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Abstract 

Diffusion MRI (dMRI) measurements are used for inferring the microstructural 

properties of white matter and to reconstruct fiber pathways. Very often voxels contain 

complex fiber configurations comprising multiple bundles, rendering the simple 

diffusion tensor model unsuitable. Multi-compartment models deliver a convenient 

parameterization of the underlying complex fiber architecture, but pose challenges for 

fitting and model selection. Spherical deconvolution, in contrast, very economically 

produces a fiber orientation density function (fODF) without any explicit model 

assumptions. Since, however, the fODF is represented by spherical harmonics, a direct 

interpretation of the model parameters is impossible. Based on the fact that the fODF 

can often be interpreted as superposition of multiple peaks, each associated to one 

relatively coherent fiber population (bundle), we offer a solution that seeks to combine 

the advantages of both approaches: first the fiber configuration is modeled as fODF 

represented by spherical harmonics and then each of the peaks is parameterized 

separately in order to characterize the underlying bundle. In this work, the fODF peaks 

are approximated by Bingham distributions, capturing first and second order statistics 

of the fiber orientations, from which we derive metrics for the parametric quantification 

of fiber bundles. We propose meaningful relationships between these measures and the 

underlying microstructural properties. We focus on metrics derived directly from 

properties of the Bingham distribution, such as peak length, peak direction, peak spread, 

integral over the peak, as well as a metric derived from the comparison of the largest 

peaks, which probes the complexity of the underlying microstructure. We compare these 

metrics to the conventionally used fractional anisotropy (FA) and show how they may 

help to increase the specificity of the characterization of microstructural properties. 

While metric relying on the first moments of the Bingham distributions provide 

relatively robust results, second-order metrics representing the peak spread are only 

meaningful, if the SNR is very high and no fiber crossings are present in the voxel. 

 

Keywords 
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Introduction 

Using diffusion MRI (dMRI), the mean local orientation distribution of nerve fibers in the 

white matter of the brain within a voxel (size 1-30 mm³) can be probed (Le Bihan et al., 

1986). This information on the local fiber layout can then be used to compute fiber 

pathways through the white matter (tractography; Conturo et al., 1999, Mori and van 

Zijl, 2002, Behrens et al., 2003), or to derive measures characterizing the state of the 

tissue, which can in turn be used to detect changes and differences related to, for 

example, development, aging, disease, learning, and cognitive performance (for an 

overview, see Jones et al., 2013).  

 

Local models 

 

In order to draw conclusions on the underlying fiber structure from the measured 

diffusion weighted signal, it is necessary to impose a model connecting anatomy and 

diffusion signal. This is called the local model, because it describes the influence of the 

local microstructural boundaries within a voxel on the spatial displacement of water 

molecules (i.e., diffusion) in that voxel, and it also describes the influence on the 

measured signal from that voxel. In many cases, approximations of the average water 

diffusion propagator p(r, t) in the voxel are constructed. This function gives the 

ensemble averaged probability of a water molecule traveling the distance r within time t 
(Cory and Garroway, 1990, Callaghan et al., 1991). It is related to the underlying tissue 

structure by the diffusion equation and the appropriate boundary conditions. In 

practice, probing the diffusion propagator is constrained by sensitivity of the 

measurement with respect to diffusion direction, governed by the diffusion gradients, 

and diffusion time and length, expressed by the b-value. Both together they form the so-

called q-space. In the simplest case one assumes anisotropic Gaussian diffusion, which 

leads to a diffusion propagator that can be approximately described by a tensor. This 

technique is called diffusion tensor imaging (DTI) (Basser et al., 1994) and is 

appropriate in situations with only one, approximately coherent, fiber population per 

voxel. One of the obvious limitations of this method lies in its inability to resolve the 

micro-structure in areas of more complex fiber geometries, for example crossing fibers. 

This situation is rather common and affects, at the current resolutions, between one and 

two thirds of all white matter voxels (Behrens et al., 2007, Descoteaux, 2008, Jeurissen 

et al., 2010). In order to cope with this problem, two different principled approaches 

have been pursued.  

The first approach is to construct multi-compartment models, such as the ball-and-stick 

model (Behrens et al., 2007) and various multiple tensor models (Tuch et al., 2002, 

Alexander, 2005). They seek to decompose the diffusion propagator into a number of 

sub-components, each associated with an underlying roughly collinear fiber bundle. 

Alternatively, one can also try to model the fiber density of the bundles directly, for 

example by representing the angular fiber density of each bundle by a Bingham or 
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Watson distribution and then convolve it with the (assumed) signal of a single fiber 

(Kaden et al., 2007; Zhang et al., 2012; Sotiropoulos et al., 2012).  

As long as the assumption holds that the fibers belong to a small and known number of 

fairly coherent bundles, these methods are very attractive, because they separate 

multiple fiber populations, while each of them can be described by simple and 

descriptive parameters. However, a generalized model allowing any number of 

compartments leads to numerical problems. In the work of Scherrer and Warfield 

(Scherrer and Warfield, 2010), it has been shown for the multiple tensor model that 

these problems stem from the colinearity of the parameters. Therefore a single b-value 

is insufficient for estimating the full model of multiple tensors. Attempts to solve this 

problem include restricting the number of tensor components (eg. to two components, 

Parker et al., 2003, Caan et al., 2010), incorporating physiological constraints (Tuch et 

al., 2002), reducing the complexity of the model by only allowing identical prolate 

tensors (Tabelow et al., 2012), stabilizing the problem by using Monte-Carlo algorithms 

(Kreher et al., 2005), regularizing over a spatial neighborhood (Pasternak et al., 2008, 

Malcolm et al., 2010), and incorporating other local models to estimate the initial non-

linear optimization of the parameters of the multi-tensor model (Schultz and Kindlmann, 

2010). 

The second principled approach to complex fiber configurations involves fewer model 

assumptions by approximating either the angular structure of the diffusion propagator 

or directly the fiber orientation distribution by a set of orthonormal basis functions, 

usually spherical harmonics (SH). These methods do not require any prior assumptions 

on the number of underlying fiber bundles. They include Q-Ball Imaging (Tuch, 2004, 

Barnett, 2009, Canales-Rodríguez et al., 2009, Tristán-Vega et al., 2009, Aganj et al., 

2010) approximating the diffusion orientation density function (dODF) and Spherical 

Deconvolution (SD) (Tournier et al., 2004, Dell'Acqua et al., 2007, Kaden et al., 2007, 

Tournier et al., 2007) modeling the fiber orientation density function (fODF). The fODF 

represents the direction dependent density of fibers in every voxel and therefore is an 

angular spatial fiber density. If viewed for a given voxel it represents a measure of the 

angular fiber density. Calculating the fODF requires an estimate of the signal attenuation 

generated by a single fiber bundle, the so-called deconvolution kernel. A common 

framework for the different approaches to spherical deconvolution is given by Jian and 

Vermuri (2007). 

While the SH representations of dODF and fODF allow for a very parsimonious 

parameterization, which can be very efficiently estimated from the data, the parameters 

do not usually bear any direct meaning. This makes direct interpretation in terms of 

fiber properties, such as mean directions and spreadings of the particular fiber 

populations, unwieldy. Additionally, the SH representation does not allow for separate 

characterization of the different fiber bundles present in one voxel, since these are part 

of the multimodal distribution structure represented by the SH.  

In order to keep the advantages of SH based ODF models and at the same time profit 

from more descriptive parameterizations of fiber bundles, we propose to separately 
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characterize the peaks of the fODF by Bingham distributions (Bingham, 1974). This 

distribution can be seen as an axial Gaussian distribution on a unit sphere (Mardia, 

1975). As mentioned above, it has been already used in multi-compartment models for 

the characterization of fiber bundles (Kaden et al., 2007; Zhang et al., 2012; Sotiropoulos 

et al., 2012). By fitting each relevant peak in the fODF with a Bingham distribution we 

obtain a bundle-wise characterization of the fiber density without having to re-introduce 

multi-compartment models with their larger parameter spaces and inherent model 

selection problems. In our approach, if one increases or decrease the number of relevant 

peaks (by changing the criteria for ‘relevance’), the characterization of the other bundles 

will not be affected. The method therefore is a way to characterize the features of the 

widely used fODF, rather than a local model of its own. 

 

Metrics 

 

Metrics describe distances in a parameter space and are characterized by their 

sensitivity and specificity towards the differences in the physical quantities they are 

meant to reflect. In the context of dMRI, a sensitive metric should react to differences in 

a wide range of microstructural properties of the tissue. A metric fulfilling this 

requirement is the fractional anisotropy (FA) (Basser, 1995), which is based on the 

diffusion tensor’s geometry. For example, the anisotropy in a region may be lower 

because of a reduction in myelination or an increase in the variance of fiber orientation, 

but also because there is a larger axon diameter, a lower packing density (Takahashi et 

al., 2002) – both of which denote fewer barriers to diffusion in a given space – or it could 

be due to increased membrane permeability (reducing the effectiveness of a boundary). 

However, with this sensitivity the FA loses specificity. In other words, one is not able to 

determine the particular type of microstructural change simply from a change in FA. 

Other measures derived from the tensor, such as radial, axial and mean diffusivity have 

also been shown to correlate with microstructural properties. However, so far it has not 

been possible to find a robust, quantitative relationship between a single 

microstructural property and parameters extracted from the tensor (Jones et al., 2013). 

