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1 Introduction

Ever since the discovery of ‘hidden’ exceptional symmetries in maximal N = 8 supergrav-

ity [1] a recurring theme has been the question of whether these symmetries are specifically

tied to dimensional reduction on tori, or whether they reflect more general properties of

the underlying uncompactified maximal theories, possibly even providing clues towards a

better understanding of M-theory. Starting from D = 11 supergravity [2] clear evidence

for the existence of hidden structures beyond those of standard differential geometry was

already given in the early work of refs. [3, 4], a line of development which was continued

in [5] and taken up again in [6–8]. Somewhat independently of these developments, an

important insight has been the emergence of generalized geometric concepts in string and

M-theory, which enable a duality-covariant formulation of the low-energy effective space-

time theories, as manifested in double field theory [9–13], and in the recently constructed
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‘exceptional field theory’ (EFT) [14, 15]. See also refs. [16–19] for a generalized geometric

approach in the sense of refs. [20, 21]. The purpose of this paper, then, is to bring to-

gether these strands of development: first we complete the construction of the E7(7) EFT

by giving the fully supersymmetric extension by fermions; second, we relate the resulting

theory to the formulation of [3, 6–8]. As one of our main results we will demonstrate the

compatibility of these two formulations, and explain the subtleties involved in making a

detailed comparison.

The approach of [3], which has been extended and completed in [7, 8] to also take into

account aspects of the E7(7)-based exceptional geometry, takes D = 11 supergravity as the

starting point and reformulates it in order to make a local SO(1, 3)× SU(8) tangent space

symmetry manifest. To this end the fields and coordinates are decomposed in a (4 + 7)

splitting, as in Kaluza-Klein compactifications, but keeping the full coordinate dependence

of all fields (however, unlike in EFT, no extra coordinates beyond those of the original

theory are introduced). The fermions transform under the local SU(8) subgroup, and

their supersymmetry transformations, already given in [3], are manifestly SU(8) covariant.

Moreover, those parts of the bosonic sector which lead to scalar and vector fields in the

dimensionally reduced maximal supergravity can then be assembled into E7(7) objects,

namely a 56-bein encoding the internal field components and a 56-plet of vectors combining

the 28 electric and 28 magnetic vectors of N = 8 supergravity; their supersymmetry

transformations can be shown to take the precise form of the four-dimensional maximal

gauged supergravity. While in this approach the fermions are included from the beginning

(with the supersymmetry variations constituting the starting point of the analysis) and

the on-shell equivalence with D = 11 supergravity is thus guaranteed at each step of the

construction, a proper understanding of the role of E7(7) in eleven dimensions (as well as of

the E7(7)-covariant dynamics of the bosonic sector) was lacking in the original work of [3],

and has only emerged with the recent advances. Nevertheless it is remarkable that the

combinations of SU(8) connections in the supersymmetry variations of the fermions found

‘empirically’ in ref. [3] are precisely the ones required by E7(7)-covariance as identified here.

The results of ref. [5] suggest that a formulation that is properly covariant under the

exceptional groups should include extended coordinates transforming under this group, an

idea that also appears in the proposal of ref. [22]. Such an extended spacetime has later

been implemented for E7(7) in a particular truncation of D = 11 supergravity that retains

only the internal coordinates and field components of the (4 + 7) splitting [23]. More

recently, similar reformulations of D = 11 supergravity have been given for the analogous

truncations, casting the theory and their residual gauge transformations into a covariant

form [18, 19, 24]. In contrast to the original approach of ref. [3], however, these formulations

are not immediately applicable to the untruncated D = 11 supergravity. By contrast, the

construction of refs. [7, 8], the recent construction of complete EFTs in refs. [14, 15] and

finally, the present work extend the formulation of ref. [3] to a fully E7(7)-covariant theory.

