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Abstract

We give the supersymmetric extension of exceptional field theory for E7p7q, which is based on a p4` 56q-

dimensional generalized spacetime subject to a covariant constraint. The fermions are tensors under

the local Lorentz group SOp1, 3q ˆ SUp8q and transform as scalar densities under the E7p7q (internal)

generalized diffeomorphisms. The supersymmetry transformations are manifestly covariant under these

symmetries and close, in particular, into the generalized diffeomorphisms of the 56-dimensional space.

We give the fermionic field equations and prove supersymmetric invariance. We establish the consistency

of these results with the recently constructed generalized geometric formulation of D “ 11 supergravity.

http://arxiv.org/abs/1406.3235v1
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1 Introduction

Ever since the discovery of ‘hidden’ exceptional symmetries in maximal N “ 8 supergravity [1]

a recurring theme has been the question of whether these symmetries are specifically tied to

dimensional reduction on tori, or whether they reflect more general properties of the underlying

uncompactified maximal theories, possibly even providing clues towards a better understanding

of M-theory. Starting from D “ 11 supergravity [2] clear evidence for the existence of hidden

structures beyond those of standard differential geometry was already given in the early work

of Refs. [3, 4], a line of development which was continued in [5] and taken up again in [6–8].

Somewhat independently of these developments, an important insight has been the emergence

of generalized geometric concepts in string and M-theory, which enable a duality-covariant

formulation of the low-energy effective spacetime theories, as manifested in double field theory

[9–13], and in the recently constructed ‘exceptional field theory’ (EFT) [14, 15]. The purpose

of this paper, then, is to bring together these strands of development: first we complete the

construction of the E7p7q EFT by giving the fully supersymmetric extension by fermions; second,

we relate the resulting theory to the formulation of [3,6–8]. As one of our main results we will

demonstrate the compatibility of these two formulations, and explain the subtleties involved in

making a detailed comparison.

The approach of [3], which has been extended and completed in [7,8] to also take into account

aspects of the E7p7q-based exceptional geometry, takes D “ 11 supergravity as the starting point

and reformulates it in order to make a local SOp1, 3qˆSUp8q tangent space symmetry manifest.

To this end the fields and coordinates are decomposed in a p4` 7q splitting, as in Kaluza-Klein

compactifications, but keeping the full coordinate dependence of all fields (however, unlike in

EFT, no extra coordinates beyond those of the original theory are introduced). The fermions

transform under the local SUp8q subgroup, and their supersymmetry transformations, already

given in [3], are manifestly SUp8q covariant. Moreover, those parts of the bosonic sector which

lead to scalar and vector fields in the dimensionally reduced maximal supergravity can then be

assembled into E7p7q objects, namely a 56-bein encoding the internal field components and a 56-

plet of vectors combining the 28 electric and 28 magnetic vectors of N “ 8 supergravity; their

supersymmetry transformations can be shown to take the precise form of the four-dimensional

maximal gauged supergravity. While in this approach the fermions are included from the

beginning (with the supersymmetry variations constituting the starting point of the analysis)

and the on-shell equivalence with D “ 11 supergravity is thus guaranteed at each step of the

construction, a proper understanding of the role of E7p7q in eleven dimensions (as well as of the

E7p7q-covariant dynamics of the bosonic sector) was lacking in the original work of [3], and has

only emerged with the recent advances. Nevertheless it is remarkable that the combinations

of SU(8) connections in the supersymmetry variations of the fermions found ‘empirically’ in

Ref. [3] are precisely the ones required by E7p7q-covariance as identified here.

The results of Ref. [5] suggest that a formulation that is properly covariant under the

exceptional groups should include extended coordinates transforming under this group, an idea

that also appears in the proposal of Ref. [16]. Such an extended spacetime has later been

implemented for E7p7q in a particular truncation of D “ 11 supergravity that retains only the

internal coordinates and field components of the p4 ` 7q splitting [17]. More recently, similar
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reformulations of D “ 11 supergravity have been given for the analogous truncations, casting

the theory and their residual gauge transformations into a covariant form [18–20]. In contrast

to the original approach of Ref. [3], however, these formulations are not immediately applicable

to the untruncated D “ 11 supergravity. By contrast, the construction of Refs. [7, 8], the

recent construction of complete EFTs in Refs. [14, 15] and finally, the present work extend the

formulation of Ref. [3] to a fully E7p7q-covariant theory.

The E7p7q EFT, which is a natural extension of double field theory, is based on a 4+56-

dimensional generalized spacetime, with fields in E7p7q representations initially depending on

all coordinates xµ and YM (with fundamental indices M “ 1, . . . , 56). The theory is given by

an action along with non-abelian twisted self-duality equations for the 56 vector fields. The

fields transform appropriately under E7p7q-generalized diffeomorphisms. Crucially, the theory is

subject to an E7p7q-covariant section condition [19] that implies that the fields depend only on a

subset of coordinates. In order to compare with the usual D “ 11 supergravity, and thus with

the results of Ref. [3, 7], one has to pick a particular solution of this constraint, which reduces

the spacetime to 4+7 dimensions. After solving the section constraint, the various components

of the generalized diffeomorphisms can be interpreted as conventional diffeomorphisms and

tensor gauge transformations. In addition, and in analogy to type II double field theory [21,

22], the section constraint has two inequivalent solutions: D “ 11 supergravity and type IIB

supergravity. After solving the section constraint, the E7p7q EFT also encodes, as 7 components

among the 56 gauge vectors, dual gravity degrees of freedom. This description is consistent

by virtue of a covariantly constrained compensating two-form gauge field BµνM [15, 23]. The

status of this field may appear somewhat mysterious, but its appearance is already implied by

consistency of the EFT gauge symmetries. In this paper we will give further credibility to this

field by showing that it has consistent supersymmetry variations.

In this paper we introduce the fermions of the E7p7q EFT and give the supersymmetry

variations of all fields in a manifestly E7p7q ˆ SUp8q-covariant form, showing that they close,

in particular, into the external and internal generalized diffeomorphisms. This is in analogy

with the supersymmetrization of DFT [24, 25]. Importantly, we find that the supersymmetry

transformations of all fields can be written solely in terms of the fields of EFT, in particular the

56-bein, without recourse to the D “ 11 fields that can be thought of as parametrising these

structures in a GL(7) decomposition. Furthermore, we determine the fermionic field equations

and verify supersymmetric on-shell invariance. To this end we have to further develop the

generalized exceptional geometry underlying the E7p7q covariant formulation by introducing

connections and invariant curvatures generalizing the geometry of double field theory [9, 26–

29]. For the internal, 56-dimensional sub-sector, such a geometry is to a large extent already

contained in the literature [19, 20, 30, 31]; we use the opportunity to give a complete and self-

contained presentation of this geometry. In particular, we give compact and E7p7q-covariant

expressions for the internal connections in terms of the 56-bein and other covariant objects.

One of the main results of this paper then is the formulation including external and internal

connection components Qµ and QM for the local SUp8q, respectively, and similarly external

and internal connection components ωµ and ωM for the local SOp1, 3q, with all geometric

objects being also covariant under E7p7q-generalized diffeomorphisms. The various connection
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components are summarized in the following scheme

ωµ

Γrµνs
ρ “ 0

Qµ

DµVM
AB ” Pµ

ABCD VMCD

ωM

DMeµ
α ” πM

αβeµβ

QM

ΓMN
K |912 “ 0

. (1.1)

Here we also indicate the corresponding covariant torsion-type constraints satisfied by the con-

nections. The precise definitions of the various tensors and our conventions will be given in

the main text. The formulation is manifestly covariant under all gauge symmetries except for

the external diffeomorphisms of xµ that depend also on the ‘internal’ E7p7q coordinates. The

structure of the various diagonal and off-diagonal connection components in (1.1) hints at a

larger geometrical framework in which they would emerge from a single ‘master connection’,

whose introduction would finally render all gauge symmetries manifest.

A distinctive feature of generalized geometries is that, in contrast to conventional geometry,

the connections are not completely determined by imposing covariant constraints, necessarily

featuring undetermined connections that are not given in terms of the physical fields, as first

discussed in the geometry of double field theory [9, 26–28] and later extended to exceptional

groups [19,30,31]. As in double field theory, however, this is consistent with the final form of the

(two-derivative) theory depending only on the physical fields, as the undetermined connections

drop out of the action and all (supersymmetry) variations. We also clarify the relation of these

geometrical structures to the formulation of [3,7,8], in which connections carry ‘non-metricities’

that can be absorbed, as we will show, into SUp8q connections once we include components along

the E7p7q-extended directions.

One obvious question concerns the precise significance of the term ‘symmetry’ in the present

context. The E7p7q identified here is analogous to the GL(D) that appears in general relativity,

and is ‘spontaneously broken’ when one picks a particular non-trivial solution to the section

constraint ptαqMNBM b BN “ 0, as one must for consistency 1. However, the new structures

exhibited here do not imply that D “ 11 supergravity nor IIB supergravity have any new local

symmetries beyond the ones already known. 2 Nevertheless it is remarkable and significant that

the internal diffeomorphisms can be combined with the tensor gauge transformations of the

form fields and their duals in an E7p7q-covariant form. Evidently, the true advantage of the

reformulation would only become fully apparent if solutions of the section constraint, besides

those corresponding to D “ 11 or IIB supergravity, exist. Such solutions would give genuinely

new theories (but see below). Although such solutions are somewhat unlikely to exist for the

case at hand, the situation may become more interesting when one considers infinite dimensional

extensions of the E-series.

A second question concerns the utility of the supersymmetric EFT constructed here in a

more general perspective. Here we see two main possible applications and extensions. The

1It is an old idea to interpret the graviton as a Goldstone boson of spontaneously broken GL(4) symmetry

[32–34], but the present scheme should not be viewed as a realization of this idea.
2The only new local symmetry would be the one associated with the seven ‘dual’ internal diffeomorphisms,

but the corresponding transformation parameters ‘miraculously’ drop out in all relevant formulae, as shown in

Ref. [8]. In the formulation of Ref. [15] this fact is explained by the ‘Stückelberg-like’ gauge invariance associated

with the two-form field BµνM .
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first application concerns the non-linear consistency of Kaluza-Klein compactifications other

than torus compactifications. These can be investigated along the lines of [35–37], exploit-

ing the present formalism and the fact that it casts the higher-dimensional theory in a form

adapted to (gauged) lower dimensional supergravity. Indeed, the full non-linear Kaluza-Klein

ansätze for those higher-dimensional fields (including dual fields) yielding scalar or vector fields

in the compactification have already been obtained in this way for the AdS4 ˆ S7 compacti-

fication [6, 37–39], as well as for general Scherk-Schwarz compactifications with fluxes [40]. 3

Apart from the non-linear ansätze for higher rank tensors, which can now also be deduced in

a straightforward fashion, and beyond the extension to other non-trivial compactifications of

D “ 11 supergravity, the main outstanding problem here is to extend these results to the com-

pactification of IIB supergravity on AdS5 ˆ S5, for which either the supersymmetric extension

of E6p6q EFT [42] or the present version with the IIB solution of the section constraint might be

employed. Indeed, a study of the ambiguities inherent in defining generalized connections and

how the supersymmetry transformations (and hence the theory) remain invariant under such

redefinitions in this paper has lead to an understanding of the hook-type ambiguities observed

in the D “ 11 theory in Ref. [36].

Secondly, the fact that the supersymmetric EFT has a structure very similar to four-

dimensional maximal gauged supergravity [43] may lead to a higher-dimensional understanding

of the new SO(8) gauged supergravities of Ref. [44], obtained by performing an electromagnetic

U(1) rotation of the 56 electric and magnetic vectors, which is not in E7p7q. Partial evidence

presented in Refs. [6, 39], as well as a more explicit argument based on the higher-dimensional

embedding tensor in Ref. [8], show that these gaugings cannot originate from the D “ 11 super-

gravity of Ref. [2]. Specifically, the deformed theories can be obtained from the standard SO(8)

gauged supergravity by ‘twisting’ the 56-bein relative to the vectors [6], that is, by making the

replacement

Vpxq Ñ Vpx;ωq ”

¨
˝ cosω sinω

´ sinω cosω

˛
‚Vpxq (1.2)

in all formulae, where each element of the U(1) rotation matrix acts on a 28ˆ28 subblock of

the 56ˆ56 matrix V. The present reformulation naturally suggests that a higher-dimensional

ancestor of the deformed SO(8) gauged supergravities might thus be obtained by performing an

analogous ‘twist’ of the 56-bein of EFT (see also Ref. [40]), Vpx, Y q Ñ Vpx, Y ;ωq, relative to all

vectors and tensors, where the 56-bein is now taken to also depend on the 56 extra coordinates

YM . Because of the inequivalence of the corresponding gauged SO(8) supergravities in four

dimensions, it is clear that such a theory would no longer be on-shell equivalent to the D “ 11

supergravity of Ref. [2], and hence would correspond to a non-trivial deformation of that theory.

In fact, this would be the first example of a genuinely new maximal supergravity in the maximal

space-time dimensionD “ 11 since the discovery of Ref. [2] in 1978, and it would be a remarkable

vindication of the present scheme if such a theory could be shown to exist. Equally important

there would be no way to reconcile this deformed theory with D “ 11 diffeomorphism and

Lorentz invariance; in other words, the four-dimensional ω-deformation of Ref. [44] would lift

to an analogous deformation of D “ 11 supergravity that is encoded in a suitably generalized

3See also Ref. [41], where uplift ansätze for sphere reductions of the D “ 11 and type IIB theories are

conjectured using similar ideas.
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geometric framework transcending conventional supergravity.

The outline of the paper is as follows. In section 2 we review the bosonic E7p7q-covariant

exceptional field theory, of Refs. [14, 15]; in section 3 we construct its supersymmetric com-

pletion upon introducing the proper fermion connections and working out the supersymmetry

algebra. In section 4, we discuss how this theory relates to the reformulation [3,7,8] of the full

(untruncated) D “ 11 supergravity after an explicit solution of the section constraint is chosen.

We refer the reader to appendix A for a summary of index notations and conventions.

2 Bosonic E7p7q exceptional field theory

In this section we give a brief review of the bosonic sector of the E7p7q-covariant exceptional

field theory, constructed in Refs. [14,15] (to which we refer for details) and translate it into the

variables appropriate for the coupling to fermions, in particular the 56-bein parametrizing the

coset space E7p7q{SUp8q . To begin with, all fields in this theory depend on the four external

variables xµ, µ “ 0, 1, . . . , 3, and the 56 internal variables YM , M “ 1, . . . , 56, transforming in

the fundamental representation of E7p7q, however the latter dependence is strongly restricted

by the section condition

ptαqMN BMBNA “ 0 , ptαqMN BMA BNB “ 0 ,

ΩMN BMA BNB “ 0 ,
(2.1)

for any fields or gauge parameters A,B. Here, ΩMN is the symplectic invariant matrix which

we use for lowering and raising of fundamental indices according to XM “ ΩMNXN , XN “
XMΩMN . The tensor ptαqMN is the representation matrix of E7p7q in the fundamental rep-

resentation. These constraints admit (at least) two inequivalent solutions, in which the fields

depend on a subset of seven or six of the internal variables, respectively, according to the

decompositions

56 ÝÑ 7`3 ` 211
`1 ` 21´1 ` 71

´3 , (2.2a)

56 ÝÑ p6, 1q`2 ` p61, 2q`1 ` p20, 1q0 ` p6, 2q´1 ` p61, 1q´2 , (2.2b)

of the fundamental representation of E7p7q with respect to the maximal subgroups GLp7q and

GLp6q ˆ SLp2q, respectively. The resulting theories are the full D “ 11 supergravity and the

type IIB theory, respectively. The bosonic field content of the E7p7q-covariant exceptional field

theory is given by

 
eµ
α , VM

AB, Aµ
M , Bµν α , Bµν M

(
, (2.3)

which we describe in the following. The field eµ
α is the vierbein, from which the external

(four-dimensional) metric is obtained as gµν “ eµ
αeνα. Its analogue in the internal sector is the

complex 56-bein

VM
N “ tVMAB ,VMABu , (2.4)
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satisfying

VM
AB “ VM

rABs , VMAB “ pVMABq˚ , (2.5)

with SUp8q indices A,B, ¨ ¨ ¨ “ 1, . . . , 8, in the fundamental 8 representation and collective index

N labelling the 28 ` 2̄8.4 The fact that the 56-bein is an E7p7q group-valued matrix is most

efficiently encoded in the structure of its infinitesimal variation,

δVM
AB “ ´δqC rA VM

BsC ` δpABCD VMCD , (2.6)

with

δqA
B “ ´δqBA , δpABCD “ 1

24
ǫABCDEFGH δpEFGH . (2.7)

This is equivalent to

VMAB δVN
CD ΩMN “ 2

3
δrA

rC VMBsE δVN
DsE ΩMN ,

VMAB δVNCD ΩMN “ VMrAB δVNCDs Ω
MN ,

VM
AB δVN

CD ΩMN “ ´ 1

24
εABCDEFGH VM EF δVN GH ΩMN . (2.8)

A particular consequence of the group property is

VM
AB VN AB ´ VM AB VN

AB “ i ΩMN ,

ΩMN VM
AB VN CD “ i δABCD ,

ΩMN VM
AB VN

CD “ 0 . (2.9)

The analogue of the external metric gµν in the internal sector is the positive definite symmetric

real matrix

MMN ” VM ABVN
AB ` VN ABVM

AB , (2.10)

in terms of which the bosonic sector in Ref. [15] has been constructed.