Although the limited amount of acquired data makes it impossible to achieve absolute 

specificity, the fact that the tensor represents only part of the available information in 

the data gives reason for hope that more specific metrics than FA might be possible. 

Such metrics should be designed to improve the situation in one of the following two 

ways: First, they reproduce results which are also uncovered by FA, thus endowing them 

with additional meaning. In other words, the fact that a new metric shows the same 

differences as the FA may tell us something about the possible origin of the FA changes, 

thereby increasing specificity. Second, the metrics uncover microstructural changes, 

which are not seen in FA, thus increasing sensitivity. Since the FA is very sensitive but 

not very specific in its nature, we expect to mostly encounter the former situation. 
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Alternative metrics to FA have been introduced based on more complex local models. 

The most prominent of these is the generalized FA (GFA) (Tuch, 2004). Here the 

definition of the FA is extended to the q-ball by using the quotient of standard deviation 

and root mean square of the dODF instead of the tensor. While GFA is a global measure 

in each voxel, Ghosh and Deriche (2011) introduced a bundle specific metric using a 

polynomial approach in order to represent the dODF and extracted geometric 

information to define a peak FA. Similarly, Raffelt et al. (2012b) as well as Dell'Acqua et 

al. (2013) introduced the length of an fODF peak as bundle specific metric. 

It should be noted that, while these metrics are endowed with additional meaning, they 

are still based on the information which can be extracted from the diffusion models. 

Therefore they are clearly limited in the insights they can provide. True biophysical 

metrics have to be derived from local models of fibers, such as the fODF computed with 

SD. Even more sophisticated models that describe properties beyond fiber density are 

usually based on specialized acquisition schemes especially varying gradient strength 

and/or diffusion time resulting in long acquisition times (Assaf and Basser, 2005, 

Alexander et al., 2010 ). 

Here, we explore several metrics derived directly from the Bingham distributions used 

to characterize the fODF and with it the tissue microstructure. These are for example the 

parameters of the Bingham distribution itself, which are scaling and concentration 

parameters, characterizing the size and shape of the underlying fiber bundles. In 

addition we use additional parameters such as the bundle specific fiber density, the fiber 

spread and a complexity measure, which reflects the fiber populations present within 

each voxel and their relative sizes. This allows us to examine the microstructure in the 

voxel. In this line, the methods presented here offer a novel approach to extend the 

information on the fODF which can be extracted and incorporated into the analysis 

beyond the mainly used quantities (fODF peak length and direction). This has been the 

goal of several recent works (Kaden et al., 2007, Seunarine et al., 2007, Zhang et al., 

2007, Sotiropoulos et al., 2012, Dell'Acqua 2013). In contrast to these no new local 

model is introduced, but we rather focus on extracting information from the widely used 

constrained spherical deconvolution (CSD). 

In summary, the goal of this work is to find a robust parameterization of the fODF, which 

identifies multiple compartments, each representing a relatively coherent fiber bundle 

described by a set of meaningful parameters, and to interpret these parameters, as far as 

possible, in terms of microstructural properties, hopefully increasing the specificity of 

the assertions made from changes in FA. We used constrained spherical deconvolution 

as local model, because it directly describes the properties of underlying fiber bundles. 
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Material and methods 

 

Theory 

 

Spherical deconvolution (SD) 

SD (Tournier et al., 2004, Kaden et al., 2007, Tournier et al., 2007, Descoteaux et al., 

2009, Dell'Acqua et al., 2010) translates, for each voxel, the direction dependent signal 

attenuation into an fODF. The idea behind SD is that the measured signal profile can be 

expressed as convolution of a kernel K and the fODF Ψ. 

 �(	
�) = Ψ(	
�) ⊗ � (1) 

The inversion of this relationship, referred to as deconvolution, is used to recover an 

estimate of the fODF. The resulting fODF is an angular-spatial density, that is, for a given 

direction it represents a fiber density defined with regards to a single voxel, it therefore 

describes the angular fiber density (AFD). 

We used CSD, as introduced by Tournier et al. (2007), applied to the signal attenuation1 

to uncover the fODF. This method assumes the response function (deconvolution kernel) 

corresponds to the diffusion signal attenuation obtained from a z-axis oriented single 

fiber and its immediate extracellular neighborhood. One of the key challenges of the 

method is the suitable estimation of the convolution kernel. One way to do this is to use 

the average signal attenuation of those voxels within the corpus callosum with an FA 

above a certain threshold (Tournier et al., 2004), thereby trying to obtain a signal 

generated by the most coherent fiber arrangements available. Since the deconvolution 

kernel has to be rotationally symmetric, instead of using the measured signal directly for 

kernel estimation, we computed the diffusion tensors in the kernel voxels and averaged 

their principal and their minor (i.e., 2nd and 3rd) eigenvalues. The diffusion tensor was 

used since it describes the diffusion signal generated by a single fiber population fairly 

well. If we deconvolve the diffusion signal from a particular voxel with a kernel that has 

been scaled with an appropriate factor, the resulting fODF represents (an estimate of) 

the biological angular fiber density in the respective voxel to the extent to which the 

fibers in that voxel are similar to the average kernel voxel fiber. To scale the signal 

attenuation for a single fiber, one has to divide the kernel signal attenuation by the 

corresponding voxel fiber density, which can be estimated from histological work, for 

example by Aboitiz et al. (1992). 

The fODF resulting from deconvolution is represented using a SH expansion, which is 

truncated at a certain point, defining its order (see Appendix A). The truncation 

                                                           
1
 Note that the MRTrix software package applies the CSD to the diffusion weighted signal rather than the signal 

attenuation. This introduces a weighting of the fODF by the ratio between the b0 (or T2) value in the respective 

voxel and the average b0 in the kernel area (e.g., corpus callosum). Hence, the results must be corrected by a 

factor b0(kernel)/b0(voxel). 
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introduces ringing phenomena causing so-called negative lobes. The used deconvolution 

method (CSD) iteratively imposes a non-negativity constraint for a set of control points. 

This constraint reduces, but not completely eliminates the occurrence of negative lobes 

in the resulting spherical harmonics representation of the fODF. 

Apart from the first spherical harmonic coefficient c� (see Appendix A, B), there is no 

straightforward interpretation of the remaining spherical harmonic coefficients  in 

terms of meaningful microstructural properties of the fiber populations. Hence we 

investigated an alternative parameterization of the fODF. Our general approach is rooted 

in the observation that the fODF very often comprises several sharp peaks, which are 

usually interpreted as reflecting relatively collinear fiber populations or bundles. 

Accordingly, we propose a scheme based on the independent fit of a distinct fiber 

bundle, approximated by a scaled Bingham distribution, to each peak of the fODF. 

 

The Bingham fit 

Fitting Bingham distributions to the peaks of the fODF was first proposed by Seunarine 

et al. (2007) for the purpose of probabilistic tractography. This was done by calculating 

the Hessian at the fODF peak of interest and estimating the Bingham parameters from a 

pre-computed lookup-table. 

The Bingham distribution is an analogue to the general bivariate normal distribution on 

the unit sphere, when concerned with axial data. It is antipodally symmetric, just like the 

spherical harmonic representation of the fODF. It can be characterized by its density 

function: 

 �(	
�) = 	 1	����� exp(−��(��



�		
�)� − ��(��



�		
�)�), (2) 

where u
� is a point on the surface of the unit sphere. The normalization constant F � � is 

the confluent hyper-geometric function of matrix argument. The parameters k� and k� (k� ≥ k�) are called concentration parameters and are defined along the axis μ�



� and μ�



�. 
They characterize the width and ovality of the distribution. The larger a concentration 

parameter gets, the sharper the peak becomes in the direction of the corresponding axis. 

The direction of the distributions mean μ
�$ is the axis, that is orthogonal to μ�



� and μ�



� 
(μ$	




� = μ�



� 	× μ�



�	). Because the Bingham distribution and the fODF peaks are not scaled to 

fit, a parameter s is introduced which together with F 	gives the scaling parameter	f$ =()* = b(μ$)	. Thus, the scaled Bingham distribution, which from here on is referred to as 

Bingham function, is defined as: 

 ,(	
�) 	= - ∙ �(	
�), (3) 

For fitting an fODF peak with a Bingham function the five parameters	f$	, μ�



�, μ�



�, k� and k� need to be estimated. The main orientation is taken to coincide with the direction of 

the respective fODF peak. The parameter f$ therefore corresponds to the maximum 
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angular fiber density (AFDmax). In order to estimate the peaks of the fODF, we overlay it 

with a discrete search grid (in this work we used a grid with 10,242 nodes, 

corresponding to an angular resolution of 2°). On this grid we estimate points 

considered close to the local maxima by comparing them to their neighbors. We fit a 

Bingham function to each of the three largest maxima, ignoring maxima smaller than a 

certain threshold and consider these further peaks to be noise or ringing artifacts. This 

does, however, not affect the parameterization as each peak is parameterized separately. 