The E7(7) EFT, which is a natural extension of double field theory, is based on a 4+56-

dimensional generalized spacetime, with fields in E7(7) representations initially depending

on all coordinates xµ and YM (with fundamental indices M = 1, . . . , 56). The theory is

given by an action along with non-abelian twisted self-duality equations for the 56 vector
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fields. The fields transform appropriately under E7(7)-generalized diffeomorphisms. Cru-

cially, the theory is subject to an E7(7)-covariant section condition [18] that implies that

the fields depend only on a subset of coordinates. In order to compare with the usual

D = 11 supergravity, and thus with the results of refs. [3, 7], one has to pick a partic-

ular solution of this constraint, which reduces the spacetime to 4+7 dimensions. After

solving the section constraint, the various components of the generalized diffeomorphisms

can be interpreted as conventional diffeomorphisms and tensor gauge transformations. In

addition, and in analogy to type II double field theory [25, 26], the section constraint has

two inequivalent solutions: D = 11 supergravity and type IIB supergravity. After solv-

ing the section constraint, the E7(7) EFT also encodes, as 7 components among the 56

gauge vectors, dual gravity degrees of freedom. This description is consistent by virtue of

a covariantly constrained compensating two-form gauge field BµνM [15, 27]. The status

of this field may appear somewhat mysterious, but its appearance is already implied by

consistency of the EFT gauge symmetries. In this paper we will give further credibility to

this field by showing that it has consistent supersymmetry variations.

In this paper we introduce the fermions of the E7(7) EFT and give the supersymme-

try variations of all fields in a manifestly E7(7) × SU(8)-covariant form, showing that they

close, in particular, into the external and internal generalized diffeomorphisms. This is

in analogy with the supersymmetrization of DFT [28–30]. Importantly, we find that the

supersymmetry transformations of all fields can be written solely in terms of the fields of

EFT, in particular the 56-bein, without recourse to the D = 11 fields that can be thought

of as parametrising these structures in a GL(7) decomposition. Furthermore, we determine

the fermionic field equations and verify supersymmetric on-shell invariance. To this end we

have to further develop the generalized exceptional geometry underlying the E7(7) covariant

formulation by introducing connections and invariant curvatures generalizing the geome-

try of double field theory [9, 31–34]. For the internal, 56-dimensional sub-sector, such a

geometry is to a large extent already contained in the literature [18, 19, 35, 36]. In partic-

ular, refs. [18, 19] give the full dynamics and supersymmetry transformation rules for the

truncated theory, where the fields and parameters are independent of the four-dimensional

external coordinates, in terms of such geometrical objects. We use the opportunity to

give a complete and self-contained presentation of this geometry. We give compact and

E7(7)-covariant expressions for the internal connections in terms of the 56-bein and other

covariant objects. One of the main results of this paper then is the formulation including

external and internal connection components Qµ and QM for the local SU(8), respec-

tively, and similarly external and internal connection components ωµ and ωM for the local

SO(1, 3), with all geometric objects being also covariant under E7(7)-generalized diffeomor-

phisms. The various connection components are summarized in the following scheme

ωµ

Γ[µν]
ρ = 0

Qµ

DµVMAB ≡ PµABCD VMCD

ωM

DMeµ
α ≡ πM

αβeµβ

QM

ΓMN
K |912 = 0

. (1.1)
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Here we also indicate the corresponding covariant torsion-type constraints satisfied by the

connections. The precise definitions of the various tensors and our conventions will be given

in the main text. The formulation is manifestly covariant under all gauge symmetries except

for the external diffeomorphisms of xµ that depend also on the ‘internal’ E7(7) coordinates.

The structure of the various diagonal and off-diagonal connection components in (1.1)

hints at a larger geometrical framework in which they would emerge from a single ‘master

connection’, whose introduction would finally render all gauge symmetries manifest.

A distinctive feature of generalized geometries is that, in contrast to conventional

geometry, the connections are not completely determined by imposing covariant constraints,

necessarily featuring undetermined connections that are not given in terms of the physical

fields, as first discussed in the geometry of double field theory [9, 28, 31–33] and later

extended to exceptional groups [18, 35, 36]. As in double field theory, however, this is

consistent with the final form of the (two-derivative) theory depending only on the physical

fields, as the undetermined connections drop out of the action and all (supersymmetry)

variations, as shown in [19] for the truncated theory. We also clarify the relation of these

geometrical structures to the formulation of [3, 7, 8], in which connections carry ‘non-

metricities’ that can be absorbed, as we will show, into SU(8) connections once we include

components along the E7(7)-extended directions.

