detect displacement p of a
particle which is separated by distance r from its neigh-
bour, is determined by the following equation:

8F(35,A) _ \/QE:AB exp (2"1) + (A1)
pPexp (—faz) erf(ZE2) +erf (Z3£) X
V2mA3 2
T exXp (—%) erf(\%'ﬁ) —erf(fég) .
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