In other words, fitting additional peaks does in no way change the results calculated for 

fitting the other peaks. Therefore, the number of peaks quantified is a parameter 

depending on the question one is currently investigating. The directions of the selected 

peaks are fitted by using the respective fODF maximum and a number of surrounding 

points (neighborhood). For this we compute an orientation matrix (Onstott, 1980, 

Tanaka, 1999) for each peak. Assuming	p
�/ = (x/, y/, z/), i = 1…N, to be points near the 

maximum and v/ = Ψ(p6


�) to be the corresponding fODF value, then the orientation 

matrix has the following shape: 

 

7	 = 1∑9: ;<<
<<=>?:� 9:	 >?:@: 9: >?:A:9:>?:@: 9: >@:� 9: >@:A: 9:>?:A: 9: >@:A: 9: >A:�9: BCC

CCD (4) 

This orientation matrix can be understood as a peak fiber tensor, representing the 

corresponding lobe of the fODF, it however is not directly related to the diffusion tensor, 

as it represents fibers and not diffusion. The eigenvectors of T correspond to the 

principal directions of the fODF peak and therefore to the Bingham function fulfilling the 

maximum likelihood estimate for the points used p
�/ = (x/, y/, z/), i = 1…N. This allows 

estimation of μ$	




�, μ�



� and 	μ�



� from the eigenvalue decomposition of T. Because the 

resulting vectors are biased towards the grid points used, the direction vectors are 

further improved by gradient ascent optimization. 

Using the estimated directions μ�



� and	μ�



� in relation to the N neighborhood points p
�/, we 

are able to obtain a simple system of linear equations, by defining the vector β = log JK(L

�M)NO P and the matrix A with entries A/ =	 R(p
�/	μ
S�)�, (p
�/	μ
S�)�T/. The parameters k� 

and k� can then easily be estimated by solving: 

 ,� = U V����W (5) 

Since the whole method depends on the neighborhood used for representing the peak’s 

properties of interest, one has to ensure that it captures the geometry of the respective 

fiber peak as accurately as possible, that is to say that all the points belong to the same 

peak. This is done by successively adding points to the neighborhood under the 

condition, that the slope of the fODF in this grid point does not change its sign. Due to 

the fact that points closer to the maximum can be expected to be less biased by the 

influence of neighboring peaks we additionally only considered neighbors of first, 
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second and third degree, which on our grid leads to a neighborhood of about 35 points 

at a maximal angle of 6° to the peak’s maximum direction. We performed calculations on 

the influence of the neighborhood and found nearly no differences in the metrics as long 

as using a sufficiently large neighborhood, which captures the features of the peak while 

not including two neighborhood peaks. The fitting scheme is shown in Figure 1. 

 

 

Figure 1: The Bingham fit. The fODF is shown in light grey. The Bingham distribution is 

shown in green. The maximum direction μ$



� of its largest peak is visualized as 

the red line. The directions of the Bingham distribution are fitted using a small 

neighborhood of the maximum direction. The points considered part of the peak 

are those within the yellow line. To ensure that the neighboring peaks do not 

have too large an impact, only the neighbors of first, second and third degree are 

considered, which corresponds to the points in the blue area. 

 

Metrics 

 

Since the Bingham functions represent geometric properties of the fODF peaks and 

therefore of fiber bundles, the extracted metrics are closely related to the 

microstructure. Furthermore, since the Bingham function describes the peaks of the 

fODF, metrics cannot only be computed for each of the bundles separately, but also allow 

for comparing bundles within a voxel. In the following we will give a short overview of 

the metrics we investigated. 

 

Bingham function parameters 

The metrics most directly estimated are the parameters of the Bingham function 

themselves. These are the scaling parameter f$  (unit: J �XXYZ[\P) , the unit-less 

concentration parameters k�, 	k� and the directions μ$



�, μ�



� and μ�



�. The scaling parameter 

corresponds to the angular density of fibers, which are aligned with the peak’s main 
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direction. We therefore named this parameter the maximum angular fiber density2 

(AFDmax). It has the same unit as the fODF J �XXYZ[\P. The two concentration parameters 

characterize the peak anisotropy and provide a measure for the spread of fiber 

orientations within one bundle. Large concentration parameters stand for a sharp peak. 

Further information can be gained from their relation. If the concentration parameters 

are very different from one another, the peak’s cross section is very oval, indicating fan-

like spreading, as expected in thin sheet-like fiber populations. In order to make the 

concentration parameters more accessible to intuition we translated them to peak 

opening angles (κ�, κ�; for more information see Appendix C). These are calculated in a 

similar manner as the dispersion angles introduced in the work of Sotiropolous et al. 

(2012) or the orientation dispersion metric defined in the work of Zhang et al. (2012). 

The difference lies in regarding them individually rather than calculating the mean of 

the two angles. In the following we will use both descriptions of the concentration 

parameter. It should, however, always be clear from the context if we are referring to the 

opening angle or the actual concentration parameter. The Bingham function’s directions 

were not used for quantitative evaluations. 

 

Fiber density (FD) 

Another important quantity is the integral of the Bingham function over the sphere. 

Since the fODF is a measure of the angular fiber density, integration over the sphere 

yields the fiber density within the bundle. We used numeric integration to solve the 

integral: 

 FD =	 _ β(`, a) sin` d`dad� . (6) 

The resulting value is the bundle’s fiber density (FD). Since the unit of the AFD is 
�XXYZ[\ 

the fiber density is measured in the unit 
�XXY. 

 

Fiber spread (FS) 

The concentration parameters of the Bingham function quantify the colinearity or, vice 

versa, the spread of the respective bundle. It is, however, desirable to be able to 

characterize the spread of the whole peak in terms of a single scalar value. This can be 

done by using the metrics AFDmax and FD to define a new metric: 

                                                           
2
 It should be noted that in the work of Raffelt et al. (2012b), this parameter is characterized as the apparent 

fiber density. The quantity described however is actually the angular fiber density within the peak’s maximum 

direction, which for sufficiently high b-values is closely related to the apparent fiber density. In essence, a 

different parameter is measured at the b-values normally used, we therefore call this quantity the AFDmax. 
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 FS = FDAFDX[g. (7) 

This metric compares maximum AFD to average AFD. The wider the peak is, the closer 

the maximal and average angular fiber densities are within one bundle, which leads to a 

higher value of FS. When there is a wide peak the average and maximum value are closer 

than when there is a sharp peak. The unit of the FS is radians. It should be noted that the 

value of the metric FS is equal to the value of the normalization constant of the non-

scaled Bingham distribution, in other words the connection to the concentration 

parameters is given by the integral over the exponential of the Bingham distribution. 

 

Complexity (CX) 

As mentioned above, the ability to distinguish the presence of separate fiber bundles in a 

voxel allows us to construct metrics to compare the bundle’s properties Comparing the 

FD of different bundles within a voxel leads to a new metric called (structural) 

complexity (CX). This metric’s value increases when the fiber structure becomes more 

complex and fewer of the fibers in the voxel are contained in the largest bundle alone. 

We define FDi to be the fiber density of the i-th largest peak of the fODF, then CX is 

defined by: 

 CX = 	 jj − 1k1 −	 max/ FD/∑ �n:o:p� q ,rstℎ	j > 1.. (8) 

The value is scaled to lie between 0 and 1. If a single fiber is present within a voxel the 

CX is zero. The CX becomes equal to one when all peaks in the voxel have the same fiber 

density. 

Exemplarily four fiber configurations and the respective metrics derived from the 

Bingham function as well as the FA are presented in Figure 2. 
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Figure 2: Four fiber configurations and the metrics related to the largest peak in each of 

these fiber configurations. The glyphs were calculated with MRtrix. The data is 

part of the dataset discussed in section 3.3. The indices of the metrics indicate 

the values are related to the first, i.e. largest peak. For easier reference the peak 

is indicated by a red arrow in each of the fiber configurations. It should be noted 

that both the side indicated by the arrow as well as the antipodal symmetric 

other half are understood as one peak. 

 

Evaluation 

 

For evaluation, we applied our methods to three types of data: computer simulated data, 

measured data from a physical phantom, and human brain data. 

The simulated data were generated in such a way that the underlying fiber distributions 

were exactly covered by the model (i.e., Bingham functions) and the ground truth was 

known. This was achieved by Bingham distributing the fiber orientation, and then 

convolving that distribution by the diffusion tensor, which was taken to represent the 

diffusion profile of a single fiber population. As the Bingham distribution represents a 

Gaussian in spherical coordinates, its use here is not only convenient, but a natural 

choice, at least if one assumes random deviations from a main fiber direction.  For these 

Bingham distributions we randomly varied the parameters and then correlated the 

reconstructed values with the ground truth. The diffusion signal was calculated by 

computing the forward model, that is, convolution. We did this for a single bundle as 

well as for a configuration involving two bundles that cross at a random angle. We 

assumed the signal attenuation generated by a single fiber, that is the deconvolution 
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kernel, to be appropriately described by a diffusion tensor with an FA of 0.86 and the 

eigenvalues λ� = 0.0014	mm�/s and λ� = λ{ = 0.000177	mm�/s, which corresponds to 

a mean diffusivity (MD) of 0.0006	mm�/s. This kernel was estimated from the corpus 

callosum voxels of a human dMRI data set. The parameters of the Bingham distributions 

were chosen to be uniformly distributed within intervals estimated from real data, so 0°	 < 	κ�, κ� 	< 	90°; 	0	 < 	 f$ 	< 	3 in the single fiber case. For the crossing case we 

assumed two Bingham distributions, crossing at an arbitrary angle between 60° and 90° 

and reduced the parameter space (15°	 < 	 κ�, κ� 	< 	30°; 	1	 < 	 f$ 	< 	2) to ensure that 

crossing are properly resolved and to minimize Bingham function overlapping. We 

performed sixth and eighth order constrained spherical deconvolution on these 

datasets. Afterwards we calculated the correlation between the reconstructed values of 

the metrics and the ground truth. Finally, we analyzed the influence of noise on the 

results in order to determine the robustness of the Bingham fit method. This was done 

by adding a varying simulated Rician noise (Aja-Fernandez et al., 2008) to the simulated 

diffusion signal calculating the fODF and then applying the Bingham fit. The kernel used 

for deconvolution was left unchanged, since in practice it is calculated over a large 

number of voxels, reducing the influence of the noise. 