One obvious question concerns the precise significance of the term ‘symmetry’ in the

present context. The E7(7) identified here is analogous to the GL(D) that appears in general

relativity, and is ‘spontaneously broken’ when one picks a particular non-trivial solution to

the section constraint (tα)
MN∂M ⊗ ∂N = 0.1 However, the new structures exhibited here

do not imply that D = 11 supergravity or IIB supergravity have any new local symmetries

beyond the ones already known.2 Nevertheless it is remarkable and significant that the

internal diffeomorphisms can be combined with the tensor gauge transformations of the

form fields and their duals in an E7(7)-covariant form. Evidently, the true advantage of

the reformulation would only become fully apparent if solutions of the section constraint,

besides those corresponding to D = 11 or IIB supergravity, exist. Such solutions would give

genuinely new theories (but see below). Although such solutions are somewhat unlikely to

exist for the case at hand, the situation may become more interesting when one considers

infinite dimensional extensions of the E-series.

A second question concerns the utility of the supersymmetric EFT constructed here

in a more general perspective. Here we see two main possible applications and extensions.

The first application concerns the non-linear consistency of Kaluza-Klein compactifications

other than torus compactifications. These can be investigated along the lines of [40–42],

exploiting the present formalism and the fact that it casts the higher-dimensional theory

in a form adapted to (gauged) lower dimensional supergravity. Indeed, the full non-linear

Kaluza-Klein ansätze for those higher-dimensional fields (including dual fields) yielding

1It is an old idea to interpret the graviton as a Goldstone boson of spontaneously broken GL(4) symme-

try [37–39], but the present scheme should not be viewed as a realization of this idea.
2The only new local symmetry would be the one associated with the seven ‘dual’ internal diffeomor-

phisms, but the corresponding transformation parameters ‘miraculously’ drop out in all relevant formulae,

as shown in ref. [8]. In the formulation of ref. [15] this fact is explained by the ‘Stückelberg-like’ gauge

invariance associated with the two-form field BµνM .
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scalar or vector fields in the compactification have already been obtained in this way for

the AdS4×S7 compactification [6, 42–44], as well as for general Scherk-Schwarz compactifi-

cations with fluxes [45].3 Apart from the non-linear ansätze for higher rank tensors, which

can now also be deduced in a straightforward fashion, and beyond the extension to other

non-trivial compactifications of D = 11 supergravity, the main outstanding problem here is

to extend these results to the compactification of IIB supergravity on AdS5×S5, for which

either the supersymmetric extension of E6(6) EFT [47] or the present version with the IIB

solution of the section constraint might be employed. Indeed, a study of the ambiguities

inherent in defining generalized connections and how the supersymmetry transformations

(and hence the theory) remain invariant under such redefinitions in this paper has lead to

an understanding of the hook-type ambiguities observed in the D = 11 theory in ref. [41].

Secondly, the fact that the supersymmetric EFT has a structure very similar to four-

dimensional maximal gauged supergravity [48] may lead to a higher-dimensional under-

standing of the new SO(8) gauged supergravities of ref. [49], obtained by performing an

electromagnetic U(1) rotation of the 56 electric and magnetic vectors, which is not in E7(7).

Partial evidence presented in refs. [6, 44], as well as a more explicit argument based on

the higher-dimensional embedding tensor in ref. [8], show that these gaugings cannot orig-

inate from the D = 11 supergravity of ref. [2]. Specifically, the deformed theories can be

obtained from the standard SO(8) gauged supergravity by ‘twisting’ the 56-bein relative

to the vectors [6], that is, by making the replacement

V(x) → V(x;ω) ≡
(

cosω sinω

− sinω cosω

)
V(x) (1.2)

in all formulae, where each element of the U(1) rotation matrix acts on a 28×28 subblock

of the 56×56 matrix V , in precise analogy with the deformation of the four-dimensional