The 56 gauge fields Aµ
M in (2.3) are subject to the first order duality equations given by 5

F´
µν AB ” 1

2
Fµν AB ´ 1

4
e εµνρσ F

ρσ
AB “ 0 . (2.11)

Here, the 56 non-abelian field strengths are defined as

Fµν AB ” Fµν
M VM AB , (2.12)

4While the SU(8) indices were taken to be i, j, k, . . . in Ref. [15], we here revert to the notation of Ref. [3],

also employed in Refs. [7, 8], where SU(8) indices are denoted by the letters A,B,C, . . . . The reason is that,

when considering non-trivial compactifications, one must distinguish between the SU(8) indices A,B, . . . in

eleven dimensions, and the SU(8) indices i, j, . . . in the four-dimensional compactified theory. These are only the

same for the torus compactification. Any other compactification involves Killing spinors as ‘conversion matrices’

(hence the distinction between ‘curved’ and ‘flat’ SU(8) indices in Ref. [35]). However, in accord with previous

conventions, fundamental SUp8q indices are raised and lowered by complex conjugation.
5 We use the space-time conventions of Ref. [43], such that our tensor density εµνρσ is related to the one

employed in Ref. [15] by ε
r0705.2101s
µνρσ “ iε

r1312.4542s
µνρσ .
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Fµν
M ” 2BrµAνs

M ´ 2Arµ
NBNAνs

M ´ 1

2

`
24 ptαqMN ptαqKL ´ ΩMNΩKL

˘
Arµ

K BNAνs
L

´ 12 ptαqMN BNBµν α ´ 1

2
ΩMN Bµν N , (2.13)

with the 2-forms Bµν α, Bµν N from (2.3), transforming in the adjoint and the fundamental

representation of E7p7q, respectively. The latter form is a covariantly constrained tensor field,

i.e. it is constrained by algebraic equations analogous to (2.1)

ptαqMN BMBN “ 0 , ptαqMN BM BNA “ 0 , ptαqMN BM BN “ 0 ,

ΩMN BM BN “ 0 , ΩMN BM BNA “ 0 .
(2.14)

Its presence is necessary for consistency of the hierarchy of non-abelian gauge transformations

and can be inferred directly from the properties of the Jacobiator of generalized diffeomor-

phisms [15]. In turn, after solving the section constraint it ensures the correct and duality

covariant description of those degrees of freedom that are on-shell dual to the 11-dimensional

gravitational degrees of freedom.

Using (2.9) and (2.10), equations (2.11) take the form of the twisted self-duality equations 6

Fµν
M “ 1

2
i eεµνρσ Ω

MNMNK FρσK . (2.15)

The bosonic exceptional field theory is invariant under generalized diffeomorphisms in the

internal coordinates, acting via [19,45]

LΛU
M ” ΛKBKUM ´ 12PMN

K
L BKΛL UN ` λpUq BPΛP UM , (2.16)

on a fundamental vector UM of weight λpUq. The projector on the adjoint representation

PKM
L
N ” ptαqMKptαqNL “ 1

24
δKM δ

L
N ` 1

12
δLM δ

K
N ` ptαqMN ptαqKL ´ 1

24
ΩMNΩ

KL , (2.17)

ensures that the action (2.16) is compatible with the E7p7q group structure. The generalized

diffeomorphisms also give rise to the definition of covariant derivatives

Dµ “ Bµ ´ LAµ , (2.18)

whose commutator precisely closes into the field strength (2.13). The full bosonic theory is

invariant under the vector and tensor gauge symmetries

δΛeµ
α “ LΛeµ

α ,

δΛVM
AB “ LΛVM

AB ,

δΛ,ΞAµ
M “ DµΛ

M ` 12 ptαqMN BNΞµα ` 1

2
ΩMN ΞµN ,

δΛ,ΞBµν α “ 2DrµΞνsα ` ptαqKL ΛKFµνL ´ ptαqKLArµ
K δAνs

L ,

δΛ,ΞBµνM “ 2DrµΞνsM ` 48 ptαqLK
`
BKBMArµ

L
˘
Ξνsα

` ΩKL
`
Arµ

KBMδAνs
L ´ BMArµ

KδAνs
L ´ Fµν

KBMΛL ` BMFµν
KΛL

˘
, (2.19)

6See footnote 5.
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field eµ
α VM

AB Aµ
M , ΛM Bµν α , Ξµα Bµν M , ΞµM χABC ψAµ , ǫA

λ 1
2

0 1
2

1 1
2

´1
4

1
4

Table 1: Λ-weights for the bosonic and fermionic fields and parameters.

with parameters ΛM , Ξµα, ΞµM , the latter constrained according to (2.14). The Λ-weights of

the various bosonic fields and parameters are collected in table 1, where we have also included

the Λ-weights of the fermionic fields to be introduced later. Note that Bµν α and Bµν M appear

in the field strength (2.13) only via the combination/projection

´ 12 ptαqMN BNBµν α ´ 1

2
ΩMK Bµν K . (2.20)

As a result, we observe the following additional gauge transformations that leave the field

strengths invariant

δΩBµν α “ BMΩµν
M

α ` ptαqMNΩµνN
M ,

δΩBµν M “ ´BMΩµνN
N ´ 2 BNΩµνMN , (2.21)

where Ωµν
M

α is a parameter living in the 912 of E7p7q, i.e.

ptαqpKLΩµν
Mq

α “ 0 , (2.22)

and ΩµνN
M is a parameter constrained in the index N just as the N index in partial derivatives

BN , see equations (2.1), and the two-form Bµν N , see equations (2.14). The shift transformations

(2.21) should be understood as the tensor gauge transformations of the three-form gauge poten-

tials of the theory (which we have not explicitly introduced) that also act on the two-forms due

to the Stückelberg couplings of their field strengths. They precisely drop out in the projection

(2.20) which is the one appearing in the vector field strengths.

Other than the first-order duality equations (2.11), the remaining equations of motion of

the bosonic theory are most compactly described by a Lagrangian7

LEFT “ e pR ` 1

48
e gµν DµM

MN DνMMN ´ 1

8
eMMN FµνMFµν

N

` Ltop ´ e V pMMN , gµνq . (2.23)

Let us present the different terms. The modified Einstein Hilbert term carries the Ricci scalar
pR obtained from contracting the modified Riemann tensor

pRµναβ ” Rµν
αβrωs ` Fµν

MeαρBMeρβ , (2.24)

with the spin connection ωµ
αβ obtained from the covariantized vanishing torsion condition

0 “ Drµeνs
α ” Brµeνs

α ´ Arµ
KBKeνs

α ´ 1

2
BKArµ

K eνs
α ` ωrµ

αβ eνsβ . (2.25)

7 Due to the self-duality (2.15) of the vector fields, this is understood as a “pseudo-Lagrangian” in the sense

of a democratic action [46] such that the duality equations (2.15) are to be imposed after varying the Lagrangian.
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The scalar kinetic term can be equivalently expressed as

1

48
DµMKLDµMKL “ ´1

6
Pµ

ABCD Pµ
ABCD , (2.26)

where we have introduced the coset currents Pµ
ABCD as follows

DµVM
AB ” DµVM

AB ` QµC
rA VM

BsC “ Pµ
ABCD VMCD (2.27)

according to the decomposition (2.6) and where Dµ refers to the covariant derivative defined in

equation (2.18). This moreover defines the composite SUp8q connection

QµA
B “ 2i

3
VNBC DµVNCA , (2.28)

indicating that the 56-bein transforms under local SUp8q transformations. Thus, we will in the

following use Dµ ” Dµ ` Qµ to denote the resulting SUp8q-covariant derivatives. The vector

kinetic term in (2.23)

´ 1

8
eMMN FµνMFµν

N “ ´1

4
eFµν

ABFµν
AB , (2.29)

simply contracts the non-abelian field strengths (2.13) with the internal metric (2.10), while the

topological term is most compactly given as the boundary contribution of a five-dimensional

bulk integral

ż

BΣ5

d4x

ż
d56Y Ltop “ i

24

ż

Σ5

d5x

ż
d56Y εµνρστ Fµν

M DρFστM . (2.30)

Finally, the last term in (2.23) is given by

V pMMN , gµνq “ ´ 1

48
MMNBMMKL BNMKL ` 1

2
MMNBMMKLBLMNK (2.31)

´ 1

2
g´1BMg BNMMN ´ 1

4
MMNg´1BMg g´1BNg ´ 1

4
MMNBMgµνBNgµν ,

in terms of the internal and external metric. For later use, we note that in terms of the 56-bein

and modulo a total derivative e´1BM peKM q, the potential takes the form

V pVMAB, gµνq “ 4VM rABV
N
CDs

ˆ
BMpNABCD ´ 1

2
qM E

A pN
EBCD

˙

` 1

6
MMN pM

ABCDpN ABCD ` 4VMABV
N CD pM

ABEFpN CDEF

´ 1

4
MMNg´1BMg g´1BNg ´ 1

4
MMNBMgµνBNgµν , (2.32)

expressed via the standard decomposition of the Cartan form V´1BMV along the compact and

non-compact parts of the E7p7q Lie algebra

qMA
B ” 2i

3
VNBC BMVNCA , pM

ABCD ” iVNAB BMVN
CD . (2.33)

Written in the form of (2.32), it is easy to observe that the first two lines of the potential

reproduce the corresponding terms in equation (7.5) of Ref. [3].
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All five terms in (2.23) are separately gauge invariant under generalized diffeomorphisms

(2.19) in the internal coordinates. In addition, the full set of equations of motion is invariant

under generalized diffeomorphisms in the external coordinates acting as

δξeµ
α “ ξνDνeµ

α `Dµξ
νeν

α , (2.34)

δξMMN “ ξµDµMMN ,

δξAµ
M “ ξν Fνµ

M ` MMN gµν BN ξν ,

δξBµν α “ ξρHµνρα ´ ptαqKLArµ
K δξAνs

L ,

δξBµν M “ ξρHµνρM ´ 2ie εµνρσg
στDρ

´
gτλBM ξλ

¯
´
`
Arµ

KBMδξAνsK ´ BMArµ
KδξAνsK

˘
.

When BM “ 0, this reduces to the action of standard four-dimensional diffeomorphisms. Re-

markably, the invariance of the theory under (2.34) fixes all relative coefficients in (2.23) and

thus uniquely determines all equations of motion.

Variation of (2.23) gives the field equations for the scalar fields parametrizing MMN and

the Einstein field equations for gµν . Variation with respect to the two-forms Bµν α and Bµν M

yields projections of the first-order vector field equations (2.15). Finally, the variation of the

action with respect to the vector fields leads to second order field equations

Dν

`
eMMN FµνN

˘
“ e

´
pJµM ` J µ

M

¯
(2.35)

after combining with the derivative of (2.15), and where the gravitational and matter currents

are defined by the respective contributions from the Einstein-Hilbert and the scalar kinetic term

pJµM ” ´2eα
µeβ

ν
´

BMωναβ ´ Dν

´
eρrαBMeρβs

¯¯
,

J µ
M ” 2i e´1 BN

`
ePµ ABCDVNABVMCD ´ c.c.

˘
´ 1

24
DµMKLBMMKL . (2.36)

Equation (2.35) may be compared to the second order field equations obtained from combining

the derivative of (2.15) with the Bianchi identities

3DrµFνρs
M “ ´12 ptαqMNBNHµνρα ´ 1

2
ΩMN HµνρN , (2.37)

where Hµνρα and HµνρM denote the non-abelian field strengths of the two-forms

Hµνρα “ 3DrµBνρsα ´ 3 ptαqKLArµ
KBνAρs

L ` . . .

HµνρM “ 3DrµBνρsM ´ 3
`
Arµ

NBMBνAρsN ´ BMArµ
NBνAρsN

˘
` . . . . (2.38)

Combining (2.15), (2.35), and (2.37) gives rise to the first-order duality equations describing

the dynamics of the two-forms

i pJµM ` 1

3
DµVNAB BMVNAB “ 1

12
e´1εµνρσHνρσM ,

ptαqNM
`
Pµ ABCDVNABVMCD ´ Pµ

ABCDV
NABVM

CD
˘

“ e´1εµνρσHνρσα . (2.39)

Strictly speaking, the second equation only holds under projection with ptαqKLBL. The first-

order equations (2.39) show that the two-form fields do not bring in additional degrees of

freedom to the theory.

11



3 SUp8q ˆ E7p7q exceptional geometry

3.1 Connections

In this section we set up the E7p7q-covariant geometrical formalism for defining derivatives that

are simultaneously covariant with respect to generalized internal diffeomorphisms, local SUp8q,
and SOp1, 3q Lorentz transformations. This will allow us to couple the bosonic E7p7q-covariant

exceptional field theory to fermions and to establish the link with the ‘ground up’ approach to be

described in the next section. From the representation content of maximal N “ 8 supergravity,

or equivalently from an appropriate decomposition of the D “ 11 gravitino, it follows that the

fermionic fields of the theory are SOp1, 3q spinors, and transform in the 8 (the gravitini ψAµ )

and in the 56 (the matter fermions χABC) of SUp8q, respectively.8 The main new feature is

that, like the bosonic fields (2.3), the fermions are here taken to depend on 4 ` 56 coordinates

modulo the section condition (2.1). Under ‘internal’ generalized diffeomorphisms (2.16) they

transform as scalar densities with weights as given in table 1.

For the external derivatives, the relevant connections have been introduced in the previous

section. On a spinorial object in the fundamental representation of E7p7q ˆSUp8q, the covariant
derivative is defined as

DµXAN “ DµXAN ` 1

4
ωµ

αβγαβXAN ` 1

2
QµA

BXBN , (3.1)

with the E7p7q-covariant derivative Dµ from (2.18), and the spin- and SUp8q-connections defined
by (2.25) and (2.28), respectively. By construction, these connections ensure covariance of

DµXAN . As usual, for covariant derivatives on four-dimensional space-time tensors we may

also introduce the covariant derivative ∇µ which in addition to (3.1) carries the Christoffel

connection defined by the standard (though covariantized) vierbein postulate

Dµeν
α ´ Γµν

ρ eρ
α “ 0 . (3.2)

For the internal sector, we similarly define a covariant derivative in the internal variables

YM . The most general such derivative (denoted by ∇M) acts on Lorentz indices, SU(8) indices

and E7p7q indices, and has the form

∇MXAN “ BMXAN ` 1

4
ωM

αβγαβXAN

` 1

2
QM A

BXBN ´ ΓMN
K XAK ´ 2

3
λpXqΓKMKXAN , (3.3)

if X is a generalized tensor of weight λpXq under generalized diffeomorphisms (2.16). Likewise,

we use

DMXAN “ BMXAN ` 1

4
ωM

αβγαβXAN ` 1

2
QM A

BXBN , (3.4)

for the derivative without the Christoffel connection ΓMN
K . The required transformation rules

for the connections are determined by covariance. Under generalized diffeomorphisms (2.16),

the non-covariant variation of the first term in (3.3) is given by

∆nc
Λ

`
BMXAN

˘
“ 12PKN

P
Q BMBPΛQXAK , (3.5)

8 We use spinor conventions from Ref. [43], i.e. in particular γµνρσ “ e´1ǫµνρσ γ5 and γ5ǫA “ ´ǫA .
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where we recall that the covariant terms carry a weight of ´1
2
[15]. Thus, ΓMN

P also carries a

weight of ´1
2
and has the inhomogeneous transformation

δΛΓMK
N “ LΛΓMK

N ` 12PNK
P
Q BMBPΛQ . (3.6)

This implies in particular,

δΛΓMK
M “ LΛΓMK

M ` 3

2
BKBPΛP , (3.7)

explaining the factor 2
3
in the last term of (3.3). In the following, we will discuss the definition

of the internal spin- and SUp8q connection.

