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Abstract

We give the supersymmetric extension of exceptional field theory for E7(7), which is based on a (4 + 56)-
dimensional generalized spacetime subject to a covariant constraint. The fermions are tensors under
the local Lorentz group SO(1,3) x SU(8) and transform as scalar densities under the E(7) (internal)
generalized diffeomorphisms. The supersymmetry transformations are manifestly covariant under these
symmetries and close, in particular, into the generalized diffeomorphisms of the 56-dimensional space.
We give the fermionic field equations and prove supersymmetric invariance. We establish the consistency

of these results with the recently constructed generalized geometric formulation of D = 11 supergravity.
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1 Introduction

Ever since the discovery of ‘hidden’ exceptional symmetries in maximal N = 8 supergravity [I]
a recurring theme has been the question of whether these symmetries are specifically tied to
dimensional reduction on tori, or whether they reflect more general properties of the underlying
uncompactified maximal theories, possibly even providing clues towards a better understanding
of M-theory. Starting from D = 11 supergravity [2] clear evidence for the existence of hidden
structures beyond those of standard differential geometry was already given in the early work
of Refs. [BL[], a line of development which was continued in [5] and taken up again in [6-].
Somewhat independently of these developments, an important insight has been the emergence
of generalized geometric concepts in string and M-theory, which enable a duality-covariant
formulation of the low-energy effective spacetime theories, as manifested in double field theory
[0H13], and in the recently constructed ‘exceptional field theory’ (EFT) [14,[I5]. The purpose
of this paper, then, is to bring together these strands of development: first we complete the
construction of the E7(7) EFT by giving the fully supersymmetric extension by fermions; second,
we relate the resulting theory to the formulation of [36HS]. As one of our main results we will
demonstrate the compatibility of these two formulations, and explain the subtleties involved in
making a detailed comparison.

The approach of [3], which has been extended and completed in [7f§] to also take into account
aspects of the Er(7)-based exceptional geometry, takes D = 11 supergravity as the starting point
and reformulates it in order to make a local SO(1,3) x SU(8) tangent space symmetry manifest.
To this end the fields and coordinates are decomposed in a (4 + 7) splitting, as in Kaluza-Klein
compactifications, but keeping the full coordinate dependence of all fields (however, unlike in
EFT, no extra coordinates beyond those of the original theory are introduced). The fermions
transform under the local SU(8) subgroup, and their supersymmetry transformations, already
given in [3], are manifestly SU(8) covariant. Moreover, those parts of the bosonic sector which
lead to scalar and vector fields in the dimensionally reduced maximal supergravity can then be
assembled into E;(7) objects, namely a 56-bein encoding the internal field components and a 56-
plet of vectors combining the 28 electric and 28 magnetic vectors of N = 8 supergravity; their
supersymmetry transformations can be shown to take the precise form of the four-dimensional
maximal gauged supergravity. While in this approach the fermions are included from the
beginning (with the supersymmetry variations constituting the starting point of the analysis)
and the on-shell equivalence with D = 11 supergravity is thus guaranteed at each step of the
construction, a proper understanding of the role of E(7) in eleven dimensions (as well as of the
E7(7y-covariant dynamics of the bosonic sector) was lacking in the original work of [3], and has
only emerged with the recent advances. Nevertheless it is remarkable that the combinations
of SU(8) connections in the supersymmetry variations of the fermions found ‘empirically’ in
Ref. [3] are precisely the ones required by E7(7)-covariance as identified here.

The results of Ref. [5] suggest that a formulation that is properly covariant under the
exceptional groups should include extended coordinates transforming under this group, an idea
that also appears in the proposal of Ref. [16]. Such an extended spacetime has later been
implemented for E7(7) in a particular truncation of D = 11 supergravity that retains only the
internal coordinates and field components of the (4 4+ 7) splitting [I7]. More recently, similar



reformulations of D = 11 supergravity have been given for the analogous truncations, casting
the theory and their residual gauge transformations into a covariant form [I8-20]. In contrast
to the original approach of Ref. [3], however, these formulations are not immediately applicable
to the untruncated D = 11 supergravity. By contrast, the construction of Refs. [7,[], the
recent construction of complete EFTs in Refs. [14l[15] and finally, the present work extend the
formulation of Ref. [3] to a fully Er(7)-covariant theory.

The E77y EFT, which is a natural extension of double field theory, is based on a 4+56-
dimensional generalized spacetime, with fields in E7(7) representations initially depending on
all coordinates z* and Y™ (with fundamental indices M = 1,...,56). The theory is given by
an action along with non-abelian twisted self-duality equations for the 56 vector fields. The
fields transform appropriately under E;(7)-generalized diffeomorphisms. Crucially, the theory is
subject to an E7(7)-covariant section condition [I9] that implies that the fields depend only on a
subset of coordinates. In order to compare with the usual D = 11 supergravity, and thus with
the results of Ref. [3l[7], one has to pick a particular solution of this constraint, which reduces
the spacetime to 4+7 dimensions. After solving the section constraint, the various components
of the generalized diffeomorphisms can be interpreted as conventional diffeomorphisms and
tensor gauge transformations. In addition, and in analogy to type II double field theory [21],
[22], the section constraint has two inequivalent solutions: D = 11 supergravity and type I1I1B
supergravity. After solving the section constraint, the E;7) EFT also encodes, as 7 components
among the 56 gauge vectors, dual gravity degrees of freedom. This description is consistent
by virtue of a covariantly constrained compensating two-form gauge field B, [15123]. The
status of this field may appear somewhat mysterious, but its appearance is already implied by
consistency of the EFT gauge symmetries. In this paper we will give further credibility to this
field by showing that it has consistent supersymmetry variations.

In this paper we introduce the fermions of the E77) EFT and give the supersymmetry
variations of all fields in a manifestly E77) x SU(8)-covariant form, showing that they close,
in particular, into the external and internal generalized diffeomorphisms. This is in analogy
with the supersymmetrization of DFT [24125]. Importantly, we find that the supersymmetry
transformations of all fields can be written solely in terms of the fields of EFT, in particular the
56-bein, without recourse to the D = 11 fields that can be thought of as parametrising these
structures in a GL(7) decomposition. Furthermore, we determine the fermionic field equations
and verify supersymmetric on-shell invariance. To this end we have to further develop the
generalized exceptional geometry underlying the E7) covariant formulation by introducing
connections and invariant curvatures generalizing the geometry of double field theory [9,261-
29]. For the internal, 56-dimensional sub-sector, such a geometry is to a large extent already
contained in the literature [1920,[30L31]; we use the opportunity to give a complete and self-
contained presentation of this geometry. In particular, we give compact and E)-covariant
expressions for the internal connections in terms of the 56-bein and other covariant objects.
One of the main results of this paper then is the formulation including external and internal
connection components Q,, and Qs for the local SU(8), respectively, and similarly external
and internal connection components w, and wys for the local SO(1,3), with all geometric
objects being also covariant under E;(7)-generalized diffeomorphisms. The various connection



components are summarized in the following scheme

)’ =0 D VA = P,ABP Vyop
(1.1)
Dire,® = mar*Peys Tan®lo12 =0

Here we also indicate the corresponding covariant torsion-type constraints satisfied by the con-
nections. The precise definitions of the various tensors and our conventions will be given in
the main text. The formulation is manifestly covariant under all gauge symmetries except for
the external diffeomorphisms of a# that depend also on the ‘internal’ E;(7) coordinates. The
structure of the various diagonal and off-diagonal connection components in (LI]) hints at a
larger geometrical framework in which they would emerge from a single ‘master connection’,
whose introduction would finally render all gauge symmetries manifest.

A distinctive feature of generalized geometries is that, in contrast to conventional geometry,
the connections are not completely determined by imposing covariant constraints, necessarily
featuring undetermined connections that are not given in terms of the physical fields, as first
discussed in the geometry of double field theory [9,26H28] and later extended to exceptional
groups [T930,31]. As in double field theory, however, this is consistent with the final form of the
(two-derivative) theory depending only on the physical fields, as the undetermined connections
drop out of the action and all (supersymmetry) variations. We also clarify the relation of these
geometrical structures to the formulation of [3l[7}]], in which connections carry ‘non-metricities’
that can be absorbed, as we will show, into SU(8) connections once we include components along
the E7(7)-extended directions.

One obvious question concerns the precise significance of the term ‘symmetry’ in the present
context. The E7(7) identified here is analogous to the GL(D) that appears in general relativity,
and is ‘spontaneously broken’ when one picks a particular non-trivial solution to the section
constraint (ta)M N Oym ® 0y = 0, as one must for consistency [l. However, the new structures
exhibited here do not imply that D = 11 supergravity nor IIB supergravity have any new local
symmetries beyond the ones already known.|q Nevertheless it is remarkable and significant that
the internal diffeomorphisms can be combined with the tensor gauge transformations of the
form fields and their duals in an E;(;)-covariant form. Evidently, the true advantage of the
reformulation would only become fully apparent if solutions of the section constraint, besides
those corresponding to D = 11 or IIB supergravity, exist. Such solutions would give genuinely
new theories (but see below). Although such solutions are somewhat unlikely to exist for the
case at hand, the situation may become more interesting when one considers infinite dimensional

extensions of the E-series.

A second question concerns the utility of the supersymmetric EFT constructed here in a
more general perspective. Here we see two main possible applications and extensions. The

Tt is an old idea to interpret the graviton as a Goldstone boson of spontaneously broken GL(4) symmetry
[32H34], but the present scheme should not be viewed as a realization of this idea.

2The only new local symmetry would be the one associated with the seven ‘dual’ internal diffeomorphisms,
but the corresponding transformation parameters ‘miraculously’ drop out in all relevant formulae, as shown in
Ref. [§]. In the formulation of Ref. [TI5] this fact is explained by the ‘Stiickelberg-like’ gauge invariance associated
with the two-form field B, ar.



first application concerns the non-linear consistency of Kaluza-Klein compactifications other
than torus compactifications. These can be investigated along the lines of [35H37], exploit-
ing the present formalism and the fact that it casts the higher-dimensional theory in a form
adapted to (gauged) lower dimensional supergravity. Indeed, the full non-linear Kaluza-Klein
ansétze for those higher-dimensional fields (including dual fields) yielding scalar or vector fields
in the compactification have already been obtained in this way for the AdSy x S7 compacti-
fication [6LB37H39], as well as for general Scherk-Schwarz compactifications with fluxes [40].
Apart from the non-linear ansétze for higher rank tensors, which can now also be deduced in
a straightforward fashion, and beyond the extension to other non-trivial compactifications of
D = 11 supergravity, the main outstanding problem here is to extend these results to the com-
pactification of IIB supergravity on AdSs x S°, for which either the supersymmetric extension
of Eg(s) EFT [42] or the present version with the IIB solution of the section constraint might be
employed. Indeed, a study of the ambiguities inherent in defining generalized connections and
how the supersymmetry transformations (and hence the theory) remain invariant under such
redefinitions in this paper has lead to an understanding of the hook-type ambiguities observed
in the D = 11 theory in Ref. [36].

Secondly, the fact that the supersymmetric EFT has a structure very similar to four-
dimensional maximal gauged supergravity [43] may lead to a higher-dimensional understanding
of the new SO(8) gauged supergravities of Ref. [44], obtained by performing an electromagnetic
U(1) rotation of the 56 electric and magnetic vectors, which is not in E(7). Partial evidence
presented in Refs. [6,39], as well as a more explicit argument based on the higher-dimensional
embedding tensor in Ref. []], show that these gaugings cannot originate from the D = 11 super-
gravity of Ref. [2]. Specifically, the deformed theories can be obtained from the standard SO(8)
gauged supergravity by ‘twisting’ the 56-bein relative to the vectors [6], that is, by making the
replacement

cosw  sinw
V(z) = V(r;w) = . V(z) (1.2)

—sinw cosw
in all formulae, where each element of the U(1) rotation matrix acts on a 28x28 subblock of
the 56 x56 matrix V. The present reformulation naturally suggests that a higher-dimensional
ancestor of the deformed SO(8) gauged supergravities might thus be obtained by performing an
analogous ‘twist’ of the 56-bein of EFT (see also Ref. [40]), V(z,Y) — V(z,Y;w), relative to all
vectors and tensors, where the 56-bein is now taken to also depend on the 56 extra coordinates
Y™, Because of the inequivalence of the corresponding gauged SO(8) supergravities in four
dimensions, it is clear that such a theory would no longer be on-shell equivalent to the D = 11
supergravity of Ref. [2], and hence would correspond to a non-trivial deformation of that theory.
In fact, this would be the first example of a genuinely new maximal supergravity in the maximal
space-time dimension D = 11 since the discovery of Ref. [2] in 1978, and it would be a remarkable
vindication of the present scheme if such a theory could be shown to exist. Equally important
there would be no way to reconcile this deformed theory with D = 11 diffeomorphism and
Lorentz invariance; in other words, the four-dimensional w-deformation of Ref. [44] would lift
to an analogous deformation of D = 11 supergravity that is encoded in a suitably generalized

3See also Ref. [A1], where uplift ansiitze for sphere reductions of the D = 11 and type IIB theories are
conjectured using similar ideas.



geometric framework transcending conventional supergravity.

The outline of the paper is as follows. In section 2] we review the bosonic Eg(7)-covariant
exceptional field theory, of Refs. [T4L[15]; in section B we construct its supersymmetric com-
pletion upon introducing the proper fermion connections and working out the supersymmetry
algebra. In section [l we discuss how this theory relates to the reformulation [3L[7,[8] of the full
(untruncated) D = 11 supergravity after an explicit solution of the section constraint is chosen.

We refer the reader to appendix [Al for a summary of index notations and conventions.