theory [49].4 The present reformulation naturally suggests that a higher-dimensional an-

cestor of the deformed SO(8) gauged supergravities might thus be obtained by performing

an analogous ‘twist’ of the 56-bein of EFT (see also ref. [45]), V(x, Y ) → V(x, Y ;ω), rel-

ative to all vectors and tensors, where the 56-bein is now taken to also depend on the 56

extra coordinates YM . Because of the inequivalence of the corresponding gauged SO(8)

supergravities in four dimensions, it is clear that such a theory would no longer be on-

shell equivalent to the D = 11 supergravity of ref. [2], and hence would correspond to

a non-trivial deformation of that theory. In fact, this would be the first example of a

genuinely new maximal supergravity in the maximal space-time dimension D = 11 since

the discovery of ref. [2] in 1978, and it would be a remarkable vindication of the present

scheme if such a theory could be shown to exist. Equally important, there would be no

way to reconcile this deformed theory with D = 11 diffeomorphism and Lorentz invariance;

in other words, the four-dimensional ω-deformation of ref. [49] would lift to an analogous

deformation of D = 11 supergravity that is encoded in a suitably generalized geometric

framework transcending conventional supergravity.

3See also ref. [46], where uplift ansätze for sphere reductions of the D = 11 and type IIB theories are

conjectured using similar ideas.
4In fact, in the context of four-dimensional maximal gauged theories, the U(1) rotation above is to be

understood as part of a more general SL(2,R) symplectic deformation [50].
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The outline of the paper is as follows. In section 2 we review the bosonic E7(7)-covariant

exceptional field theory, of refs. [14, 15]; in section 3 we construct its supersymmetric com-

pletion upon introducing the proper fermion connections and working out the supersymme-

try algebra. In section 4, we discuss how this theory relates to the reformulation [3, 7, 8]

of the full (untruncated) D = 11 supergravity after an explicit solution of the section

constraint is chosen.

We refer the reader to appendix A for a summary of index notations and conventions.

2 Bosonic E7(7) exceptional field theory

In this section we give a brief review of the bosonic sector of the E7(7)-covariant exceptional

field theory, constructed in refs. [14, 15] (to which we refer for details) and translate it into

the variables appropriate for the coupling to fermions, in particular the 56-bein parametriz-

ing the coset space E7(7)/SU(8) . To begin with, all fields in this theory depend on the four

external variables xµ, µ = 0, 1, . . . , 3, and the 56 internal variables YM , M = 1, . . . , 56,

transforming in the fundamental representation of E7(7), however the latter dependence is

strongly restricted by the section condition

(tα)
MN ∂M∂NA = 0 , (tα)

MN ∂MA∂NB = 0 , ΩMN ∂MA∂NB = 0 , (2.1)

for any fields or gauge parameters A,B. Here, ΩMN is the symplectic invariant matrix

which we use for lowering and raising of fundamental indices according to XM = ΩMNXN ,

XN = XMΩMN . The tensor (tα)M
N is the representation matrix of E7(7) in the funda-

mental representation. These constraints admit (at least) two inequivalent solutions, in

which the fields depend on a subset of seven or six of the internal variables, respectively,

according to the decompositions

56 −→ 7+3 + 21′+1 + 21−1 + 7′−3 , (2.2a)

56 −→ (6, 1)+2 + (6′, 2)+1 + (20, 1)0 + (6, 2)−1 + (6′, 1)−2 , (2.2b)

of the fundamental representation of E7(7) with respect to the maximal subgroups GL(7)

and GL(6) × SL(2), respectively. The resulting theories are the full D = 11 supergravity

and the type IIB theory, respectively. The bosonic field content of the E7(7)-covariant

exceptional field theory is given by

{
eµ
α , VMAB, Aµ

M , Bµνα , Bµν M
}
, (2.3)

which we describe in the following. The field eµ
α is the vierbein, from which the external