The internal spin connection ωM
αβ is defined by analogy with (2.27) by demanding that

DMeµ
α “ πM

αβ eµβ , (3.8)

with πM
αβ “ πM

pαβq living on the coset GLp4q{SOp1, 3q . As a consequence,

ωM
αβ “ eµrαBMeµβs , (3.9)

and

eµrαDMeµ
βs “ 0 “ eαrµDMeνs

α . (3.10)

Later, it will turn out to be convenient to also introduce a modified spin connection pωMαβ

pωMαβ ” ωM
αβ ´ 1

4
MMN Fµν

N eµαeν β , (3.11)

including the non-abelian field strengths Fµν
N in a fashion reminiscent of Kaluza-Klein theory,

whereby we view fields eµ
α, VM

AB , and Aµ
M as parts of a single big vielbein. We will denote

the corresponding covariant derivatives by pD and p∇, respectively.

In order to discuss the remaining connections in (3.3), let us first require that the internal

SUp8q connection and the Christoffel connection are related by a generalized vielbein postulate

(or ‘GVP’, for short)

0 ” ∇MVN
AB “ BMVN

AB ` QM C
rAVN

BsC ´ ΓMN
K VK

AB , (3.12)

which is the analogue of (3.2) for the internal sector. In analogy with standard differential

geometry one would now like to solve this relation for both the SU(8) connection QM A
B and

the generalized affine connection ΓMN
P in terms of the 56-bein V and its derivatives BMV.

While in ordinary differential geometry, a unique such answer can be obtained by imposing

vanishing torsion, here there remain further ambiguities. In addition one would like the result-

ing expressions to satisfy all requisite covariance properties, to wit: QM A
B should transform

as a proper connection under local SU(8) and as a generalized vector under generalized diffeo-

morphisms, while ΓMN
P should transform as a generalized affine connection under generalized

diffeomorphisms and as a singlet under local SU(8). However, parallel to DFT it is not possible

to express a connection satisfying these combined covariance requirements as a function of only

V and BMV in a covariant way, as we will also confirm in terms of a simplified example in

appendix D, and in terms of an explicit calculation for the SU(8) connection in appendix E.
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The first step in reducing the ambiguities is to constrain the connections by requiring the

generalized torsion to vanish; this amounts to the constraint [19]

T pV,W qM “ T M
NKV

NWK ” L∇
VW

M ´ LVW
M ” 0 (3.13)

for vectors V,W of weight 1
2
where L∇ denotes the generalized Lie derivative with all partial

derivatives replaced by covariant derivatives. Explicit evaluation of this condition yields

TNK
M “ ΓNK

M ´ 12PMK
P
Q ΓPN

Q ` 4PMK
P
NΓQP

Q , (3.14)

with P the adjoint projector defined in equation (2.17). Indeed, it is a straightforward computa-

tion to show that this combination transforms covariantly under generalized diffeomorphisms.

From (3.6) and using the cubic identity (A.3) of Ref. [15]

∆nc
Λ

`
ΓPM

N ´ 12PNM
K
L ΓKP

L
˘

“ ´6 ptαqPRptαqMNBRBKΛK

“ ´4PNM
R
P ∆nc

Λ ΓKR
K ,

(3.15)

where we have used equation (3.7) and the fact that all other terms in (A.3) vanish by the section

constraint. The last term is of the form of the non-covariant variation of the final term in (3.14),

with the opposite sign. Hence, the generalized torsion transforms as a generalized tensor. The

fact that the generalized torsion is gauge covariant means that it can be set consistently to zero.

From equation (3.12), the last two indices in the generalized Christoffel connection pΓM qNK
take values in the adjoint of E7p7q. Hence, the generalized connection lives in the E7p7q repre-

sentations

56 b 133 “ 56 ` 912 ` 6480 . (3.16)

Using the explicit form of the corresponding projectors given in ref. [47], one can verify that

the vanishing torsion constraint (3.13) translates into [19,30,31]

ΓMN
K
ˇ̌
ˇ
912

“ 0 . (3.17)

In addition, requiring density compatibility of the internal derivatives according to

∇Me ” 0 , (3.18)

fixes
3

4
e´1BMe “ ΓKM

K “ ´ ΩMNΩ
PQΓPQ

N , (3.19)

where the second equality is obtained from contraction of (3.17). As we will explain below, this

trace must drop out in all relevant expressions involving the fermions.

Next, we work out the most general SU(8) connection compatible with vanishing generalized

torsion. Using equation (3.12), the condition (3.17) is equivalent to the following conditions on
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the internal SUp8q connection QM :

VK AB DPVK
CD “ 6VK rAB

´
DKVP

CDs
¯

´ 1

4
ǫABCDEFGH VKEF pDKVP GHq

´ 2ΓQK
Q

ˆ
VK rABVP

CDs ´ 1

24
ǫABCDEFGH VKEFVP GH

˙
, (3.20)

VK AC DPVK
BC “ 6

`
VKAC DKVP

BC ` VKBC DKVPAC
˘

´ 3

4
δBA

`
VKCD DKVP

CD ` VKCD DKVPCD
˘

´ 2ΓQK
Q

ˆ
VKAC VP

BC ` VKBCVPAC ´ 1

8
δBA MP

K

˙
, (3.21)

which constitute the analogue of (2.25) in the internal sector. Unlike in the external sector

and standard geometry, the vanishing torsion conditions (3.20), (3.21) are not sufficient to fully

determine the internal SUp8q connection [19,31], but rather constrain it to the following form

QMA
B “ qMA

B `RMA
B ` UMA

B `WMA
B . (3.22)

Here

qMA
B ” 2i

3
VNBC BMVNCA , pM

ABCD ” iVNAB BMVN
CD (3.23)

are obtained in the standard way from the decomposition of the Cartan form V´1BMV along

the compact and non-compact parts of the E7p7q Lie algebra. We note that qM A
B transforms

properly as a connection while pM
ABCD transforms covariantly under local SU(8), but neither

transforms as a vector under generalized diffeomorphisms. The remaining pieces in (3.22) are

given by

RM A
B ” 4i

3

`
VNBCVM

DE pNACDE ` VNACVMDE pN
BCDE

˘

` 20i

27

`
VNDEVM

BC pNACDE ` VNDEVMAC pN
BCDE

˘

´ 7i

27
δBA

`
VNCDVM

EF pNCDEF ` VNCDVMEF pN
CDEF

˘
,

WMA
B ” 8i

27

´
VMACV

NBC ` VM
BCVNAC ´ 1

8
δBA MMKΩ

NK
¯
ΓLN

L , (3.24)

and by

UMA
B “ VM CD u

CD,B
A ´ VM

CD uCD,A
B , (3.25)

where the SU(8) tensor uCD,A
B satisfies

urCD,Bs
A ” 0 , uCA,BC ” 0 , (3.26)

and thus belongs to the 1280 of SU(8). It is now straightforward to check that uCD,A
B drops

out of the vanishing torsion conditions (3.20), (3.21) and thus remains undetermined. An

explicit form of QMA
B in terms of the GLp7q components of VM

AB has been given in Ref. [19].

With QM A
B given by (3.22), it is now straightforward to solve (3.12) for the affine connection

ΓMN
P
`
V, BV,Q

˘
“ i

´
VP ABDM pQqVN AB ´ VPABDM pQqVNAB

¯
(3.27)
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using (2.9). This, then, is the most general expression for a torsion-free affine connection, where

the part UMA
B of the connection (3.22) corresponding to the 1280 representation of SUp8q

represents the irremovable ambiguity that remains even after imposition of the zero torsion

constraint [19, 31]. In appendix E we will derive the unique expression for UM A
B in terms

of only V and BMV that makes QM A
B a generalized vector, but the resulting connection will

no longer transform as a proper SU(8) connection, and as a consequence the affine connection

would no longer be an SU(8) singlet. 9

In view of these subtleties it is therefore all the more remarkable how the supersymmetric

theory manages to sidestep these difficulties and ambiguities. Namely, in all relevant expressions

the internal covariant derivatives DM appear only in combinations in which the undetermined

part UMA
B of the connection is projected out and for which the covariance under generalized

diffeomorphisms is manifest. We illustrate this with a number of explicit expressions that will

be useful in the following. Using the explicit expression for QMA
B , equation (3.22), in equation

(3.4), we have, for example

VMAB DMΞB “ VMAB BMΞB ` 1

2
VMAB qMB

C ΞC ` 1

2
VMCD pM

ABCD ΞB

` 1

2
ΓKM

K VMAB ΞB ,

VM rAB DMΞCs “ VM rAB BMΞCs ´ 1

2
VM rAB qMD

CsΞD ´ 2

3
VMED pM

ABCD ΞE

` 1

2
VMDE pM

DErAB ΞCs ` 1

6
ΓKM

K VM rAB ΞCs , (3.28)

where the piece involving the trace of the affine connection comes fromWM A
B (we have ignored

the possible appearance of the internal spin connection ωM
αβ). Indeed, UMA

B does not survive

in any of these combinations, as can be explicitly verified using equations (3.25). In other words,

despite the non-covariance of the Cartan form, and thus of qM and pM , under generalized diffeo-

morphisms, the above combinations are covariant under generalized diffeomorphisms because

under generalized diffeomorphisms all terms with second derivatives of ΛM cancel out. Modulo

density contributions resulting from the non-vanishing weights of the fermions (see below), the

particular contractions (3.28) of covariant derivatives with the 56-bein turn out to be precisely

those appearing in the supersymmetry transformation rules and fermionic field equations. More

specifically, now also allowing for a non-trivial weight λ, and with fully covariant derivatives,

9By contrast, the connections to be derived directly from D “ 11 supergravity in the following section do

satisfy the required covariance properties, but the corresponding UMA
B can then no longer be expressed in a

covariant way in terms of V and BMV alone.
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we have

VMAB ∇MΞB “ VMAB BMΞB ` 1

2
VMAB qMB

C ΞC ` 1

2
VMCD pM

ABCD ΞB

`
ˆ
1

2
´ 2

3
λpΞq

˙
ΓKM

K VMAB ΞB ,

VM rAB ∇MΞCs “ VM rAB BMΞCs ´ 1

2
VM rAB qMD

CsΞD ´ 2

3
VMED pM

ABCD ΞE

` 1

2
VMDE pM

DErAB ΞCs `
ˆ
1

6
´ 2

3
λpΞq

˙
ΓKM

K VM rAB ΞCs . (3.29)

As we will see in the following section, and as originally shown in Ref. [3], there is no term

proportional to e´1BMe (cf. (3.19)) in the supersymmetry variations of the fermions. Conse-

quently, the density terms proportional to ΓKM
K must cancel. This fixes the weight of the

corresponding spinors in (3.29) uniquely, and in agreement with the weight assignments given

in the table. In summary, the above expressions are indeed fully covariant under both local

SU(8) and generalized diffeomorphisms. We will furthermore show in the following section that

these expressions do agree with the ones already obtained in Ref. [3], upon imposition of the

section constraint.

Similar ‘miracles’ occur in the bosonic sector. For instance, in the bosonic field equations,

we find after some computation that the scalar contribution to the vector field equations from

(2.36) can be expressed as

J µ
M “ ´ 1

24
DµMKLBMMKL ` 2i e´1 BN

`
ePµ ABCDVNABVMCD ´ c.c.

˘

“ ´2iVM
AB VN CD∇N pgµνPν ABCDq ` c.c. , (3.30)

with the undetermined connection UMA
B again dropping out from this contraction of covariant

derivatives.

We summarize the structure and definitions of the various components (external and inter-

nal, SOp1, 3q and SUp8q) of the full spin connection as follows

ωµ

Γrµνs
ρ “ 0

Qµ

DµVM
AB ” Pµ

ABCD VMCD

ωM

DMeµ
α ” πM

αβeµβ

QM

ΓMN
K |912 “ 0

. (3.31)

The various components of its generalized curvature contain the building blocks for the bosonic

field equations (2.15), (2.23) as we shall discuss in section 3.3 below.

3.2 The supersymmetry algebra

A nice illustration of the properties of the full spin connection (3.31) is the algebra of supersym-

metry transformations. In particular, the closure of the algebra on the 56-bein hinges on the

vanishing of the generalized torsion (3.13) in the very same way as the closure on the vierbein
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requires the vanishing of the external torsion (2.25). The supersymmetry transformations of

the bosonic fields (2.3) take the same structural form as in the four-dimensional theory

δǫeµ
α “ ǭAγαψµA ` ǭAγ

αψµ
A ,

δǫVM
AB “ 2

?
2VMCD

´
ǭrAχBCDs ` 1

24
εABCDEFGH ǭEχFGH

¯
,

δǫAµ
M “ ´i

?
2ΩMNVN

AB
´
ǭC γµ χABC ` 2

?
2 ǭA ψµB

¯
` c.c. ,

δǫBµν α “ ´2

3

?
2 ptαqPQ

´
VP ABVQCD ǭ

rA γµν χ
BCDs ` 2

?
2VP BCVQ

AC ǭA γrµ ψνs
B ` c.c.

¯

´ ptαqMN Arµ
M δǫAνs

N . (3.32)

The supersymmetry variation of the constrained two-form Bµν M which is invisible in the four-

dimensional theory can be deduced from closure of the supersymmetry algebra and yields

δǫBµν M “ 16

3
VKAB DMVKBC ǭ

CγrµψνsA ´ 4
?
2

3
VPABDMVP CD ǭ

rA γµν χ
BCDs

´ 8i
`
ǭA γrµDMψνsA ´ DM ǭ

A γrµ ψνsA
˘

` 2i eεµνρσ g
στ DM

`
ǭAγρψτ A

˘
` c.c.

` ΩKL
`
Arµ

KBMδǫAνs
L ´ BMArµ

KδǫAνs
L
˘
, (3.33)

as we show explicitly in appendix C. Note, that all SUp8q connections cancel in the varia-

tion (3.33), such that the external index is carried by BM and this variation is indeed compatible

with the constraint (2.14) on Bµν M . In particular, the variation (3.33) consistently vanishes

when BM “ 0 .

In terms of the full spin connection (3.11), (3.31), introduced in the previous section, the

fermionic supersymmetry transformation rules take a very compact form given by

δǫψ
A
µ “ 2Dµǫ

A ´ 4iVM AB p∇M pγµǫBq ,

δǫχ
ABC “ ´2

?
2Pµ

ABCDγµǫD ´ 12
?
2iVM rAB p∇M ǫ

Cs . (3.34)

It is then straightforward to verify closure of the supersymmetry algebra. The algebra takes

the same structural form as in the four-dimensional theory,

rδpǫ1q, δpǫ2qs “ ξµDµ ` δLorentzpΩαβq ` δsusypǫ3q ` δSUp8qpΛABq ` δgaugepΛM q

` δgaugepΞµα ,ΞµM q ` δgaugepΩµνMα ,ΩµνM
N q . (3.35)

The first term refers to a covariantized general coordinate transformation with diffeomorphism

parameter

ξµ “ 2 ǭ2
Aγµǫ1A ` 2 ǭ2 Aγ

µǫ1
A . (3.36)

The last three terms refer to generalized diffeomorphisms and gauge transformations (2.19),

(2.21), with parameters

ΛN “ ´8i ΩNP
`
VP

AB ǭ2Aǫ1B ´ VP AB ǭ
A
2 ǫ

B
1

˘
” V´1N

AB ΛAB ` V´1N AB ΛAB ,

Ξµα “ 8

3
ptαqPQ VP ACVQ

BC
`
ǭ2
Aγµǫ1B ` ǭ2Bγµǫ1

A
˘
, (3.37)
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again, as specified by the four-dimensional theory [43]. The remaining (constrained) gauge

parameters ΞµM , Ωµν
M

α, ΩµνM
N are not present in the four-dimensional theory and will be

specified below.

