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Theory of optical excitations in dipole-coupled hybrid molecule-semiconductor layers:
Coupling of a molecular resonance to semiconductor continuum states
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We theoretically investigate the optical absorption of a hybrid system consisting of an organic molecular
film on top of a semiconductor substrate. The electronic states of the isolated spatially separated constituents
couple due to the Coulomb interaction of the optically induced charge carriers across the film-substrate interface.
Focussing on the coupling of optical active molecular transitions to semiconductor continuum states, we find that
the nonradiative dipole-dipole energy transfer causes the formation of coupled excitations, effectively reducing
the excitation energy of the optical resonance in the molecular film and inducing a broadening of the associated
absorption peak. In the framework of the Heisenberg equation of motion technique, we derive the Bloch equations
for these hybrid systems. The input parameters for our model system of ladder-type quarterphenyl (L4P) molecules
on the ZnO(1010) surface are taken from density functional theory calculations.
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I. INTRODUCTION

Hybrid organic-inorganic systems have the potential to
overcome the limitations of their individual components and to
exhibit new functionality [1-3]. To improve the performance
of optoelectronic devices, for example, the high charge-carrier
mobility of inorganic semiconductors could be combined
with suitably synthesized photoactive molecules [4] with
wavelength-taylored light emission and absorption spectra.
Moreover, pronounced nonlinear optical effects could emerge
when Wannier excitons from the inorganic semiconductor
side mix with the Frenkel excitons typically found in organic
materials [5,6]. Due to recent advances in fabrication tech-
niques, the first experimental signatures of nonradiative energy
transfer processes between ZnO and conjugated molecules
have been observed [7,8]. However, experimentally, it is dif-
ficult to determine the precise excitation transfer mechanism,
knowledge of which would open up pathways for optimizing
the efficiency of future devices.

In this paper, we focus on the theoretical analysis of energy
transfer without electronic wave-function overlap, i.e., Forster
processes between the components of the hybrid. Here, two
possible resonant energy transfer paths are possible: coupling
of molecular excitations (i) to semiconductor excitons (bound
electron-hole pairs) or (ii) to continuum states (unbound
electron-hole pairs) of the semiconductor. The first pathway
resembles a molecular Forster transfer, but requires a close
energetic match of the transition energies. In contrast, the
second pathway relaxes this matching restriction since the
electron-hole continuum of the semiconductor offers a broad
range of transition energies for energetic coupling. If the
coupling mechanism is sufficiently strong, pathway two would
provide an efficient channel for exciting the molecular layer
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through external electrical pumping of the semiconductor layer
by well established methods.

Previous theoretical work focused on the excitation transfer
between Frenkel excitons in the organic layer and Wannier
excitons in the substrate quantum well [6]. New, joint exciton-
molecular polariton states at the interface of both components
are predicted to mediate the exciton-exciton interaction of the
semiconductor and the molecular film. While it is conceivable
that this mechanism provides a strong coupling, it is restricted
by the exact tuning of the transition energies of both compo-
nents of the hybrid system, which may be difficult to achieve
in experiments.

In this work, we investigate the coupling of molecular states
to electronic continuum states that lie energetically above
the semiconductor excitons (i.e., the aforementioned case ii).
Such a coupling scheme describes the scenario of electrically
pumping the semiconductor substrate. The free electron-hole
gas that forms provides the energy for the optical emission of
the molecular states. Likewise, in a photovoltaic application,
the organic film would capture the incident light, whose energy
is then transferred into semiconductor continuum states across
the interface. It has recently become possible to investigate ex-
citation transfer from first principles [9-13]. These approaches
are based on time-dependent density-functional theory and
propagate the Kohn-Sham equations in real time [9—13]. The
motion of the nuclei is treated classically. To capture charge
transfer excitations, which will be relevant for future work,
range-separated exact-exchange kernels are used. However,
these kernels are computationally expensive and limit the
approach in the tractable system size.

In this paper, we develop a microscopic model for
the nonradiative Forster coupling [14] between an organic
molecular layer on a well defined surface of a quasi-two-
dimensional inorganic semiconductor. Our approach is based
on a Heisenberg equation of motion technique [15,16] to
derive the optical many-body Bloch equations of the hybrid
system in the Hartree-Fock limit [17,18]. This approach is
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computationally less expensive than the aforementioned fully
time resolved first-principles calculations, but retains the
microscopic description of the charge carrier dynamics, if
parameterized with first-principles input. Although the present
paper only addresses the effects of the Coulomb interaction in
the limit of linear optics, our framework allows us to investigate
more complex effects such as charge carrier relaxation and
phonon-assisted charge transfer in future work.