To test the Bingham fit and to estimate how it behaves in more intricate geometries and 

under more realistic conditions, while still having ground truth knowledge to validate 

the results, we used the phantom data from the Fiber Cup contest (Fillard et al., 2011). 

The creation of the physical phantom is described in the work of Poupon et al. (2008). 

The dataset we used was measured at a b-value of 2000 and with a spatial resolution of 

3 mm. A kernel represented by a diffusion tensor with major eigenvalue λ� =0.0018	mm�/s and minor eigenvalues λ� = λ{ = 0.0014	mm�/s was used. This tensor 

has an FA of 0.12, which is the average FA in the single fiber areas of the physical 

phantom. This FA value, which is much lower than in a human dataset, can be explained 

by the difference in diffusion properties of water in synthetic and biological fiber 

bundles. It does not stem from additional crossings, as the fiber configuration is known 

over the entire phantom, but it rather represents a qualitative difference in the signal of 

the synthetic fibers. 

Finally, we applied our methods to in vivo human diffusion data. The experimental setup 

was approved by the local ethics committee of the University of Leipzig and the 

participant gave written informed consent before being included in the experiment. We 

acquired a 3D T1 weighted structural MPRAGE scan (spatial resolution = 1 mm³) and a 

high resolution dMRI scan from a young right-handed volunteer on a whole-body 3 

Tesla Siemens Tim Trio magnetic resonance scanner (Siemens, Erlangen, Germany) 

equipped with a 32-channel head array coil. For the dMRI we employed a spin-echo echo 

planar imaging (EPI) sequence (TE = 85 ms; TR = 13.8 s; 144 x 144 image matrix; FOV = 

220 x 220 mm²; 85 axial slices (no gap); spatial resolution: 1.5 x 1.5 x 1.5 mm³, GRAPPA 

acceleration factor 3, no cardiac gating, 60 diffusion directions evenly distributed over 

the hemisphere, b-value = 1000 s/mm2). Seven images without any diffusion weighting 

(b0) were obtained: one at the beginning of the scanning sequence and one after each 

block of 10 diffusion-weighted images as anatomical reference for offline motion 
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correction. To increase signal-to-noise ratio (SNR), we repeated the measurement three 

times. The structural scan was reoriented to the sagittal intercommisural plane and the 

brain was segmented from the skull. The b0 and b1000 images were used to estimate 

motion correction parameters of the dMRI sequence using the rigid body registration 

(Jenkinson et al., 2002), implemented in FSL (FMRIB Software Library, University of 

Oxford, http://www.fmrib.ox.ac.uk/fsl/). We combined the motion correction for the 

dMRI data with the global registration to the T1 anatomy, corrected the gradient 

direction for each volume with the rotation parameters, resampled the registered 

images to an isotropic voxel resolution of 1.5 mm and averaged the three acquisitions. 

Finally, we computed the diffusion tensor, the three eigenvectors, and the FA value for 

each voxel. On this dataset we performed an eighth-order SH approximation of the fODF 

using MRtrix (Tournier et al., 2012; http://www.brain.org.au/software/mrtrix/). After 

applying CSD to the signal attenuation we normalized the result to the number of fibers 

in the deconvolution kernel. The kernel FD was estimated as 3.717	10� fibers per mm³ 

in accordance to (Aboitiz et al., 1992). The normalization of the fODF Ψ in each voxel 

amounts to: 

 Ψ��ZX = Ψ ∙ FD��Z���. (9) 

The same normalization was applied to the phantom data using the fiber density of 1900 

fibers per mm³, as described by Fillard et al. (2011). 

We then calculated the parameters of the Bingham functions. To estimate the maxima of 

the SH we used a regularly tessellated search grid constructed by 5 iterative refinements 

of a regular icosahedron resulting in 10,242 vertices and 20,480 faces. 

We chose the three largest peaks found on the search grid and approximated the 

corresponding fODF peaks. In principle, more peaks are possible, depending on the 

quality and quantity of the available measurement information. The Bingham fit was 

performed using a neighborhood size of 35 points, that is to say all direct neighbors and 

neighbors of second and third order, around each maximum, which corresponds to an 

angle of maximal 6° per direction for determining the parameters of the Bingham 

function. 
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Results 

Simulated data 

 

After establishing a method for generating metrics from the approximation of the fODF 

we established the relation of these metrics to the ground truth. This was done using 

simulated data. Our main goal here was to derive rules on how to interpret the metrics 

after having applied our fODF decomposition approach to real data. For this we needed 

to focus on several questions.  

First, we needed to know how well the metrics correlated with the ground truth and 

how the order of the SH reconstruction as well as the chosen neighborhood and noise 

affect the correlation. This allowed us to be certain about the range in which the metrics 

and the ground truth were well connected.  

We found that in the single fiber case the reconstructed values correlate to the ground 

truth very well. This can be seen in the left column of Figure 3. Here the ground truth 

and the reconstructed data show a correlation R� very close to 1 for the metrics 

AFDmax, FD, FS and κ�. Merely κ� is correlated slightly worse. Of interest here is the 

strong bias in both concentration parameters for angles smaller than approximately 15° 

for the eighth-order SH reconstruction and 17° for the sixth-order. Outside of this area 

the concentration parameters show perfect alignment with the ground truth values, as 

do the values observed for the other metrics. Below those angles however, the 

concentration parameters are reconstructed as nearly constant value independent of 

their ground truth value. For the SH series of lower order this indicates an inability to fit 

sharper peaks. Since this fit error has an impact on the other metrics as well, we used 

only concentration angles larger than 20° for the analysis of the other metrics (AFDmax, 

FD, FS). 

Next we analyzed the crossing fiber model. The results are shown in the middle and 

right column of Figure 3. As can be seen, the crossing causes interference between the 

two peaks, which leads to a lower correlation of the reconstructed values to the ground 

truth than in the single fiber model. The metrics AFDmax, FD and FS are more stable 

than the concentration parameters, that is, they show a higher correlation to the ground 

truth. 

We also calculated the correlations for the CX metric and the crossing angle. These 

results are shown in Figure 4. The CX is recovered fairly well, that is to say that it shows 

high correlation, although the design of the simulation experiment leads to unevenly 

distributed CX values. The bias in the CX metric stems directly from the bias in the 

recovered FD values. The crossing angle on the other hand shows a strong bias 

depending on the order of SH reconstruction. 

For further evaluation we mapped the crossing angle dependence of the correlation of 

the reconstructed values and the ground truth for sixth and eighth-order SD (shown in 

Figure 5). A noteworthy point is that the reconstructed parameters AFDmax, FS and FD 
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of the first peak highly correlate with the ground truth (values between 0.75 and 0.90). 

The values of κ�and κ� show high correlation for an angle above 60° and below 20°. 

Between 20° and 50° the correlation drops off strongly for these parameters. This drop 

is connected to the minimal resolution of CSD, in other words, below a crossing angle of 

20° the CSD only resolves a single peak. However, as the angle increases a second peak 

can be observed. This second peak is neither resolved at the correct angle nor at the 

original size and width, but rather experiences strong cross-talk effects from the other 

peak, while itself distorting the other peak. At a crossing angle of 50° the two peaks are 

far enough apart to not influence each other strongly enough anymore. This problem is 

not specific to the fitting approach we used, but rather is an issue of the underlying CSD 

model. 

For the second peak the correlation is low up to an angle of between 50° and 60°, which 

is the angle for which the peaks can correctly be separated. Furthermore one can 

observe that a higher order leads to a better correlation. 

Finally we analyzed the influence of noise. The resulting correlation coefficients are 

shown in Table 1 for the single fiber case and Table 2 for the crossing fiber case. In the 

single fiber case (Table 1) most of the correlations do not depend strongly on the SNR 

values we investigated. The exceptions to this are the metrics κ�, which shows good 

correlation only for an SNR of above 20, and FS, which is not well correlated up to a SNR 

of 40. The influence noise has on the correlation of the reconstructed FS to the ground 

truth is somewhat greater in case of a higher deconvolution order. 

For the crossing fiber case the correlations are more dependent on the SNR. Here many 

metrics are badly correlated for SNR values of less than 20. Again the parameters κ�� 

and κ�� do not show high correlation. Furthermore the FS for both bundles is not 

correlated well up to a SNR of 40. Also the CX metric is not correlated well in the 

presence of noise. 

As can be seen from Table 1 and Table 2, the most stable metrics in presence of noise are 

AFDmax and FD. These two metrics are related to the first statistical moments of the 

Bingham distribution. The more unstable metrics (κ�,	κ�, FS) are related to the second 

statistical moments. Interestingly the deconvolution order does not have a particularly 

profound effect on the correlation in the presence of noise. 