2 Bosonic Ey;) exceptional field theory

In this section we give a brief review of the bosonic sector of the Ey)-covariant exceptional
field theory, constructed in Refs. [T4L[I5] (to which we refer for details) and translate it into the
variables appropriate for the coupling to fermions, in particular the 56-bein parametrizing the
coset space E7(7)/SU(8). To begin with, all fields in this theory depend on the four external
variables z#, u = 0,1,...,3, and the 56 internal variables Y™ M = 1,...,56, transforming in
the fundamental representation of E;(7), however the latter dependence is strongly restricted
by the section condition

(ta)MNaMaNA =0, (ta)MNaMAaNB =0, )
(2.1
QMN oy AoyB = 0,

for any fields or gauge parameters A, B. Here, QMY is the symplectic invariant matrix which
we use for lowering and raising of fundamental indices according to XM = QMN Xy Xy =
XMQun. The tensor (tq)a” is the representation matrix of E7(7) in the fundamental rep-
resentation. These constraints admit (at least) two inequivalent solutions, in which the fields
depend on a subset of seven or six of the internal variables, respectively, according to the
decompositions

56 —> +21 +21 0+ 75, (2.2a)
56 —> [(6,1) 42|+ (6/,2)41 + (20,1) + (6,2)_1 + (6',1)_2 , (2.2b)

of the fundamental representation of E;(;) with respect to the maximal subgroups GL(7) and
GL(6) x SL(2), respectively. The resulting theories are the full D = 11 supergravity and the
type IIB theory, respectively. The bosonic field content of the E7()-covariant exceptional field
theory is given by

{e,uaa VMABa A,LLM7 B,LLI/O() B,U,VM} 3 (23)

which we describe in the following. The field e, is the vierbein, from which the external
(four-dimensional) metric is obtained as 9 = €,%€yq. Its analogue in the internal sector is the
complex 56-bein

Wi = (WuP Varas}, (2.4)



satisfying
VP = v yae = VutP), (2.5)

with SU(8) indices A, B,--- = 1,...,8, in the fundamental 8 representation and collective index
N labelling the 28 + 2_SH The fact that the 56-bein is an E;(7) group-valued matrix is most
efficiently encoded in the structure of its infinitesimal variation,

VP = —8gcM Vi P1C + 5pABCP Yy (2.6)
with
SqaB = —8qB..  apBCD % (ABCDEFGH g (2.7)
This is equivalent to
Virap SVNP QMY = % 014l Varpyp VNPIE QMY
Varas Vnep @Y = Vipap 6Vnep @YY
Vi AB sy CD QMN _%EABCDEFGH Vaspp 6Vx o QN (2.8)

A particular consequence of the group property is

VP Vnap =V ap VP = iQun,
QMN Y ABY v ap = 1088
QMN Y ABYL D — . (2.9)

The analogue of the external metric g, in the internal sector is the positive definite symmetric

real matrix
Muyn = VyapUnP + Vv apVutl (2.10)

in terms of which the bosonic sector in Ref. [I5] has been constructed.
The 56 gauge fields A“M in ([23) are subject to the first order duality equations given byﬁ

_ 1 1
fMVAB = §‘FMVAB - Zeguupa FP74p = 0. (2.11)

Here, the 56 non-abelian field strengths are defined as

Jt/u/AB = -F;U/M VMAB s (212)

While the SU(8) indices were taken to be 4,4, k,... in Ref. [I5], we here revert to the notation of Ref. [3],
also employed in Refs. [7l[8], where SU(8) indices are denoted by the letters A, B,C,.... The reason is that,
when considering non-trivial compactifications, one must distinguish between the SU(8) indices A, B,... in
eleven dimensions, and the SU(8) indices i, j, ... in the four-dimensional compactified theory. These are only the
same for the torus compactification. Any other compactification involves Killing spinors as ‘conversion matrices’
(hence the distinction between ‘curved’ and ‘flat’ SU(8) indices in Ref. [35]). However, in accord with previous
conventions, fundamental SU(8) indices are raised and lowered by complex conjugation.

® We use the space-time conventions of Ref. [&3], such that our tensor density €,.,0 is related to the one
employed in Ref. [I5] by 5[?,,7232101] = isLlf,}gAMz] .



fHVM = 28[MAV]M — 2A[MN6NA,,]M — % (24 (ta)MN(ta)KL — QMNQKL) A[MK aNAu]L

1
—12(t*)MN N By o — 3 Q"N BN, (2.13)

with the 2-forms B, o, By n from 23], transforming in the adjoint and the fundamental
representation of E;(7), respectively. The latter form is a covariantly constrained tensor field,

i.e. it is constrained by algebraic equations analogous to (2.1))

(ta)BuBy = 0,  (ta)VByudnvA =0,  (ta)¥ouBy = 0, o1
2.14
OMN By By = 0, OMN By oA = 0.

Its presence is necessary for consistency of the hierarchy of non-abelian gauge transformations
and can be inferred directly from the properties of the Jacobiator of generalized diffeomor-
phisms [I5]. In turn, after solving the section constraint it ensures the correct and duality
covariant description of those degrees of freedom that are on-shell dual to the 11-dimensional

gravitational degrees of freedom.

Using (2.9) and (210), equations ([ZI1]) take the form of the twisted self-duality equationsﬁ

1
Fu M = 5z‘esWUQMNMNKfP"K. (2.15)

The bosonic exceptional field theory is invariant under generalized diffeomorphisms in the

internal coordinates, acting via [19,45]
LAUM = AKoUM —12PM B o ALUN + \U) opAT UM | (2.16)

on a fundamental vector UM of weight A(U). The projector on the adjoint representation

1 1 1
(ta) X ()N = 5 o8 6% + o 6E 0% + (ta)un () EE — — QunQEE | (2.17)

[P;KL
M N 2%

ensures that the action (2I6]) is compatible with the E7(7) group structure. The generalized
diffeomorphisms also give rise to the definition of covariant derivatives

D, =0d,—La,, (2.18)

whose commutator precisely closes into the field strength ([2I3]). The full bosonic theory is

invariant under the vector and tensor gauge symmetries

dnen” = Liae,”,
aWVutt = Lavu?P,
oanzALM = D AM 412 ()M ONE o + % OMN = v,
00zBuwa = 2DpE 0+ (ta)kr AN Fu® — (ta)kr AN 6 A",
orzBun = 2DpEur + 48 ()" (OxomAL") Eja

+ Quer (AR o6 Ay" — oA S A" — Fu S ouA" + 0 FuMAT)  (2.19)

6See footnote



field || e,® | VAP | AM, AM | Buva, Spa | Buats Epn || xape | 2, et
O 1 1 1

1
2 1 1

>
o= =
D[ —

Table 1: A-weights for the bosonic and fermionic fields and parameters.

with parameters AM Euas S M, the latter constrained according to (2.I4]). The A-weights of
the various bosonic fields and parameters are collected in table [l where we have also included
the A-weights of the fermionic fields to be introduced later. Note that B, o and B, y appear
in the field strength ([2Z.I3]) only via the combination/projection

1
—12(tMN ONBy o — 3 OME B K (2.20)

As a result, we observe the following additional gauge transformations that leave the field

strengths invariant
boBuwa = Qo+ (ta)rr Qun™,
SoBuwr = =0 — 208w’ (2.21)
where QWMQ is a parameter living in the 912 of E(7), i.e.
() FLQ,, My = 0, (2.22)

and €2, ~M is a parameter constrained in the index y just as the N index in partial derivatives
On, see equations (2.1)), and the two-form By, v, see equations ([Z14]). The shift transformations
([221)) should be understood as the tensor gauge transformations of the three-form gauge poten-
tials of the theory (which we have not explicitly introduced) that also act on the two-forms due
to the Stiickelberg couplings of their field strengths. They precisely drop out in the projection
([220)) which is the one appearing in the vector field strengths.

Other than the first-order duality equations (2.I1), the remaining equations of motion of
the bosonic theory are most compactly described by a Lagrangia

~ 1 1
Legrr = eR+ 13 eg" Dy MMN D Myn — 3 e Mayn FHMF,N
+ £t0p — € V(MMN7 guy) . (223)

Let us present the different terms. The modified Einstein Hilbert term carries the Ricci scalar
R obtained from contracting the modified Riemann tensor

ijaﬁ = H,,aﬁ[w] + ]:WMeap&MepB, (2.24)
with the spin connection w,ﬂﬁ obtained from the covariantized vanishing torsion condition

« « e 1 « «
0 = ’D[“ey] = (9[“61,] —A[uKaKe,,] —55[{./4[#](6,,] + Wiy Beyw. (2.25)

" Due to the self-duality ZI5) of the vector fields, this is understood as a “pseudo-Lagrangian” in the sense
of a democratic action [46] such that the duality equations (2I5]) are to be imposed after varying the Lagrangian.



The scalar kinetic term can be equivalently expressed as

1 1
8 D“MKLD“MKL = 7% PH aBcD PHABCD ) (2.26)
where we have introduced the coset currents PHABCD as follows
DY = DY + Q.M vy PIC = PABD Yy op (2.27)

according to the decomposition (ZG) and where D,, refers to the covariant derivative defined in
equation (2I8). This moreover defines the composite SU(8) connection
2i

B _
Q;/,A = 3

VNBCD Vyca , (2.28)

indicating that the 56-bein transforms under local SU(8) transformations. Thus, we will in the

following use D, = D, + Q,, to denote the resulting SU(8)-covariant derivatives. The vector
kinetic term in ([2.23])

1 1
- geMun FME N = -1 e Fu BFM 4, (2.29)

simply contracts the non-abelian field strengths (2ZI3]) with the internal metric (2.10), while the
topological term is most compactly given as the boundary contribution of a five-dimensional

bulk integral
d'z jd%Y Lip = 57 | &= J &0y o LMD UF, (2.30)
625 25

Finally, the last term in (2.23)) is given by
1 1
VM, guw) = =M o M E o Micp + 5 MY oy MEE 0L Mivic (2.31)

1 _ 1 _ _ 1
— 39 Lorvg onMMY — ZMMNQ Yomgg'ong — ZMMNaMQ“'j@NgW ;

in terms of the internal and external metric. For later use, we note that in terms of the 56-bein
and modulo a total derivative e =107 (e K™), the potential takes the form

1
VOOu gw) = VM apVNep (5MPNABCD — 5 M g pNEBCD>
1
+ G MMN p ABEP Y apep + 4VM 4gVN Oy ABEE  cppR
1 _ _ 1
- ZMMNQ Yomgg tong — ZMMNaMQW(?NgW ; (2.32)

expressed via the standard decomposition of the Cartan form V=10,V along the compact and
non-compact parts of the E;(7) Lie algebra

21 .
qua® = 3 VNBC 00 Vnca, puBOP =ivNAB g v Ol (2.33)

Written in the form of (Z32]), it is easy to observe that the first two lines of the potential
reproduce the corresponding terms in equation (7.5) of Ref. [3].

10



All five terms in ([223]) are separately gauge invariant under generalized diffeomorphisms
(ZT19) in the internal coordinates. In addition, the full set of equations of motion is invariant
under generalized diffeomorphisms in the external coordinates acting as

ee,® = €Dye,® + Dyt (2.34)
deMun = E"DyMuyn ,
seAM = ¢ F M+ MMN g, onE”
5¢Buwa = EMupa— (ta)kr AL sy,
OcBunt = & Myt — 2€ 2urpr g™ D7 (9m00€™ ) = (AR Onide Ay — O A GeAyc)

When Jj; = 0, this reduces to the action of standard four-dimensional diffeomorphisms. Re-
markably, the invariance of the theory under ([2.34]) fixes all relative coefficients in ([2Z.23]) and
thus uniquely determines all equations of motion.

Variation of (223]) gives the field equations for the scalar fields parametrizing My and
the Einstein field equations for g,,. Variation with respect to the two-forms By, o and B, m
yields projections of the first-order vector field equations (2.I5]). Finally, the variation of the
action with respect to the vector fields leads to second order field equations

D, (eMMN.F“VN) = €<j“M+j‘uM> (2.35)

after combining with the derivative of ([2.I5]), and where the gravitational and matter currents

are defined by the respective contributions from the Einstein-Hilbert and the scalar kinetic term
j“M = —2e,Meg” <6Mw,,°‘ﬁ -D, <ep[a6Mepﬁ]>) ,

1
Tty = 2ie toy (e'P“ ABCDVNABVMCD — C.C.) — ﬂ'D“MKLﬁMMKL . (2.36)

Equation (2.35]) may be compared to the second order field equations obtained from combining
the derivative of (Z.I5]) with the Bianchi identities

3D, Fo = —12(t)MNonHuwpa — %QMN HuvpN (2.37)
where H ., and H,,, v denote the non-abelian field strengths of the two-forms
Hupa = 3DpbBugja =3 (ta)keL A[MKaV‘AP]L R
Hupm = 3DpbBypiv —3 (A[uNaMaVAP]N - aMA[MNaVAp]N) o (2.38)

Combining (Z13)), [235]), and [237) gives rise to the first-order duality equations describing
the dynamics of the two-forms

~ 1 1
iJ N+ 3 pryNAB OmMVYNAB = I e~ Letvro Hl/pUM ,

(ta)NM ('P“ ABCDVNABVM(]D —'P“ABCDVNABVMCD) = e lghvro Hopoa - (2.39)

Strictly speaking, the second equation only holds under projection with (t*)%%0y. The first-
order equations (2.39]) show that the two-form fields do not bring in additional degrees of
freedom to the theory.
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3 SU(8) x E;(7) exceptional geometry

3.1 Connections

In this section we set up the E;(7)-covariant geometrical formalism for defining derivatives that
are simultaneously covariant with respect to generalized internal diffeomorphisms, local SU(8),
and SO(1, 3) Lorentz transformations. This will allow us to couple the bosonic E;(7)-covariant
exceptional field theory to fermions and to establish the link with the ‘ground up’ approach to be
described in the next section. From the representation content of maximal N = 8 supergravity,
or equivalently from an appropriate decomposition of the D = 11 gravitino, it follows that the
fermionic fields of the theory are SO(1,3) spinors, and transform in the 8 (the gravitini 1/);?)
and in the 56 (the matter fermions x4BC) of SU(8), respectivelyld The main new feature is
that, like the bosonic fields ([23]), the fermions are here taken to depend on 4 + 56 coordinates
modulo the section condition (2I)). Under ‘internal’ generalized diffeomorphisms ([Z16) they
transform as scalar densities with weights as given in table [11

For the external derivatives, the relevant connections have been introduced in the previous
section. On a spinorial object in the fundamental representation of E7 ;) x SU(8), the covariant
derivative is defined as

1 1
Dy Xan = D,Xan+ ZwuaB'YaﬁXAN + §QuABXBN : (3.1)

with the E7(7)-covariant derivative D, from (2.I8]), and the spin- and SU(8)-connections defined
by 220) and (Z28)), respectively. By construction, these connections ensure covariance of
D, Xan. As usual, for covariant derivatives on four-dimensional space-time tensors we may
also introduce the covariant derivative V, which in addition to ([B.]) carries the Christoffel

connection defined by the standard (though covariantized) vierbein postulate
Dye,* —=Twle,® = 0. (3.2)
For the internal sector, we similarly define a covariant derivative in the internal variables

Y M. The most general such derivative (denoted by V) acts on Lorentz indices, SU(8) indices
and E7(7) indices, and has the form

1
VuXan = ouXan+ ZWMQB’YQBXAN
1 2
+ §QMABXBN —Tun™ Xak - 3 MX) Trenm™Xan (3.3)
if X is a generalized tensor of weight A(X) under generalized diffeomorphisms ([2.I6]). Likewise,
we use ) )
DuXan = OuXan + 2 W™ e Xan + §QMABXBN , (3.4)

for the derivative without the Christoffel connection I3 n*. The required transformation rules
for the connections are determined by covariance. Under generalized diffeomorphisms (2.16]),
the non-covariant variation of the first term in ([B.3]) is given by

AN (OuXan) = 12PE NP0 000pA° Xu k| (3.5)

1

- - L . _ 5 5
8 We use spinor conventions from Ref. [43], i.e. in particular v***7 = e~ 'e"?? 4 and v°ea = —e4 .
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where we recall that the covariant terms carry a weight of —% [15]. Thus, I'yrn? also carries a
weight of —% and has the inhomogeneous transformation

(5AFMKN = ]LAPMKN + 12 ]P’NKPQ 8M6PAQ . (36)
This implies in particular,
3
AT mr™ = Lalmx™ + §5K5PAP ; (3.7)

explaining the factor % in the last term of (33]). In the following, we will discuss the definition
of the internal spin- and SU(8) connection.