Model Hamiltonian studies for Forster energy transfer are
common for molecules, molecular aggregates and (functional-
ized) nanoclusters [19-27]. We here exploit the periodicity of
both the inorganic substrate and the molecular layer to simplify
the optical Bloch equations. We treat the organic layer by
assuming a strictly lattice periodic arrangement of molecules
with a periodicity different from the substrate lattice. This
periodicity assumption allows us to treat the organic layer
in a quasimomentum representation similar to the substrate.
When taking into account the Coulomb interaction across the
hybrid interface, the different lattices lead to selection rules
in the Hamilton operator. In this work, we assume the organic
layer to be weakly bonded to the inorganic substrate (i.e., no
chemical bonds or hybridized states form at the interface).
This allows us to clearly distinguish the contribution of the
individual components in the optical spectrum. We parametrize
our model with input from density-functional theory (DFT)
calculations for ladder-type quarterphenyl (L4P) molecules on
the ZnO(1010) surface. By solving the equations of motion,
we calculate linear optical absorption spectra and examine the
effect of the Coulomb interaction as a function of the system’s
geometry and transition dipole strength.

The article is structured as follows. First, we present
the model system and develop a theoretical description,
introducing the Hamilton operator. Then, we present numerical
calculations based on input parameters obtained from DFT
calculations for L4P molecules on the ZnO(1010) surface.

II. MODEL SYSTEM

Our structural model consists of an inorganic semiconduct-
ing substrate that is covered by a noncovalently attached single
layer of organic molecules (see Fig. 1). The unit cell of the
substrate is given by the surface structure. For simplicity, we
also assume the molecules to arrange in a periodic lattice
with unit vectors parallel to the substrate surface cell. In
reality, the organic film may be disordered or amorphous,
which potentially weakens the coupling strength. The explicit
inclusion of disorder effects will be the subject of future work.
In this work we investigate how the Forster transfer mechanism
between the semiconductor and the organic molecules is
influenced by the geometry of the hybrid structure. The
hybrid system is characterized by (i) the binding distance
Az between the molecular film and the substrate, (ii) the
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FIG. 1. Simplified sketch of the model system. Az gives the
distance of the molecular film to the inorganic substrate.
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orientation of the molecular lattice relative to the substrate
lattice, and (iii) the molecular coverage M (i.e., the number
of molecules per surface unit cell, where Nm and N, are the
number of molecular and surface unit cells, respectively). By
varying these parameters within reasonable ranges around the
equilibrium parameters obtained from our DFT calculations,
we will illustrate their influence on the Forster transfer
mechanism and the optical absorption of the hybrid material.

III. OPTICAL SPECTRA

We obtain linear optical absorption spectra by calculating
the frequency-dependent total absorption coefficient o (@) =
om(w) + ogc(w). Here, an(w) is the absorption coefficient
of the molecular film in the presence of the semiconductor
substrate and a.(w) that of the semiconductor in the presence
of the molecular layer [28]. Both o, and « are proportional
to their respective susceptibilities, which connect the incident
field and the resulting macroscopic polarizations,

Prnjsc(@) = €0 Xmyse(@) E (). (1

The total optical absorption coefficient o (w) is proportional
to the imaginary part of the total susceptibility, which is
obtained by normalizing the total macroscopic polarization
to the incident electrical field,

Pu(@) + ﬁsc«a)] @
0] E (a))

In this paper, the optical response of the semiconductor

substrate P (#) and the molecular layer Pp,(¢) are evaluated

in the far field limit, which is obtained by averaging over the
microscopic scale:

Aor(@) X @ Imyor(w) = G)ImI:

P (1) = 2% Y Re[dy o}¥], 3)
k
260 I
Po() = =7 > “Re[du. oy, ]. “4)
1

Here, k and 1 denote the two-dimensional wave vectors parallel
to the hybrid interface. The corresponding sums extent over
the Brillouin zones associated to the lattice structure of the
substrate and molecular adlayer. The volume of the entire
system is given by V. The resulting expressions (3) and (4)
link the macroscopic observables Py, to the microscopic
expectation values of the electronic transition amplitudes
oX&(t)and o}, (). In the next section, we will derive equations
of motion for the time dependence of these operators and show
how the dynamics is influenced by many-body interactions in
the Forster transfer limit.

IV. THEORETICAL APPROACH

Our microscopic approach is based on a Heisenberg
equation of motion technique [15,16]. In the Heisenberg
picture, the equation of motion for an operator O is given
by ihs O =[O, H]. The annihilation (creation) operators a‘”
create electrons or holes in the semiconductor or the molecule.
Theindices A, and B, represent the quantum mechanical states
of the vth molecule. These can be either the highest occupied
molecular orbital (HOMO) abbreviated here by H or the lowest
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unoccupied molecular orbital (LUMO) abbreviated by L. The
semiconductor states are characterized by a two-dimensional
wave vector k and band index A € {v,c}, where the wave
vectors k correspond to the in-plane direction (i.e., k = k).