Closure of the supersymmetry algebra on the vierbein eµ
α is confirmed by a standard cal-

culation:

rδǫ1 , δǫ2s eµα “
´
2 ǭ2Aγ

αDµǫ
A
1 ´ 4iVM AB ǭ2Aγ

α p∇M pγµǫ1Bq ` c.c.
¯

´ p1 Ø 2q

“ 2Dµ

`
ǭ2Aγ

αǫA1
˘

´ 4i p∇M

`
VM AB ǭ2A ǫ1B

˘
eµ
α ´ 8iVM AB ǭ2Aǫ1B p∇Meµ

α

´ 4i eµ β V
M AB

´
ǭ2Aγ

αβ p∇M ǫ1B ´ p∇M ǭ2Aγ
αβǫ1B

¯
` c.c.

“ Dµ pξνeναq ` ΛM BMeµα ` 1

2
BMΛM eµ

α ` Ω̃αβ eµβ , (3.38)

with parameters from (3.36) and (3.37), and Lorentz transformation given by

Ω̃αβ “ ´8iVM AB ǭ2Aγ
αβ p∇M ǫ1B ` c.c. . (3.39)

The ΛM terms in (3.38) reproduce the transformation of eµ
α under generalized diffeomorphisms

as scalar densities of weight 1
2
, cf. table 1. Furthermore, the first term in (3.38) can be rewritten

in the standard way

Dµ pξνeναq “ eν
αDµξ

ν ` ξνDνeµ
α ` 2 ξνDrµeνs

α , (3.40)

into a sum of (covariantized) diffeomorphism and additional Lorentz transformation, upon

making use of the vanishing torsion condition (2.25) in the four-dimensional geometry.

An analogous calculation shows closure of the supersymmetry algebra on the 56-bein. We

concentrate on the projection of the algebra-valued variation V´1δV onto the 70 of SUp8q,
since the remaining part will entirely be absorbed into a local SUp8q transformation. Using

transformations (3.34), we obtain

V´1M AB rδǫ1 , δǫ2sVMCD “ ξµ Pµ
ABCD ` 6iVN rAB∇NΛ

CDs ´ i

4
ǫABCDEFGHVNEF∇NΛGH .

While the first term is the action of the covariantized diffeomorphism, the remaining terms

can be rewritten in complete analogy to (3.40) with the vanishing torsion condition in (3.40)

replaced by the corresponding condition (3.20) in the internal space. Specifically,

V´1M AB rδǫ1 , δǫ2sVMCD “ ξµPµ
ABCD ` 12VP

rABV´1CDsQ PPQ
N
L∇N

`
VK

LΛK
˘

“ ξµPµ
ABCD ` 12VP

rABV´1CDsM PPM
N
K BNΛK

` ΛK
´
∇KVM

rAB
¯
V´1CDsM

“ ξµPµ
ABCD ` V´1M AB δΛ VM

CD , (3.41)

where we have used (3.20) in the second equality. The second line of (3.20) has been absorbed

by the weight term associated with the non-trivial E7p7q weight 1
2
of ΛK .

Closure of the supersymmetry algebra on the vector and two-form fields can be verified by

similar but more lengthy computations, which we relegate to appendix C. Remarkably (and
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necessarily for consistency), closure on the two-forms Bµν M reproduces not only the action

of generalized diffeomorphisms (2.19) but also the shift transformation (2.21) with parameter

Ωµν M
N and finally their rather unconventional transformation behaviour (2.34) under external

diffeomorphisms. Consistency of the algebra thus confirms the above supersymmetry transfor-

mation rules and determines the remaining gauge parameters on the right hand side of (3.35):

ΞµM “ 8i
`
ǭA2 γµDM ǫ1A ` DM ǭ2A γµ ǫ

A
1

˘
´ 16

3
VKBC DMVK

AB ǭC2 γµǫ1A ` c.c. ,

Ωµν
M

α “ ´32

3
iptαqPQVPABVQCBVMAD ǭ

pC
2 γµνǫ

Dq
1 ` c.c. , (3.42)

Ωµν M
N “ ´32VNAB ǭ

A
r2 γrµ∇M

´
γνsǫ

B
1s

¯
´ 32i

3
VNACV

P ABDMVP BD ǭ
pC
2 γµνǫ

Dq
1 ` c.c. .

As required for consistency, the parameter Ωµν
M

α lives in the 912, i.e. satisfies (2.22). More-

over, the parameters ΞµM and Ωµν M
N satisfy the required algebraic constraints analogous

to those given in (2.14): one can verify that all SUp8q connection terms above (which would

obstruct these constraints) mutually cancel.

3.3 Supersymmetric field equations

In this section we employ the formalism set up in the previous sections to spell out the fermionic

field equations and sketch how under supersymmetry they transform into the bosonic field

equations of the E7p7q EFT (2.15), (2.23). The Rarita-Schwinger equation is of the form

0 “ pEψqµA ” ´e´1εµνρσγνDρψσ A ´
?
2

6
γνγµχBCD Pν BCDA

´ 2 i e´1εµνρσ VMAB γν p∇M

`
γρψ

B
σ

˘
´ i

?
2VNBC p∇N pγµχABCq , (3.43)

where the first two terms can be read off from the dimensionally reduced theory and the second

line captures the dependence on the internal variables and can be derived from verifying the

supersymmetry transformation of (3.43). It is straightforward to check that the contractions

of covariant derivatives in (3.43) are such that the undetermined part from the internal SUp8q
connection QM precisely drops out, cf. (3.28) and [20]. Hence, equation (3.43) is fully defined

via (3.1) and (3.24).

Under supersymmetry (3.34), and upon using the first order duality equation (2.15), a

somewhat lengthy computation confirms that the Rarita-Schwinger equation (3.43) transforms

as

δǫpEψqµA “ pEEinsteinqµν γνǫA ´ 2 pEvectorqµAB ǫB , (3.44)

into the Einstein and the second order vector field equations of motion obtained from varying

the action (2.15). It is instructive to give a few details of this computation as it illustrates the

embedding of the bosonic equations of motion into the components of the curvature associated

to the various blocks of the internal and external spin connections (3.31).

Let us first collect all terms in the variation (3.44) that contain an even number of γ-

matrices acting on ǫA, which should combine into the second-order vector field equation. These
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are the terms that carry precisely one internal derivative p∇M . After some calculation, using in

particular (2.11) and (3.10), we find

δǫpEψqµA
ˇ̌
ˇ
even #γ

“ 4 i e´1εµνρσ VMAB γνr∇M ,Dρs
`
γσǫ

B
˘

` 4iVMCD γµν∇MPν ABCDǫ
B

` 4iVMCDǫB ∇MP
µ
ABCD ` 2Pν ABCD Fµν CD ǫB . (3.45)

The commutator of covariant derivatives can be evaluated as

VMAB r∇M ,DρsXC “ ´1

2
∇MPρ

ABDE VMDE X
C ` 1

4
VMAB pRMρ

αβ γαβX
C , (3.46)

where the first term describes the mixed SUp8q curvature, and the second term refers to the

‘mixed’ curvature of the spin connections

pRMρ
αβ ” BM ωρ

αβ ´ Drωsρ pωMαβ . (3.47)

Evaluating this curvature in particular gives rise to the components

pRMrν ρσs “ 1

4
Drν

`
Fρσs

N MNM

˘
,

pRMν
µν “ ´1

2
pJµM ` 1

4
eα
µeβ

ν Dν

´
MMNF

αβN
¯
, (3.48)

with the current pJµM from (2.36). Putting everything together, we find for the variation (3.45)

δǫpEψqµA
ˇ̌
ˇ
even #γ

“ ´2Dν

`
Fνµ`

AB

˘
ǫB ´ 2Pν ABCD Fνµ´ CD ǫB ` 2i pJµMVMAB ǫ

B

` 4iVMCD∇M pgµνPν ABCDq ǫB ” ´ 2 pEvectorqµAB ǫB , (3.49)

reproducing the second-order vector field equation obtained from varying the action (2.23),

cf. (3.30).

It remains to collect the remaining terms with odd number of γ-matrices in the variation

(3.44) which should combine into the Einstein field equations. Many of these terms arrange

precisely as in the dimensionally reduced theory. Here we just focus on the additional terms

carrying internal derivatives ∇M and combining into

δǫpEψqµA
ˇ̌
ˇ
∇∇

“ 16VMBCVNAB ∇M pγµ∇NǫCq ` 8VMBCVNBC ∇M pγµ∇NǫAq

´ 8 e´1εµνρσ VMABV
N BC γν∇M pγρ∇N pγσǫCqq . (3.50)

Collecting all ∇M∇NǫA terms in this variation gives rise to

2
´
8V rM

ACV
NsCB ` iΩMNδBA

¯
γµ r∇M ,∇N s ǫB

` 4
´
16VpM

ACV
NqCB ` MMNδBA

¯
γµ∇M∇NǫB , (3.51)

showing that all double derivatives BMBN ǫA vanish due to the section condition (B.5). We

evaluate the full expression (3.51) using the fact that the following combination of covariant

derivatives [20]
´
6VMACV

N CB ` 2VNACV
M CB ` VM CD VNCD δ

B
A

¯
∇M∇N ǫB

”
ˆ

1

16
R δBA ´ 1

4
VMACV

N CBγνρgστ∇Mgνσ∇Ngρτ

˙
ǫB , (3.52)
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gives rise to the definition of the curvature R

R ” ´4VM rABV
N
CDs

ˆ
BMpNABCD ´ 1

2
qM E

A pN
EBCD

˙
´ 1

6
MMN pM

ABCDpN ABCD

´ 4VMABV
N CD pM

ABEFpN CDEF ´ 3

2
MMN e´1BMBNe ` 3

4
MMN e´2BMe BNe

´ 6VMABV
N
CD e

´1BMe pNABCD , (3.53)

which is invariant under generalized internal diffeomorphisms. Comparing the explicit expres-

sion for the curvature to the scalar potential V (2.32), we see that they are related by

e V “ ´eR ´ 1

4
eMMN∇Mg

µν∇Ngµν ` total derivative , (3.54)

in a form analogous to the Opd, dq DFT case discussed in Ref. [48]. The operator on the left

hand side of (3.52) is such that the double derivatives BMBN ǫA as well as the single derivatives

BM ǫA disappear by virtue of the section constraint, and also all ambiguities drop out [20].

The remaining terms in expression (3.50) can be written as

4
´
16VpM

ACV
NqCB ` MMNδBA

¯
∇Mγ

µ∇NǫB ´ 8VMACV
N CBγµνρ∇Mγν∇NγρǫB

` 16VMACV
N CBγµν∇M∇NγνǫB , (3.55)

showing that BM ǫ terms are also absent in these terms. These terms, which are independent of

the ambiguities, can be further evaluated to give

´ 1

2
BMgµνBNMMNγνǫA ´ 1

4
e´1BMe BNMMNγµǫA ` 2VMACV

N CBγµνρgστ BMgνσBNgρτ ǫB

` 1

8
MMNγµ

`
BMgρσ BNgρσ ´ 2 e´1BMBNe ` e´2BMe BNe

˘
ǫA

` 1

2
MMNgµσgνρ

`
BMBNgρσ ´ gτη BMgρτBNgση ` e´1BMe BNgρσ

˘
γνǫA . (3.56)

Together, using equation (3.52) and the expression above, the variation (3.50) reduces to

1

2
R γµ ǫA ´ 1

2
BMgµνBNMMNγνǫA ´ 1

4
e´1BMe BNMMNγµǫA (3.57)

` 1

8
MMNγµ

`
BMgρσ BNgρσ ´ 2 e´1BMBNe` e´2BMe BNe

˘
ǫA

` 1

2
MMNgµσgνρ

`
BMBNgρσ ´ gτη BMgρτBNgση ` e´1BMe BNgρσ

˘
γνǫA ” T µν γνǫA ,

and gives part of the scalar matter contributions to the Einstein field equations, cf. (3.44).

Indeed, ignoring the first term in the expression above, the remaining terms in T µν precisely

come from a variation of
1

4
eMMN∇Mg

µν∇Ngµν (3.58)

with respect to the metric gµν . Together with (3.54), and noting that the variation

e δR “ ´3

2
BM

`
eMMN BN pe´1δeq

˘
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is a total derivative, we find that the variation of the potential (2.32) with respect to the external

metric is given by

δp´e V q “ R δe ` 1

4
δ
`
eMMN∇Mg

µν∇Ngµν
˘

“ T µν δgµν , (3.59)

and precisely coincides with (3.57). In summary, the supersymmetry variation of the gravitino

equation (3.43) correctly reproduces the full Einstein equations from (2.23).

Finally, a similar discussion can be repeated for the field equation of the spin-1/2 fermions

χABC , which under supersymmetry transforms into vector and scalar field equations from (2.23).

Rather than going through the details of this computation, we present the final result in the

compact form of the full fermionic completion of the bosonic Lagrangian (2.23), given by

Lferm “ ´εµνρσ ψ̄µAγνDρψσA ´ 1

6
e χ̄ABCγµDµχABC ´ 1

3

?
2 e χ̄ABCγνγµψDν PµABCD

´ 2i εµνρσ VMAB ψ̄
A
µ γν

p∇M

`
γρψ

B
σ

˘
´ 2

?
2i eVNAB ψ̄Cµ p∇N pγµχABCq

´ i

18
e ǫABCDEFGHV

MAB χ̄CDE p∇Mχ
FGH ` c.c. , (3.60)

up to terms quartic in the fermions. The latter can be directly lifted from the dimensionally

reduced theory [49], for dimensional reasons they are insensitive to ∇M corrections. We have

thus obtained the complete supersymmetric extension of the bosonic E7p7q EFT (2.15), (2.23).

In the rest of this paper, we shall discuss in detail how this theory after the explicit solution

(2.2a) of the section constraint relates to the reformulation [3, 7, 8] of the full (untruncated)

D “ 11 supergravity.

4 Exceptional geometry from D “ 11 supergravity

Independently of the construction of a field theory based on a particular duality group in

Ref. [15] and other references alluded to earlier, and described in detail in the two foregoing

sections, there is the reciprocal (‘ground up’) approach of reformulating the higher-dimensional

theory in such a way that makes the role of duality groups directly manifest in higher dimen-

sions. This approach goes back to the early work of Refs. [3, 4], and has been taken up again

recently in a series of papers [6–8], which have succeeded in providing an on-shell equivalent

generalized geometric reformulation of the D “ 11 theory in which the bosonic degrees of

freedom are assembled into E7p7q objects and where the supersymmetry transformations of the

bosons assume a manifestly E7p7qˆ SU(8) covariant form. 10 This reformulation is achieved by

starting from the known supersymmetry variations of D “ 11 supergravity, and then rewriting

the theory in such a way that the E7p7q and SU(8) structures become manifest (following the

work of Cremmer and Julia [1], where this strategy was applied first in the restricted context

of the dimensionally reduced theory). One main advantage of this procedure is that the on-

shell equivalence of the reformulation with the original D “ 11 supergravity is guaranteed at

each step of the construction; the detailed comparison between the E7p7q-covariant expressions

10There exist partial results along similar lines for the case of the E8p8q duality group [4,5,7]; the full bosonic

E8p8q-covariant EFT is constructed in Ref. [50].
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and those originating from D “ 11 supergravity is also an essential prerequisite for deriving

non-linear Kaluza-Klein ansätze for all fields. 11 In this section, we briefly review these devel-

opments, and show how they tie up with the results of the two foregoing sections, eventually

establishing the equivalence of the two approaches. As we will see, the full identification is sub-

tle, not only because it involves various redefinitions, but also because the ambiguities exhibited

in the foregoing sections play a key role in establishing the precise relation.

4.1 56-bein and GVP from eleven dimensions

The first step is to identify an E7p7q 56-bein VMAB
12 in eleven dimensions with the bosonic

degrees of freedom that reduce to scalars under a reduction of the D “ 11 theory to four

dimensions; this 56-bein will be eventually identified with the one introduced in the previous

sections. Decomposing the 56 of E7p7q under its SL(8) and GL(7) subgroups

56 Ñ 28 ‘ 28 Ñ 7 ‘ 21 ‘ 21 ‘ 7, (4.1)

we have the following decomposition of the 56-bein

VM AB ”
´
VmAB,VmnAB ,V

mn
AB,VmAB

¯
, (4.2)

where we will often employ the simplifying notation VmAB ” Vm8
AB “ ´V8m

AB , when consid-

ering the embedding of GL(7) into SL(8). The main task is then to directly express this 56-bein

in terms of components of eleven-dimensional fields along the seven-dimensional directions, viz.