The internal spin connection wy*? is defined by analogy with ([Z27) by demanding that
Due, = muPeus, (3.8)
with 7,%% = 73,(®%) living on the coset GL(4)/SO(1,3). As a consequence,
wy®? = e“[aé’MeuB] , (3.9)
and
e”[O‘DMeMB] = 0 = equDmey” . (3.10)
Later, it will turn out to be convenient to also introduce a modified spin connection @y;*?

~  ap

1
WM = wMaB_ZMMN]:“VNeuaeVB’ (3.11)

including the non-abelian field strengths ]:WN in a fashion reminiscent of Kaluza-Klein theory,
whereby we view fields e,, VB, and AuM as parts of a single big vielbein. We will denote
the corresponding covariant derivatives by D and V, respectively.

In order to discuss the remaining connections in (3.3)), let us first require that the internal
SU(8) connection and the Christoffel connection are related by a generalized vielbein postulate
(or ‘GVP’, for short)

0 = VW = oV + Qu cPVNPIC — Ty n® VAP | (3.12)

which is the analogue of ([B.:2]) for the internal sector. In analogy with standard differential
geometry one would now like to solve this relation for both the SU(8) connection Qs 4” and
the generalized affine connection I'j;n? in terms of the 56-bein V and its derivatives dps V.
While in ordinary differential geometry, a unique such answer can be obtained by imposing
vanishing torsion, here there remain further ambiguities. In addition one would like the result-
ing expressions to satisfy all requisite covariance properties, to wit: Qar 4® should transform
as a proper connection under local SU(8) and as a generalized vector under generalized diffeo-
morphisms, while I'y;y* should transform as a generalized affine connection under generalized
diffeomorphisms and as a singlet under local SU(8). However, parallel to DFT it is not possible
to express a connection satisfying these combined covariance requirements as a function of only
VY and 0p/V in a covariant way, as we will also confirm in terms of a simplified example in

appendix [D] and in terms of an explicit calculation for the SU(8) connection in appendix [El
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The first step in reducing the ambiguities is to constrain the connections by requiring the
generalized torsion to vanish; this amounts to the constraint [19]

TV, WM = T VVWE = LYywM — 1L, wH = 0 (3.13)

for vectors V, W of weight % where LV denotes the generalized Lie derivative with all partial
derivatives replaced by covariant derivatives. Explicit evaluation of this condition yields

Tnx™ = D™ = 12PY P Tpn@ + 4PY T op? | (3.14)

with P the adjoint projector defined in equation (2.17)). Indeed, it is a straightforward computa-
tion to show that this combination transforms covariantly under generalized diffeomorphisms.
From (B.6]) and using the cubic identity (A.3) of Ref. [15]

AN (Tpn™ = 12PV X Trp?) = =6 (%) p(ta) ™ OrOK AT 5.15)

= —APY " p AXTkR"™
where we have used equation ([B.7)) and the fact that all other terms in (A.3) vanish by the section
constraint. The last term is of the form of the non-covariant variation of the final term in (B14]),
with the opposite sign. Hence, the generalized torsion transforms as a generalized tensor. The
fact that the generalized torsion is gauge covariant means that it can be set consistently to zero.

From equation (3I2)), the last two indices in the generalized Christoffel connection (") N
take values in the adjoint of E;(7). Hence, the generalized connection lives in the E ;) repre-

sentations
56 ¥ 133 = 56 + 912 + 6480 . (3.16)

Using the explicit form of the corresponding projectors given in ref. [47], one can verify that
the vanishing torsion constraint (313)) translates into [19130L31]

Can’ = 0. (3.17)
912

In addition, requiring density compatibility of the internal derivatives according to
Ve = 0, (3.18)

fixes

3
ZeflaMe = PKMK = —QMNQPQPPQN, (319)

where the second equality is obtained from contraction of B.I7). As we will explain below, this

trace must drop out in all relevant expressions involving the fermions.

Next, we work out the most general SU(8) connection compatible with vanishing generalized
torsion. Using equation ([BI2), the condition ([B.I7) is equivalent to the following conditions on
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the internal SU(8) connection Qjy:

1
VEAB DY, CD _ gpK [AB <DKVPCD]) - (ABCDEFGH K (DrVp cr)

1
—2Tox? (VK [ABypCDT oY ABODEFGH YK oy GH> ,(3.20)

VE 4 DpVPC = 6 (VX DrVpPC + VP DVpac)

3

— Z (55 (VKCD DKVPCD + VKCD DKVPCD)

1
— 20K ® <VKAC VpPC 4 VEBCYL 10 — S 68 MPK> . (3.21)

which constitute the analogue of (2Z25]) in the internal sector. Unlike in the external sector
and standard geometry, the vanishing torsion conditions ([B:20]), (3:21)) are not sufficient to fully
determine the internal SU(8) connection [19,[3T], but rather constrain it to the following form

Oma? = quaP + Rua® + Upa? + Wara? . (3.22)

Here
21 .
qua® = 3 VNBC 0y Vnea,  puBOP = ivNAB g v P (3.23)

are obtained in the standard way from the decomposition of the Cartan form V~'0;/V along

the compact and non-compact parts of the E7(7) Lie algebra. We note that gas 4B transforms

properly as a connection while pyAPCP transforms covariantly under local SU(8), but neither

transforms as a vector under generalized diffeomorphisms. The remaining pieces in ([B.22]) are

given by

B 4q
3

BCDE)

Rara WNEYPE pyvacoe + VN acVipe vy

20i
27
Ti

~ o7 55 WNPYNEE pyeper + VY epVaprpn PP

+ BC’DE)

(VNDEVMBC pnacpE + VY peVirac by

81

WMAB 2—7

1
(VaracVVEC 4 Vi POV o < o% MuxQE) Doy, (3.24)

and by

CD,B cD

Unua®? =Vucepu A= VYuPucpa®?, (3.25)

where the SU(8) tensor ucp 4® satisfies
wlPBly =0, W48, =0, (3.26)

and thus belongs to the 1280 of SU(8). It is now straightforward to check that ucp, 4B drops
out of the vanishing torsion conditions (B20), B2I) and thus remains undetermined. An
explicit form of Qs 4% in terms of the GL(7) components of V3,42 has been given in Ref. [19].
With Qs 4P given by [3.22)), it is now straightforward to solve ([B.12) for the affine connection

Pan” (V. 0V, Q) = i (VAP Das(Q)Vn ap — V7 apDur(Q)Vn %) (3.27)
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using (Z9]). This, then, is the most general expression for a torsion-free affine connection, where
the part Upr4? of the connection ([B22) corresponding to the 1280 representation of SU(8)
represents the irremovable ambiguity that remains even after imposition of the zero torsion
constraint [I9,31]. In appendix [E]l we will derive the unique expression for Uy, 48 in terms
of only V and 0;;V that makes Qs 4” a generalized vector, but the resulting connection will
no longer transform as a proper SU(8) connection, and as a consequence the affine connection
would no longer be an SU(8) singlet. é

In view of these subtleties it is therefore all the more remarkable how the supersymmetric
theory manages to sidestep these difficulties and ambiguities. Namely, in all relevant expressions
the internal covariant derivatives Djy; appear only in combinations in which the undetermined
part Ups 42 of the connection is projected out and for which the covariance under generalized
diffeomorphisms is manifest. We illustrate this with a number of explicit expressions that will
be useful in the following. Using the explicit expression for Qpr4?, equation [B.22)), in equation
[B4), we have, for example

VMAB DMEB _ VMAB 5M5B + % VMAB qMBC EC + %VMC'D pMABCD EB
+ %FKMK VMAB EB ,
YMIAB p =Cl _ yMIAB 5 =C] _ %VM[AB an pClEl — ;VMED puABCD S
+ % VM pppaPEAB =41 4 % g™ YMIAB €T (3.28)

where the piece involving the trace of the affine connection comes from Wy 4? (we have ignored
the possible appearance of the internal spin connection w M‘lﬁ). Indeed, Ups 42 does not survive
in any of these combinations, as can be explicitly verified using equations (3.25]). In other words,
despite the non-covariance of the Cartan form, and thus of ¢5; and pps, under generalized diffeo-
morphisms, the above combinations are covariant under generalized diffeomorphisms because
under generalized diffeomorphisms all terms with second derivatives of AM cancel out. Modulo
density contributions resulting from the non-vanishing weights of the fermions (see below), the
particular contractions ([B:28)) of covariant derivatives with the 56-bein turn out to be precisely
those appearing in the supersymmetry transformation rules and fermionic field equations. More
specifically, now also allowing for a non-trivial weight A, and with fully covariant derivatives,

9By contrast, the connections to be derived directly from D = 11 supergravity in the following section do
satisfy the required covariance properties, but the corresponding Uasa® can then no longer be expressed in a
covariant way in terms of V and 0V alone.
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we have

- - 1 - 1 -
VMAB VM:‘B _ VMAB aM:‘B + 5 VMAB QMBC Ec + 5 VMCD pMABCD =5
1 2
S —2ME) ) TruVMABE
VM[AB VMEC] _ VM[AB aMEC] _ % VM[AB qMDC]ED _ g VMED pMABCD EE
1 1 2
+ 5 VW pppy VAP 2 4 (6 - gA(E)) Drp™ VMABECT - (3.29)

As we will see in the following section, and as originally shown in Ref. [3], there is no term
proportional to e 1dye (cf. (BI9)) in the supersymmetry variations of the fermions. Conse-

K must cancel. This fixes the weight of the

quently, the density terms proportional to I'x s
corresponding spinors in ([B:29) uniquely, and in agreement with the weight assignments given
in the table. In summary, the above expressions are indeed fully covariant under both local
SU(8) and generalized diffeomorphisms. We will furthermore show in the following section that
these expressions do agree with the ones already obtained in Ref. [3], upon imposition of the

section constraint.

Similar ‘miracles’ occur in the bosonic sector. For instance, in the bosonic field equations,

we find after some computation that the scalar contribution to the vector field equations from
([236]) can be expressed as

1
TPy = 51 D“MKLQMMKL +2ie oy (e PH ABCDVNABVMCD — C.C.)

= 2V BVNEP Y (¢™P, apcp) +cec., (3.30)

with the undetermined connection Uy 4? again dropping out from this contraction of covariant
derivatives.

We summarize the structure and definitions of the various components (external and inter-
nal, SO(1, 3) and SU(8)) of the full spin connection as follows

Py’ =0 D VuAE = PABCD Vyyop
(3.31)
Dye, = TI';\,,yo‘ﬁeuﬂ F}\,/NK‘QIZ =0

The various components of its generalized curvature contain the building blocks for the bosonic
field equations ([2.I5)), (223]) as we shall discuss in section B3] below.

3.2 The supersymmetry algebra

A nice illustration of the properties of the full spin connection (331) is the algebra of supersym-
metry transformations. In particular, the closure of the algebra on the 56-bein hinges on the
vanishing of the generalized torsion ([B.I3)) in the very same way as the closure on the vierbein

17



requires the vanishing of the external torsion ([227]). The supersymmetry transformations of
the bosonic fields (Z3]) take the same structural form as in the four-dimensional theory

Seen® = N Pua + € Pt
SVt = 2B Ve (E[AXBCD] n % ABODEFGH €EXFGH> 7
b AN = —iV2OMNVNAB (€5 xapo + 2V2Ea ) + o
6Bua = —%x/i (ta)F? (vp 4BV cp @ 7 XPOPY + 2v/2Vp pe Vo€ ea vy P + c.c.)
— (ta)nn ApM 0eALN (3.32)

The supersymmetry variation of the constrained two-form B, ps which is invisible in the four-

dimensional theory can be deduced from closure of the supersymmetry algebra and yields

16 442 _
0By = 3 VEAB DV po €t — 3 VP 45DuVpep ey x

-8 (gA fY[,uDMwV]A - DMEA i /l/}I/]A) + 24 €€ uvpo 9°" D (€A7p¢T A) + c.c.

BCD]

+ Qx (AR 0mbeAn" — oA 6AL") (3.33)

as we show explicitly in appendix Note, that all SU(8) connections cancel in the varia-
tion ([B.33]), such that the external index is carried by djs and this variation is indeed compatible
with the constraint ([2.I4]) on B, ar. In particular, the variation ([B.33) consistently vanishes
when 0y = 0.