A. Hamilton operator

The Hamilton operator in our approach is defined as
follows:

H = Hm + Hsc + Hefl + Hintv (5)

Hy=) E, a\a,, He= > EX ay ak,  (6)
A,v k,A

Hey= Y df, B al,a,, + Y dap E@) ayag.
k

A#£B
A#EN v
(7
S kvL, 1 f keH, T
Hiny = § :(Vk’ch Ay, Ay Oe + Vior Gy ar, Gy )-
KK
v
(8

H,, and Hg, are the Hamiltonians for an isolated molecule and
the semiconductor, respectively. H._; describes the interaction
of the quantized charge carriers with an external classical
light field (7) and Hj, the Coulomb interaction between the
electrons in the substrate and the molecule.

E4, and E}\‘ are the quasielectron and quasihole energies
for the molecules and the semiconductor, respectively. These
should, in principle, be computed in a quasiparticle formal-
ism like the GW approach [29-31]. Here, we approximate
them with the DFT energies using a hybrid functional. The
quasiparticle energies of the substrate are given by the band
structure E¥ from which we include only one valence and one
conduction band, which is sufficient for the resonant situation
in ZnO considered here. We assume that the molecules are
spatially well separated so that the interaction between them
becomes negligible. The formation of molecular bands in
more densely packed films will be considered in future work.
Here, we take Ey and E; to be equal for all molecules
and adjust their values to lie just above the band edges of
the two band semiconductor substrate. This choice yields
maximal Forster transfer since the transfer rate decays with
the difference between the HOMO-LUMO gap and the band
gap of the semiconductor. In reality, the inorganic substrate
and the molecules in the organic film have to be chosen such
that this condition is fulfilled as closely as possible to obtain
maximal Forster transfer. Since the molecular states are chosen
to be in resonance with continuum states we can neglect the
formation of bound semiconductor excitons.

In Eq. (7), the light-matter interaction is treated using
a semiclassical approach in the dipole approximation [28]
for both components of the hybrid material. The interaction
strength is governed by the transition dipole moments dgy,
and d,, for the molecules and the substrate, respectively. The
incoming light is described by the classical electrical field E(¢).
The Coulomb interaction is treated microscopically and fully
quantized so that we can explicitly include Forster transfer
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. . KA,
process by means of the corresponding matrix elements V. p |

which are discussed and defined below. In principle, within
our approach, it is also possible to include the coupling to
molecular and lattice vibrations.

B. Transformation to momentum representation

Up to this point we have treated the electrons of the
semiconductor in a Bloch basis but used localized states
for molecules. To obtain a consistent description, we have
to transform the molecular operators to a Bloch momentum
representation [32], too. In this work, we assume a lattice
periodic arrangement of molecules. This choice corresponds
to the best coupling limit and facilitates the construction of
a microscopic model for charge carrier dynamics in hybrid
materials. The idealized model derived in this work may
serve as a starting point for the description of more realistic
scenarios, including, e.g., disordered adlayers.

We assign each Bloch-based operator a two-dimensional
wave vector 1. The transformation pair

N

1
eoay, )

2T

asl =

1 —ilR,
as, 21: Y el (10)
is then unambiguously defined, if the wave vector L is restricted
to the first Brillouin zone of the molecular lattice. To fulfill the
periodic in-plane boundary conditions, the ratio of the total
number of molecules N, to the total number of unit cells
N, in the sample must be exactly the unit cell volume V.
divided by the molecular unit cell volume V, (i.e., N /N, =
V./ V). Assume that vectors a; and a, span the unit cell of the
molecular layer. We can then find a reciprocal lattice spanned
by the vectors f)l and f)z such that a; ~f)j =2m §; ;. For a
periodical arrangement of molecules, each molecular position
R, is given by

R, =nja; +nya, njn,eZ, (1)

where n} and n are integers. For a sufficiently large sample
(and therefore large N,,), we can approximate:

1 .
> N—elQ-Rv XY Sombimb, = 9 %06 (12)
n G

v mp,my

With Egs. (9) and (10) and a periodic arrangement of molecules
the transformed Hamilton operator reads

Hn = Z E, Zaiﬂ,la/&l’ Hye = Z E;f al,kak,x’ (13)
A 1 K.