(four-dimensional) metric is obtained as gµν = eµ
αeνα. Its analogue in the internal sector

is the complex 56-bein

VMN = {VMAB,VMAB} , (2.4)

satisfying

VMAB = VM [AB] , VMAB =
(
VMAB

)∗
, (2.5)
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with SU(8) indices A,B, · · · = 1, . . . , 8, in the fundamental 8 representation and collective

index N labelling the 28+ 2̄8.5 The fact that the 56-bein is an E7(7) group-valued matrix

is most efficiently encoded in the structure of its infinitesimal variation,

δVMAB = −δqC [A VMB]C + δpABCD VMCD , (2.6)

with

δqA
B = −δqBA , δpABCD =

1

24
ǫABCDEFGH δpEFGH . (2.7)

This is equivalent to

VMAB δVNCD ΩMN =
2

3
δ[A

[C VMB]E δVND]E ΩMN ,

VMAB δVNCD ΩMN = VM [AB δVNCD]Ω
MN ,

VMAB δVNCD ΩMN = − 1

24
εABCDEFGH VM EF δVN GH ΩMN . (2.8)

A particular consequence of the group property is

VMAB VN AB − VM AB VNAB = iΩMN ,

ΩMN VMAB VN CD = i δABCD ,

ΩMN VMAB VNCD = 0 . (2.9)

The analogue of the external metric gµν in the internal sector is the positive definite sym-

metric real matrix

MMN ≡ VM ABVNAB + VN ABVMAB , (2.10)

in terms of which the bosonic sector in ref. [15] has been constructed.

The 56 gauge fields Aµ
M in (2.3) are subject to the first order duality equations

given by6

F−
µν AB ≡ 1

2
Fµν AB − 1

4
e εµνρσ Fρσ

AB = 0 . (2.11)

Here, the 56 non-abelian field strengths are defined as

Fµν AB ≡ FµνM VM AB , (2.12)

FµνM ≡ 2∂[µAν]
M − 2A[µ

N∂NAν]
M − 1

2

(
24 (tα)

MN (tα)KL − ΩMNΩKL
)
A[µ

K ∂NAν]
L

− 12 (tα)MN ∂NBµνα − 1

2
ΩMN Bµν N , (2.13)

5While the SU(8) indices were taken to be i, j, k, . . . in ref. [15], we here revert to the notation of ref. [3],

also employed in refs. [7, 8], where SU(8) indices are denoted by the letters A,B,C, . . . . The reason is that,

when considering non-trivial compactifications, one must distinguish between the SU(8) indices A,B, . . . in

eleven dimensions, and the SU(8) indices i, j, . . . in the four-dimensional compactified theory. These are only

the same for the torus compactification. Any other compactification involves Killing spinors as ‘conversion

matrices’ (hence the distinction between ‘curved’ and ‘flat’ SU(8) indices in ref. [40]). However, in accord

with previous conventions, fundamental SU(8) indices are raised and lowered by complex conjugation.
6We use the space-time conventions of ref. [48], such that our tensor density εµνρσ is related to the one

employed in ref. [15] by ε
[0705.2101]
µνρσ = iε

[1312.4542]
µνρσ .
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with the 2-forms Bµνα, Bµν N from (2.3), transforming in the adjoint and the fundamental

representation of E7(7), respectively. The latter form is a covariantly constrained tensor

field, i.e. it is constrained by algebraic equations analogous to (2.1)

(tα)
MN BMBN = 0 , (tα)

MN BM ∂NA = 0 , (tα)
MN ∂M BN = 0 ,

ΩMN BM BN = 0 , ΩMN BM ∂NA = 0 .
(2.14)

Its presence is necessary for consistency of the hierarchy of non-abelian gauge transfor-

mations and can be inferred directly from the properties of the Jacobiator of generalized

diffeomorphisms [15]. In turn, after solving the section constraint it ensures the correct

and duality covariant description of those degrees of freedom that are on-shell dual to the

11-dimensional gravitational degrees of freedom.