In terms of the full spin connection (B.I1J), (3.31)), introduced in the previous section, the
fermionic supersymmetry transformation rules take a very compact form given by

St = 2D, — 4 VMABG L (y,ep)

0x*PC = —2V2P AP Pyt — 12V2i VMIAP T e (3.34)

It is then straightforward to verify closure of the supersymmetry algebra. The algebra takes

the same structural form as in the four-dimensional theory,

[5<61)7 5(62)] = SMDM + 6Lorentz(Qa6) + 5susy(€3) + 5SU(8) (AAB) + 5gauge(AM)
+ 5gauge (Eua 7Eu M) + 6gauge(Q/wMa 7Q/M/MN) . (335)

The first term refers to a covariantized general coordinate transformation with diffeomorphism

parameter
f“ = 2€2A’y‘u61A + 26 A’y“qA . (3.36)

The last three terms refer to generalized diffeomorphisms and gauge transformations (2.19]),
@21)), with parameters
AN = & QNP (VPABEQAQB —Vp AB€‘24€1B) = V_lNAB AAB 4 Y- INAB Aap,

- 8 _ _
Spa = 3 (ta)"9Vp acVoPY (& ue18 + E270617) | (3.37)
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again, as specified by the four-dimensional theory [43]. The remaining (constrained) gauge
parameters =, py, QWM a Qu mY are not present in the four-dimensional theory and will be
specified below.

67

Closure of the supersymmetry algebra on the vierbein e, is confirmed by a standard cal-

culation:
[0c,,0e,] €% = (2 & AV Dyt — 4 YMABg, \~2V (vu€1B) + c.c.) - (12
= 2D, (ngwo‘e‘f‘) — 41 @M (VMAB€2A €1 B) e, —8i VMABE2A613 @Me“a
—diey,p YyMAB (Eg Ayaﬁ @MQB — @MEQ A7a661 B) + c.c.
= Du(&e) + AM oy, + % oA e, + Q0% e,z (3.38)
with parameters from (3.36]) and ([B.37), and Lorentz transformation given by
Q% = —8iVMABg PV erp + cec. . (3.39)

The AM terms in (338]) reproduce the transformation of e, under generalized diffeomorphisms
as scalar densities of weight %, cf. table[ll Furthermore, the first term in (3.38)) can be rewritten
in the standard way

D, (§e,") = e, Dy +&"Dye,” + 28"Dpuen” (3.40)

into a sum of (covariantized) diffeomorphism and additional Lorentz transformation, upon
making use of the vanishing torsion condition ([2.25]) in the four-dimensional geometry.

An analogous calculation shows closure of the supersymmetry algebra on the 56-bein. We
concentrate on the projection of the algebra-valued variation V~'§V onto the 70 of SU(8),
since the remaining part will entirely be absorbed into a local SU(8) transformation. Using
transformations ([B.34]), we obtain

V—lMAB [651,552] VMCD _ gu PMABCD + 6i VN [ABVNACD] . i EABCDEFGHVNEFVNAGH )

While the first term is the action of the covariantized diffeomorphism, the remaining terms
can be rewritten in complete analogy to (3.40) with the vanishing torsion condition in (B:40])
replaced by the corresponding condition ([3.20) in the internal space. Specifically,

V*lMAB [5517552] VMCD _ g,u, PHABCD + 12 VP[Avich]Q]P)PQNL vN (VKLAK)
gu PuABCD +12 Vp[ABv—lCD]M]P)PMNK aNAK
L AK <VKVM[AB) y-10DIM

gu, PMABCD + V*lMAB 5A VMCD 7 (341)

where we have used ([B20) in the second equality. The second line of ([3.20) has been absorbed
by the weight term associated with the non-trivial E(7) weight % of AK.

Closure of the supersymmetry algebra on the vector and two-form fields can be verified by
similar but more lengthy computations, which we relegate to appendix Remarkably (and
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necessarily for consistency), closure on the two-forms B, »s reproduces not only the action
of generalized diffeomorphisms ([ZI9]) but also the shift transformation ([Z21]) with parameter
Qu A" and finally their rather unconventional transformation behaviour (2:34]) under external
diffeomorphisms. Consistency of the algebra thus confirms the above supersymmetry transfor-
mation rules and determines the remaining gauge parameters on the right hand side of ([B.35l):

— /e _ 16
Euam o= & (6‘24 YuDrvi€ra +Dyéaay, 6‘14) -3 VE g Dy VAP EgvuelA + c.c.,
32 . _(C D
QWMQ = —-3 z(ta)PQVpABVQCBVMAD eé V€] ) + c.c., (3.42)
_ 32i _(C D
QWMN = 32 VNABEé MNuV M (’VV]Eﬁ) -3 VN AcVEABD Ve pp eg Vur €] )+ ce. .

As required for consistency, the parameter QWM « lives in the 912, i.e. satisfies (2.22]). More-
over, the parameters Z,) and €, u’V satisfy the required algebraic constraints analogous
to those given in (ZI4]): one can verify that all SU(8) connection terms above (which would
obstruct these constraints) mutually cancel.

3.3 Supersymmetric field equations

In this section we employ the formalism set up in the previous sections to spell out the fermionic
field equations and sketch how under supersymmetry they transform into the bosonic field
equations of the E77) EFT [2.I5), Z23). The Rarita-Schwinger equation is of the form

- V2
0 = (gw)uA = —¢ 15#Vp071/,Dp¢0A - ?’7V’7MXBCD P BCcDA
—2ie et YM g n Ty (7,)1#;3) —i/2VNBC Yy (V'xaBc) , (3.43)

where the first two terms can be read off from the dimensionally reduced theory and the second
line captures the dependence on the internal variables and can be derived from verifying the
supersymmetry transformation of ([343]). It is straightforward to check that the contractions
of covariant derivatives in (B:43)) are such that the undetermined part from the internal SU(8)
connection Qs precisely drops out, cf. (3:28]) and [20]. Hence, equation ([B.43)) is fully defined
via (31) and (3:24]).

Under supersymmetry ([B.34]), and upon using the first order duality equation ([ZI7]), a

somewhat lengthy computation confirms that the Rarita-Schwinger equation ([B.43]) transforms
as

65 (gw)MA = <5Einstein)wj TEA — 2 (gvector)uAB GB 5 (344)

into the Einstein and the second order vector field equations of motion obtained from varying
the action ([2.I3]). It is instructive to give a few details of this computation as it illustrates the
embedding of the bosonic equations of motion into the components of the curvature associated
to the various blocks of the internal and external spin connections (B.31]).

Let us first collect all terms in the variation (B.44]) that contain an even number of ~-
matrices acting on €, which should combine into the second-order vector field equation. These
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are the terms that carry precisely one internal derivative v M- After some calculation, using in

particular (ZI1)) and (BI0), we find

Se(Ep)*a v die e rT Y gy [Var, Dp) (vo€?) + 40 VML 41N P, apope®
even 7y

+ 4iVMOP B P + 2P, apop FM P B (3.45)
The commutator of covariant derivatives can be evaluated as
1 1 ~
VARV, DIXC = =S VP APPE VY pp XO 4 S VMAB R 0P 905 X, (3.46)

where the first term describes the mixed SU(8) curvature, and the second term refers to the
‘mixed’ curvature of the spin connections

Rar,® = onw,* = Dlw],on . (3.47)

Evaluating this curvature in particular gives rise to the components
~ 1

N
Ruppps) = 7P (Fpo)” Mun)
. 1~ 1
Ran/” = =3 'ar+1eaes" D, (MMNPBN) : (3.48)

with the current J,; from ([236]). Putting everything together, we find for the variation (3.45])

5e(Ep)" a b 2D, (F"* ap) ¥ — 2P, apcp FH~ P B 4 20 J# oM 4 P
even 7y

+ 4 VMCD VM (gwjlpl/ ABCD) EB = -2 <€vector)uAB EB s (349)

reproducing the second-order vector field equation obtained from varying the action (2.23]),
cf. (B30).

It remains to collect the remaining terms with odd number of v-matrices in the variation
(B:44]) which should combine into the Einstein field equations. Many of these terms arrange
precisely as in the dimensionally reduced theory. Here we just focus on the additional terms
carrying internal derivatives Vs and combining into

0lEx)al = 16VMEVN 45 Vs (W iveo) + 8VMEOVN o Vs (74T vea)
— e termrr M YN BC o T (7, VN (Te€c)) - (3.50)
Collecting all V3,V yea terms in this variation gives rise to
2 <8 Y, YNICB | z'QMN5§> A [V ar V] es
+4 (16 Yy, YNICB MMN5£> AV iV NeE | (3.51)

showing that all double derivatives 0p;0neq vanish due to the section condition (B.3). We
evaluate the full expression ([B.51]) using the fact that the following combination of covariant
derivatives [20)]

<6VMACVNCB + 2VN J VM B L YMED YN () 58 ) VuVnen
1 1
= <ER5£ — ZVMACVN(JB,YupgoTngWVngT> en, (3.52)
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gives rise to the definition of the curvature R

1
: qMEApNEBCD> _

1
= = MMN , ABCD

6 PN ABCD

R = —4VYpVNep <5MPNABCD -

3 3
— 4V VN P ABEEp cpER — 3 MMN Loy one + 1 MMN 72016 dne
— 6V 4V op e toyepny POl (3.53)

which is invariant under generalized internal diffeomorphisms. Comparing the explicit expres-
sion for the curvature to the scalar potential V' ([232), we see that they are related by

1
eV = —eR-— 1 eMMNVMg“”VNgW + total derivative , (3.54)

in a form analogous to the O(d,d) DFT case discussed in Ref. [48]. The operator on the left
hand side of ([B.52)) is such that the double derivatives dy;dnea as well as the single derivatives
Omea disappear by virtue of the section constraint, and also all ambiguities drop out [20].

The remaining terms in expression ([B.50) can be written as
1 (16VAM 4o VN CE 4 MMV SR ) Ty e — VM 4oVN OB 1,V e
+ 16 VM 4o VN OBy L Nves (3.55)

showing that 0jse terms are also absent in these terms. These terms, which are independent of
the ambiguities, can be further evaluated to give

1 1 — oT
-3 g ONMMN 64 — 1€ Lorpre N MMNyte g + 2 VM 4 YN OBAIL 6T 0 16,0 0N Gpren

1
8 — MMN (8Mgp ONGpo — 2 e Yoyone + e 20pe 8Ne) €A

L1 -
+5 —= MMN g7 g7 (0010nGpo — 97" OriGprONGon + € Oni€ ONGpo) VoA - (3.56)

Together, using equation ([B.52) and the expression above, the variation ([3.50) reduces to

1 1 1

5 RAteq — 5 Orrg" ONMMN e s — Ze—laMe ONMMN ke, (3.57)
1
8 MMN (0Mgp ONGpo — 2 e oy one + e 2oye 8]\/6) €A

MMN oGV (OMONGpr — 97" O GprONGon + € " ONEONGpo ) Toea = T Yea

and gives part of the scalar matter contributions to the Einstein field equations, cf. ([B.44]).
Indeed, ignoring the first term in the expression above, the remaining terms in 7" precisely
come from a variation of

1
1 e MMNN 316" N N Gy (3.58)

with respect to the metric g,,,. Together with (3.54]), and noting that the variation

e6R = —g o (e MMN oy (e de))
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is a total derivative, we find that the variation of the potential (Z32]) with respect to the external
metric is given by

1
d(—eV) =Rée+ ;0 (e MMNN g NV Nguw) = T g (3.59)

and precisely coincides with (8.57). In summary, the supersymmetry variation of the gravitino
equation (343)) correctly reproduces the full Einstein equations from (2.23]).

Finally, a similar discussion can be repeated for the field equation of the spin-1/2 fermions
xABC, which under supersymmetry transforms into vector and scalar field equations from ([Z23)).
Rather than going through the details of this computation, we present the final result in the

compact form of the full fermionic completion of the bosonic Lagrangian ([2:23]), given by

o 1 1o
£ferm = %A%Dp%A - 66 XABC’VWD;LXABC - g\/EGXABC’VV'V“wzlx) P,uABCD

—2ieP7 YM g ity Vi (Y08 — 2v/2i eyNAB o< Vn (7*xaB0)

i MAB —-CDE <& FGH
— —= €€ABCDEFGHY X Vurx

13 + c.c., (3.60)

up to terms quartic in the fermions. The latter can be directly lifted from the dimensionally
reduced theory [49], for dimensional reasons they are insensitive to Vs corrections. We have
thus obtained the complete supersymmetric extension of the bosonic E(7y EFT @2.I5), [2.23)).
In the rest of this paper, we shall discuss in detail how this theory after the explicit solution
[22al) of the section constraint relates to the reformulation [3L[7L[®] of the full (untruncated)
D = 11 supergravity.

4 Exceptional geometry from D = 11 supergravity

Independently of the construction of a field theory based on a particular duality group in
Ref. [15] and other references alluded to earlier, and described in detail in the two foregoing
sections, there is the reciprocal (‘ground up’) approach of reformulating the higher-dimensional
theory in such a way that makes the role of duality groups directly manifest in higher dimen-
sions. This approach goes back to the early work of Refs. [3,[4], and has been taken up again
recently in a series of papers [6-8], which have succeeded in providing an on-shell equivalent
generalized geometric reformulation of the D = 11 theory in which the bosonic degrees of
freedom are assembled into Er(7) objects and where the supersymmetry transformations of the
bosons assume a manifestly E77)x SU(8) covariant form.[] This reformulation is achieved by
starting from the known supersymmetry variations of D = 11 supergravity, and then rewriting
the theory in such a way that the E77) and SU(8) structures become manifest (following the
work of Cremmer and Julia [I], where this strategy was applied first in the restricted context
of the dimensionally reduced theory). One main advantage of this procedure is that the on-
shell equivalence of the reformulation with the original D = 11 supergravity is guaranteed at
each step of the construction; the detailed comparison between the Er(7)-covariant expressions

OThere exist partial results along similar lines for the case of the Eg(sy duality group [B5L[7]; the full bosonic
Egs)-covariant EFT is constructed in Ref. [50].
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and those originating from D = 11 supergravity is also an essential prerequisite for deriving
non-linear Kaluza-Klein ansatze for all fields. '] In this section, we briefly review these devel-
opments, and show how they tie up with the results of the two foregoing sections, eventually
establishing the equivalence of the two approaches. As we will see, the full identification is sub-
tle, not only because it involves various redefinitions, but also because the ambiguities exhibited

in the foregoing sections play a key role in establishing the precise relation.