Hey= ) d¥, -E@) ay ;a0 + > dus-E@) ZaTA,laB,l’
AB 1

Kk
AFEN
(14)
H.. = 1 S Vkv L T 1
int = AN, l’—l,k’—k+G( KeH WAL 19H 1 %xc
ch !
kk G
LI
kvL T _t
+Vk,cHakAaA’laB’l,akW). (15)
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From now on, we distinguish between wave vectors that
reside in different Brillouin zones. Sums over k or k' add
up all wave vectors from the first Brillouin zone of the
semiconductor substrate, whereas sums over 1 or I’ sum
vectors from the first Brillouin zone of the molecular layer.
The sum over G, stemming from Eq. (12), runs over all
possible linear combinations of the molecular reciprocal lattice
vectors. The corresponding Kronecker § yields a selection
rule for the momentum transfer. As we will explain later, this
selection rule depends on the geometry of the components and
governs the effect of the Coulomb interaction. In Eq. (15), we
also redefined the Coulomb matrix element by extracting an
exponential term containing the molecular positions and the
total sample size A = N.A. of the semiconductor substrate
given by the number of unit cells N, and the unit cell area A.:

L e (e k)RLVk)LA (16)

KVB = KB,
Note that the new quantity Vk, 5, does no longer depend on
the molecular positions R, reflecting the transformation of the
molecular states to the Bloch basis representation. Section V
and Appendix will provide further details on the derivation of
the Coulomb matrix element.

C. Equations of motion

To calculate the absorption according to Egs. (3) and (4),
we now proceed to derive the equations of motion for the
microscopic interband polarizations o}, = (a;f1 v o) in the

semiconductor and the microscopic molecular polarization

UIIJL = (alT uAy,,) using the Heisenberg equation of motion.

Focusing on the linear optical properties, the hierarchy
problem arising from the correlation expansion of the Coulomb
interaction is truncated at Hartree-Fock level [15,28,33,34],
which yields an exact description of optical excitations in
the linear optics limit [35]. Note that the molecular layer
induces a spatially inhomogeneous charge distribution and
thus we have to explicitly take into account polarizations
with nonequal wave vectors k # k. For the polarization of
the semiconductor, we obtain

in Lok _ (Eg'  EY)ok

K k k
E()-d
" + E() - d, (o

- ,Og)(sk,k'

T szkvLSk’ kll’+G0HlL(,0k :02()

L
a7

Similarly, we derive an equation of motion for the molecular
polarization:

od oy
ih—omy = (EL = Emogy + B0 - diu (ol — o1 )y
+ ZZVII-‘I]I:;Z v kz(sl/ =Lk — kz-‘rG('O 'OL)
kl k,

(18)

V. FORSTER TRANSFER MATRIX ELEMENTS

The nonradiative coupling of the substrate to the molecular
layer, Egs. (17) and (18), is governed by the Coulomb matrix
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L.k
elements. In particular, the matrix elements V' "ow characterize

the coherent coupling of the polarization of the vth molecule
to the interband polarization of the semiconductor substrate.
To calculate the linear absorption spectra in the limit of low
molecular coverage, no other matrix elements are needed. In
the following, we will approximate these Coulomb matrix
elements by applying a point-dipole approximation resulting
in a dipole-dipole interaction between the semiconductor and
the molecules. We will then use input from DFT to evaluate
the resulting expression.

A. Point-dipole approximation

Generally, the Coulomb coupling matrix element is given
by

Vi = /d* /d3r/ W (OW @)V (r — )Wy, () Pie(r)
(19)
with the Coulomb potential
N & 1
Ve-r)= . 20)
dey r — 1|

W, (r) are the wave functions of molecular orbital A €
{H,L} on the vth molecule and Wy, (r) the wave functions
of a semiconductor states with wave vector k and band
index A. Approximating the interaction potential by a Taylor
series around the molecule positions R, and semiconductor
elementary cells Ry allows us to break up the double integral
over all space into two separate integrals over each component
(the molecular layer and the substrate) [36]. For details see
Appendix. In the point-dipole approximation, we then obtain
a closed analytical form of the Forster transfer element:

Lkv _ 1 e% oaR) o115 Zx .d
Hk+qc A 280 |q| i }|1q| LH
X o M 21
‘_],V kk+q |
—ilq|

where dj}; are the transition dipoles from state A at k to state A’
at K. In this study, we will neglect the wave vector dependence
of dﬁ/ , which is a good approximation close to the band edges,
and take the value at the I' point (i.e., d 1q ™ dir =d¥).

Figure 2 illustrates how the orientation of the dipole
moments affects the transfer element in Eq. (21). For a parallel
orientation of d*° and d”, its maximal values lie along the
axis of the dipole moments. The contours of equal value form
a dumbbell-shaped pattern around the dipol orientation. When
the dipoles are perpendicular to each other the dumbbell lobes
split into four lobes oriented along the diagonals between the
perpendicular dipole orientations. For a parallel orientation in
the z direction, the maximal value is found on a circle around
the origin of the (g ,q,)-plane.