VM AB ” VM AB

`
em

a, Amnp, Amnpqrs
˘
, (4.3)

where em
a is the siebenbein, Amnp are the internal components of the three-form field, and

Amnpqrs the internal components of the dual six-form field. In other words, the 56-bein whose

existence in eleven dimensions was postulated on the basis of symmetry considerations in the

previous section is here given concretely in terms of certain components of the D “ 11 fields

11While the section constraint does admit a solution corresponding to IIB theory (with only six internal

dimensions), the full consistency of the AdS5 ˆS5 reduction remains to be established; this would in fact require

a detailed analysis of supersymmetric E6p6q theory similar to the one presented in this section.
12The notations and conventions used here are slightly different to those used in [3,7].
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and their duals. The calculation [7] yields the explicit formulae

VmAB “ 1

8
∆´1{2ΓmAB, (4.4)

VmnAB “ 1

8
∆´1{2

´
ΓmnAB ` 6

?
2AmnpΓ

p
AB

¯
, (4.5)

VmnAB “ 1

4 ¨ 5! η
mnp1¨¨¨p5∆´1{2

«
Γp1¨¨¨p5AB ` 60

?
2Ap1p2p3Γp4p5AB

´ 6!
?
2
´
Aqp1¨¨¨p5 ´

?
2

4
Aqp1p2Ap3p4p5

¯
ΓqAB

ff
, (4.6)

VmAB “ 1

4 ¨ 7! η
p1¨¨¨p7∆´1{2

«
pΓp1¨¨¨p7ΓmqAB ` 126

?
2 Amp1p2Γp3¨¨¨p7AB

` 3
?
2 ˆ 7!

´
Amp1¨¨¨p5 `

?
2

4
Amp1p2Ap3p4p5

¯
Γp6p7AB

` 9!

2

´
Amp1¨¨¨p5 `

?
2

12
Amp1p2Ap3p4p5

¯
Ap6p7qΓ

q
AB

ff
, (4.7)

where ∆ is the determinant of the siebenbein em
a. In particular, it can be explicitly verified that

the 56-bein defined by the components above satisfies the identities (2.9), and thus is indeed an

element of the most general duality group Sp(56,R). To show that that it is more specifically

an E7p7q-valued matrix one either verifies (2.6) directly, or invokes eqs. (14),(17) and (18) of

Ref. [8] where it is shown that V transforms as a generalized E7p7q covector. From the point of

view of Refs. [3, 7], this matrix corresponds to an element of the coset space E7p7q{SU(8) in a

specific gauge (where the local SU(8) is taken to act in the obvious way on the indices A,B, ...),

such that after a local SU(8) rotation the direct identification as given above is lost. Note also

the appearance of components of the six-form potential in the expressions, as a consequence of

whose presence the identification of the EFT formulated in the previous section and the D “ 11

supergravity can only be achieved at the level of the equations of motion (which, of course, does

not preclude the existence of suitable actions for either formulation).

In the same manner, one identifies a 56-plet of E7p7q vector fields Aµ
M that incorporate the

degrees of freedom corresponding to vectors under a reduction to four dimensions, combining

the 28 electric and the 28 magnetic vectors of maximal supergravity into a single representation

that now live in eleven dimensions. As before, the components in a GL(7) decomposition of
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the 56 of E7p7q can be explicitly written in terms of eleven-dimensional fields

Aµ
m “ 1

2
Bµ

m, Aµmn “ 3
?
2
`
Aµmn ´Bµ

pApmn
˘
,

Aµ
mn “ 6

?
2 ηmnp1...p5

ˆ
Aµp1¨¨¨p5 ´Bµ

qAqp1¨¨¨p5 ´
?
2

4

`
Aµp1p2 ´Bµ

qAqp1p2
˘
Ap3p4p5

˙
,

Aµm “ 36 ηn1...n7

˜
Aµn1...n7,m ` p3c̃ ´ 1q pAµn1...n5

´Bµ
pApn1...n5

qAn6n7m

` c̃An1...n6
pAµn7m ´Bµ

pApn7mq `
?
2

12
pAµn1n2

´Bµ
pApn1n2

qAn3n4n5
An6n7m

¸
. (4.8)

The components of the six-form potential appear again in the expression above. However, in

the Aµm component, there appears a new field Aµn1...n7,m (as well as an undetermined constant

c̃), related to the dual graviphoton.

These E7p7q objects are found by analysing the D “ 11 supersymmetry transformations,

which in the SU(8) invariant reformulation were found to take the precise form [3,6–8]

δeµ
α “ ǭAγαψµA ` ǭAγ

αψµ
A ,

δVM
AB “ 2

?
2VMCD

´
ǭrAχBCDs ` 1

24
εABCDEFGH ǭDχEFG

¯
,

δAµ
M “ ´i

?
2ΩMNVN

AB
´
ǭC γµ χABC ` 2

?
2 ǭA ψµB

¯
` c.c. , (4.9)

where a compensating SU(8) rotation has been discarded in the variation δVM
AB , as explained

in Refs. [3, 7]. Strictly speaking, the supersymmetry transformations of the last seven com-

ponents of the vectors cannot be derived from D “ 11 supergravity, due to the absence of a

non-linear formulation of dual gravity, but are here obtained by ‘E7p7q-covariantization’. The

supersymmetry transformations of the last seven components of the vector field instead deter-

mine the supersymmetry transformation of the new field Aµn1...n7,m as discussed in Ref. [7].

While Aµn1...n7,m, which is introduced to complete the 56 of E7p7q for the vectors, is clearly

related to dual gravity degrees of freedom from a four-dimensional tensor hierarchy point of

view, its direct relation to the eleven-dimensional fields cannot be determined. This is in stark

contrast to the six-form potential that is related to the three-form potential via an explicit

duality relation. Nevertheless, our ignorance regarding this field is compensated by the fact

that it does not appear in the GVPs (see below).

While the agreement in the supersymmetry variations of the boson fields as derived above

and the exceptional field theory approach of the foregoing sections is thus manifest, the agree-

ment in the fermionic variations is much more subtle. This is because the latter depend on

the connections, and a detailed comparison would thus require an analysis of the connection

(3.22) in terms of the D “ 11 fields. Of course, ignoring the ambiguity (3.25) for the moment,

we could simply try to work out the expressions (3.23) and (3.24) by substituting the explicit

formulae (4.4)–(4.7). However, this would lead to extremely cumbersome expressions (but see
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appendix D for a simplified calculation), whose relation with the ones given below would be

far from obvious. We will therefore proceed differently by starting ‘from the other end’. The

supersymmetry transformations of the fermions were already derived in [3], viz.

δψAµ “ 2

ˆ
Bµ ´Bµ

mBm ´ 1

4
BmBµm

˙
ǫA ` 1

2
ωµ

αβγαβǫ
A ` Qµ

A
Bǫ

B

` 2G´
αβ

ABγαβγµǫB ´ 1

4
emABeν βBmeρβγνργµǫB

` emABBm pγµǫBq ` 1

2
emABQ1

mB
CγµǫC ´ 1

2
emCDP

1
m
ABCDγµǫB,

δχABC “ ´2
?
2Pµ

ABCDγµǫD ` 6
?
2G´

αβ
rAB|γαβǫ|Cs ´ 3

2
?
2
eµβBmeνβemrABγµνǫCs

` 3
?
2emrABBmǫCs ´ 3

?
2

2
emrABQ1

mD
CsǫD ´ 3

?
2

2
emDEP

1
m
DErABǫCs

´ 2
?
2emDEP

1
m
ABCDǫE, (4.10)

where

emAB “ emAB “ i∆´1{2ΓmAB (4.11)

is just part of the 56-bein VMAB given above in (4.4), and

GαβAB ” ´ i

8
∆1{2erα

µeβs
νpBµ ´Bµ

mBmqBνnΓnAB `
?
2

32
i∆´1{2FαβmnΓ

mn
AB (4.12)

comprises the contribution from the spin one degrees of freedom. The link of the particular

expressions involving the Kaluza-Klein vectors Bµ
m with those of the previous two sections is

easily seen by noting that

Bµ ´Bµ
mBm ” Bµ ´ Aµ

MBM (4.13)

upon taking the canonical solution of the section constraint. Furthermore, the direct comparison

with the fermion transformations of D “ 11 supergravity yields the expressions

Q1
mA

B “ 1

2
qmab Γ

ab
AB `

?
2

48
Fmabc Γ

abc
AB `

?
2

14 ¨ 6!Fmabcdef Γ
abcdef
AB ,

P 1
mABCD “ ´3

4
pmab Γ

a
rABΓ

b
CDs `

?
2

32
FmabcΓ

a
rABΓ

bc
CDs ´

?
2

56 ¨ 5!Fmabcdef Γ
a
rABΓ

bcdef
CDs , (4.14)

where

qmab ” era
nB|men|bs , pmab ” epa

nB|men|bq (4.15)

are the components of the GL(7) Cartan form, with analogous notation as in the previous

section. These objects transform properly under local SU(8): Q1
mA

B is the SU(8) connection,

while P 1
mABCD transforms covariantly in the complex self-dual 35 representation of SU(8).

However, as written, these connections are not fully covariant under internal diffeomorphisms,

because qmab and pmab do not transform as proper vectors under internal diffeomorphisms.

For this reason we will switch to a slightly different choice below, see (4.17) and (4.18), which

satisfies all covariance requirements.

The other important feature of the reformulation [3,7,8] is the so-called generalized vielbein

postulate (GVP). When evaluated on the different components of VMAB this consists of certain
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differential equations satisfied by the 56-bein which are analogous to the usual vielbein postulate

in differential geometry. The GVPs are equations satisfied by the 56-bein and in the approach

of [3,7,8] they can be checked explicitly on a component by component basis, while they appear

as genuine postulates in the approach of the previous section. Moreover, the direct compari-

son with D “ 11 supergravity allows for a direct understanding of four-dimensional maximal

gauged theories and the embedding tensor [8,37,40] that defines them from a higher-dimensional

perspective as well as providing generalized geometric structures that can be interpreted as gen-

eralized connections and used to construct a generalized curvature tensor.

The external GVP, which gives the dependence of the 56-bein on the four-dimensional

coordinates is given by equation (2.27) (see Refs. [7, 8]), where the explicit expressions for Qµ

and Pµ in terms of the D “ 11 fields were already given in Ref. [3]. Here we concentrate on the

internal part of the GVP which was given in [7, 8] in the form

BmVM AB ´ ΓmM
NVN AB ` QCmrAVM BsC “ PmABCDVM

CD, (4.16)

where 13

QmA
B “ 1

2
ωmab Γ

ab
AB `

?
2

48
Fmabc Γ

abc
AB `

?
2

14 ¨ 6!Fmabcdef Γ
abcdef
AB , (4.17)

PmABCD “
?
2

32
FmabcΓ

a
rABΓ

bc
CDs ´

?
2

56 ¨ 5!Fmabcdef Γ
a
rABΓ

bcdef
CDs . (4.18)

Notice that Q1
mA

B and P 1
mABCD defined in equations (4.14) and QmA

B and PmABCD defined

above, (4.18), differ in their components relating to the siebenbein since we have replaced qmab

by the spin connection ωmab and pmab by zero. As explained in Ref. [8] this change is required

if the connections are to satisfy all the requisite covariance properties, as is indeed the case for

(4.17) and (4.18). However, there appears to be no way to reproduce these covariant expressions

in terms of the 56-bein V and its internal derivatives BmV without ‘breaking up’ the matrix V,

and this is one of the main difficulties in establishing agreement between the above expressions

and the ones obtained in the previous section. Fortunately, the apparent discrepancy turns

out to reside in the 1280 part of the SU(8) connection (see (3.25)) and the hook ambiguity

described in section 4.3 and will thus drop out in all relevant expressions.

The internal GVP as given in (3.12) and (4.16) (and also (4.24), see below) differ in two

respects. First of all, and prior to imposing the section constraint, (3.12) involves all 56 com-

ponents, whereas (4.16) involves only the seven internal dimensions with index M “ m. The

second distinctive feature is the appearance of a non-zero term proportional to Pm on the

right-hand side of the GVP. As we will explain in more detail below, this term corresponds

to a generalized non-metricity 14. We will show below how to absorb this non-metricity, and

thereby bring the GVP into the same form as (3.12). Finally, the connection coefficients Γm

can appear in the supersymmetry transformations of the fermions only via their traces, because

the fermions, while transforming as densities, are otherwise only sensitive to the local SU(8).

Given the coefficients QmA
B and Pm

ABCD we can solve for the affine connection coefficients

ΓmM
N in terms of the fields of D “ 11 supergravity; we use boldface letters here to indicate

13Note that in this paper our conventions are such that Cartan’s first structure equation takes the form

T a “ dea ` ωa
b ^ eb.

14We would like to thank Malcolm Perry for pointing this out to us.
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that these coefficients are different from the ones identified in (3.27) of the previous section.

With (4.17) and (4.18), ΓmM
N takes values in the Lie algebra of E7p7q

ΓmM
N “ Γm

αptαqMN . (4.19)

The comparison with D “ 11 supergravity allows to solve for the components of Γm
α directly

in terms of D “ 11 fields; the non-vanishing components are

pΓmqnp ” ´Γpmn ` 1
4
δ
p
nΓ

q
mq, pΓmq88 “ ´3

4
Γnmn,

pΓmq8n “
?
2ηnp1¨¨¨p6 Ξm|p1¨¨¨p6 , pΓmqn1¨¨¨n4 “ 1?

2
ηn1¨¨¨n4p1p2p3 Ξm|p1p2p3 , (4.20)

where Γmn
p is the usual Christoffel symbol, and where

Ξp|mnq ” DpAmnq ´ 1

4!
Fpmnq, (4.21)

Ξp|m1¨¨¨m6
” DpAm1¨¨¨m6

`
?
2

48
Fprm1m2m3

Am4m5m6s

´
?
2

2

ˆ
DpArm1m2m3

´ 1

4!
Fprm1m2m3

˙
Am4m5m6s ´ 1

7!
Fpm1...m6

. (4.22)

One notices that these objects, like the usual Christoffel symbol, indeed transform with sec-

ond derivatives of the tensor gauge parameters, as would be expected for a generalized affine

connection (see Ref. [8] for details). Another noteworthy feature is that they vanish under full

antisymmetrization:

Ξrp|mnqs “ 0, Ξrp|m1...m6s “ 0. (4.23)

Therefore, they correspond to hook-type Young tableaux diagrams, and thus encapsulate the

non-gauge invariant part of the derivatives of the three-form and the six-form fields. In terms

of SL(7) these Ξ’s correspond to the 210 and 48 representations, respectively; when further

decomposed into SO(7) representations, these will become the 21‘189 and 21‘27 of SO(7),

all of which appear in the 1280 of SU(8). We will also see below that the irreducibility property

(4.23) is crucial for the absence of torsion in the sense of generalized geometry.

As given above, the connection coefficients QmA
B , Pm

ABCD and ΓmN
P have all the de-

sired transformation properties with respect to local SU(8) and generalized diffeomorphisms,

as can be verified explicitly from their definitions (see Ref. [8]). That is, QmA
B transforms

as an SU(8) connection (as is obvious from the way the local SU(8) has been introduced in

Ref. [3] as a Stückelberg-type symmetry), while Pm
ABCD transforms covariantly under SU(8)

transformations. Both QmA
B and Pm

ABCD transform as generalized vectors under generalized

diffeomorphisms (for the natural truncation of generalized Lie derivatives to vectors with only

seven vector indices). Furthermore, the generalized affine connection Γ is invariant under SU(8)

transformations, and transforms as a generalized connection (with a second derivative of the

gauge parameters).

A distinctive feature of the internal GVP as given here, to be contrasted with the one given

in (3.12), is that, at this point, the connections have non-zero components only along the seven

internal dimensions, but vanish otherwise – just like the partial derivative BM after imposition
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of the section constraint. Nevertheless, we can formally write the internal GVP as

BMVN AB ´ ΓMN
PVP AB ` QCM rAVN BsC “ PM ABCDVN

CD (4.24)

by trivially promoting the GL(7) index m to part of a 56 of E7p7q. Hence, taking

BM “

$
&
%

Bm if M “ m8,

0 otherwise
(4.25)

and identifying the m components of the connection coefficients with those that appear in

equation (4.16), with all other components vanishing, gives back (4.16). In this form the

internal GVP can be compared to equation (3.12), with the proviso that the section constraint

also applies to the connections. However, in view of the derivation given in the foregoing section,

a natural question that arises at this point is why all other components of the connection

coefficients should vanish. Would it not be more “natural” from a generalized geometric point

of view if the connection coefficients had non-trivial components in the other directions of the

56 representation, as has been assumed in section 3 and, for example, Ref. [19]? Indeed, we

will see below that the introduction of non-vanishing connection components along the other

directions will actually be required if we want to recast the supersymmetry variations of the

fermions in order to achieve full agreement with the formalism of the preceding section.