4.1 56-bein and GVP from eleven dimensions

The first step is to identify an E7(7) 56-bein Vyrap in eleven dimensions with the bosonic
degrees of freedom that reduce to scalars under a reduction of the D = 11 theory to four
dimensions; this 56-bein will be eventually identified with the one introduced in the previous
sections. Decomposing the 56 of E(7) under its SL(8) and GL(7) subgroups

56 — 28@®28 — 7T®21021D7, (4.1)
we have the following decomposition of the 56-bein
Vmap = <VmAB, Vi a8, V™" 4B, Vim AB)a (4.2)

where we will often employ the simplifying notation V" 45 = V"™ 45 = —V¥" 4, when consid-
ering the embedding of GL(7) into SL(8). The main task is then to directly express this 56-bein

in terms of components of eleven-dimensional fields along the seven-dimensional directions, viz.

Vv aB = Vv aB (emaa Amnpy Amnpqrs)7 (43)

where e,,*

is the siebenbein, A,,,, are the internal components of the three-form field, and
Apnpgrs the internal components of the dual six-form field. In other words, the 56-bein whose
existence in eleven dimensions was postulated on the basis of symmetry considerations in the

previous section is here given concretely in terms of certain components of the D = 11 fields

"While the section constraint does admit a solution corresponding to IIB theory (with only six internal
dimensions), the full consistency of the AdSs x S® reduction remains to be established; this would in fact require

a detailed analysis of supersymmetric Eg(g) theory similar to the one presented in this section.
'2The notations and conventions used here are slightly different to those used in [3l[7].
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and their duals. The calculation [7] yields the explicit formulae

1
Viap = gAYV, (4.4)
1, _
anAB = gA 1/2 <anAB + GﬁAmoniB) ) (45)
1 e A
V""ag = 4—5, /B AN 1/2 F171---1051415’ + 60\/§Ap1pzparp4psAB

V2
- 6!\/§<qu1~~175 - TAqmpzAmmps)PqAB ’ (4-6)

1 o A —

V2
+ 3\/5 x 7! (Amp1~~p5 + TAmplpzAmmps)Fpsp?AB

9! V2
+ 5 <Amp1~'p5 + ﬁAmplmAmmps) Ap6p7quAB] ) (4’7)

where A is the determinant of the siebenbein e,,%. In particular, it can be explicitly verified that
the 56-bein defined by the components above satisfies the identities (Z9), and thus is indeed an
element of the most general duality group Sp(56,R). To show that that it is more specifically
an E7(7)-valued matrix one either verifies (2.6 directly, or invokes eqs. (14),(17) and (18) of
Ref. [8] where it is shown that V transforms as a generalized E7(7) covector. From the point of
view of Refs. [3}[7], this matrix corresponds to an element of the coset space Er(7)/SU(8) in a
specific gauge (where the local SU(8) is taken to act in the obvious way on the indices A, B, ...),
such that after a local SU(8) rotation the direct identification as given above is lost. Note also
the appearance of components of the six-form potential in the expressions, as a consequence of
whose presence the identification of the EFT formulated in the previous section and the D = 11
supergravity can only be achieved at the level of the equations of motion (which, of course, does
not preclude the existence of suitable actions for either formulation).

In the same manner, one identifies a 56-plet of E;(7) vector fields AMM that incorporate the
degrees of freedom corresponding to vectors under a reduction to four dimensions, combining
the 28 electric and the 28 magnetic vectors of maximal supergravity into a single representation
that now live in eleven dimensions. As before, the components in a GL(7) decomposition of
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the 56 of E;(7) can be explicitly written in terms of eleven-dimensional fields

1
A" = §Bum, Apmn = 3V2 (Ayamn — By? Apmn)

i V2
Aumn =6v2 n" PP <Aup1~~~ps - Bquqp1~~~p5 T4 (Aupwz - Bquqmpz)Apsmps) )

Aum =36 nn1~~'n7 <A“n1...n7,m + (35 - 1) (Aﬂnl---n5 - BupApnl---"E’)) A"6"7m

V2

+ CAn g (Apngm — BuP Apnym) + 0

(AMWIWZ - BMpAPn1n2) An3n4n5An6n7m> N (48)
The components of the six-form potential appear again in the expression above. However, in
the A, ,, component, there appears a new field A, . nym (as well as an undetermined constant
¢), related to the dual graviphoton.

These E7(7) objects are found by analysing the D = 11 supersymmetry transformations,
which in the SU(8) invariant reformulation were found to take the precise form [3]GHS]

56”0{ = EA’VQTZ)“A + €A7a¢uA )
1
SV = 22 Vuep <€[AXBCD] " = SABCDEFGH EDXEFG) 7
SAM = —i20MNyAB <€£ YuXABC + 2V2E4 %LB) + c.c., (4.9)

where a compensating SU(8) rotation has been discarded in the variation VA8, as explained
in Refs. [BL[7]. Strictly speaking, the supersymmetry transformations of the last seven com-
ponents of the vectors cannot be derived from D = 11 supergravity, due to the absence of a
non-linear formulation of dual gravity, but are here obtained by ‘E7(7)-covariantization’. The
supersymmetry transformations of the last seven components of the vector field instead deter-
mine the supersymmetry transformation of the new field A, ., m as discussed in Ref. [7].
While A, .. nym, which is introduced to complete the 56 of E7(7) for the vectors, is clearly
related to dual gravity degrees of freedom from a four-dimensional tensor hierarchy point of
view, its direct relation to the eleven-dimensional fields cannot be determined. This is in stark
contrast to the six-form potential that is related to the three-form potential via an explicit
duality relation. Nevertheless, our ignorance regarding this field is compensated by the fact
that it does not appear in the GVPs (see below).

While the agreement in the supersymmetry variations of the boson fields as derived above
and the exceptional field theory approach of the foregoing sections is thus manifest, the agree-
ment in the fermionic variations is much more subtle. This is because the latter depend on
the connections, and a detailed comparison would thus require an analysis of the connection
B22) in terms of the D = 11 fields. Of course, ignoring the ambiguity (3.25]) for the moment,
we could simply try to work out the expressions ([B:23]) and ([B.24)) by substituting the explicit
formulae (@4])-(Z1). However, this would lead to extremely cumbersome expressions (but see
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appendix [D] for a simplified calculation), whose relation with the ones given below would be
far from obvious. We will therefore proceed differently by starting ‘from the other end’. The
supersymmetry transformations of the fermions were already derived in [3], viz.

1 1
(Sw;j =2 <(9M — Bum(?m — Z(?mBMm> EA + §WMQB’Yaﬁ€A + QMABGB

AB_af A

_ 1
+ 2gaﬁ Y yu€EB — Zem Be,,gamepﬁ’yup'V,uEB

1 1
+ emABam (/VMEB) + §emABQ;nBC’7,uEC _ §emCDP7InABCD’7,uEB7

3
SYABC = o \/§PMABCD “Pep + 6 \/59;5 [ABlyaBIC] _ €1 50m e, BemIAB s C]

2v/2

2 2
4 3v/2emABy 1 3\2/_em[ABQ;nDC]€D _ 3\/—emDEP7/nDE[ABEC]

2
— 2/2em pp Pl ABODE (4.10)

where
€M ap = eMAB — ATV (4.11)

is just part of the 56-bein VM 45 given above in ({@4]), and

i V2
gaBAB = _§A1/2e[a“eﬁ]y(au - Bumam)BunFnAB + ﬁlA 1/2Fa6mnrgbg (412)

comprises the contribution from the spin one degrees of freedom. The link of the particular
expressions involving the Kaluza-Klein vectors B,™ with those of the previous two sections is
easily seen by noting that

0y — B0 = 0, — A, Mom (4.13)

upon taking the canonical solution of the section constraint. Furthermore, the direct comparison
with the fermion transformations of D = 11 supergravity yields the expressions

1 ﬁ abe ﬁ abede f

Q,mAB = _QmabPaAbB + _FmachAB + mFmabcdef PAB )

2 48
ﬁ \/§ Fbcdef

3
P/mABCD = ——7Pmab P([ZABF%‘D] + ﬁFmabc ([IABF%?D] - mFmabcdef P([ZAB cD] > (414)

4
where
Gmab = €[a" OmCnlt] » Pmab = €(a" OpmEnlp) (4.15)

are the components of the GL(7) Cartan form, with analogous notation as in the previous
section. These objects transform properly under local SU(8): @’ 4% is the SU(8) connection,
while P/, ,pop transforms covariantly in the complex self-dual 35 representation of SU(8).
However, as written, these connections are not fully covariant under internal diffeomorphisms,
because ¢ ap and py,ep do mot transform as proper vectors under internal diffeomorphisms.
For this reason we will switch to a slightly different choice below, see ([AI7) and ([4.18]), which
satisfies all covariance requirements.

The other important feature of the reformulation [3L[7}[8] is the so-called generalized vielbein
postulate (GVP). When evaluated on the different components of VM 45 this consists of certain
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differential equations satisfied by the 56-bein which are analogous to the usual vielbein postulate
in differential geometry. The GVPs are equations satisfied by the 56-bein and in the approach
of [BI7,8] they can be checked explicitly on a component by component basis, while they appear
as genuine postulates in the approach of the previous section. Moreover, the direct compari-
son with D = 11 supergravity allows for a direct understanding of four-dimensional maximal
gauged theories and the embedding tensor [83740] that defines them from a higher-dimensional
perspective as well as providing generalized geometric structures that can be interpreted as gen-

eralized connections and used to construct a generalized curvature tensor.

The external GVP, which gives the dependence of the 56-bein on the four-dimensional
coordinates is given by equation ([Z27) (see Refs. [7,]), where the explicit expressions for Q,,
and P, in terms of the D = 11 fields were already given in Ref. [3]. Here we concentrate on the
internal part of the GVP which was given in [7,[§] in the form

OmVraB — Tmnt Vv as + Q5 aVusic = PmasepVu©, (4.16)
Where
1 V2 V2 bed
QmAB = §wmab F%bB + EFmabc %bé + mFmabcdef FZE ef7 (417)
V2 V2
PmABCD = ﬁFmabc ([IABF%?D] - mFmabcdef F([IABFlgz)e]f- (418)

Notice that Q’,, 4© and P’,,, apcp defined in equations (@I4) and Q,, o” and P,, spcp defined
above, ([AI8), differ in their components relating to the siebenbein since we have replaced ¢y, ap
by the spin connection wy, 45 and P, 4 by zero. As explained in Ref. [§] this change is required
if the connections are to satisfy all the requisite covariance properties, as is indeed the case for
(£I7) and (AI8]). However, there appears to be no way to reproduce these covariant expressions
in terms of the 56-bein V and its internal derivatives 0,,) without ‘breaking up’ the matrix V,
and this is one of the main difficulties in establishing agreement between the above expressions
and the ones obtained in the previous section. Fortunately, the apparent discrepancy turns
out to reside in the 1280 part of the SU(8) connection (see ([3.:25])) and the hook ambiguity
described in section and will thus drop out in all relevant expressions.

The internal GVP as given in (812) and ([AI6) (and also (£.24]), see below) differ in two
respects. First of all, and prior to imposing the section constraint, ([B.I2]) involves all 56 com-
ponents, whereas (£I6]) involves only the seven internal dimensions with index M = m. The
second distinctive feature is the appearance of a non-zero term proportional to P, on the
right-hand side of the GVP. As we will explain in more detail below, this term corresponds
to a generalized non-metricity . We will show below how to absorb this non-metricity, and
thereby bring the GVP into the same form as (3.12]). Finally, the connection coefficients T,
can appear in the supersymmetry transformations of the fermions only via their traces, because
the fermions, while transforming as densities, are otherwise only sensitive to the local SU(8).

Given the coefficients Q,, 42 and P,,2BCL we can solve for the affine connection coefficients

N

T, in terms of the fields of D = 11 supergravity; we use boldface letters here to indicate

¥Note that in this paper our conventions are such that Cartan’s first structure equation takes the form
T% = de® + w% A €.

We would like to thank Malcolm Perry for pointing this out to us.
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that these coefficients are different from the ones identified in (B.21) of the previous section.
With @I7) and @IR), T'ya” takes values in the Lie algebra of Eq)

FmMN = Fma(ta)MN- (419)

The comparison with D = 11 supergravity allows to solve for the components of T';,,* directly
in terms of D = 11 fields; the non-vanishing components are

(I‘m)np = _an,n + %&ngﬂf]’ (Fm)88 = _% Zmn’
(C)s™ = VPP e, (D) = o 5, (4.20)

where I'},,,P is the usual Christoffel symbol, and where

— 1
Zplmng = DpAmnq - IFpmnqa (4.21)

V2

Splmy-me — DpApm,y.me + 48 Fp[m1mzm3Am4msm6]

V2 1 1

T T (DPA[mlQOS - IFp[mlmzm:’)) Am4m5m6] - ﬁFPmlmm(S' (4.22)

One notices that these objects, like the usual Christoffel symbol, indeed transform with sec-
ond derivatives of the tensor gauge parameters, as would be expected for a generalized affine
connection (see Ref. [§] for details). Another noteworthy feature is that they vanish under full

antisymmetrization:

[1]

=0, =

plmi...mg]

= 0. (4.23)

[plmng]

Therefore, they correspond to hook-type Young tableaux diagrams, and thus encapsulate the
non-gauge invariant part of the derivatives of the three-form and the six-form fields. In terms
of SL(7) these Z’s correspond to the 210 and 48 representations, respectively; when further
decomposed into SO(7) representations, these will become the 21 @189 and 21 @ 27 of SO(7),
all of which appear in the 1280 of SU(8). We will also see below that the irreducibility property
([#23) is crucial for the absence of torsion in the sense of generalized geometry.