Using (2.9) and (2.10), equations (2.11) take the form of the twisted self-duality

equations7

FµνM =
1

2
i eεµνρσ Ω

MNMNK FρσK . (2.15)

The bosonic exceptional field theory is invariant under generalized diffeomorphisms in

the internal coordinates, acting via [18, 51]

LΛU
M ≡ ΛK∂KU

M − 12PMN
K
L ∂KΛ

L UN + λ(U) ∂PΛ
P UM , (2.16)

on a fundamental vector UM of weight λ(U). The projector on the adjoint representation

PKM
L
N ≡ (tα)M

K(tα)N
L =

1

24
δKMδ

L
N+

1

12
δLMδ

K
N +(tα)MN (t

α)KL− 1

24
ΩMNΩ

KL , (2.17)

ensures that the action (2.16) is compatible with the E7(7) group structure. The generalized

diffeomorphisms also give rise to the definition of covariant derivatives

Dµ = ∂µ − LAµ , (2.18)

whose commutator precisely closes into the field strength (2.13). The full bosonic theory

is invariant under the vector and tensor gauge symmetries

δΛeµ
α = LΛeµ

α ,

δΛVMAB = LΛVMAB ,

δΛ,ΞAµ
M = DµΛ

M + 12 (tα)MN ∂NΞµα +
1

2
ΩMN ΞµN ,

δΛ,ΞBµν α = 2D[µΞν]α + (tα)KL Λ
KFµνL − (tα)KLA[µ

K δAν]
L ,

δΛ,ΞBµνM = 2D[µΞν]M + 48 (tα)L
K
(
∂K∂MA[µ

L
)
Ξν]α

+ΩKL
(
A[µ

K∂MδAν]
L − ∂MA[µ

KδAν]
L−FµνK∂MΛL+∂MFµνKΛL

)
, (2.19)

with parameters ΛM , Ξµα, ΞµM , the latter constrained according to (2.14). The Λ-weights

of the various bosonic fields and parameters are collected in table 1, where we have also

7See footnote 6.
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field eµ
α VMAB Aµ

M , ΛM Bµνα , Ξµα Bµν M , ΞµM χABC ψAµ , ǫA

λ 1
2 0 1

2 1 1
2 −1

4
1
4

Table 1. Λ-weights for the bosonic and fermionic fields and parameters.

included the Λ-weights of the fermionic fields to be introduced later. Note that Bµνα and

Bµν M appear in the field strength (2.13) only via the combination/projection

− 12 (tα)MN ∂NBµν α − 1

2
ΩMK Bµν K . (2.20)

As a result, we observe the following additional gauge transformations that leave the field

strengths invariant

δΩBµν α = ∂MΩµν
M

α + (tα)M
NΩµνN

M ,

δΩBµν M = −∂MΩµνN
N − 2 ∂NΩµνM

N , (2.21)

where Ωµν
M

α is a parameter living in the 912 of E7(7), i.e.

(tα)(KLΩµν
M)

α = 0 , (2.22)

and ΩµνN
M is a parameter constrained in the index N just as the N index in partial

derivatives ∂N , see equations (2.1), and the two-form Bµν N , see equations (2.14). The shift
transformations (2.21) should be understood as the tensor gauge transformations of the

three-form gauge potentials of the theory (which we have not explicitly introduced) that

also act on the two-forms due to the Stückelberg couplings of their field strengths. They

precisely drop out in the projection (2.20) which is the one appearing in the vector field

strengths.

Other than the first-order duality equations (2.11), the remaining equations of motion

of the bosonic theory are most compactly described by a Lagrangian8

LEFT = e R̂+
1

48
e gµν DµMMN DνMMN − 1

8
eMMN FµνMFµνN

+ Ltop − e V (MMN , gµν) . (2.23)

Let us present the different terms. The modified Einstein Hilbert term carries the Ricci

scalar R̂ obtained from contracting the modified Riemann tensor

R̂µν
αβ ≡ Rµν

αβ [ω] + FµνMeαρ∂Meρβ , (2.24)

with the spin connection ωµ
αβ obtained from the covariantized vanishing torsion condition

0 = D[µeν]
α ≡ ∂[µeν]

α −A[µ
K∂Keν]

α − 1

2
∂KA[µ

K eν]
α + ω[µ

αβ eν]β . (2.25)