We now proceed to reformulate these structures in order to exhibit their precise relationship

to those constructed in section 3. However, given that vanishing torsion is taken to be an

important ingredient for defining generalized connections in section 3, we will first consider the

generalized torsion associated to the generalized affine connection Γ.

4.2 Generalized torsion

In Ref. [8], the generalized torsion TMN
P is defined as follows

r∇M ,∇N sS “ TMN
P BPS (4.26)

for some scalar S and where∇M is defined using the connection ΓMN
P . The generalized torsion

as defined above vanishes [8]. An alternative (and a priori independent) definition of the torsion

is given in equation (3.13) of section 3, which leads to the formula (3.14). While the above

definition of torsion and that defined in (3.13) are equivalent in usual differential geometry, this

is not the case in generalized geometry. Here we will evaluate the generalized torsion (3.14)

explicitly in terms of the connection coefficients ΓmN
P given in Ref. [8] and above. A simple

component-wise calculation using the components of ΓmN
P identified above now shows that

the generalized torsion does indeed vanish. For example, consider

Tm8n8
p8 “ Γm8n8

p8 ´ 48Pp8n8
q8
r8 Γq8m8

r8 ` 16Pp8n8
q8
m8Γr8 q8

r8. (4.27)

Using the fact that

Pp8r8
q8
s8 “ 1

96
p2δpsδqr ` δpr δ

q
sq , (4.28)

the above equation reduces to

Tm8n8
p8 “ 2Γrmns

p ´ 2

3
Γr rm

rδ
p
ns. (4.29)
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However, the right hand side of the above equation vanishes by substituting the relevant com-

ponents of Γ from (4.20). Hence,

Tm8n8
p8 “ 0. (4.30)

Next consider, for example,

Tm8 pq r8 “ Γm8 pq r8 ´ 24Ppq r8
st u8Γu8m8 st. (4.31)

Using the fact that

Ppq r8
st u8 “ 1

8
δstupqr, (4.32)

the above equation reduces to

Tm8 pq r8 “ 4Γrmpq rs. (4.33)

However,

Γrmpq rs „ Ξrm|pqrs “ 0 (4.34)

by equation (4.23). Finally, consider the following components

Tm8n8
pq “ Γm8n8

pq ´ 24Ppqn8
r8
stΓr8m8

st. (4.35)

Using the fact that

Ppqn8
r8
st “ ´ 1

12
δ
pq

nrsδ
r
ts, (4.36)

we obtain

Tm8n8
pq “ Γm8n8

pq ` 2Γr8m8
rrpδqs

n

“ 3
?
2ηpqt1...t5

`
Ξm|nt1...t5 ´ Ξn|mt1...t5 ` 5Ξt1|mnt2...t5

˘

“ 21
?
2ηpqt1...t5Ξrm|nt1...t5s “ 0, (4.37)

where we have used the expression for Γm8n8
pq in the second equality and equation (4.23) in

the final equality. All other components of the generalized torsion can be similarly shown to be

zero. It should be emphasized that the fact that the full antisymmetrization of the Ξ quantities

is zero, equation (4.23), is crucial for this argument.

In summary, the generalized torsion, as defined by equation (3.14) is zero

TMN
P “ 0. (4.38)

Let us emphasize again the remarkable feature that the vanishing of the generalized torsion, as

originally defined on the basis of very different considerations based on generalized geometry,

here follows from the direct comparison with D “ 11 supergravity.

4.3 Hook ambiguity

As we have already mentioned, the supersymmetry transformations are insensitive to the gen-

eralized affine connection, modulo density contributions involving the trace of the affine con-

nection, because the fermions transform only under the chiral SU(8). With the connections as
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originally given in Ref. [3], or equivalently from equations (4.10), the supersymmetry variations

of the eight gravitini and the 56 dilatini contain the following combinations of Q1
m and P 1

m

δψAµ 9 ... `
´
emACQ1

mC
B ´ emCDP

1
m
ABCD

¯
γµεB ,

δχABC 9 ... `
´
3 em rABQ1

m
Cs
D ` 3 emEFP

1
m
EF rABδCs

D ` 4P 1
m
ABCEemED

¯
εD. (4.39)

An important property of the expressions appearing here on the right hand side, is that they are

actually insensitive to certain modifications of the connections. We first recognize that these

are exactly the same combinations that appear in the two first equations of (3.28). Secondly,

the expressions on the right hand side of (4.39) admit a non-trivial kernel which is found by

looking for solutions of

0 “ ΓmAC δQ
1
mC

B ´ ΓmCD δP
1ABCD
m ,

0 “ 3ΓmrAB δQ1
m
Cs
D ´ 3ΓmEF δP

1
m
EF rABδCs

D ´ 4 δP 1
m
ABCE ΓmED. (4.40)

Let us proceed with the following ansätze

δQ1
mA

B “ X
p3q
m|ab Γ

ab
AB `X

p4q
m|abc Γ

abc
AB `X

p7q
m|abcdef Γ

abcdef
AB ,

δP 1ABCD
m “ Y

p3q
m|ab Γ

a
rABΓ

b
CDs ` Y

p4q
m|abc Γ

ra
rABΓ

bcs
CDs ` Y

p7q
m|abcdef Γ

ra
rABΓ

bcdefs
CDs , (4.41)

where the slash | simply indicates that no a priori symmetry conditions are imposed on the

X’s and Y ’s other than the obvious ones (to wit, anti-symmetry in rabs, rabcs and rabcdef s,
respectively). For the form field contributions it was already shown in Ref. [36] that the GVP

remains valid if

Y
p4q
m|abc “ 3

2
X

p4q
m|abc , Y

p7q
m|abcdef “ ´3

2
X

p7q
m|abcdef (4.42)

with no further restrictions on the X’s and Y ’s. Notice that both Xp4q and Xp7q have two

irreducible parts: besides the fully antisymmetric pieces appearing in (4.14) there are the hook

diagram contributions. Furthermore, it was shown in Ref. [36] that Xp4q, Y p4q and Xp7q, Y p7q

are in the kernel of the supersymmetry variations (4.40) provided that

X
p4q
rm|abcs “ 0 , X

p7q
rm|abcdefs “ 0. (4.43)

That is, the fully antisymmetric parts (the four-form and seven-form field strengths) are de-

termined, but the hook diagram contributions can be chosen freely, as they drop out in the

supersymmetry variations of the fermions in (4.39). Note that Ξm|npq and Ξm|npqrst that ap-

pear in the generalized affine connection in (4.21) and (4.22) are precisely of the hook-type,

hence providing a geometrical explanation for the ambiguities found in [36].

As for the remaining SO(7) part X
p3q
m|ab, which was not considered in Ref. [36], the first

expression in equations (4.40) reduces to

X
p3q
a|bc Γ

abc
AB `

ˆ
2X

p3q
a|ab ` 4

3
Y

p3q
a|ab

˙
ΓbAB ´ Y

p3q
a|bbΓ

a
AB “ 0 . (4.44)

Whence we read off the condition

Y
p3q
m|ab “ ´3

2
X

p3q
m|ab. (4.45)
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With this identification the second line in (4.40) becomes

X
p3q
a|bc

´
2Γ

ra
rABΓ

bsc
CsD ´ ΓcrABΓ

ab
CsD

¯
´ X

p3q
a|bbΓ

a
rABδCsD “ 0. (4.46)

We now see that all terms in (4.44) and (4.46) except the last ones involving X
p3q
a|bb cancel,

provided we demand that

X
p3q
ra|bsc “ 0. (4.47)

To interpret the remaining term let us check the difference between the expressions for the

connection coefficients given in Ref. [3], equation (4.14), and in Ref. [8], equations (4.17) and

(4.18). These connections are fully covariant under internal diffeomorphisms. The difference is

thus

X
p3q
m|ab “ 1

2

´
enbBmen a ` ωmab

¯
“ 1

2
enaep bΓ

p
mn, (4.48)

where we have used the usual vielbein postulate satisfied by the siebenbein and Γpmn is the usual

Christoffel symbol. Hence (4.47) is indeed satisfied for a torsion-free affine connection. The only

extra term in the supersymmetry variations then comes from the ‘leftover’ term in (4.46) which

is just a density term proportional to Γkm
k, which is required here because the supersymmetry

parameter is a density. This is the same term that was obtained above with the connections

(4.14) just from Q1
mab and P

1
mab alone. We thus see that the switch from (4.14) to (4.17) and

(4.18) reintroduces the density term proportional to Γkm
k that was absent in Ref. [3]. In other

words, even the density term which is there with the correct weight if the GVP is formulated

with the usual affine connection as in Ref. [8] can be absorbed into a redefinition of QmA
B

and Pm
ABCD, as they were originally given in Ref. [3]. In fact we are free to also choose any

interpolating solution where the coefficient of the density term changes, as part of it is absorbed

into QmA
B , while the other into Pm

ABCD.

Let us also point out how the apparent discrepancy between (3.19), where Γkm
k 9 e´1Bme

(with e the usual vierbein determinant), and the above result, where Γkm
k 9∆´1Bm∆, is re-

solved: while in (3.29) the contribution proportional to ΓKM
K cancels with the weight assign-

ments given there, the contribution proportional to Γkm
k here can be eliminated by shifting

back to the non-covariant connections Q1
m and P 1

m, and only then the two pictures can be made

to agree. Otherwise the two sets of connections (both of which are consistent) simply reflect

the unavoidable ambiguities identified in section 3.1.

Let us emphasize once again that the connections given in equations (4.17) and (4.18)

satisfy all required covariance properties of generalized or exceptional geometry provided we

break up V by choosing the specific ‘frame’ as derived from D=11 supergravity. First of all,

the covariance under local SU(8) follows by the same arguments as in Ref. [3]: as given, these

expressions correspond to objects in a special SU(8) gauge (namely the one that accords with

the D=11 theory), such that QmA
B transforms as a proper SU(8) connection (for the SO(7)

subgroup this is anyhow obvious). Secondly, Pm
ABCD transforms covariantly when we apply

an SU(8) rotation that moves us out of the given gauge. Furthermore, these objects are also

covariant under generalized diffeomorphisms: for the 7-dimensional internal diffeomorphisms

this is manifestly true, while the fact that they do not transform at all under the remaining

generalized diffeomorphisms with parameters ξmn , ξ
mn and ξm is consistent with the formulae

(17) and (18) of Ref. [8] because QM “ PM “ 0 for M ‰ m. Of course, these statements apply
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only to the specific ‘frame’ as derived from D “ 11 supergravity, that we have adopted here,

where the connections have non-vanishing coefficients only along the seven internal dimensions.

However, it is straightforward to see that the manipulations we are now going to perform

on these specific connections to bring them in line with the constructions described in the

two foregoing sections are themselves fully covariant and therefore preserve these covariance

properties.

Let us point out once more that the existence of covariant connections is possible here

because we have given the connections explicitly in terms of D “ 11 fields. It is not possible to

achieve if all quantities are to be expressed only in terms of the generalized vielbein V and its

derivatives in an E7p7q-covariant manner, as we already saw in the foregoing section (and will

explain again for a simplified example in appendix D).

4.4 Non-metricity and redefinition of the generalized connection

In order to understand how the appearance of PM on the right-hand side of the GVP (4.24) can

be reconciled with the absence in the corresponding relation given previously in equation (3.12),

it is useful to recall that similar ambiguities arise in standard differential geometry. While the

vielbein postulate is usually quoted as

Bmena ` ωm
a
ben

b ´ Γpmnep
a “ 0 (4.49)

with Γpmn the Christoffel symbols, there is a more general expression

Bmena ` ωm
a
ben

b ´ Γpmnep
a “ Tmn

pep
a ` Pm

a
b en

b, (4.50)

where Γpmn is no longer given by the Christoffel symbols, Tmn
p “ Trmns

p is referred to as the

torsion and Pmab “ Pm pabq is referred to as the non-metricity, as it ‘measures’ the failure of

the metric to be covariantly constant (see for example Ref. [51]). Notice that there is quite a

lot of freedom in the definition of the various objects in the equation above. For example, the

antisymmetric part of the affine connection Γprmns can be absorbed into a redefinition of T pmn so

that Γpmn “ Γppmnq. Similarly, the non-metricity can be absorbed into a redefinition of the affine

connection and the torsion:

Γpmn ÝÑ Γpmn ´ Ppm
c

|d| enq
depc,

Tmn
p ÝÑ Tmn

p ´ Prm
c

|d| ens
depc. (4.51)

Furthermore, the fully anti-symmetric part of the torsion can be absorbed into a redefinition

of the spin connection

ωmab ÝÑ ωmab ´ Tmnp e
n
a e

p
b. (4.52)

Hence, in differential geometry there is a great deal of freedom in how one defines various

structures such as non-metricity, torsion and the affine and spin connections.

In complete analogy with this discussion, connection coefficient PM can be absorbed into a

redefinition of ΓM in the internal GVP, equation (4.24):

ΓMN
P ÝÑ Γ̃MN

P “ ΓMN
P ` i

´
VN

ABPM ABCDV
P CD ´ VN ABPM

ABCDVP CD

¯
(4.53)
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so that the internal GVP becomes

BMVN AB ´ Γ̃MN
PVP AB ` QM

C
rAVN BsC “ 0. (4.54)

We note that this shift only changes the affine connection, but does not affect the SU(8) con-

nection QM A
B. The GVP is now of the form of (3.12) in section 3, but the connections are

still different. In particular, the QM A
B and Γ̃MN

P are still non-zero only for the first seven

components given by equations (4.17). However, by removing the non-metricity in the affine

connection we have reintroduced torsion in Γ̃ where there was none before, in analogy to or-

dinary differential geometry. Therefore, in order to recover a torsion-free affine connection we

follow the same procedure as in section 3.1, and accordingly redefine the affine connection once

more, as follows:

QM A
B ÝÑ pQM A

B ” QM A
B ` QM A

B , (4.55)

Γ̃MN
P ÝÑ pΓMN

P ” Γ̃MN
P ` i

´
VPABQM

A
CVN

BC ´ VPABQM A
CVNBC

¯
, (4.56)

where, modulo the remaining ambiguity UM A
B , the modification QM is now chosen to obtain

precisely the connection Q in section 3, namely

QM A
B “ RM A

B ` UM A
B `WM A

B ` 2i

3
ΓMN

PVP ACV
N CB. (4.57)

With the redefinitions (4.56), we have now brought the GVP into the standard form

BMVN AB ´ pΓMN
PVP AB ` QC

M rAVN BsC “ 0, (4.58)

with the following properties:

• The affine connection pΓMN
P is torsion-free, an SU(8) singlet and transforms properly

under generalized diffeomorphisms.

• The SU(8) connection QM A
B transforms as a connection under SU(8), and as a general-

ized vector under generalized diffeomorphisms.

• The connections have non-vanishing components for all 56 components, and this is nec-

essary for the supersymmetry variations of the fermions to be expressible in terms of the

SU(8) connection QM A
B alone (see the previous section).

• The remaining differences between the above connections and the ones obtained in the

previous section are all contained in the hook-type ambiguity.

Modulo the ambiguity, these connections are now equivalent to the connections defined in

section 3, namely pΓ – Γ. We should point out that, with the formulae at hand, we could

in principle proceed to work out explicit expressions for QM A
B and ΓMN

P in terms of the

D “ 11 fields. However, after the redefinitions these expressions will be very complicated, and

by themselves not very illuminating.

The trace of the affine connection Γ is given by the determinant of the siebenbein [8],

ΓKM
K “ 3

2
BM log∆. (4.59)
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The connection used to construct the exceptional geometry in section 3 is required to be com-

patible with the vierbein density, (3.18), which implies equation (3.19). This condition can

be satisfied by the torsion-free connection by choosing W in equation (4.57) appropriately. In

particular the trace of Γ drops out of ΓKM
K :

ΓKM
K “ Γ̃KM

K ` i
´
VKABQK

A
CVM

BC ´ VKABQKA
CVMBC

¯

“ i
`
VKABWK

A
CVM

BC ´ VKABWKA
CVM BC

˘
.