As given above, the connection coefficients Qu, 42, PnAPCP and T',,n" have all the de-
sired transformation properties with respect to local SU(8) and generalized diffeomorphisms,
as can be verified explicitly from their definitions (see Ref. [§]). That is, Q,, 4® transforms
as an SU(8) connection (as is obvious from the way the local SU(8) has been introduced in
Ref. [3] as a Stiickelberg-type symmetry), while P,,AB¢P transforms covariantly under SU(8)
transformations. Both Q,, 4? and P,,AB¢P transform as generalized vectors under generalized
diffeomorphisms (for the natural truncation of generalized Lie derivatives to vectors with only
seven vector indices). Furthermore, the generalized affine connection I is invariant under SU(8)
transformations, and transforms as a generalized connection (with a second derivative of the
gauge parameters).

A distinctive feature of the internal GVP as given here, to be contrasted with the one given
in (B.12)), is that, at this point, the connections have non-zero components only along the seven
internal dimensions, but vanish otherwise — just like the partial derivative 0j; after imposition
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of the section constraint. Nevertheless, we can formally write the internal GVP as

omVnas — Tun"Vpas + Q5aVnpic = PrascpVn©" (4.24)

by trivially promoting the GL(7) index m to part of a 56 of E;(;). Hence, taking

Doy — Om if M = m&, (4.25)
0 otherwise

and identifying the m components of the connection coefficients with those that appear in
equation (AIG)), with all other components vanishing, gives back ([AI6]). In this form the
internal GVP can be compared to equation ([B12]), with the proviso that the section constraint
also applies to the connections. However, in view of the derivation given in the foregoing section,
a natural question that arises at this point is why all other components of the connection
coefficients should vanish. Would it not be more “natural” from a generalized geometric point
of view if the connection coefficients had non-trivial components in the other directions of the
56 representation, as has been assumed in section Bl and, for example, Ref. [19]? Indeed, we
will see below that the introduction of non-vanishing connection components along the other
directions will actually be required if we want to recast the supersymmetry variations of the
fermions in order to achieve full agreement with the formalism of the preceding section.

We now proceed to reformulate these structures in order to exhibit their precise relationship
to those constructed in section Bl However, given that vanishing torsion is taken to be an
important ingredient for defining generalized connections in section [3] we will first consider the
generalized torsion associated to the generalized affine connection T'.

4.2 Generalized torsion

In Ref. [8], the generalized torsion Ty is defined as follows
[Var, V1S = Tyun"'opS (4.26)

for some scalar S and where V), is defined using the connection I' s ~F. The generalized torsion
as defined above vanishes [8]. An alternative (and a priori independent) definition of the torsion
is given in equation ([B.I3]) of section Bl which leads to the formula ([3I4]). While the above
definition of torsion and that defined in ([BI3]) are equivalent in usual differential geometry, this
is not the case in generalized geometry. Here we will evaluate the generalized torsion (B.14])
explicitly in terms of the connection coefficients T',,x* given in Ref. [§] and above. A simple
component-wise calculation using the components of I,y identified above now shows that
the generalized torsion does indeed vanish. For example, consider

Tm8 n8p8 = I‘km8 n8p8 —48 Pp8n8q8r8 I‘kq8 m8r8 + 16 IP>p8n8qu8Pr8 q8r8- (4'27)

Using the fact that
1
PP Ts = o (20507 + 6707) (4.28)

the above equation reduces to

2 T
Tmgns” = 200" — 3T m oy (4.29)
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However, the right hand side of the above equation vanishes by substituting the relevant com-
ponents of I’ from ([@20). Hence,

Tm8n8p8 = 0. (430)
Next consider, for example,
TmSpqr8 = FmSquS - 24qur88t U8I‘u8m8 st (4.31)
Using the fact that
1
qur8StU8 = gfs;fﬁa (4.32)
the above equation reduces to
However,
Ll pgr] ~ ZEfmipgr] = 0 (4.34)

by equation (£23]). Finally, consider the following components

TmS nqu = FmS n8pq - 24]P)pqn8rsstrr8 mSSt- (435)
Using the fact that
1
pPa, 78, — _ﬁéf;fsé;’], (4.36)

we obtain

I8
TmS nqu = I‘km8 nqu + 2Fr8 m8 [pég]
tits (2 = =
= 3\677])(1 L (‘—‘m\ntl...ts — Snlmty.ts T 5‘—‘t1\mnt2...t5)

= 21V 2P B E 4 = 0, (4.37)
where we have used the expression for T'),5,8"? in the second equality and equation ([£.23)) in
the final equality. All other components of the generalized torsion can be similarly shown to be

zero. It should be emphasized that the fact that the full antisymmetrization of the = quantities

is zero, equation (£.23)), is crucial for this argument.

In summary, the generalized torsion, as defined by equation ([B.I4]) is zero
Tun® = 0. (4.38)

Let us emphasize again the remarkable feature that the vanishing of the generalized torsion, as
originally defined on the basis of very different considerations based on generalized geometry,
here follows from the direct comparison with D = 11 supergravity.

4.3 Hook ambiguity

As we have already mentioned, the supersymmetry transformations are insensitive to the gen-
eralized affine connection, modulo density contributions involving the trace of the affine con-
nection, because the fermions transform only under the chiral SU(8). With the connections as
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originally given in Ref. [3], or equivalently from equations ([£I0), the supersymmetry variations
of the eight gravitini and the 56 dilatini contain the following combinations of @)/, and P/,

5%? o .t <emAClecB _ emCDP/mABCD>,yu€B’
NABC o« L+ <3 e [ABQ/mC]D + 3emEFP’mEF[AB5g] + 4P/mABCEemED>€D. (4.39)

An important property of the expressions appearing here on the right hand side, is that they are
actually insensitive to certain modifications of the connections. We first recognize that these
are exactly the same combinations that appear in the two first equations of ([B.28]). Secondly,
the expressions on the right hand side of ([£39) admit a non-trivial kernel which is found by
looking for solutions of

0 = TheoQ,me” TP, 7,
0 = 3DMABsQ, ) — 3T, 6P, FFIABSCl _ y5p! ABCETM (4.40)

Let us proceed with the following anséatze

Pabc X(?) Fabcdef

3 4
0Q a® = X T ¢ X T 4 mlabedef * AB

m|ab m|abe

5P1zBCD _ Y(3) FFABP%D]_"_Y(ZL) F[a I,bc] +Y(7) P[a I,bcdef]

ml|ab mlabe = [AB~ CD] mlabedef ~ [AB~ CD] > (441)

where the slash | simply indicates that no a priori symmetry conditions are imposed on the
X'’s and Y’s other than the obvious ones (to wit, anti-symmetry in [ab], [abc] and [abedef],
respectively). For the form field contributions it was already shown in Ref. [36] that the GVP

remains valid if
y@® 3y (7) 3 @

(4.42)

m|abe 9 ““mlabe m|abedef — _5 m|abede f
with no further restrictions on the X’s and Y’s. Notice that both X and X(7) have two
irreducible parts: besides the fully antisymmetric pieces appearing in ([I4]) there are the hook
diagram contributions. Furthermore, it was shown in Ref. [36] that X @ y® and XM, y®
are in the kernel of the supersymmetry variations (£40) provided that

(4) _ (7) B
X[m|abc] =0, X[m\abcdef] =0. (4.43)

That is, the fully antisymmetric parts (the four-form and seven-form field strengths) are de-
termined, but the hook diagram contributions can be chosen freely, as they drop out in the
supersymmetry variations of the fermions in ([£39). Note that =,,,,, and Z,,j,pqrse that ap-
pear in the generalized affine connection in ([{.2I)) and ([£22]) are precisely of the hook-type,
hence providing a geometrical explanation for the ambiguities found in [36].

As for the remaining SO(7) part XS)

ap» Which was not considered in Ref. [36], the first

expression in equations (£40) reduces to

(3) ab 3 , 453\ 3) _
Xmgﬂg+<zg%+§nm>nw—&QMQB_O. (4.44)

Whence we read off the condition

v® __3x®

m|ab 9 “"mlab’

(4.45)
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With this identification the second line in ([ZZ40) becomes

x®

albe

(2l st — Tiaslen) — X

[AB™ C|D 7 I‘EL,LUE#SC][) = 0. (4.46)

albb

We now see that all terms in ([£44) and (£40) except the last ones involving X(g
provided we demand that

3)
1bb cancel,

X =0 (4.47)

To interpret the remaining term let us check the difference between the expressions for the
connection coefficients given in Ref. [3], equation ([£I4)), and in Ref. [8], equations ([A.I7) and
(#I8). These connections are fully covariant under internal diffeomorphisms. The difference is
thus

1 1

X = §<enb6me"“+”’”“b> = 5 € aplinn, (4.48)

where we have used the usual vielbein postulate satisfied by the siebenbein and I'},;, is the usual
Christoffel symbol. Hence (£.47)) is indeed satisfied for a torsion-free affine connection. The only
extra term in the supersymmetry variations then comes from the ‘leftover’ term in ([46]) which
is just a density term proportional to I'y,,*, which is required here because the supersymmetry
parameter is a density. This is the same term that was obtained above with the connections
@I4) just from Q) ., and P/ . alone. We thus see that the switch from (@I4]) to (AI7) and
([EI]) reintroduces the density term proportional to I't,,* that was absent in Ref. [3]. In other
words, even the density term which is there with the correct weight if the GVP is formulated
with the usual affine connection as in Ref. [8] can be absorbed into a redefinition of @Q,, 4%
and P,,ABCP | as they were originally given in Ref. [3]. In fact we are free to also choose any
interpolating solution where the coefficient of the density term changes, as part of it is absorbed
into Q,, 47, while the other into pP,,ABCD

Let us also point out how the apparent discrepancy between ([B.I9]), where Tem oce 1oe
(with e the usual vierbein determinant), and the above result, where I'y,,* oc A719,,A, is re-
solved: while in ([3.29) the contribution proportional to I'fr3/ cancels with the weight assign-
ments given there, the contribution proportional to I'y,,* here can be eliminated by shifting
back to the non-covariant connections @)/, and P}, and only then the two pictures can be made
to agree. Otherwise the two sets of connections (both of which are consistent) simply reflect
the unavoidable ambiguities identified in section [3.11

Let us emphasize once again that the connections given in equations (LI7) and (IS
satisfy all required covariance properties of generalized or exceptional geometry provided we
break up V by choosing the specific ‘frame’ as derived from D=11 supergravity. First of all,
the covariance under local SU(8) follows by the same arguments as in Ref. [3]: as given, these
expressions correspond to objects in a special SU(8) gauge (namely the one that accords with
the D=11 theory), such that Q,, 4” transforms as a proper SU(8) connection (for the SO(7)
subgroup this is anyhow obvious). Secondly, P, ABCD transforms covariantly when we apply
an SU(8) rotation that moves us out of the given gauge. Furthermore, these objects are also
covariant under generalized diffeomorphisms: for the 7-dimensional internal diffeomorphisms
this is manifestly true, while the fact that they do not transform at all under the remaining
generalized diffeomorphisms with parameters &,,, , ™" and &, is consistent with the formulae
(17) and (18) of Ref. [§] because Qys = Py = 0 for M # m. Of course, these statements apply
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only to the specific ‘frame’ as derived from D = 11 supergravity, that we have adopted here,
where the connections have non-vanishing coefficients only along the seven internal dimensions.
However, it is straightforward to see that the manipulations we are now going to perform
on these specific connections to bring them in line with the constructions described in the
two foregoing sections are themselves fully covariant and therefore preserve these covariance
properties.

Let us point out once more that the existence of covariant connections is possible here
because we have given the connections explicitly in terms of D = 11 fields. It is not possible to
achieve if all quantities are to be expressed only in terms of the generalized vielbein V' and its
derivatives in an E;(7)-covariant manner, as we already saw in the foregoing section (and will

explain again for a simplified example in appendix [D]).

4.4 Non-metricity and redefinition of the generalized connection

In order to understand how the appearance of Pys on the right-hand side of the GVP ([d.24]) can
be reconciled with the absence in the corresponding relation given previously in equation (312]),
it is useful to recall that similar ambiguities arise in standard differential geometry. While the
vielbein postulate is usually quoted as

Omen® + wmpen” — TP e, =0 (4.49)
with T'h,,, the Christoffel symbols, there is a more general expression
Omen® + Wi pen’ — P ep® = TmnPep® + P enl. (4.50)

where I'},;, is no longer given by the Christoffel symbols, T,,,? = Timn)” is referred to as the
torsion and P, a5 = Py (ay) is referred to as the non-metricity, as it ‘measures’ the failure of
the metric to be covariantly constant (see for example Ref. [51]). Notice that there is quite a
lot of freedom in the definition of the various objects in the equation above. For example, the
antisymmetric part of the affine connection Ffmn] can be absorbed into a redefinition of T}, so
that Th, =T )
connection and the torsion:

. Similarly, the non-metricity can be absorbed into a redefinition of the affine

T = Thi = Pl eny e,
Tmnp —> Tmnp — P[mc|d| en]depc. (4.51)
Furthermore, the fully anti-symmetric part of the torsion can be absorbed into a redefinition

of the spin connection

Wmab = Wmab — Tmnp ey ely. (452)

Hence, in differential geometry there is a great deal of freedom in how one defines various
structures such as non-metricity, torsion and the affine and spin connections.