8Due to the self-duality (2.15) of the vector fields, this is understood as a “pseudo-Lagrangian” in the

sense of a democratic action [52] such that the duality equations (2.15) are to be imposed after varying the

Lagrangian.
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The scalar kinetic term can be equivalently expressed as

1

48
DµMKLDµMKL = −1

6
Pµ

ABCD PµABCD , (2.26)

where we have introduced the coset currents PµABCD as follows

DµVMAB ≡ DµVMAB +QµC
[A VMB]C = PµABCD VMCD (2.27)

according to the decomposition (2.6) and whereDµ refers to the covariant derivative defined

in equation (2.18). This moreover defines the composite SU(8) connection

QµA
B =

2i

3
VNBC DµVNCA , (2.28)

indicating that the 56-bein transforms under local SU(8) transformations. Thus, we will in

the following use Dµ ≡ Dµ +Qµ to denote the resulting SU(8)-covariant derivatives. The

vector kinetic term in (2.23)

− 1

8
eMMN FµνMFµνN = −1

4
eFµνABFµν

AB , (2.29)

simply contracts the non-abelian field strengths (2.13) with the internal metric (2.10),

while the topological term is most compactly given as the boundary contribution of a

five-dimensional bulk integral
∫

∂Σ5

d4x

∫
d56Y Ltop =

i

24

∫

Σ5

d5x

∫
d56Y εµνρστ FµνM DρFστM . (2.30)

Finally, the last term in (2.23) is given by

V (MMN , gµν) = − 1

48
MMN∂MMKL ∂NMKL +

1

2
MMN∂MMKL∂LMNK (2.31)

− 1

2
g−1∂Mg ∂NMMN − 1

4
MMNg−1∂Mg g

−1∂Ng−
1

4
MMN∂Mg

µν∂Ngµν ,

in terms of the internal and external metric. For later use, we note that in terms of the

56-bein and modulo a total derivative e−1∂M (eKM ), the potential takes the form

V (VMAB, gµν) = 4VM [ABVNCD]

(
∂MpN

ABCD − 1

2
qM E

A pN
EBCD

)

+
1

6
MMN pM

ABCDpN ABCD + 4VMABVN CD pM
ABEF pN CDEF

− 1

4
MMNg−1∂Mg g

−1∂Ng −
1

4
MMN∂Mg

µν∂Ngµν , (2.32)

expressed via the standard decomposition of the Cartan form V−1∂MV along the compact

and non-compact parts of the E7(7) Lie algebra

qMA
B ≡ 2i

3
VNBC ∂MVNCA , pM

ABCD ≡ iVNAB ∂MVNCD . (2.33)

Written in the form of (2.32), it is easy to observe that the first two lines of the potential

reproduce the corresponding terms in equation (7.5) of ref. [3].
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All five terms in (2.23) are separately gauge invariant under generalized diffeomor-

phisms (2.19) in the internal coordinates. In addition, the full set of equations of motion

is invariant under generalized diffeomorphisms in the external coordinates acting as

δξeµ
α = ξνDνeµ

α +Dµξ
νeν

α , (2.34)

δξMMN = ξµDµMMN ,

δξAµ
M = ξν FνµM +MMN gµν ∂Nξ

ν ,

δξBµν α = ξρHµνρα − (tα)KLA[µ
K δξAν]

L ,

δξBµν M = ξρHµνρM − 2ie εµνρσg
στDρ

(
gτλ∂Mξ

λ
)
−
(
A[µ

K∂MδξAν]K−∂MA[µ
KδξAν]K

)
.

When ∂M = 0, this reduces to the action of standard four-dimensional diffeomorphisms.

Remarkably, the invariance of the theory under (2.34) fixes all relative coefficients in (2.23)

and thus uniquely determines all equations of motion.