The question remains to what extent the deviations in the reconstructed fiber bundles 

originate from the SH approximation or from the Bingham fit. To investigate this matter, 

we used the human brain dMRI data and measured, for all voxels, how well the fitted 

Bingham distributions described the peaks of the corresponding SH approximated fODF 

peaks. The accuracy of the fit was quantified by calculating the difference between the 

Bingham function and the fODF within the peak area (Fig. 1). The results are shown in 

Figure 6. The Bingham functions represent the peaks of the fODF very well. This can be 

substantiated further by the normalized histogram of the fit difference in percent. In 

only about 5% of the voxels the difference is larger than 3%. 
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Figure 3: Correlation of ground truth and reconstruction. Here the correlations of 

metrics calculated are depicted using the Bingham fit and their ground truth 

values. Ground truth and reconstructed values are shown in the unit of their 

respective metric. The left column shows metrics reconstructed for a single 

fiber population as being present within a voxel. The middle and right column 

show the metrics for the first (middle column) peak and second (right column) 

peak in the case of fiber crossing. In each of the pannel the reconstructions are 

plotted for sixth (blue) and eighth (red) order SH series representation of the 

fODF. The lines show the linear regression results. The corresponding Pearson 
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coefficients (R²) are displayed on the bottom right of each pannel. As can be 

seen, the spread of each of the parameters is smaller for the single fiber model, 

which leads to higher correlations. 

 

Figure 4: Correlation of CX as well as the crossing angle to the ground truth. Here the 

correlation for the metric CX as well as for the resolved crossing angle between 

the two peaks involved in the simulated crossing are shown. Colors and labels 

are the same as in Figure 3. 

 

Figure 5: Angular dependence of the metrics ground truth correlation on the fiber 

crossing angle. These plots show how the correlation between the 

reconstructed values and the ground truth depends on the fiber crossing angle 

and the order of spherical harmonic series approximation. While the correlation 

of the values reconstructed from the largest peak are quite high (between 0.80 

and 1.00), except for the area between 10° and 40°, where lower values can be 

observed for some parameters (FD, FS and especially κ�), the parameters of the 

second peaks do not correlate well with the ground truth until a crossing angle 

of 50° is reached. Generally the higher order reconstruction shows better 

correlation with the ground truth. 
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Figure 6: Difference between Bingham fit and fODF. On the left (a) the histogram of the 

difference between the Bingham fit of the largest three peaks and the fODF is 

shown for a human brain dataset. The difference was calculated at the nodes of 

the search grid used for the fitting the Bingham function to the peak and set into 

relation to the fODF values. On the right (b) the difference is visualized for a 

selection of voxels. The background color indicates the magnitude of the 

difference. The fODF is depicted as glyph for comparison. 

 

Correlation to ground truth in the presence of noise 

 
SNR k1 k2 AFDmax FD FS 

6th order 10 0.2 0.54 0.99 0.69 0.11 

 
20 0.49 0.73 1 0.98 0.12 

 
30 0.61 0.8 1 1 0.26 

 
40 0.71 0.86 1 1 0.51 

 
∞ 0.95 0.9 1 1 1 

8th order 10 0.26 0.64 1 0.72 0.021 

 
20 0.44 0.76 1 0.98 0.13 

 
30 0.65 0.82 1 1 0.18 

 
40 0.74 0.86 1 1 0.32 

 
∞ 0.94 0.94 1 1 1 

Table 1: Correlation of ground truth and metrics for a simulated single fiber 

configuration, derived from the fODF Bingham fit for different SNR. The first 

column contains the SH order used for deconvolution. The second column 

contains the SNR used in the simulation. The remaining columns contain the 

correlation to the ground truth for metrics derived from the Bingham function 

as described in chapter 2.2. These are in order the concentration parameters k1 

and k2, the maximum angular fiber density (AFDmax), the fiber density FD and 

the fiber spread FS. 
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Table 2: Correlation of ground truth and metrics for a simulated fiber crossing 

configuration, derived from the fODF Bingham fit for different SNR. The first 

column contains the SH order used for deconvolution. As in table 1, the second 

column contains the SNR used in for the simulation. The further columns 

contain the correlation to the ground truth for the parameters of the Bingham 

function fit for the two largest peaks, as described in chapter 2.2. Besides the 

metrics mentioned in Table 1, the correlation is shown for the complexity CX 

and the crossing angle. 

 

Phantom data 

 

To evaluate the metrics in a more meaningful, albeit somewhat less controlled setting, 

we applied our decomposition method to phantom data. Here we were especially 

interested in finding out if the metrics would be able to uncover the underlying fiber 

structure from the data. We focused on the metrics AFDmax, FD, FS and CX, as well as 

the FA for comparison. The goal was to check what extra information could be revealed 

from the Bingham function based metrics in a controlled environment. The results are 

shown in Figure 7. The color maps in each example were scaled to maximize the contrast 

in the images. Values larger than the maximum value were set to red, while values 

smaller than the minimum were set to dark blue. 

It should be noted that due to the diffusion properties of the synthetic phantom, the FA 

values are generally much lower than in biological tissue. However, this change in 

diffusion properties does not influence the values derived from the fODF because they 

are captured by the diffusion kernel. 

Correlation to ground truth in the presence of noise 

 
SNR k11 k12 AFDmax1 FD1 FS1 k21 k22 AFDmax2 FD2 FS2 CX angle 

6th order 10 0.058 0.21 0.6 0.41 0.15 0.046 0.1 0.28 0.24 0.11 0.039 0.42 

 
20 0.18 0.51 0.77 0.6 0.43 0.15 0.39 0.47 0.32 0.3 0.12 0.83 

 
30 0.26 0.61 0.8 0.61 0.48 0.17 0.45 0.46 0.32 0.38 0.27 0.87 

 
40 0.39 0.66 0.8 0.7 0.59 0.24 0.57 0.48 0.4 0.49 0.26 0.89 

 
∞ 0.61 0.73 0.83 0.74 0.72 0.35 0.59 0.71 0.55 0.54 0.47 0.95 

8th order 10 0.029 0.19 0.56 0.34 0.11 0.054 0.13 0.44 0.28 0.12 0.13 0.38 

 
20 0.18 0.51 0.79 0.57 0.44 0.15 0.38 0.52 0.33 0.32 0.16 0.59 

 
30 0.28 0.66 0.84 0.61 0.52 0.22 0.5 0.49 0.41 0.46 0.39 0.8 

 
40 0.36 0.68 0.85 0.68 0.62 0.28 0.58 0.51 0.42 0.51 0.36 0.81 

 
∞ 0.64 0.78 0.88 0.77 0.77 0.43 0.76 0.84 0.64 0.69 0.76 0.97 
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We will begin by focusing on comparing the FA and the CX. Since we know the actual 

fiber configurations for the phantom, shown in panel a) of Figure 7, we can validate our 

structural complexity metric by applying it to these configurations and compare it to the 

FA. While the complexity measure is mostly inversely proportional to the FA, in the area 

marked as A and circled in red, the complexity further specifies the information gained 

from FA. In this area the complexity is high, which indicates a crossing fiber 

configuration. The value of 0.5 for the complexity metric (using a peak number of n = 3) 

indicates a crossing of one large bundle containing approximately 2 times the number of 

fibers as the smaller bundles combined. The FA in the circled area is rather high despite 

the crossing, since the smaller bundles do not influence the tensor as strongly as the 

larger one. When following the two crossing bundles separately one can derive the 

information for the voxel from the local surroundings. The complexity measure thereby 

not only increases the specificity, but in this case uncovers more microstructural 

information than the FA by indicating the underlying structure without the need to 

evaluate the surrounding structure. Similar information can be gained from the 

comparison of the AFDmax and FD for the different peak sizes. The AFDmax and the FD 

of the first peak show a very similar qualitative behavior to the FA. The further 

structural information can almost completely be gathered from the second and third 

peak. It should be noted that the CX is high in most of the top half of the phantom, 

especially close to the border. This is might be caused by a lower SNR in these branches 

which also present lower FA values. Another possible reason might lie in the possible 

inhomogeneity in the underlying fiber density, due to the construction of the phantom.  

Intrinsic properties stemming from the construction of the phantom data are uncovered 

by the metric FS. For the major fiber bundles this metric is close to constant over the 

whole phantom, except for some noise voxels. This indicates that no significant fanning 

is present in this phantom and shows that the bundles are almost all configured the 

same way. This leads in particular, to AFDmax and FD being very similar, since they are 

then related by a constant factor. One aspect of the phantom dataset is that the 

background is very noisy, which leads to a strong influence on voxels in the boundary 

regions of the synthetic fiber populations. This influence is shown by the metric CX, 

which indicates a sharp increase in complexity in the vicinity of the fiber bundle 

boundaries. 
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Figure 7: Metrics from phantom data. Here the metrics calculated from the phantom 

data are mapped upon the b0 image. Color maps were optimized for contrast. 