The W given in equation (3.24) ensures that the affine connection Γ satisfies the condition

(3.19). Note that the part of the fermion supersymmetry transformations given by the internal

connection are independent of the vierbein determinant. This remains so despite the contribu-

tion from W , which is cancelled by the density contributions in the covariant derivative ∇M of

weighted tensors in the supersymmetry transformations.

4.5 Connections and fermion supersymmetry transformations

In section 3.2, we give the fermion supersymmetry transformations (3.34) in terms of the torsion-

free connection constructed in section 3.1. Solving the section condition to obtain the D “ 11

supergravity, the fermion supersymmetry transformation should yield those of the SU(8) invari-

ant reformulation [3], (4.10). Using the definition of the covariant derivative (3.3) and equations

(3.11) and (3.22), transformations (3.34) become

δǫψ
A
µ “ 2Dµǫ

A ` 1

4
F´
ρσ
ABγρσγµǫB ` i eν βBMeρβVM ABγνργµǫB ´ 4 i VM ABBM pγµǫBq

´ 2 i VM ABqM B
CγµǫC ´ 2 i VMCDpM

ABCDγµǫB ,

δǫχ
ABC “ ´2

?
2Pµ

ABCDγµǫD ` 3
?
2

4
F´
µν

rABγµνǫCs ` 3
?
2 i eµ βBMeνβVM rABγµνǫCs

´12
?
2iVM rAB BM ǫCs ` 6

?
2 i VM rABqMD

CsǫD ´ 8
?
2 i VMDEpM

ABCDǫE

´6
?
2 i VMDEpM

DErABǫCs , (4.60)

In this form, the supersymmetry transformations (3.34) reduce to the following expressions

upon use of the canonical solution of the section condition

δψAµ “ 2

ˆ
Bµ ´Bµ

mBm ´ 1

4
BmBµm

˙
ǫA ` 1

2
ωµ

αβγαβǫ
A ` Qµ

A
Bǫ

B

` 1

4
F´
αβ

ABγαβγµǫB ´ 1

4
emABeν βBmeρβγνργµǫB

` emABBm pγµǫBq ` 1

2
emABqmB

CγµǫC ´ 1

2
emCD pm

ABCDγµǫB ,

δχABC “ ´2
?
2Pµ

ABCDγµǫD ` 3
?
2

4
F´
αβ

rAB|γαβǫ|Cs ´ 3
?
2

4
eµ βBmeνβemrABγµνǫCs

` 3
?
2emrABBmǫCs ´ 3

?
2

2
emrABqmD

CsǫD ´ 3
?
2

2
emDE pm

DErABǫCs

´ 2
?
2emDE pm

ABCDǫE . (4.61)
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Comparing the supersymmetry transformations above that come from the supersymmetric EFT

with the canonical solution of the section condition with those of the D “ 11 theory as written

in Ref. [3], transformation (4.10), we find that they are identical upon identifying 1
8
Fαβ

AB with

Gαβ
AB and Q1, P 1 with q, p, respectively.

First, let us consider the relation between Fαβ
AB and Gαβ

AB . Note that Fαβ
AB satisfies a

twisted self-duality condition, which means that on-shell

F´
αβ

AB “ Fαβ
AB.

The Gαβ
AB , however, does not satisfy a twisted self-duality condition and in order to modify it

so that it does, we need to add to it the Hodge dual of the field strengths, viz.

GαβAB ” ´ i

16
∆1{2erα

µeβs
νpBµ ´Bµ

mBmqBνnΓnAB `
?
2

64
i∆´1{2FαβmnΓ

mn
AB

`
?
2

64 ¨ 5!∆
´1{2ǫαβγδF

γδm1 ...m5Γm1...m5 AB ` i∆1{2ǫαβγδX
γδ|nΓnAB , (4.62)

where Xαβ|m would correspond to the field strength of the field dual to Bµ
m. However, since

the first term in the expression above is not exact, Bµ
m cannot be dualized in the usual way.

This is why the new field BµνM is necessary in the definition of Fµν
M , (2.13), schematically

“eating up” the non-exact terms to allow dualization.

Regarding the relation between Q1, P 1 and q, p: as explained in section (4.3), the Q1 and

P 1 are related to Q and P by the usual Christoffel symbol associated with the siebenbein.

Moreover, the Q and P are related to q and p by the generalized affine connection Γ,

QmA
B “ qmA

B ´ 2i

3
ΓmN

PVP ACV
N CB ,

PmABCD “ pmABCD ` iΓmN
PVPABV

N
CD. (4.63)

In both cases, the redefinitions correspond to hook-type redefinitions to which the supersym-

metry transformations are insensitive, as explained in section 4.3. Therefore, at the level of the

supersymmetry transformations, the two sets of connection coefficients are equivalent.

The fermion supersymmetry transformations of a truncation of the D “ 11 theory have

been studied in Ref. [20], where they are also given in terms of a generalized SU(8) connection

constructed in Ref. [19]. In this paper, we use a connection that allows us to express the

fermion supersymmetry transformations covariantly in terms of the 56-bein, rather than its

components. This is done by using some of the components in the 1280 representation, to

which supersymmetry transformations are insensitive to [19] (see also section 3). Therefore, the

connection Q ´ U still contains terms, not expressible in terms of the 56-bein and its derivatives,

that are in the 1280 representation. These terms are precisely the difference between the Q ´ U

and the unambiguous part of the connection of Ref. [19]. In practice, an explicit expression of

this difference is rather complicated.

The advantage of the connections constructed in Refs. [3,8,52] and Ref. [19] is that they are

compact when expressed in terms of theD “ 11 fields. However, the advantage of the connection

constructed in section 3 is that it allows us to write the supersymmetry transformations, and

thus the whole theory, in terms of the 56-bein and other E7p7q-covariant objects. Indeed, that

this can be done is a main result of this paper.
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Appendix

A Notations and conventions

The index notation used in this paper is as follows:

• µ, ν, . . . and α, β, . . . denote D “ 4 spacetime and tangent space indices, respectively.

• m,n, . . . and a, b, . . . denote D “ 7 spacetime and tangent space indices, respectively.

• M,N, . . . label the fundamental (56) of E7p7q.

• α labels the adjoint (133) of E7p7q.

• A,B, . . . denote SU(8) indices.

Furthermore, the following notations are used for covariant derivatives:

• Dµ “ Bµ ´ LAµ denotes the E7p7q-covariant derivative.

• Dµ “ Dµ`ωµ
α
β `Qµ

A
B denotes the E7p7q-covariant derivative that is also covariant with

respect to the local SO(1,3) and SU(8) symmetries.

• ∇µ “ Dµ ` Γρµν is the fully covariant derivative.

Analogously,

• DM “ BM ` ωM
α
β ` QM

A
B denotes derivative that is also covariant with respect to the

local SO(1,3) and SU(8) symmetries.

• ∇M “ DM ` ΓPMN is the fully covariant derivative,

and pDM and p∇M are defined with the modified spin connection pωM .

B Useful identities

In this appendix we collect a handful of useful relations and identities in order to deal with the

E7p7q projectors (2.17) and the section constraint (2.1) upon contractions with the 56-bein. Let

us first note the projector identity

PMN
P
Q VPAB VQCD “ 1

3
VNErA VMErC δBs

Ds ` 1

3
VMErA VN

ErC δBs
Ds

´ 1

24

`
VNEF VMEF ` VMEF VN

EF
˘
δCDAB . (B.1)

As a consistency check, we may calculate the trace of this relation

PMN
P
Q VPAB VQCB “ 1

2
VNAB VMCB ` 1

2
VMAB VN

CB

´ 1

16

`
VNEF VMEF ` VMEF VN

EF
˘
δA

C , (B.2)
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confirming that PMN
P
Q acts as an identity on the right hand side. Similarly, one finds that

PMN
P
Q VPAB VQCD “ 1

2
VN rAB VMCDs ´ 1

48
ǫABCDEFGHVN

EF VMGH . (B.3)

The section constraint (2.1) states that

pP1`133qPQMN BM b BN “ 0 . (B.4)

where 133 and 1 are in the symmetric and antisymmetric tensor product, respectively. Con-

tracting this equation with the 56-bein, we obtain explicitly

VpM
ACV

NqBC BM b BN “ 1

8
δBA VpM

CDV
NqCD BM b BN ,

VM rABV
N
CDs BM b BN “ 1

24
ǫABCDEFGH VMEFVNGH BM b BN . (B.5)

C The supersymmetry algebra

In this appendix, we show that the commutator of supersymmetry transformations (3.32)–

(3.34) closes into the supersymmetry algebra (3.35). For the commutator on the external and

internal vielbeine eµ
α and VM

AB we have seen in section 3.2 above that closure of the algebra

is a direct consequence of the vanishing torsion conditions (2.25) and (3.13), respectively. Here,

we complete the algebra on the vectors Aµ
M and two-forms Bµν α and Bµν M .

We start with the vector fields, for which the commutator of two supersymmetry transfor-

mations yields

rδǫ1 , δǫ2sAµ
M “ ´8iDµ

`
VMAB ǭ2Aǫ1B

˘
` 16VNAB VMAB ǭC2 γµ

p∇Nǫ1C

` 32VNCA VMAB ǭC2 γµ∇Nǫ1B ` 32VMABVKBC ǭ2A p∇K

`
γµǫ

C
1

˘
` c.c.

“ DµΛ
M ` 4 gµνM

MNBN
`
ǭA2 γ

νǫ1A
˘

` 8MMN
`
ǭA2 γαǫ1A

˘
eµβ e

νrα p∇Neν
βs

` 8iΩMN
´
ǭA2 γµ

p∇Nǫ1A ´ p∇N ǭ
A
2 γµ ǫ1A

¯

` 32

ˆ
VMABVKBC ` VMBCV

KAB ` 1

8
δAC MMK

˙
∇K

`
ǭC2 γµǫ1A

˘
. (C.1)

In the first line, we recognize the action of a gauge transformation together with the non-

covariant contribution gµνM
MNBN ξν of the diffeomorphism action (2.34). The third term can

be reduced using (3.10). Let us rewrite the last term of (C.1) as

32∇K

"ˆ
VMABVKBC ` VMBCV

KAB ` 1

8
δAC MMK

˙`
ǭC2 γµǫ1A

˘*

“ 32 BK
"ˆ

VMABVKBC ` VMBCV
KAB ` 1

8
δAC MMK

˙`
ǭC2 γµǫ1A

˘*

´ 32

ˆ
VKBCDKV

MAB ` VKABDKVMBC ´ 1

8
δAC ptraceq

˙`
ǭC2 γµǫ1A

˘

` 8
`
e´1BKe

˘ˆ
VKBCV

MAB ` VKABVMBC ` 1

8
δAC MMK

˙`
ǭC2 γµǫ1A

˘

“ 12 ptαqMN BNΞµα ´ 8

3
ΩMN

`
VK BC DNVK

AB ` VK AB DNVKBC
˘ `
ǭC2 γµǫ1A

˘
,
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reproducing the parameter Ξµα from (3.37), and where we have used (3.19) in the first equality

and the vanishing torsion condition (3.21) in the second. Together, we obtain

rδǫ1 , δǫ2sAµ
M “ DµΛ

M ` gµνM
MNBN ξν ´ 1

2
ξνFµν

M ´ 12 ptαqMN BNΞµα

` 8iΩMN
´
ǭA2 γµ

pDN ǫ1A ´ pDN ǭ
A
2 γµ ǫ1A

¯

´ 8

3
ΩMN

`
VKBC DNVK

AB ` VKAB DNVKBC
˘ `
ǭC2 γµǫ1A

˘
. (C.2)

We observe, that we can simultaneously drop the SUp8q connection part in the last two lines

since they mutually cancel. The spin connection pωMαβ in the second line yields additional

contributions which explicitly carry the field strength Fµν
M and can be simplified using the

twisted self-duality equation (2.15):

´ iΩMN εµνρσ ǭ
A
2 γ

ν ǫ1AMNK FρσK “ ´1

2
ξν Fµν

M . (C.3)

In total, the commutator (C.2) then takes the expected form

rδǫ1 , δǫ2sAµ
M “ ξνFνµ

M ` gµνM
MNBNξν ` DµΛ

M ` 12 ptαqMN BNΞµα

` 1

2
ΩMN ΞµM , (C.4)

with the last term corresponding to the action of a tensor gauge transformation (2.19) with

parameter ΞµM from (3.42).

Next, let us check the commutator of supersymmetry transformations on the two-forms

Bµν α. First, we note that to lowest order in the fermions the terms descending from variation

of the ptαqMN Arµ
M δǫAνs

N contribution in (3.32) simply reproduce the corresponding terms

of type ptαqMN Arµ
M rδ1, δ2sAνs

N in the action of gauge transformations (2.19) and diffeomor-

phisms (2.34), by virtue of the closure of the algebra (C.2) on the vector fields. We can thus in

the following ignore all terms that carry explicit gauge fields Aµ
M . With some calculation the
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various remaining terms organize into

rδ1, δ2sBµν α “ ´8

3
ptαqPQ

´
´ VP ABVQCD ǭ

rA
2 γµν Pρ

BCDsEγρǫ1E

` 2VP BCVQ
AC ǭ2A γrµDνsǫ

B
1

´ 6iVP ABVQCD ǭ
rA
2 γµν V

MBC p∇M ǫ
Ds
1

´ 4iVP BCVQ
AC ǭ2AγrµV

MBD p∇M pγνsǫ1Dq ` c.c.
¯

´ p1 Ø 2q

“ 2DrµΞνsα ` 1

3
ptαqPQ VP ABVQCD PσABCD eεµνρσ ξ

ρ ` ptαqMN ΛMFµν
N

´ 32

3
ptαqPQ BM

`
iVPACVQ

BCVMBD ǭ
A
2 γµνǫ

D
1 ` c.c.

˘

´ 4

3
ptαqPQ

´
´ 12VP CD ǭ

C
2 γµνBQǫD1 ` 4iVPACV

N CDBQVN DB ǭ
A
2 γµνǫ

B
1

`3VP CDΩQρσ ǭ
C
2 γµνγ

ρσǫD1 ` c.c. ´ p1 Ø 2q
¯

“ 2DrµΞνsα ` ξρHρµν α ` ptαqMN ΛMFµν
N ` BMΩµν

M
α ` ptαqMNΩµνN

M ,

(C.5)

with the gauge parameters ΛM and Ξµα defined in (3.37) above, and the shift parameters

Ωµν
M

α, ΩµνN
M given in (3.42). Finally, we have used the first-order duality equations (2.39)

for the last equality in (C.5) in order to reproduce on-shell the transformation (2.34) under

external diffeomorphisms. Together, we confirm the supersymmetry algebra (3.35) on the two-

forms Bµν α.

Closure of the supersymmetry algebra on the vector fields and two-forms Bµν α thus has not

only determined the supersymmetry transformation rules but also uniquely fixed all the gauge

parameters appearing on the right hand side of (3.35). The remaining commutator for the

constrained two-forms Bµν M thus becomes a consistency check of the entire construction with

no more free or adjustable parameters to be determined. Indeed, closure of two supersymmetry

transformations on Bµν M into (3.35) can be shown by a rather lengthy calculation of which we

will give only a few essential ingredients here.

As for Bµν α, we can consistently ignore all terms that carry explicit gauge fields Aµ
M which

separately organize into the correct contributions due to closure (C.2) on the vector fields. After
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some calculation, we then find for the remaining commutator

rδǫ1 , δǫ2sBµν M “ 2DrµΞνsM ´ 4i ξρ eεµνρσ RMτ
στ

´ 2i eεµνρ
σ Dρ

´
gσλBM ξλ

¯
´ 2

3
eεµνρσ P

ρABCD VPABDMVP CD ξ
σ

` 128

3
i ǭ

pA
2 γrµ p∇Lpγνsǫ

Bq
1 qDMVKCAV

L
BDV

KCD ` c.c.

´ 64i ǭC2 ǫ
D
1 erµ

α p∇KeνsαV
KABVNABDMVNCD ` c.c.

` 64VKCD ǭ
C
2 γrµ pDM

p∇Kpγνsǫ
D
1 qq ` c.c.

´ 64DM ǭ
C
2 γrµ V

K
CD

p∇Kpγνsǫ
D
1 q ` c.c.