VI. LINEAR OPTICAL ABSORPTION SPECTRA

A. Solution in frequency space

Equations (17) and (18) form a closed set of equations for
the microscopic polarizations in the semiconductor substrate
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FIG. 2. Contour plot illustrating the interaction strength as given by the Forster transfer element |V,
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krgc |2 for (a) parallel dipoles in the x

direction, (b) parallel dipoles in the y direction, (c) orthogonal dipoles (each one parallel to a coordinate axis), and (d) parallel dipoles in the z

direction.

and the molecular layer. In the following, we show how this
system of equations can be solved in frequency space. First,
we Fourier transform all quantities appearing in Eqs. (17)
and (18): f (w) = f f(t) e dt. Since we are only interested
in weak optical excitations, we can assume the occupation
densities p},,p! ,pX and p¥ in Eqs. (17) and (18) to be constant
in time. We apply the Fourier transform to Egs. (17) and (18)
and obtain

61 () = [hw — (EL — Ex) + iym] ™!

x {E(w) - dr (ol — PL)dur

Lkiv sk ko 1 Y
Vszc 638 -1k —ko+G [PH - PL]
ki ko
G

(22)

as well as

ve

5K (w) = [hw — (El‘ - Ei‘) + iys]_1

x B d (o — 8)brn

1 , oy ,
+ 1 E Ve e k114G O I;}L(w)[ﬂg —p¥]
LY
G

(23)

Here we introduce the phenomenological linewidths y;, and y;
for transitions in the molecular layer and the semiconductor,
respectively. They account for incoherent dephasing processes
which are beyond the scope of this work.

As our model does not take into account any direct
interaction between different molecules, all contributions to
the polarization that arise from states located on different

molecules vanish, i.e., (aL Wap ) =Sy (aL ,4; ). When we
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transform the molecular operators to the Bloch basis, we
then find that the molecular polarization only depends on the
difference and not the absolute values of the molecular wave
vectors:

- 1 LD
(ay,apy) = o Z IR (aL LA ) (24)

The computational effort is reduced, because only molecular
polarizations with equal wave vectors (6"Hl 1 (w)) are required
for the calculation of the optical response in Eq. (4) (6"Hl () =
6;, 1 (w)). Although substrate polarizations with unequal wave
vectors k £ k' do not contribute to the optical far field
response, as will be explained below, they are coupled to
the molecular polarizations and thus need to be taken into
account. To obtain a closed solution for the polarizations in
frequency space, we combine Eqs. (22) and (23). To simplify
the presentation, we first abbreviate the single-particle energy
poles by

Xi#(@) = [ho — (EL = Ep) + iym] ™' (25)
and
Yiw (@) = [ho — (E¥ — E¥) +ip] " (26)
The closed solution for the molecular polarization is given by
6,(@) = Xn(@EW) - dir(poy — py)

N, 2
X 1 —XLH(CL))A—YZZZ‘V%E:_GC
ki G

—1
x Y k+6(@) (o — pX17C) (o — pL)] -

27

Note that in the above equation we have evaluated the
Kronecker &’s appearing in Hj,. To facilitate a cleaner
notation, we have implicitly assumed that wave vectors k|
and G +k; are always from the first Brillouin zone of
the semiconductor substrate. Accordingly, the corresponding
sums have to be restricted in an appropriate manner.

B. Special case: matching lattices

To illustrate how the molecular coverage influences the opti-
cal properties of the hybrid, we take a look at the distribution of
molecular reciprocal lattice vectors G in reciprocal space. The
discussion is simplified by assuming the molecular lattice to
match the surface lattice of the substrate. This implies that the
molecular lattice vectors a&; and &, become integer multiples
of the substrate lattice vectors a; and a,, which characterize
the substrate surface, i.e., 4, = n;a; with n; € N. This
reflects the fact that, in practice, the organic molecule is
of greater spatial extent than the surface unit cell of the
substrate and therefore one molecule covers many surface
unit cells of the substrate. In the following, we will illustrate
how the molecular arrangement affects the coupling strength
by the example of a real world hybrid system, consisting
of a ZnO(1010) surface covered by a layer of ladder-type
quarterphenyl (L4P) molecules [4,37]. The L4P molecule is
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FIG. 3. (Color online) We demonstrate the relation between the
substrate surface cell (red) and the molecular unit cell (blue) by means
of a L4P molecule on a ZnO(1010) surface.

an even-numbered ladder-type oligo(p-phenylene) (LOPP)
providing favorable optoelectronic properties such as narrow
absorption and luminescence bands as well as high absorption
and luminescence coefficients [4]. Figure 3 demonstrates how
one L4P molecule can be placed on a ZnO(1010) surface
covering 12 surface unit cells. The resulting molecular unit
cell is then given by 2x6 cells of the substrate. While the
molecular unit cell increases in real space with decreasing
molecular coverage, the opposite is true in reciprocal space.
Now the first Brillouin zone of the molecular layer is smaller
than that of the substrate as we can verify by calculating the
reciprocal lattice vectors b; and b;. Using their definition, we
find that b; = ni[bl-, i.e., the size of the first Brillouin zone
shrinks as the real space cell grows (see Fig. 4).