Values above the maximum value are set to red, ones below are set to zero. Zero 

values are not shown. The geometry is depicted in panel a). The metrics are 

shown in panels b) through l). 
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Human data 

 

Next we applied the Bingham fit to fODFs from in-vivo MRI data of a human brain and 

evaluated the derived metrics. To increase the visual effect of these metrics we applied a 

smoothing with a gauss kernel of 1 mm. The original maps are shown in Figure D.1 and 

D.2 in Appendix D. The smoothened results are depicted in Figure 8. Again the FA and 

the AFDmax as well as the FD of the first peak appear qualitatively similar, with high 

values in the corpus callosum (CC) and the corticospinal tract (CST) and low values in 

crossing areas and in the vicinity of the cortex (correlations as shown in Figure 10: FA to 

AFDmax and FA to FD both 0.62). The CX metric appears to be negatively correlated to 

these metrics (-0.57). One is clearly able to distinguish the crossing areas from areas 

with aligned fiber structure from the CX map. In other words this metric has higher 

values in the crossing regions, while CC and CST are shown to have medium to low 

structural complexity. The fiber spread also shows the expected behavior for the first 

peak by being higher in the corona radiate and other fanning white matter regions, 

while being lower and close to constant in the other regions. FS is especially high in the 

white matter close to the cortex. 

The metrics derived from the Bingham functions fitting the secondary and tertiary peaks 

of the fODF are shown in Figure 9. As can be seen, the maps for the higher order peaks 

get more and more sparse due to those peaks not being present in the fODF. 

The AFDmax parameter is significantly smaller for the second and third peak, than for 

the first peak. It is also the parameter by which the peaks are sorted. While the map of 

this parameter of the first peak was similar to the FA, the parameter for the second and 

third peak was significantly different. In the CC and CST the AFDmax from the second 

and third peak is low, while in the crossing regions and at the grey-white-matter 

boundary it is high. 

The FD maps show strong dissimilarity between the first, second and third peak. While 

the first peak’s map is similar to the FA, the second peak’s map resembles the CX. The 

third peak’s FD on the other hand is relatively smooth and has significantly smaller 

values. 

Finally the correlations between the metrics are depicted in Figure 10. Here some 

interesting observations can be made. The FA is negatively correlated to the CX as well 

as positively correlated the AFDmax and FD of the first peak. It shows little to no 

correlation to any other metric, especially those of the non-primary peaks. This indicates 

a strong connection between the FA and the shape of the first peak. The CX on the other 

hand, is correlated strongly to all metrics, while the AFDmax and FD are mainly 

correlated within corresponding peaks, showing little to no inter-peak relationship.  

To infer the spatial connection between the metrics AFDmax, FD, FS, CX and the FA, we 

visualized the spatial distribution of the summands of the Pearson correlation 

coefficient (R²) in Figure 11. The average of all the summands gives the correlation 

between the FA and the metric, as depicted in Figure 10. Here one can observe that the 
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FA and the metrics AFDmax, FD and CX are strongly connected in areas without a high 

number of fiber crossings. The FS shows only a low correlation overall and also the 

spatial map does not reveal any areas of high connection, except for small positive 

summands in the crossing areas and negative values in the areas without strong 

crossings. 

 

 

Figure 8: Primary metrics mapped on the human brain. Displayed here are the smoothed 

maps of the metrics FA, CX as well as the three metrics AFDmax, FD and FS, 

which characterize the first peak. The images of the metrics were masked to the 

white matter using an FA map with a threshold of 0.15, which were manually 

expanded to cover the white matter and the thalamus. These maps were then 

overlaid on an interpolated T1 image and scaled for contrast. The boundaries 

for the scaling are marked in the histograms at the bottom. The y axis in the 

histogram represents the number of voxels in which a certain value occurs. 

These are the images obtained from smoothing the original metrics before 

applying the white matter mask. The results without the smoothing steps can be 

found in Appendix D (Figure 13). 
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Figure 9: Metrics of secondary and tertiare fODF peaks. These maps were created as 

those in Figure 8, including the scaling and the histograms at the bottom. The 

maps for the non-interpolated metrics can be found in Appendix C (Figure 14). 

 

 

Figure 10: Correlation between metrics. This image shows the correlation structure of 

the metrics. For correlation purposes a white matter skeleton was used to map 

the metrics. All voxels for which either of the metrics was equal to zero were 

dismissed. As can be seen, 3 clusters can easily be identified. The first contains 

FA, CX, AFDmax1, FD1, the second AFDmax2, FD2 and FS2, the third AFDmax3, 

FD3 and FS3. This indicates a strong connection between FA, as well as the 

shape of the first peak and the microstructural properties at the same time. 



27 

 

 

Figure 11: Spatial mapping of contribution to correlation with FA. The values 

correspond to the summands of the Pearson correlation coefficient. The average 

of these values over the whole masked region gives the correlation, which is 

shown in Figure 10. As can be seen, for AFDmax, FD and CX high values (as with 

CX) low values can be found in the main fiber bundles, i.e. especially in regions 

without major crossings. The FS shows small negative values mainly in areas 

without fiber crossings. 

 

Discussion 

 

We used Bingham functions, that is, scaled Bingham distributions, to characterize the 

peaks of the fODF estimated from constrained spherical deconvolution (CSD). The 

motivation for choosing such an approach lies within the observation that CSD and the 

corresponding fODF are widely used tools for the analysis of diffusion data that are easy 

to apply and do not require a priori model choices. It therefore is of interest to find a 

parameterization, which allows for increasing the information which can be gained from 

the results of CSD. Furthermore this approach can be applied to every method which 

gives an ODF. The only difference then lies in the interpretation of the derived metrics. 

The fODF information which has so far been used in analysis mainly includes the length 

of the (largest) peaks and their direction. We presented a novel approach for extracting 

more in depth metrics on the fODF, which can be quantitatively evaluated. This is in line 
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with several recent works (Kaden et al., 2007, Seunarine et al., 2007, Zhang et al., 2012, 

Sotiropoulos et al., 2012, Dell'Acqua et al., 2013). In our approach we assumed the peaks 

of the fODF to reflect the microstructural fiber bundles present in a voxel. The fitted 

Bingham functions share geometric properties with the fODF, which can directly be 

translated to metrics describing properties of the underlying fiber bundle. The 

introduced metrics were the fiber density (FD), maximum angular fiber density 

(AFDmax), the fiber spread (FS) and the structural complexity (CX). We validated our 

metrics using simulations and then investigated their behavior using a physical 

phantom. Here, the known fiber layout enabled us to investigate how our metrics 

compared to the FA and show areas where they increase its specificity. Finally we 

applied our methods to in-vivo brain scans. We demonstrated how the proposed metrics 

can be used on their own to draw conclusions on the underlying microstructure, and 

how they may help to provide findings from the FA with additional meaning, thus 

increasing specificity.  

In detail we found that, as expected, the AFDmax specifies areas of high fiber colinearity, 

the FD gives insights into the fiber density, and the CX correctly identifies regions of 

fiber crossings. Furthermore, we found that the CX anti-correlates to the FA, while the 

AFDmax as well as the FD of the largest peak strongly correlate to the FA (as shown in 

Figure 10). Besides this, we showed that the correlation mainly originates from areas 

without major fiber crossings (Figure 11), therefore these metrics can be believed to 

hold information additional to that of the FA. This confirms that the FA is a metric 

describing a mixture of properties, which can be specified using the CX, FD and AFDmax 

metrics. Moreover, it confirms that the FA can be explained purely by properties of the 

fiber configuration and does not necessarily reflect changes in fiber properties, such as 

myelination. 

The FS is a metric that is based solely on second-order statistics of the Bingham 

distribution. It turned out to be rather unreliable, at least if more than one fiber bundle 

is present in the voxel (Tab. 2) or if the SNR is not very high (Tab. 1). This finding limits 

the practical usability of this metric (as well as any other metric based on the second 

moments of the Bingham distribution). Consequently, the mappings of this metric 

shown in Fig. 7-9, 11, D.1, D.2 have to be interpreted with great care. 

When mapping the bundle specific metrics a bundle correspondence problem arises, 

that is, between neighboring voxels it is not a priori clear which fODF peaks represent 

the same fiber bundle. As a result of this problem, the acquired maps for bundles appear 

less smooth than those of non-bundle specific metrics. The elegant solution to this 

problem is to map the parameters along single fiber pathways obtained from 

tractography. The decomposition of the fODF then allows the estimation of metrics along 

the fibers. This was investigated in the work by Schreiber et al. (2014). In their work a 

novel tractography method is used for estimating the most probable connection 

between two regions of interest. Then, bundle dependent metrics like those described 

here are mapped along the pathways, thereby giving information on the change of the 

microstructure along distinct fiber bundles. A similar problem arises when bundle 
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specific metrics need to be compared between subjects (e.g.; Jbabdi et al., 2010, Raffelt 

et al., 2012a). 

While the increase in specificity already provides the means for more accurate 

investigation of regions with changing FA (or other tensor based measures) there are of 

course some limits concerning the spatial and angular resolution of this method, 

imposed by the voxel size and by the angular sampling. Moreover, the use of a constant 

deconvolution kernel inevitably obscures any changes in fiber properties. Hence, if there 

is a change in myelination or axonal diameter, this will be projected into changes in fiber 

density. In order to improve this situation, higher angular and especially spatial 

resolutions are needed (see e.g. Heidemann et al., 2012). Using multiple b-values and 

diffusion times does further improve the ability to resolve microstructural properties, 

such as axonal density and axonal diameter (Assaf and Basser, 2005, Alexander et al., 

2010 ). 