´ 16iΩMN Fρrµ
N ǭC2 γ

ρ p∇Kpγνsǫ
D
1 qVKCD ` c.c.

´ 16 eεµνρ
σ∇M

´
ǭC2 γ

ρVNCD p∇N pγσǫD1 q
¯

` c.c. . (C.6)

Here the curvature in the second term refers to the curvature of the corresponding spin con-

nections

RMτ
στ ” eα

σeβ
ρ
´

BM ωρ
αβ ´ DrA,ωsρ ωMαβ

¯

“ eα
σeβ

ρ
´

BMωραβ ´ Dρ

´
eτ rαBMeτ βs

¯¯
. (C.7)

In the calculation of (C.6), we have made use of

DMVLAB “ 2i

3
VKCDDMVKCrBV

L
AsD ´ iVLCDVKCDDMVKAB , (C.8)

ðñ VPAB ΓMP
L “ 2i

3
VKCDVPCrAV

L
BsD ΓMK

P ` iVLCDVKCDVPAB ΓMK
P ,

as well as

8i eεµνρ
σ BM

`
ǭA2 γ

ρDσǫ1A
˘

` c.c. “ 8i eεµνρ
σ BM∇σ

`
ǭA2 γ

ρǫ1A
˘

(C.9)

“ 8i eεµνρ
σ∇σBM

`
ǭA2 γ

ρǫ1A
˘

` 2i eεµνρ
σ BMΓστ

ρξτ

“ ´2i eεµνρ
σ Dρ

´
gσλBMξλ

¯
` 2i eεµνστ RMρ

στ ξρ ,

and

32i
´
ǭA2 γrµrDνs, pDM sspin ǫ1A ´ c.c.

¯
“ ´2ieεαβrµ|ρξ

ρ pRM |νs
αβ ` c.c.

“ ´4ieεαβrµ|ρξ
ρRM |νs

αβ ´ 2ΩMNξ
ρDrµFνsρ

N

“ ´4ieεµντρξ
ρRMσ

στ ´ 2ieεµνστ ξ
ρRMρ

στ

´ 2ΩMNξ
ρDrµFνsρ

N . (C.10)

Let us start by considering the first five terms of (C.6). After some further calculation and
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upon using the first-order duality equation (2.39), they reduce to

ÝÑ 2DrµΞνsM ´ 4i ξρ eερµνσRMτ
στ

´ 2i eεµν
ρσ Dρ

´
gσλBM ξλ

¯
´ 2

3
eεµνρσ P

ρABCD VPABDMVP CD ξ
σ

“ 2DrµΞνsM ` 2iξρ eερµνσ

ˆ
pJMσ ` 1

3
PσABCD pM ABCD

˙

´ 2i eεµνρ
σ Dρ

´
gσλBMξλ

¯

“ 2DrµΞνsM ` ξρHρµν M ´ 2i eεµνρσg
στ Dρ

´
gτλ BMξλ

¯
. (C.11)

This exactly reproduces the expected transformation of Bµν M under external diffeomorphisms

(2.34). Next, we collect all FM terms on the right hand side of (C.6). This yields

rδ1, δ2sBµν M
ˇ̌
ˇ
F

“ 8

3
VNCBV

KCD DMVKDA ǭ
A
2 γrµγ

ρσγνsǫ1
B Fρσ

N

´ 4VPABDMVP CD ǭ
A
2 γµν γ

ρσǫB1 VN
CDFρσ

N

´ 4i ǭA2 γrµDM

`
γρσγνsǫ1

B Fρσ
NVNAB

˘

` 4iDM ǭ
A
2 γrµ γ

ρσγνsǫ1
B Fρσ

NVNAB

` i eεµνρ
σ DM

´
ǭA2 γ

ργλτγσǫ1
B Fλτ

NVNAB

¯
` c.c. . (C.12)

After some further calculation, these terms may be brought into the form

“ ´32

3
VKCDDMVKAD FµνCB ǭ

A
2 ǫ1

B ` 16VKCDDMVKABFµν
CD ǭA2 ǫ1

B

` 8iFµνABDM pǭA2 ǫ1Bq ´ 8iVKABVK CDDM pFµνABqǭC2 ǫ1D

“ ´8VKCDFµνCDDM pVKAB ǭA2 ǫ1Bq ` 8VKCDFµν
CDDM pVKAB ǭA2 ǫ1Bq

` 8DM pVKCDFµνCDqVKAB ǭA2 ǫ1B ´ 8DM pVKCDFµνCDqVKAB ǭA2 ǫ1B

“ Fµν
KBMΛK ´ ΛKBMFµν

K , (C.13)

and precisely reproduce the gauge transformation (2.19) of the two-form Bµν M .

It remains to show that all the remaining terms in (C.6) combine into the Ω transformations

of (2.21) with parameter Ωµν M
N from (3.42). This can be verified by a lengthy but direct

computation. In the course of this computation, it is useful to explicitly develop the curvature

RMN
αβ ” 2BrMωNs

αβ ` 2ωrM
αγωNsγ

β

“ eνγe
ρrαBrMeν

βsBNseρ
γ ´ 1

2
gµνBrMeν

αBNseµ
β ´ 1

2
eναeµβBrMeν

γBNseµγ , (C.14)

from which one obtains

RMNµν ” RMN
αβ eµαeνβ

“ ´1

2
gλκBrMgµλBNsgνκ “ ´ 1

2
gλκ∇rMgµλ∇Nsgνκ . (C.15)

We conclude that the supersymmetry algebra consistently closes also on the field Bµν M .
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D Non-exceptional gravity

In this appendix we will illustrate in terms of a simple example (taken from standard differential

geometry) how the difficulties encountered in constructing a fully covariant connection can

be understood and resolved in our framework. The main point will be that fully covariant

expressions can be obtained in terms of the D “ 11 connections, but that these cannot be

written just in terms of the generalized vielbein and its ordinary derivatives – unlike in ordinary

differential geometry.

In standard differential geometry and in the absence of torsion, the spin connection is defined

as

ωmab “ ´1

2
em

c
`
Ωab c ´ Ωbc a ´ Ωca b

˘

with coefficients of anholonomy

Ωab c ” ea
peb

qBpeqc ´ eb
pea

qBpeqc.

Now define the Cartan form

Smab ” ea
nBmenb,

which is the analogue of V´1BV in (3.23), and decompose this into a symmetric and an anti-

symmetric part

qmab ” Sm rabs , pmab ” Sm pabq.

These are the same as the qmab and pmab in (4.14). Now a quick calculation shows that

ωmab “ qmab ´
`
ea
pem

cpp bc ´ eb
pem

cpp ac
˘

” qmab ´ 2pra bsm.

Under an arbitrary diffeomorphism, the non-covariant contributions are

∆ncqmab “ era
req|bsBmBrξq , ∆ncpmab “ epa

req|bqBmBrξq

and these two contributions cancel in the variation of ωmab, as expected. So the spin connection

is indeed a covariant object under diffeomorphisms, and we also know that it is the only such

object that can be built from the vielbein and its derivative. Under local SO(1,3) we have

δqmab “ BmΛab ` Λa
cqmcb ` Λb

cqmac , δpmab “ Λa
cpmcb ` Λb

cpmac ,

so qmab and hence ωmab transform non-covariantly as SO(1,3) gauge fields, while pmab is co-

variant under local SO(1,3).

Next we repeat this calculation in the E7p7q formalism, replacing the siebenbein by the 56-

bein VMAB of exceptional geometry. To simplify things we set Ap3q “ Ap6q “ 0, and this will

suffice to make clear our main point. Then the E7p7q 56-bein (whose components are explicitly

given in (4.4)–(4.7)) simplifies to

Vm8
AB “ 1

8
∆´1{2ΓmAB , VmnAB “ 1

8
∆´1{2ΓmnAB ,

VmnAB “ i

4
∆1{2ΓmnAB , Vm8AB “ ´ i

4
∆1{2ΓmAB. (D.1)
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Note that Vm8
AB and VmnAB are imaginary, while Vm8AB and VmnAB are real (this is true only

in this particular SU(8) gauge). By direct computation we find

qmA
B “ 2i

3
VN BCBmVN CA “ 1

2
qmabΓ

ab
AB,

pmABCD “ ´iVNABBmVN CD “ ´3

4
pmabΓ

a
rABΓ

b
CDs. (D.2)

As a check on the coefficients we compute (this is the combination appearing in the variation

of the gravitino)

emACqmC
B ´ emCD pm

ABCD “ ´1

2
ωmabpΓmΓabqAB ´ 1

2
PmaaΓ

m
AB , (D.3)

which is indeed the correct result. The last term proportional to ´1
2
∆´1Bm∆ is just the density

contribution proportional to Γpmp that is required because the supersymmetry parameter ε is a

density, showing again how the density contribution was absorbed into the connections given

in Ref. [3].

With this information we can now compute

RM A
B “ 4i

3

´
VN BCVM

DEpN ACDE ` VNACVMDEpN
BCDE

¯

` 20i

27

´
VN DEVM

BCpN ACDE ` VNDEVM ACpN
BCDE

¯

´ 7i

27
δBA

´
VNCDVM

EFpN CDEF ` VNCDVM EFpN
CDEF

¯
. (D.4)

This gives

RmA
B “ ´1

6
pa bmΓ

ab
AB ` 5

54
pa abΓbmAB ` 1

27
pa bbΓmaAB ,

Rpq A
B “ ´ 4i

27
∆´1pa arpΓqsAB ´ i

3
∆´1prp qsaΓ

a
AB ` 7i

27
prp aaΓqsAB ,

RpqA
B “ 1

3
pa b

rpΓqsab
AB ` 5

54
pa abΓ

bpq
AB ´ 1

27
pa bbΓ

apq
AB ,

RmA
B “ 0. (D.5)

The last component drops out because for this term the first two lines in (D.4) give something

proportional to δBA , and hence are cancelled by the third term in the definition of RM A
B .

This shows very explicitly, that no matter how we combine expressions depending only on V

and its derivative, there is no way of getting rid of pmab and replacing qmab Ñ ωmab by such

manipulations, without ‘breaking up’ the 56-bein V. In other words, full covariance cannot be

achieved in this way, but requires the explicit introduction ‘by hand’ of the spin connection.

In principle we could extend the above calculation to non-vanishing form fields; but this will

be far more tedious than the calculation just presented (and the resulting expressions will not

be any prettier). Perhaps the only interesting aspect here is that, again, there appears to be no

combination of V’s and BV’s that would produce the fully anti-symmetrized (exterior) deriva-

tives on the 3-form and the 6-form field, and this is the reason why the hook-like contributions

in the affine connection are needed. It is therefore very remarkable that the supersymmetric

theory avoids this problem by picking precisely the combinations (3.28) where these terms drop

out.
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E Covariant SUp8q connection

In this appendix we provide yet more evidence that an SU(8) connection satisfying all desired

covariance properties cannot be constructed in terms of only V and its derivative BV. Namely,

we will show by explicit computation how the SU(8) connection of section 3 can be made to

transform as a generalized vector under generalized diffeomorphisms, which implies a unique

expression for UM A
B in terms of V and its derivatives. However, the modifications required to

achieve this come at the price of destroying the covariance under SU(8).

Let the SU(8) connection be

QMA
B “ qMA

B `RMA
B ` UMA

B `WMA
B , (E.1)

with qMA
B , RMA

B, and WMA
B given by (3.23) and (3.24), and we make the following choice

for the undetermined part UMA
B

UMA
B ” ´2

3
qMA

B ` 2i

3

`
VM CDV

NBCqNA
D ´ VM

CDVNACqND
B
˘

´ 34i

189

`
VM AC VNCDqND

B ´ VM
BC VNCDqNA

D
˘

´ 20i

189

`
VM AD VNBC qNC

D ´ VM
BD VNAC qND

C
˘

´ 2i

27
δBA

`
VM CD VNECqNE

D ´ VM
CD VNECqND

E
˘
. (E.2)

These are indeed all the objects that one can construct in terms of V and its derivative BV.
However, while the first term qM A

B, RMA
B , and WMA

B have indeed the required covariance

properties of an SU(8) connection, the expression (E.2) for UM A
B does not, and will therefore

violate SU(8) covariance if general covariance requires such a contribution.

To see that the full connection can be made to transform covariantly under generalized

diffeomorphisms, consider the non-covariant contributions in the transformation of qM A
B and

pMABCD

∆ncqM A
B “ 8iVNBC PKN

S
R BMBSΛR VK CA, (E.3)

∆ncpM
ABCD “ 12iVNAB PKN

S
R BMBSΛR VK

CD, (E.4)

where we have used

PMN
P
Q “ 1

24

`
2δMQ δ

P
N ` δMN δ

P
Q ´ ΩNQΩ

MP
˘

` ptαqNQptαqMP (E.5)

and the section condition. Note that the covariant part of the transformations of qM and pM

contain a weight term. So in fact they transform as generalized tensor densities of weight ´1{2.
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Furthermore,

∆ncRM A
B “ VM CD

´
´8VNAEVR

rBE|VS |CDs ` 10 δ
rB|
A VN |CD|VS |EF sVREF

´ 40

9
δCAV

N
EFVR

rBD|VS |EF s ` 40

9
δCAV

N rBD|VS|EF sVREF

`14

9
δABV

N
EFVR

rEF |VS|CDs ´ 14

9
δABV

NrEF |VS|CDsVREF

˙
BNBSΛR ` c.c. ,

(E.6)

where we have used equations (E.4), (A.3) and

VM rABV
N
CDsBMBN ¨ “ 1

24
ǫABCDEFGHV

M EFVN GHBMBN ¨

which can be proved using identity (A.3) and the section condition. Now using,

VMACVNBCBMBN ¨ “ 1

8
δAB VMCDVNCDBMBN ¨ , (E.7)

which holds by identity (A.2) and the section condition, equation (E.6) can be simplified to:

∆ncRM A
B “

´1

3
VM CD

ˆ
4VN CD

„
VRAEV

S BE ` VSAEVR
BE ´ 1

36
δBA

`
4VREFV

S EF ` 7VSEFVR
EF

˘

` 8VNBC
“
VRAEV

S DE ` VSAEVR
DE

‰
` 1

9
δCAV

NEFVSEFVR
BD

´ 8

9
δCAV

N DEVS BFVREF ´ 4

9
δCAV

N BD
“
VREFV

S EF ´ 5VSEFVR
EF

‰

`1

9
δBAV

N EFVSEFVR
CD ` 8

9
δBAV

N ECVS FDVREF

˙
BNBSΛR ` c.c. . (E.8)

Similarly, using identities (A.2) and (E.7)

∆ncUM A
B “

´1

3
VM CD

ˆ
8VN CD

„
VRAEV

S BE ` VSAEVR
BE ´ 1

9
δBA

`
VREFV

S EF ` VSEFVR
EF

˘

´ 8VN BC
“
VRAEV

SDE ` VSAEVR
DE

‰
´ 1

9
δCAV

N EFVSEFVR
BD

` 8

9
δCAV

N DEVS BFVREF ´ 8

9
δCAV

N BD
“
VREFV

S EF ` VSEFVR
EF

‰

´1

9
δBAV

N EFVSEFVR
CD ´ 8

9
δBAV

N ECVS FDVREF

˙
BNBSΛR ` c.c. . (E.9)
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It is straightforward to verify that

∆nc
`
RM A

B ` UM A
B
˘

“

´ 4VM CD

ˆ
VN CD

„
VRAEV

S BE ` VSAEVR
BE ´ 1

36
δBA

`
4VREFV

S EF ` 5VSEFVR
EF

˘

´1

9
δCAV

N BD
“
VREFV

S EF ´ VSEFVR
EF

‰˙
BNBSΛR ` c.c. ,

“ 8
`
VM CDV

N CD ´ VM
CDVNCD

˘
PPQ

S
R VPAEV

QBE BNBSΛR

´ 4i

9

„
VMACV

NBC ` VM
ACVNBC ´ 1

8
δBA

`
VMCDV

NCD ` VM
CDVNCD

˘
BNBSΛS ,

“ ´∆ncqmA
B ´ ∆ncWmA

B. (E.10)

Therefore, QM A
B defined in equation (E.1) is a generalized tensor density of weight ´1{2.

However, as the term UM A
B itself depends on qM A

B in a definite manner, the total SU(8)

connection no longer transforms properly under SU(8). As we explained, this conclusion can

only be evaded if one drops the assumption that all parts of QM should be expressible in terms

of V and BMV.
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