We can now asses the effect of the coverage and the
molecular orientation on the Coulomb coupling strength.
Equation (27) for the transfer matrix element tells us that
q has to equal a reciprocal lattice vector G, which is given
as integer linear combination of the b;. Therefore the size of
the b; governs which points in reciprocal space contribute to
the equation of motion (27). Figure 5 illustrates how different
grids of reciprocal molecular lattice vectors G resulting from
different molecular coverages can have a significant effect on
the coupling strength. The left panel corresponds to coverage
of one molecule per 2x4 substrate unit cells. The G vectors
clearly miss the maxima of the Coulomb matrix element shown
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FIG. 4. (Color online) Illustration of real (1) vs reciprocal (2)
space lattice by example of a 3 x2 molecular layer.

by the contour plot. However, with decreasing molecular
coverage, the density of the points reached by the G vectors
increases and therefore the maxima of the coupling element
are taken into account, leading to a stronger interaction.
This reflects the fact that for larger coverages the oscillator
strength of the semiconductor substrate is distributed among
many molecules. The lower plot in Fig. 5 illustrates the
position of the allowed momentum transfers q = G for the
situation where one molecule spans 10x 16 surface unit cells

gy (nm™")

18 =9 0 9
¢ (nm™")

FIG. 5. (Color online) Red dots indicate the allowed momentum
transfer wave vectors q for different molecular surface coverage
densities. The underlying contour plot shows the Coulomb matrix
element (see Fig. 2) The left figure clearly shows how the extrema of
the Coulomb matrix element are missed for a 2 x4 coverage. The right
plot shows how the density of allowed momentum transfer vectors
(i.e., G vectors in Eq. (27)) increases when the coverage is reduced
to one molecule on 10x 16 surface cells.
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of the substrate. Although our model does not include direct
interactions between orbitals located on different molecules,
the coupling to the substrate has a similar effect for finite
distances between the molecules.

VII. NUMERICAL INVESTIGATION

We now investigate the influence of the Forster coupling
on the optical response of the hybrid layer. From Eq. (3), we
see that the far field response does not take into account polar-
izations with different wave vectors k # k', which describe
coherences on the microscopic spatial scale. On the other
hand, Eq. (23) illustrates that the Forster interaction affects
polarizations 6%¥ (w) with equal wave vectors k = k" only
if the matrix element for zero momentum transfer (q = 0)
is nonvanishing. However, in the point-dipole approximation,
the q = O element does vanish. As a result, the optical far field
response of the substrate is not influenced by the molecular
adlayer.

We will therefore not consider the optical spectrum of the
semiconductor substrate and focus instead on the spectrum of
the molecular film. To simplify our numerical investigation,
we adopt the effective-mass approximation for the valence
and conduction bands of ZnO. The effective masses of
m% = 1.4463 m, for the conduction and m} = —8.3035m,
for the valence band have been obtain from a fit to the DFT
band structure of bulk ZnO. All DFT calculations in this
work have been performed with the Fritz-Haber-Institut ab
initio molecular simulations (FHI-aims) code [38,39] and the
Heyd-Scuseria-Ernzerhof (HSE) [40,41] exchange-correlation
functional. Following our previous work on ZnO [42], the
exact-exchange admixture was chosen to be 40%, which yields
a band gap of E, = 3.4 eV. As mentioned earlier, we adjust
the HOMO-LUMO resonance of the molecular adlayer to be
just above the substrate band gap at Ep; = 3.401 eV. The
distance between the substrate surface and the molecular layer
is fixed to Az = I nm. The substrate unit cell is given by
the lattice vectors a; = 0.3289nme, and a, = 0.5242nme,,
where e, and e, denote vectors of unit length, spanning the
substrate surface plane. In all calculations, the substrate dipole
moment is fixed to point in the direction of e, and its strength
of |d¢y| = 0.012 ¢g nm was calculated in HSE. The geometry
of the L4P molecule was relaxed in the gas phase. The dipole
strength for the molecular HOMO-LUMO transition amounts
to |[dg .| = 0.35 ¢g nm. The angle of the molecular transition
dipole moment and d,, is given by the angle «.

Figure 6 shows the resulting absorption spectra of the
hybrid system for rectangular molecular unit cells of different
sizes. Due to the narrow linewidth and the strong dipole
moment, the single-particle spectra are referenced to that of
an isolated molecule, which consists of a Lorentzian peak at
the energy of the HOMO-LUMO transition energy. As the
system is brought into contact with the substrate, the attractive
Coulomb interaction between electrons and holes gives rise
to a reduced optical transition energy which manifests itself
by a redshifted absorption line in the absorption spectrum.
As discussed earlier, the energy difference AE (see Fig. 6)
depends on the size and the aspect ratio of the molecular
unit cell. Figure 6 illustrates the red shift of the HOMO-
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FIG. 6. (Color online) The energy shift AE depends on the
molecular coverage density. The lines indicate molecular unit cells
of varying size and fixed aspect ratio.