A different issue, also related to the resolution of the fODF, comes from the use of 

spherical harmonic representations, which, as with every truncated series expansion, 

introduces a bias into the reconstruction. This can be seen in the results from the 

simulated data experiments we conducted. Here a higher order leads to a more accurate 

recovery of the ground truth used in the simulations. The order one can use, however, is 

limited by the number of gradient directions (and therefore the amount of information) 

measured and of course by the signal-to-noise ratio (SNR) (Jones et al., 2013). If the 

order of the spherical harmonic series expansion is too low, then peaks of certain 

sharpness (opening angle less than 20°, see Figure 3) cannot be represented accurately. 

This also leads to crossings at small angles (for eighth order below 50° as shown in 

Figure 5) not being resolved properly, but rather being interpreted as a single large 

peak. As shown in Figure 10, the higher order leads to better correlation between 

ground truth and reconstructed values. However, with real data, stability requirements 

enforce regularization, which limits the effectively used model order.   

The truncation of the spherical expansion also leads to ringing artifacts in terms of 

negative lobes in the approximation of the (strictly positive) fODF. Together with the 

negative lobes spurious (positive) peaks appear. This is compensated to a certain degree 

by CSD, however, the regularization influences the shape of the fODF and may lead to 

regularization artifacts. The danger here lies not only in the misrepresentation of peaks, 

but also, the regularization may cause spurious positive peaks to arise. These are 

particularly dangerous, as these peaks cannot be discerned from peaks caused by the 

underlying microstructure. The stability and the occurrence of spurious peaks may also 

be ameliorated by using the damped Richardson-Lucy deconvolution (Dell'Acqua et al., 

2007, Parker et al., 2013). 

The regularization, while very efficient in suppressing negative lobes, also leads to 

significant shift in the shape of the fODF (Sotiropoulos et al., 2012; Dell'Acqua et al., 

2007). Since the Bingham fitting scheme was demonstrated using CSD as deconvolution 

method, this can lead to misleading metrics, concerning the  ground truth. Overall the 

question remains which amount of the missmatch between ground truth and fitted 
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values we observed stems from a missmatch between the SH representation of the fODF 

and the ground truth. This does not only affect the correlations estimated from the 

simulations but also may lead to a lack of contrast in the metric maps (Figure 9). 

However, since the Bingham fitting scheme is independent of the underlying model 

including a different local model may reduce this effect. 

A more fundamental point concerns the use of the SH representation in the spherical 

deconvolution scheme. Although this basis is very convenient for the calculation, it 

suffers from substantial limitations concerning its ability to represent the fODF. 

Especially if the kernel is estimated from voxels with relatively parallel fiber 

arrangement, such as the corpus callosum, the underlying fODF in these voxels as well as 

similar ones is per definition a Dirac delta function. In other words, very sharp functions 

have to be approximated, in particular within the large fiber bundles. On the other hand, 

the angular resolution of the SH representation is rather limited (as discussed above). 

Hence, especially for parallel fiber bundles, the SH representation is less than perfect. 

 

Conclusion 

 

Summarizing the Bingham function based fODF peak characterization is a useful tool for 

gaining insight into the fiber structure with higher specificity than with the FA. While 

metrics that primarily rely on the first-order moments of the Bingham distribution can 

be estimated robustly, those that are based on second-order moments (i.e., FS) are much 

less reliable, thus limiting their usefulness in practice, at least with the type of data used 

here. The direct link between the metrics and the fODF especially allows a direct 

correlation of differences in the metrics to changes in the structural configuration of the 

fiber configuration. However, this specificity also implies a loss in sensitivity, due to a 

loss of SNR caused by more complex models. Therefore they are best suited for the 

investigation of areas where one suspects changes in structure to cause changes in FA. 

Finally, it should be mentioned that the Bingham characterization is also potentially 

useful for tractography (Seunarine et al., 2007). 
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Appendix A: Spherical harmonics expansion 

 

The particular SH base functions used here have been proposed by Descoteaux et al. 

(2006). For rank m and order l they are defined as: 

 ���(`, a) = 	�2� + 14	� 	(� − �)!(� + �)!	���(cos`) exp(s�a), (A.1) 

where P�X is the Legendre polynomial of rank m and order l. As the measured diffusion 

signal within each voxel is naturally positive and symmetric with respect to the origin, 

only spherical harmonic base functions of even rank have to be considered to represent 

the fODF. Since these functions are mutually orthogonal by definition, we can use them 

to define a spherical harmonic base. Using the index j = �� (l� + l + 2) + m, the base can 

be written as: 

 ��(`, a) = ��� J��|�|(`, a)P , s�	� > 0���(`, a),																					s�	� = 0 �¡���(`, a)¢,											s�	� < 0  (A.2) 

The fODF obtained from spherical deconvolution is therefore described as a series of 

coefficients c£ that correspond to base functions Y£. The series expansion can be written 

as: 

 Ψ(	
S) =>¥���(	
�)¦
�p� , (A.3) 

with J = (L + 2)(L + 1)/2, where L is the spherical harmonic order at which the series 

expansion is truncated.  

 

Appendix B: The meaning of the first SH coefficient 

 

The SH expansion of any square integrable, antipodially symmetric, analytical function 

on the sphere can be written as (Sneeuw, 1994): 

 �(`, a) => > ©�����(¥ª- `) ¥ª-�a�
�p$

«
�p$  (B.1) 

The coefficients g�X hereof are defined by the following relation using the index j 
introduced in Appendix A: 
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 ©�� = 14�_ _�(`, a)���(¬
$ ¥ª- `)�¬

$ cos�a -sj ` d`da. (B.2) 

Since P$$(x) = 1, the first coefficient (g� = g$�) can be computed using: 

 ©� = 14�_ _�(`, a)¬
$

�¬
$ -sj `	d`da, (B.3) 

which corresponds to the integral of f(θ,ϕ) over the sphere. Therefore, in the case of f(θ, ϕ) being the fODF this corresponds to the integral of the fODF over the sphere, 

which in turn describes the number of fibers within a voxel and therefore the fiber 

density. As h� = 0, the coefficient g� is equal to c�(see Appendix A). Thus the first 

coefficient of the SH expansion is equal to the fiber density. 
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Appendix C: Angular representation of concentration parameters 

 

When viewing the Bingham function as angular function in one of the planes μ$



� × 	μ�



� or μ$



� × μ�



�, then we can write it as function of the angle α between the direction for which 

we want to examine the concentration parameter and the main direction μ$



� (as shown 

in Figure C.1). Let k� be the concentration parameter connected to μ�



� and k� connected 

to μ�



�. As a shorthand we will use k�,� to denote either of these parameters, as the 

Bingham function is independent of the other as long as viewed in one of the planes 

separately. 

As function of α, the Bingham function reduces to: 

 ,(±) 	= �$ exp¡−��,�(sin ±)�¢, (C.1) 

We define the concentration parameter dependent opening angle 	κ�,� as: 

 ²�,� = asin³ ��	��,�, (C.2) 

This angle describes the distance to the main direction at which the function dropped to exp	(−1/2) of its maximum value. This is analogous to the angle at which a Normal 

distribution reaches 1-sigma level J´(σ) = �¶√�¸ exp J− ��PP. Therefore the angle κ can 

be seen as the standard deviation angle of the Bingham function. 

 

 

Figure C.1: Derivation of the peak opening angle. On the left the Bingham function is 

shown in blue as polar plot. The green circle shows the value f$ . The angle to 

the main direction of the Bingham function is noted as α. On the right the 

Bingham function is shown as function of α in Cartesian coordinates. The angle κ describes the angle at which the function dropped to exp	(−1/2) of its 

maximum value. 
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Appendix D: Unsmoothed metric maps 

 

 

Figure D.1: Unsmoothed metric maps for the first peak, FA and CX. The metrics are 

mapped onto the white matter by using an FA mask which was thresholded at 

0.15 and manually expanded to include the complete white matter and the 

thalamus. The T1 image is used as background. 

 

 

Figure D.2: Unsmoothed metric maps for the second and third peak. The metrics are 

mapped onto the white matter by using an FA mask which was thresholded at 

0.15 and manually expanded to include the complete white matter and the 

thalamus. The T1 image is used as background. 

  



35 

 

Acknowledgements 

Part of this work was supported by the FET project CONNECT of the EU (www.brain-

connect.eu). The authors want to thank Ralph Schurade for integrating the developed 

method into BrainGL, an open-source software for analysis and visualization of brain 

connectivity, available at http://brainGL.googlecode.com. 

 

References 

Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus 

callosum. Brain Res 598:143-153. 

Aganj I, Lenglet C, Sapiro E, Yacoub E, Ugurbil K, Harel N (2010) Reconstruction of the 

orientation distribution function in single- and multiple-shell q-ball imaging 

within constant solid angle. Magn Reson Med 64:554-566. 

Aja-Fernandez S, Niethammer M, Kubicki M, Shenton ME, Westin C-F (2008) Restoration 

of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging 27:1389-

1403. 

Alexander D, Hubbard P, Hall M, Moore E, Ptito M, Parker GJM, Dyrby T (2010) 

Orientationally invariant indices of axon diameter and density from diffusion 

MRI. Neuroimage 52:1374-1389. 

Alexander DC (2005) Maximum entropy spherical deconvolution for diffusion MRI. Inf 

Process Med Imaging (IPMI), 19:76-87. 

Assaf Y, Basser P (2005) Composite hindered and restricted model of diffusion 

(CHARMED) MR imaging of the human brain. Neuroimage 27:48-58. 

Barnett A (2009) Theory of Q-ball imaging redux: Implications for fiber tracking. Magn 

Reson Med 62:910-923. 