In complete analogy with this discussion, connection coefficient Py; can be absorbed into a
redefinition of I'ps in the internal GVP, equation (4.24)):

Tyun’ — Tyn? = Tun? + i<VNABPMABCDVPCD - VNABPMABCDVPCD) (4.53)
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so that the internal GVP becomes
oMV as — Tun"Vpas + QuaVn e = 0. (4.54)

We note that this shift only changes the affine connection, but does not affect the SU(8) con-
nection Qpr 4®. The GVP is now of the form of ([3IZ) in section [B] but the connections are
still different. In particular, the Qas 4® and Tynt are still non-zero only for the first seven
components given by equations ([£I7]). However, by removing the non-metricity in the affine
connection we have reintroduced torsion in T' where there was none before, in analogy to or-
dinary differential geometry. Therefore, in order to recover a torsion-free affine connection we
follow the same procedure as in section [3.1], and accordingly redefine the affine connection once

more, as follows:
Qura® — Onra® = Qura® + QuiA”, (4.55)
Cun? — Tun’ =T’ + Z'(VPABQMACVNBC —VPABQy, ACVNBC)a (4.56)

where, modulo the remaining ambiguity Ups 47, the modification Qj; is now chosen to obtain
precisely the connection Q in section [B, namely

9
Quma® = Rag A% + Uy A% + Wiy 4% + gFMNPVPACVNCB- (4.57)
With the redefinitions (£.56]), we have now brought the GVP into the standard form

OMVN as — Tun"Vpap + Q5 aVnpe = 0, (4.58)

with the following properties:

e The affine connection f‘MNP is torsion-free, an SU(8) singlet and transforms properly
under generalized diffeomorphisms.

e The SU(8) connection Qps 4? transforms as a connection under SU(8), and as a general-
ized vector under generalized diffeomorphisms.

e The connections have non-vanishing components for all 56 components, and this is nec-
essary for the supersymmetry variations of the fermions to be expressible in terms of the
SU(8) connection Q47 alone (see the previous section).

e The remaining differences between the above connections and the ones obtained in the
previous section are all contained in the hook-type ambiguity.

Modulo the ambiguity, these connections are now equivalent to the connections defined in
section B, namely I'>~T. We should point out that, with the formulae at hand, we could
in principle proceed to work out explicit expressions for Qar4” and T'pn” in terms of the
D = 11 fields. However, after the redefinitions these expressions will be very complicated, and
by themselves not very illuminating.

The trace of the affine connection T' is given by the determinant of the siebenbein [§],

3
FKMK = 25MlogA. (459)
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The connection used to construct the exceptional geometry in section [ is required to be com-
patible with the vierbein density, (I8]), which implies equation (BJI9). This condition can
be satisfied by the torsion-free connection by choosing W in equation ([A.57) appropriately. In
particular the trace of I' drops out of T'gx

T = Tru™ + Z'<VKABQKACVMBC - VKABQKACVMBC>
=9 (VKABWKACVMBC — VEABW e OV, BC) .

The W given in equation (3.:24)) ensures that the affine connection I' satisfies the condition
(BI9). Note that the part of the fermion supersymmetry transformations given by the internal
connection are independent of the vierbein determinant. This remains so despite the contribu-
tion from W, which is cancelled by the density contributions in the covariant derivative Vj; of
weighted tensors in the supersymmetry transformations.

4.5 Connections and fermion supersymmetry transformations

In section [3.2], we give the fermion supersymmetry transformations ([3.34]) in terms of the torsion-
free connection constructed in section 3.1l Solving the section condition to obtain the D = 11
supergravity, the fermion supersymmetry transformation should yield those of the SU(8) invari-
ant reformulation [3], (£I0). Using the definition of the covariant derivative (83) and equations

BII) and (322)), transformations (3:34]) become

561#;‘ = 2D, A+ 4]~'pUAByp"7“eB + ie,,gﬁMepBVMABy”pvueB — 45 YMABg,, (Yu€B)
—2i VMAB gy 5% ec — 28 VM oppu Bl ep
SxABC = 9\ P,ABCD e, 4 %if;V[AB,YWG(J] 13V e, gopre, S VM 4By Cl
—12v/2i VMIAB 03¢V + 6720 VM IAB gy pCeP — 8v/20 VM b ppp APOP P
WGy VMDEpMDE[ABEC] ’ (4.60)

In this form, the supersymmetry transformations ([B:34]) reduce to the following expressions
upon use of the canonical solution of the section condition

1 1
(51/};? =2 <5u — Bumam — Z(?mBMm> EA + 5&)#&57(156‘4 + QMABEB

AB

1
+ ]: AB 0‘67“63—16"1 e,,gﬁmepﬁy”pvueB

1 1
mABam (7}163) + §emABQmBC’7,uEC _ _emCmeABCD'VuEBa

+e 5

3V2 3
S ABC — _2\/§PuABCD,y;LED_I_ ffaB[AB aB IC] _ \Feugameyﬁem[ABv“’jec]

+3v/2emAB g (O \F B g 0P — ‘3\;6 pE pm P EABC]

— 2V2e™ pp p ABOPEE . (4.61)
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Comparing the supersymmetry transformations above that come from the supersymmetric EFT
with the canonical solution of the section condition with those of the D = 11 theory as written
in Ref. [3], transformation (@I0), we find that they are identical upon identifying 7,57 with
QagAB and @', P’ with g, p, respectively.

First, let us consider the relation between fagAB and QQBAB. Note that J:QBAB satisfies a
twisted self-duality condition, which means that on-shell

— AB AB
‘Faﬁ :faﬁ .

The QQBAB, however, does not satisfy a twisted self-duality condition and in order to modify it
so that it does, we need to add to it the Hodge dual of the field strengths, viz.

i V2.,
GopAB = —1—6&/2@[&#%]”(&“ = B 0m) By Tnap + 4 i V2E g D

2

- V2
64 - 5!

where X3, would correspond to the field strength of the field dual to B,,™. However, since

ATV g sFOMmsD, g+ iAY 25 s XM g, (4.62)

the first term in the expression above is not exact, B, cannot be dualized in the usual way.
This is why the new field B, s is necessary in the definition of fMVM , (213), schematically
“eating up” the non-exact terms to allow dualization.

Regarding the relation between @', P’ and ¢, p: as explained in section (£3]), the Q" and
P’ are related to Q and P by the usual Christoffel symbol associated with the siebenbein.
Moreover, the Q and P are related to ¢ and p by the generalized affine connection T",
2

Qma® = qna? - 3 vt Vp acVV OB,

Ppascp = pmapcp + i Dy VpasV™ op. (4.63)

In both cases, the redefinitions correspond to hook-type redefinitions to which the supersym-
metry transformations are insensitive, as explained in section €3l Therefore, at the level of the
supersymmetry transformations, the two sets of connection coefficients are equivalent.

The fermion supersymmetry transformations of a truncation of the D = 11 theory have
been studied in Ref. [20], where they are also given in terms of a generalized SU(8) connection
constructed in Ref. [I9]. In this paper, we use a connection that allows us to express the
fermion supersymmetry transformations covariantly in terms of the 56-bein, rather than its
components. This is done by using some of the components in the 1280 representation, to
which supersymmetry transformations are insensitive to [19] (see also section[J)). Therefore, the
connection @ — U still contains terms, not expressible in terms of the 56-bein and its derivatives,
that are in the 1280 representation. These terms are precisely the difference between the @ — U
and the unambiguous part of the connection of Ref. [I9]. In practice, an explicit expression of
this difference is rather complicated.

The advantage of the connections constructed in Refs. [3l852] and Ref. [19] is that they are
compact when expressed in terms of the D = 11 fields. However, the advantage of the connection
constructed in section [ is that it allows us to write the supersymmetry transformations, and
thus the whole theory, in terms of the 56-bein and other E;(7)-covariant objects. Indeed, that
this can be done is a main result of this paper.
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Appendix

A Notations and conventions

The index notation used in this paper is as follows:

e u,v,...and a, 3,... denote D = 4 spacetime and tangent space indices, respectively.

e m,n,...and a,b,... denote D = 7 spacetime and tangent space indices, respectively.

M, N, ... label the fundamental (56) of E().

a labels the adjoint (133) of E7 (7).

A, B,... denote SU(8) indices.

Furthermore, the following notations are used for covariant derivatives:

e D, =0, — Ly, denotes the E)-covariant derivative.

e Dy=D,+w, g+ QHA B denotes the E;(7)-covariant derivative that is also covariant with
respect to the local SO(1,3) and SU(8) symmetries.

e V, =D, + I, is the fully covariant derivative.
Analogously,

o Dy =0y +wu®s + Q v g denotes derivative that is also covariant with respect to the
local SO(1,3) and SU(8) symmetries.

o Vy =Dy + F]]\D/[ n is the fully covariant derivative,

and ﬁM and V M are defined with the modified spin connection @y.

B Useful identities

In this appendix we collect a handful of useful relations and identities in order to deal with the
E7(7y projectors (2.17)) and the section constraint (2.I)) upon contractions with the 56-bein. Let
us first note the projector identity

PM NP o Vpap VOCP = % VN B[4 YME[C Sp D] % VME[A Yy EIC 5B]D]
— i (Vnpr VEE £ VM pp v EEY 668 (B.1)
As a consistency check, we may calculate the trace of this relation
PY NP QVpap VOP = % Vnap VMOP 4+ % AR e
— % (Vnpp VMEE £ VM pp v EE) 6,9, (B.2)
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confirming that PM n % @ acts as an identity on the right hand side. Similarly, one finds that

1 1
PY NP QVpapVicp = 5 VN[AB VY ep) — 5 eapcpprauVnt VMO (B.3)

The section constraint (Z1]) states that
(P11133)po™ N oy ®oy = 0. (B.4)

where 133 and 1 are in the symmetric and antisymmetric tensor product, respectively. Con-

tracting this equation with the 56-bein, we obtain explicitly

VLWV oy oy = L aRVMepy VP oy @ o
1
VM oupVNep)du®oy = 54 CABCDEFGH YMEFYNGH 5, @ oy . (B.5)

C The supersymmetry algebra

In this appendix, we show that the commutator of supersymmetry transformations (B.32])—
B34) closes into the supersymmetry algebra (3.35]). For the commutator on the external and
internal vielbeine e,* and VAP we have seen in section above that closure of the algebra
is a direct consequence of the vanishing torsion conditions ([2.25]) and (BI3]), respectively. Here,
we complete the algebra on the vectors .AMM and two-forms By, o and B, us .

We start with the vector fields, for which the commutator of two supersymmetry transfor-
mations yields

[561,562] AMM = —& DM (VMAB€2 A€1 B) + 16 VNAB VMAB EL; Vi %Nelc
+ 32 VNCA YyMAB Eg%l Vnerp + 32 VMABVKBC €24 %K (’me?) + c.c.
= DMAM + 4g“l,MMN0N (Efz4 Y eq A) + 8 MMN (€‘24 Yol A) €up e”[a@Ne,,B]

+ 8i QMN (E‘f W@NQA — @N@L‘ Vu €1 A)

1
+ 32 <VMABVKBC + VMBcVKAB + 3 5év MMK> Vi (Eg%ﬁl A) . (C1)

In the first line, we recognize the action of a gauge transformation together with the non-
covariant contribution g, MMNn&” of the diffeomorphism action (Z34). The third term can
be reduced using ([BI0). Let us rewrite the last term of (CI]) as

1
32V { (VMABVKBC + VMBcVKAB + 3 5é MMK> (Eg’yuel A)}

32 0x { (vMABVKBc + VM poVEAB 4 % 56 MMK) (& e A)}

— 32 <VKBCDKVMAB + VEABDYM g %56‘ (trace)> (€5 vuer4)

+8 (e Lorce) (VKBCVMAB + VEABYM oy % % MMK> (€ Yuera)

= 120MYN ONE o — g OMN (VK 5o DyVEAE + VEAB D\ Vi pe) (€5 vue14)

40



reproducing the parameter Z,, o from ([337)), and where we have used (3.I9) in the first equality
and the vanishing torsion condition ([B:2I]) in the second. Together, we obtain

1
[0e, 0] AM = DAM 4 g, MMNoyer — 3 & Fu™ =12 ()N 0vE o

+ 8¢ QMN <€§1 ’y,ﬂSNelA — 'ZSN€§4 Yy €1 A)
8
—3 QMN (VKBC 'DNVKAB 4+ pKAB DNVKBC) (Eg’yuel A) . (C.2)

We observe, that we can simultaneously drop the SU(8) connection part in the last two lines
since they mutually cancel. The spin connection @y;*? in the second line yields additional
contributions which explicitly carry the field strength ]:WM and can be simplified using the
twisted self-duality equation (ZI5):

— i QMY Euvpo E?VV e1a My FPR = —%gy}—wM . (C.3)
In total, the commutator (C.2) then takes the expected form
[0ers 0] AM = € F M+ guMMNone” + DAY + 12 (t*)MN 0NE o
+%QMN B (C.4)

with the last term corresponding to the action of a tensor gauge transformation (2.19]) with
parameter =,y from ([342]).

Next, let us check the commutator of supersymmetry transformations on the two-forms
B, o First, we note that to lowest order in the fermions the terms descending from variation
of the (ta)mn A[“M 5EAV]N contribution in ([332)) simply reproduce the corresponding terms
of type (ta)nmn Ap™ [01,02) A, in the action of gauge transformations (2.I9) and diffeomor-
phisms ([2.34]), by virtue of the closure of the algebra (C.2)) on the vector fields. We can thus in
the following ignore all terms that carry explicit gauge fields AMM . With some calculation the
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various remaining terms organize into

8
[01,02] Biwa = —3 (ta)"? < ~VpapVacn & v PP By e

+2VppcVo?C Yiu Do e

. _[A BC& D
— 6iVp aBVQCD Eg Y VM Ve ]

— 41 Vp BcVQAC €9 A’y[uVMBD @M(’VV]Q D) + C.C.)
— (1 > 2)

- 1 o
vl + = (ta)PQ VPABVQC'DP ABCD €€ vpo gp + (ta)MN AM-FMVN

= 2Dy .

I

32 . _
— g(ta)PQ oM (ZVPACVQBCVMBDefftuE? + c.c.)

4 ) _
— g(ta)PQ< —12Vpcp Eg’tu@QElD + 4ZVPA0VN CD@QVN DB 61247“,,6?

+3Vp cpQ0pe €& Vel + ce — (1<—>2)>

= 2D[u£u]a + gp Hp,uz/a + (ta)MN AM‘F/J,VN + aMQ,uz/JMoc + (ta)MNQ;wNMa

(C.5)

with the gauge parameters AM and ZE.a defined in (B37) above, and the shift parameters
Qu™Ma, Qun™ given in [B42). Finally, we have used the first-order duality equations (Z39)
for the last equality in (C.3) in order to reproduce on-shell the transformation (2:34]) under
external diffeomorphisms. Together, we confirm the supersymmetry algebra ([8.33]) on the two-
forms By -

Closure of the supersymmetry algebra on the vector fields and two-forms By,  thus has not
only determined the supersymmetry transformation rules but also uniquely fixed all the gauge
parameters appearing on the right hand side of (338]). The remaining commutator for the
constrained two-forms B, s thus becomes a consistency check of the entire construction with
no more free or adjustable parameters to be determined. Indeed, closure of two supersymmetry
transformations on By, »s into ([8.35]) can be shown by a rather lengthy calculation of which we
will give only a few essential ingredients here.