LUMO absorption line depending on the size of the molecular
cell, as well as the decreasing intensity as the molecular
coverage is decreasing. To investigate the dependence of
the energy shift AE and the linewidth y on the geometry
parameters «,Az and the aspect ratio of the molecular unit
cell, we fit the spectra with a Lorentzian. In Fig. 7, we show
the energy shift in dependence of the molecular unit cell
size for fixed aspect ratios. For small coverages (i.e., large
molecular cells), the energy shift approaches a limiting value
that is independent of the aspect ratio. For higher molecular
coverages, the limiting value depends strongly on the aspect
ratio of the molecular cell. Both effects can be explained by the
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coverage (molecules / 100 unit cell)

FIG. 7. (Color online) The energy shift AE depends on the
molecular coverage. The lines indicate molecular unit cells of varying
size and fixed aspect ratio for parallel dipole moments oriented along
the x axis.
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FIG. 8. (Color online) The fitted linewidth y as function of the
molecular coverage for varying molecular unit cells of fixed aspect
ratio.

aforementioned relation between real and reciprocal spaces.
For decreasing molecular coverages, the density of G points
in reciprocal space increases until it becomes quasi continuous,
i.e., independent on the aspect ratio. The previous increases
the effective interaction strength until it reaches the limiting
value of the quasicontinuous density of G points. In this limit,
the average distance between any two molecules becomes
infinitely large. Therefore the geometry of the molecular unit
cell (i.e., the position of the next neighboring molecule) has
no influence on the optical response of the molecular layer.
As can be seen from Fig. 7 the energy shift is especially
strong for aspect ratios greater than 1, i.e., the unit cell
has a larger extent in the x direction, which coincides with
the orientation of the dipole moments. Accordingly, if the
aspect ratio is less than 1, and therefore perpendicular to the
orientation of the dipole moments, the interaction is weak. This
behavior is linked to the density of allowed momentum transfer
vectors (see Fig. 5). Different aspect ratios cause nonuniform
densities of allowed momentum transfer vectors while the total
coverage density N,,/N, stays constant. When going towards
the single-molecule limit (i.e., the left of Fig. 7) the molecular
coverage decreases while the overall density of momentum
transfer vectors increases. The interaction strength is governed
by a counteraction of the total coverage density versus the
increase of allowed transfer processes. For instance, in the 3:1
case, the density of allowed momentum transfer vectors along
the dipole axis is higher than in the orthogonal direction. Here,
the decrease in coverage outweighs the increase of allowed
processes, leading to a decrease in energy shift towards lower
coverage. The opposite situation occurs when the density of
transfer processes along the dipole axis is lower (e.g., fora 1:3
aspect ratio). For higher molecular coverage, the density of G
points is low and accordingly the effective interaction strength
decreases.

Figure 8 shows the corresponding linewidth y. In the
figures, the phenomenological broadening y,, of an isolated
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FIG. 9. (Color online) The energy shift of the HOMO-LUMO
transition exhibits a quadratic dependence on the transition dipole
that enters the Coulomb matrix element. The DFT-HSE value is
0.35 eg nm.

molecule introduced in Eq. (25) is referred to as yy. For
high coverage (thus low coupling strength), the broadening
approaches Yy, the linewidth of the molecular resonance.
We clearly find that the hybridization causes a significant
contribution to the linewidth exhibiting a similar trend as
the peak shift AE. The additional broadening is attributed
to the Coulomb interaction of the energetically sharp HOMO-
LUMO excitation with the energetically distributed interband
excitations in the semiconductor, since the molecule polariza-
tions can decay into a continuum of electronic semiconductor
excitations. In Fig. 9 and 10, it can be seen, that both the
energy shift and the linewidth increase for increasing dipole
moment and thus coupling.

angle o (degree)

FIG. 11. (Color online) The energy shift of the HOMO-LUMO
transition for various square molecular unit cells as a function of the
relative dipole angle «.

Finally, we show how the relative orientation of the dipole
moments of the individual constituents affects the interaction
strength. We therefore vary the orientation of the molecular
transition dipole moment dg; while the substrate transition
dipole d,. remains constant. In Fig. 11, we plot the energy shift
as a function of the angle « between d;;, and d., for molecular
cells of square aspect ratios (see Fig. 12 for a corresponding
plot of the broadening). We find the strongest interaction for
dipoles with parallel orientation at « = 0° and it decreases
with a cosine dependence, reaching a finite nonzero minimum
for perpendicular dipole moments.
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FIG. 10. (Color online) The linewidth caused by the hybridiza-
tion (i.e., observed linewidth less the phenomenological linewidth y;)
in dependence of the transition dipole.
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FIG. 12. (Color online) Dependence of the peak broadening on
the relative dipole orientation.