Basser P, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. 

Biophys J 66:259-267. 

Basser PJ (1995) Inferring microstructural features and the physiological state of tissues 

from diffusion-weighted images. NMR Biomed 8:333-344. 

Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews 

PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty 

in diffusion-weighted MR imaging. Magn Reson Med 50:1077-1088. 

Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic 

diffusion tractography with multiple fibre orientations: What can we gain? 

Neuroimage 34:144-155. 

Bingham C (1974) An antipodally symmetric distribution on the sphere. Ann Statist 

2:1201-1225. 



36 

 

Caan MWA, Khedoe HG, Poot DHJ, den Dekker AJ, Olabarriaga SD, Grimbergen KA, van 

Vliet LJ, Vos FM (2010) Estimation of diffusion properties in crossing fiber 

bundles. IEEE Trans Med Imaging 29:1504-1515. 

Callaghan PT, Coy A, Macgowan D, Packer KJ, Zelaya FO (1991) Diffraction-like effects in 

NMR diffusion studies of fluids in porous solids. Nature 351:467-469. 

Canales-Rodríguez E, Melie-García L, Iturria-Medina Y (2009) Mathematical description 

of q-space in spherical coordinates: Exact q-ball imaging. Magn Reson Med 

61:1350-1367. 

Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, 

Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. 

Proc Natl Acad Sci U S A 96:10422-10427. 

Cory D, G., Garroway A, N. (1990) Measurement of translational displacement 

probabilities by NMR: An indicator of compartmentation. Magn Reson Med 

14:435-444 

Dell'Acqua F, Rizzo G, Scifo P, Clarke RA, Scotti G, Fazio F (2007) A model-based 

deconvolution approach to solve fiber crossing in diffusion-weighted MR 

imaging. IEEE Trans Biomed Eng 54:462-472. 

Dell'Acqua F, Scifo P, Rizzo G, Catani M, Simmons A, Scotti G, Fazio F (2010) A modified 

damped Richardson-Lucy algorithm to reduce isotropic background effects in 

spherical deconvolution. Neuroimage 49:1446-1458. 

Dell'Acqua F, Simmons A, Williams SCR, Catani M (2013) Can spherical deconvolution 

provide more information than fiber orientations? Hindrance modulated 

orientational anisotropy, a true-tract specific index to characterize white matter 

diffusion. Hum Brain Mapp 34:2464-2483. 

Descoteaux M (2008) High angular resolution diffusion MRI: From local estimation to 

segmentation and Tractography. PhD Thesis. University of Nice. France. 

Descoteaux M, Angelino E, Fitzgibbons S, Deriche R (2006) Apparent diffusion 

coefficients from high angular resolution diffusion imaging: estimation and 

applications. Magn Reson Med 56:395-410. 

Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and 

probabilistic tractography based on complex fibre orientation distributions. 

IEEE Trans Med Imaging 28:269-286. 

Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, Ramirez-Manzanares 

A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) 

Quantitative evaluation of 10 tractography algorithms on a realistic diffusion 

MR phantom. Neuroimage 56:220-234. 

Ghosh A, Deriche R (2011) Extracting geometrical features & peak fractional anisotropy 

from the ODF for white matter characterization. IEEE Int Symp Biomed Imag 

(ISBI), 266-271. 



37 

 

Heidemann RM, Anwander A, Feiweier T, Knösche TR, Turner R (2012) k-space and q-

space: Combining ultra-high spatial and angular resolution in diffusion imaging 

using ZOOPPA at 7T. Neuroimage 60:967-978. 

Jbabdi S, Behrens TEJ, Smith SM (2010) Crossing fibres in tract-based spatial statistics. 

Neuroimage 49:249-256. 

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust 

and accurate linear registration and motion correction of brain images. 

Neuroimage 17:825-841. 

Jeurissen B, Leemans B, Tournier J-D, Jones D, Sijbers J (2010) Estimating the number of 

fiber orientations in diffusion MRI voxels: A constrained spherical 

deconvolution study. ISMRM 18th annual meeting, 573. 

Jian B, Vemuri BC (2007) A unified computational framework for deconvolution to 

reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans Med 

Imaging 26:1464-1471. 

Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other 

fallacies: The do's and don'ts of diffusion MRI. Neuroimage 73:239-254. 

Kaden E, Knösche TR, Anwander A (2007) Parametric spherical deconvolution: Inferring 

anatomical connectivity using diffusion MR imaging. Neuroimage 37:474-488. 

Kreher BW, Schneider JF, Mader I, Martin E, Hennig J, Il'yasov KA (2005) Multitensor 

approach for analysis and tracking of complex fiber configurations. Magn Reson 

Med 54:1216-1225. 

Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR 

imaging of intravoxel incoherent motions: Application to diffusion and 

perfusion in neurologic disorders. Radiology 161:401-407. 

Malcolm JG, Shenton ME, Rathi Y (2010) Filtered multitensor tractography. IEEE Trans 

Med Imaging 29:1664-1675. 

Mardia KV (1975) Statistics of directional data. J Roy Statist Soc. Series B 

(Methodological), 37:349-393. 

Mori S, van Zijl PC (2002) Fiber tracking: Principles and strategies - a technical review. 

NMR Biomed 15:468-480. 

Onstott TC (1980) Application of the Bingham distribution function in paleomagnetic 

studies. J Geophys Res 85:1500-1510. 

Parker GD, Marshall AD, Rosin PL, Drage N, Richmond S, Jones DK (2013) A pitfall in the 

reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI 

data. Neuroimage 65:433-448. 

Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-

based probabilistic index of connectivity (PICo) using a structural interpretation 

of MRI diffusion measurements. J Magn Reson Imaging 18:242-254. 



38 

 

Pasternak O, Assaf Y, Intrator N, Sochen N (2008) Variational multiple-tensor fitting of 

fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. Magn 

Reson Imaging 26:1133-1144. 

Poupon C, Rieul B, Kezele I, Perrin M, Poupon F, Mangin JF (2008) New Diffusion 

Phantoms Dedicated to the Study and Validation of High-Angular-Resolution 

Diffusion Imaging (HARDI) Models. Magn Reson Med 60:1276-1283. 

Raffelt D, Tournier J-D, Crozier S, Connelly A, Salvado O (2012a) Reorientation of fiber 

orientation distributions using apodized point spread functions. Magn Reson 

Med 67:844-855. 

Raffelt D, Tournier J-D, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly 

A (2012b) Apparent Fibre Density: A novel measure for the analysis of 

diffusion-weighted magnetic resonance images. Neuroimage 59:3976-3994. 

Scherrer B, Warfield SK (2010) Why multiple b-values are required for multi-tensor 

models. Evaluation with a constrained log-euclidean model. IEEE Int Symp 

Biomed Imag (ISBI) 1389-1392. 

Schreiber J, Riffert TW, Anwander A, Knösche TR (2014) Plausibility Tracking: A method 

to evaluate anatomical connectivity and microstructural properties along fiber 

pathways. Neuroimage 90:163-170. 

Schultz T, Kindlmann G (2010) A maximum enhancing higher-order tensor glyph. 

Comput Graph Forum 29:1143-1152. 

Seunarine KK, Cook PA, Hall MG, Embleton KV, Parker GJM, Alexander DC (2007) 

Exploiting peak anisotropy for tracking through complex structures. IEEE Int 

Conf Comp Vis 1-8. 

Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical 

quadrature methods in historical perspective. Geophys J Int 118:707-716. 

Sotiropoulos SN, Behrens TE, Jbabdi S (2012) Ball and rackets: Inferring fiber fanning 

from diffusion-weighted MRI. Neuroimage 60:1412–1425. 

Tabelow K, Voss HU, Polzehl J (2012) Modeling the orientation distribution function by 

mixtures of angular central Gaussian distributions. J Neurosci Methods 203:200-

211. 

Takahashi M, Hackney DB, Zhang GX, Wehrli SL, Wright AC, O'Brien WT, Uematsu H, 

Wehrli FW, Selzer ME (2002) Magnetic resonance microimaging of intraaxonal 

water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 

99:16192-16196. 

Tanaka H (1999) Circular asymmetry of the paleomagnetic directions observed at low 

latitude volcanic sites. Earth Planets Space 51:1279-1286. 

Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre 

orientation distribution in diffusion MRI: Non-negativity constrained super-

resolved spherical deconvolution. Neuroimage 35:1459-1472. 



39 

 

Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing 

fiber regions. Int J Imaging Syst Technol 22:53-66. 

Tournier JD, Calamante F, Gadian D, Connelly A (2004) Direct estimation of the fiber 

orientation density function from diffusion-weighted MRI data using spherical 

deconvolution. Neuroimage 23:1176-1185. 

Tristán-Vega A, Westin CF, Aja-Fernández S (2009) Estimation of fiber orientation 

density probability density functions in high angular resolution diffusion 

imaging. Neuroimage 47:638-650. 

Tuch D (2004) Q-ball imaging. Magn Reson Med 52:1358-1372. 

Tuch D, Reese T, Wiegell M, Makris N, Belliveau J, Wedeen V (2002) High angular 

resolution diffusion imaging reveals intravoxel white matter fiber 

heterogeneity. Magn Reson Med 48:577-582. 

Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: Practical in 

vivo neurite orientation dispersion and density imaging of the human brain. 

Neuroimage 61:1000-1016. 

 