As for B, «, we can consistently ignore all terms that carry explicit gauge fields AMM which
separately organize into the correct contributions due to closure (C2]) on the vector fields. After
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some calculation, we then find for the remaining commutator
[551 ) 562] BMVM = 2 D[MEI/]M —4igP €€ vpo Ry 77

. 2
—2i eguupa D (gcr)\aMf)\) - g €€ Lvpo PPABCD VPABDMVP CD 60

128 | _ ES
+ = EgA’V[uvL(VV]E?))DMVKCAVLBD

— 64Z'E§ ElD e[ua@Ke,,]aVKABVNAB'DMVNCD + c.c.

YECD L .

+ 64VKCD£’Y[M75M6K(’YV]€?)) + c.c.
— 64DM§ My VchﬁK(’yy]e?) + c.c.
— 160 QN ]:p[uNEg VP@K(%,]E{))VKCD + c.c.

— 16 eg,,,” Vir (ef’ypVNCD@N(%ef))) + c.c.. (C.6)

Here the curvature in the second term refers to the curvature of the corresponding spin con-

nections

Ry-°" eq’eg’ <(9M wpaﬁ —D[A,w]pro‘B>
= ey eg’ <6’wa°‘5 -D, (eT[O‘@MeTB])> . (C.7)

In the calculation of (C.6]), we have made use of

DyViap = %VKCDDMVKC[BVL aip — VEPYE cpDyVicas . (C.8)
= VupTypt = % VECPYp oV g Tk ™ + VEPYE apVpap Tk
as well as
8i e p” Om (E?yppgel A) + cc. = 8iegu,’ 0V, (E?ypel A) (C.9)
= Sieeuwy” Voou (677€14) + 2iecp,” OmTorE
= ~2ieeu,” D (Gordu€®) + 2 e2or Rar, "
and
321 (E‘; W[M[Dy],ﬁM]spm €14 — c.c.) = —2ieeagpu|ps” }A2M|,,]aﬁ + c.c.

= —4i€€aﬁ[u|pfp RM‘V]aﬁ - ZQMng ’D[“]:y]pN

—diegrpl” Ruo”" — 2iegunor’ Rup”"

— 20 NE DTy, (C.10)

Let us start by considering the first five terms of (C.6]). After some further calculation and
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upon using the first-order duality equation (Z39), they reduce to

oT

— ZD[;LEV]M — 4 fp €€MWURM7—

. 2
-2 eg,u,upa Dp <ga)\aM£)\) - g €€ vpo PPABCD VPABDMVP cp&’

- . ~ 5 1 .
= 2D,E M+ 2i€P ecpyvo (JM + g’P ABCDpMAB(jD>

— 2ieg,” DP (gUAaMfA)

= 2D S + & Hpp a1 — 20 €4peg”" DP <gT>\ aMgk) . (C.11)

This exactly reproduces the expected transformation of By, »; under external diffeomorphisms
([234). Next, we collect all FM terms on the right hand side of (C.6). This yields

8
[61, 02] By m - = 3 VN(}BVKCD DvVikbDa Eév[uvm’yy]elB ]:poN

— 4V 4DMVp oD & Y 1 L VNP Fpo™

— 4i €' v, Dyt (Y vye1” Foo Vv an)

+4i Darés Y Ve’ Foo Vv a

+ieguwp,’ Du (E‘f’yp’y’v%qB f)\TNVNAB) + cc..  (C.12)

After some further calculation, these terms may be brought into the form

32 _ _
B _?VKCDDMVKAD Fuwep & e +16VE cpDyVi apFuw P &'e?

+ 8i Fuwas D (661 ®) — 8iVEABYye cp Dy (Fuv ap)es e ”
= SVKOPE cpDu (Vi apeia®) + 8VE cpF P Dy (Vic apéel®)
+ 8Dy (VEOP Fop) Vi apéser® — 8Dy (VE cpFu P )V apés er?
= FuouAx — AxdnFu™ . (C.13)
and precisely reproduce the gauge transformation (ZI9) of the two-form By, ar .

It remains to show that all the remaining terms in (C.6]) combine into the Q2 transformations
of (Z21) with parameter €, ;" from ([B42). This can be verified by a lengthy but direct
computation. In the course of this computation, it is useful to explicitly develop the curvature

Run®® = 26[MwN]°‘B + 2w[MO‘VwN]VB
= e”wep[aa[Me,,ﬁ]aN]ep“’ - %g“"c?[Me,,aaN]euﬁ - %e”ae“ﬁa[MeﬂaN]ew , (C.14)
from which one obtains
Runw = Run®®eunens
= —% P OGN Gor = — %QAHV[MQ;MVN]QVR . (C.15)

We conclude that the supersymmetry algebra consistently closes also on the field B, ys.
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D Non-exceptional gravity

In this appendix we will illustrate in terms of a simple example (taken from standard differential
geometry) how the difficulties encountered in constructing a fully covariant connection can
be understood and resolved in our framework. The main point will be that fully covariant
expressions can be obtained in terms of the D = 11 connections, but that these cannot be
written just in terms of the generalized vielbein and its ordinary derivatives — unlike in ordinary
differential geometry.

In standard differential geometry and in the absence of torsion, the spin connection is defined
as

1
Wmab = _gemc(Qabc - cha - Qcab)
with coefficients of anholonomy
Qave = ea’ep?0peqe — e’ eq 0peqe.
Now define the Cartan form
Smab = eanamenby

which is the analogue of V™10V in [B23]), and decompose this into a symmetric and an anti-

symmetric part
Imab = S [ab] 5 Pmab = Sm (ab)-

These are the same as the ¢, o and py, o in (£I4). Now a quick calculation shows that

Wmab = Amab — (eapemcppbc - ebpemcppac) = Admab — 2p[a blm -

Under an arbitrary diffeomorphism, the non-covariant contributions are
A" G ap = e[areq\b]amaréq AN e(areq|b)amar£q

and these two contributions cancel in the variation of w,, 4, as expected. So the spin connection
is indeed a covariant object under diffeomorphisms, and we also know that it is the only such
object that can be built from the vielbein and its derivative. Under local SO(1,3) we have

5(]771 ab — amAab + AaCQm cb T AbCQm ac 6pm ab — Aacpm cb + Abcpm ac

SO Gmap and hence wy, o transform non-covariantly as SO(1,3) gauge fields, while py, 4 is co-
variant under local SO(1,3).

Next we repeat this calculation in the Ey(7) formalism, replacing the siebenbein by the 56-
bein VM 45 of exceptional geometry. To simplify things we set A®) = A®) = 0, and this will
suffice to make clear our main point. Then the E(7) 56-bein (whose components are explicitly

given in (L4)-(@.T)) simplifies to

1, 1, _
VmSAB = gA 1/2FEBy anAB = gA 1/2anA37
7 7
V"ap = ZAWFZ% » VmgaB = _ZA1/2PmAB- (D.1)
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Note that V™8 45 and V™" 4 are imaginary, while V,,845 and Vyunap are real (this is true only
in this particular SU(8) gauge). By direct computation we find

21 1
QmAB = ngBCamVNCA = §Qmabril4bBa
)N 0 3 a b
Pmapcp =~V apdmVNep = — Pmal{aplep): (D.2)

As a check on the coefficients we compute (this is the combination appearing in the variation
of the gravitino)

1 1
e™ ACQmCB - emCD pmABCD = _§Wmab(rmrab)AB - §PmaaFZLB7 (D3)

which is indeed the correct result. The last term proportional to —%A*Ic?mA is just the density
contribution proportional to I'h,, that is required because the supersymmetry parameter ¢ is a
density, showing again how the density contribution was absorbed into the connections given

in Ref. [3].

With this information we can now compute

44
Ry a® = 3 <VN BCYyPEpn acpre + VN acVur DEPNBCDE)
+ > (V Vu© pNAcDE + V7 DEVM ACPN )
71
- E(&B (VNCDVMEFPN cper +VNepVu EFPNCDEF)- (D.4)
This gives
1 5 1
RmAB = _EpabmF%bB + 5_4paabrbmAB + ﬁpabbrmaAB7
4y . 7
quAB = _ﬁA 1paa[pfq]AB — gA 1p[pq]a ?43 + 2_7p[paarq]ABa
1 5 1
B qlab b
RPI,Z = gpab[pFAB + 5_4paabr,fg - ﬁpabbfipg,
R™,B = 0. (D.5)

The last component drops out because for this term the first two lines in (D.4]) give something
proportional to 55, and hence are cancelled by the third term in the definition of Rps 4Z.
This shows very explicitly, that no matter how we combine expressions depending only on V
and its derivative, there is no way of getting rid of p,, . and replacing ¢,, s — Wmap by such
manipulations, without ‘breaking up’ the 56-bein V. In other words, full covariance cannot be
achieved in this way, but requires the explicit introduction ‘by hand’ of the spin connection.

In principle we could extend the above calculation to non-vanishing form fields; but this will
be far more tedious than the calculation just presented (and the resulting expressions will not
be any prettier). Perhaps the only interesting aspect here is that, again, there appears to be no
combination of V’s and 0V’s that would produce the fully anti-symmetrized (exterior) deriva-
tives on the 3-form and the 6-form field, and this is the reason why the hook-like contributions
in the affine connection are needed. It is therefore very remarkable that the supersymmetric
theory avoids this problem by picking precisely the combinations (3.28]) where these terms drop
out.
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E Covariant SU(8) connection

In this appendix we provide yet more evidence that an SU(8) connection satisfying all desired
covariance properties cannot be constructed in terms of only V and its derivative dV. Namely,
we will show by explicit computation how the SU(8) connection of section 3 can be made to
transform as a generalized vector under generalized diffeomorphisms, which implies a unique
expression for Uy 42 in terms of V and its derivatives. However, the modifications required to
achieve this come at the price of destroying the covariance under SU(S).

Let the SU(8) connection be
Qma” = qua® + Rya® + Una” + Wya” | (E.1)

with gy a®?, Rya®, and Wy 4P given by (.23) and ([B:24)), and we make the following choice
for the undetermined part Uys4®

Una® = —g aua® + % (VaepVNPCanaP = Vi “PYN acanp®)
B %4; (Vir ac VNPanp? = VP VN cpan a®)
— % (Vi ap VYV qne® = VPP VN ac an p©)
B % 55 (VM(JD VNECQNED - VMCD VNECQNDE) : (E.2)

These are indeed all the objects that one can construct in terms of V and its derivative oV.
However, while the first term qa 4?, Rara®?, and Wi 4P have indeed the required covariance
properties of an SU(8) connection, the expression (E.2)) for Ups 4® does not, and will therefore
violate SU(8) covariance if general covariance requires such a contribution.

To see that the full connection can be made to transform covariantly under generalized
diffeomorphisms, consider the non-covariant contributions in the transformation of ¢u; 42 and

PMABCD
Aqar 4P = 8iVNBC PE S p 01105 AT Vi o, (E.3)
ACpABCD — 19, YNABPK S o 0 AR, CD (E.4)
where we have used
PMyPqo = i (205 o5 + 0N 65 — M) + (ta)Ng(t™)MP (E.5)

and the section condition. Note that the covariant part of the transformations of qy; and pjs
contain a weight term. So in fact they transform as generalized tensor densities of weight —1/2.
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Furthermore,

AHCRMAB _ VMCD <—8 VAVEVR[BE|VS|CD] +10 5E4B|VN|CD‘VS|EF]VREF

40 40
_ §5SVNEFVR[BD|VS|EF] + 2sGpN [BDI)SIBF]y,

14 14
+§5gngVR[EF‘VS|CD] — §5gVN[EF‘VS|CD]VR EF> 8N65AR + c.c.,

(E.6)
where we have used equations (E.4]), (A.3) and
VY gV opjomon- = 2—146AB(JDEFGHVM EEYNGH o, oy
which can be proved using identity (A.3) and the section condition. Now using,
PMACYN o o = %5@ PMEDYN 50 on (E.7)

which holds by identity (A.2) and the section condition, equation (E.6]) can be simplified to:

AHCRMAB _

L

1
_§VMCD <4 VNCD [VRAEVSBE + VSAEVRBE o

55 (4VR EFVS EF 4 7VSEFVREF)]
1
+ 8VNBC [VRAEVS DE + VSAEVRDE] + § 5SVNEFVSEFVRBD

8 4
_ § dng DEVS BFVREF o § 63VN BD [VREFVS EF 5 VSEFVREF]

1
+3 SEVNEFYS pryptP 4 g SEYN ECYS FDVREF> OnOsA® +cc..  (E.8)

Similarly, using identities (A.2) and (E.7)

AHCUMAB _

1 1

1
_ 8vN BC [VRAEVS DE + VSAEVRDE] _ § (ngN EFVSEFVRBD
8 8
+ § 63VN DEvs BFVREF o § 63VN BD [VREFVS EF + VSEFVREF]
—% SBYNEFYS L ppptP gava ECys FDVREF> ONOsAE +ce..  (E.9)
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It is straightforward to verify that

A" (Rpr a® + Uy a®) =

1

_ 4VMCD (VNCD |:VRAEVSBE + VSAEVRBE _ o

55 (4VREFVS EF 4 5VSEFVREF)]
—% (5ng BD [VREFVS EE _ VSEFVREF]> 5N(95AR + c.c.,

=8(Vum cpVN L — vy OPVN op) PP oS R VpapVYPE dnosAT

49 1
Y [VMACVNBC + ViV e — 555 (VaepVNP + VMCDVNCD)] OnOsA®,
A B = AT, 45, (E.10)

Therefore, Qs 4P defined in equation (E.)) is a generalized tensor density of weight —1/2.
However, as the term U 47 itself depends on qar 4” in a definite manner, the total SU(S8)
connection no longer transforms properly under SU(8). As we explained, this conclusion can
only be evaded if one drops the assumption that all parts of Qj; should be expressible in terms
of V and Oy V.
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