235314-9



VERDENHALVEN, KNORR, RICHTER, BIENIEK, AND RINKE

VIII. CONCLUSION

We developed optical Bloch equations for the coupling
of molecular and semiconductor continuum states in hybrid
inorganic-organic systems. The Forster-type Coulomb inter-
action couples the optical excitations in the organic and
in the inorganic layer and results in combined excitations.
This Forster-type interaction was included as a dipole-dipole-
interaction between the two HIOS components. To calculate
optical absorption spectra, we solved the Bloch equations
for the hybrid system. We then tested the sensitivity of
the Forster interaction strength to the geometric arrange-
ment of the molecules in the molecular layer relative to
the inorganic substrate. At lower molecular coverages, the
interaction becomes stronger than at higher coverage since
in that case the oscillator strength of the semiconductor is
distributed among more molecules. We found that the HOMO-
LUMO transition line is shifted towards lower energies for
increasing interaction strength. Our calculations also revealed
that and how the interaction and therefore the energy shift is
maximized for parallel transition dipole moments. Although
the intermolecular Coulomb coupling was neglected in this
work, it may play an important role for the formation
of localized excitons in the organic layer, enhancing the
Forster coupling and will be included in future work. Though
the point-dipole approximation yields a straightforward ap-
proach of reduced complexity towards the complex problem
of the interlayer Coulomb coupling, the material systems may
be more accurately modeled by going beyond the point-dipole
approximation for the Coulomb interaction using, e.g., the
partial charge technique [43]. Furthermore, we have seen
very specific selection rules regarding the Coulomb coupling.
In conclusion, tuning the coverage density and geometry is
crucial to obtain optimum performance of hybrid devices
used in photovoltaic or similar optoelectronic applications.
It is likely, that the presented framework can provide valuable
guidance in geometry optimization, if extended by, e.g., more
detailed coupling elements.
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APPENDIX: FORSTER TRANSFER MATRIX ELEMENT

This section provides additional details to the calculation of
the Forster transfer element in the dipole approximation [36].
Generally, the Coulomb coupling matrix element is given by

Vi = f & / &r' ()P, )
x V(r —r)Wg (r)W(r). (A1)
By approximating the interaction potential

Vir—-r)= % !
T dweg r— 1|
el [f-f’ (R-f')(R-f")]

T dmeg [ [RP IRI3

(A2)

PHYSICAL REVIEW B 89, 235314 (2014)

by a Taylor series, we can factorize the nested integration.
The expansion is based around the molecule positions R, and
the substrate lattice vectors pointing to the unit cell positions
Ry respectively. We define the vector R = Ry — R, as their
difference and obtain

L,kv * ~
Vi = 4mo 3 / a7 / &7 Wi (Ry + )
x Ue(Ry + VI (R, + F)Wx(R, +F)
[f P JR-HR- f”)}

IRP? IRP (A9
The integrals over the individual constituents wave functions
can now be evaluated independently, allowing the introduction
of the transition dipole moments. The wave functions in the
semiconductor substrate are given by Bloch-functions in the
in-plane direction ry. The confinement in the perpendicular
direction (z) is taken into account by making the envelope
approximation with the envelope function &£(z):
ST ug (1)) £(2).

Wi (r) = (A4)

1
VA
With the transition dipole moment defined by

L2 o
die = A / dZ/A &ry uig () © uie (e TOTIE )P,

L)2
(AS)
we can write the matrix element as
11 Ne
Lkv __ KR, i(k'—k) R
Vinke = 4eg N Ze
Ry
IR|3 IRI3 '

Since the substrate is a quasi-two-dimensional system, the
wave vector k is restricted to a two-dimensional plane
corresponding to the reciprocal space of the substrate surface.
Therefore all scalar products in Eq. (A6) project the molecular
position to the substrate surface. However, the norm of R still

includes the surface-to-molecule distance Az, i.e.,
IRl = (R} —RI]>+ Az%)'2, (A7)

Under the assumption, that the spatial extent of a substrate
unit cell is small in comparison to the distance Az, we can
approximate the sum over all unit cells as an integral:

1
— — d*r.
-Ac /Rz :

By carrying out the integration, we obtain a closed analytical
form of the Forster transfer element:

(A8)

Lkv  _ lieiq-lﬂ el Az ;Ix dyy
Hktae ™ A g, lql —iTqI
qx ‘
<[ @ |, (A9)
—ilq]
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