Variation of (2.23) gives the field equations for the scalar fields parametrizing MMN

and the Einstein field equations for gµν . Variation with respect to the two-forms Bµνα
and Bµν M yields projections of the first-order vector field equations (2.15). Finally, the

variation of the action with respect to the vector fields leads to second order field equations

Dν

(
eMMN FµνN

)
= e

(
ĴµM + J µ

M

)
(2.35)

after combining with the derivative of (2.15), and where the gravitational and matter

currents are defined by the respective contributions from the Einstein-Hilbert and the

scalar kinetic term

ĴµM ≡ −2eα
µeβ

ν
(
∂Mων

αβ −Dν

(
eρ[α∂Meρ

β]
))

,

J µ
M ≡ 2i e−1 ∂N

(
ePµ ABCDVNABVMCD − c.c.

)
− 1

24
DµMKL∂MMKL . (2.36)

Equation (2.35) may be compared to the second order field equations obtained from com-

bining the derivative of (2.15) with the Bianchi identities

3D[µFνρ]M = −12 (tα)MN∂NHµνρα − 1

2
ΩMN HµνρN , (2.37)

where Hµνρα and HµνρM denote the non-abelian field strengths of the two-forms

Hµνρα = 3D[µBνρ]α − 3 (tα)KLA[µ
K∂νAρ]

L + . . .

HµνρM = 3D[µBνρ]M − 3
(
A[µ

N∂M∂νAρ]N − ∂MA[µ
N∂νAρ]N

)
+ . . . . (2.38)

Combining (2.15), (2.35), and (2.37) gives rise to the first-order duality equations describing

the dynamics of the two-forms

iĴµM +
1

3
DµVNAB ∂MVNAB =

1

12
e−1εµνρσHνρσM ,

(tα)N
M
(
Pµ ABCDVNABVMCD − Pµ

ABCDVNABVMCD
)
= e−1εµνρσHνρσα . (2.39)

Strictly speaking, the second equation only holds under projection with (tα)KL∂L. The

first-order equations (2.39) show that the two-form fields do not bring in additional degrees

of freedom to the theory.
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3 SU(8) × E7(7) exceptional geometry

3.1 Connections

In this section we set up the E7(7)-covariant geometrical formalism for defining derivatives

that are simultaneously covariant with respect to generalized internal diffeomorphisms, lo-

cal SU(8), and SO(1, 3) Lorentz transformations. This will allow us to couple the bosonic

E7(7)-covariant exceptional field theory to fermions and to establish the link with the

‘ground up’ approach to be described in the next section. From the representation content

of maximal N = 8 supergravity, or equivalently from an appropriate decomposition of the

D = 11 gravitino, it follows that the fermionic fields of the theory are SO(1, 3) spinors, and

transform in the 8 (the gravitini ψAµ ) and in the 56 (the matter fermions χABC) of SU(8),

respectively.9 The main new feature is that, like the bosonic fields (2.3), the fermions are

here taken to depend on 4+ 56 coordinates modulo the section condition (2.1). Under ‘in-

ternal’ generalized diffeomorphisms (2.16) they transform as scalar densities with weights

as given in table 1.

For the external derivatives, the relevant connections have been introduced in the

previous section. On a spinorial object in the fundamental representation of E7(7)×SU(8),

the covariant derivative is defined as

DµXAN = DµXAN +
1

4
ωµ

αβγαβXAN +
1

2
QµA

BXBN , (3.1)

with the E7(7)-covariant derivative Dµ from (2.18), and the spin- and SU(8)-connections

defined by (2.25) and (2.28), respectively. By construction, these connections ensure covari-

ance of DµXAN . As usual, for covariant derivatives on four-dimensional space-time tensors

we may also introduce the covariant derivative ∇µ which in addition to (3.1) carries the

Christoffel connection defined by the standard (though covariantized) vierbein postulate

Dµeν
α − Γµν

ρ eρ
α = 0 . (3.2)

For the internal sector, we similarly define a covariant derivative in the internal vari-

ables YM . The most general such derivative (denoted by ∇M ) acts on Lorentz indices,

SU(8) indices and E7(7) indices, and has the form

∇MXAN = ∂MXAN +
1

4
ωM

αβγαβXAN

+
1

2
QM A

BXBN − ΓMN
K XAK − 2

3
λ(X) ΓKM

KXAN , (3.3)

if X is a generalized tensor of weight λ(X) under generalized diffeomorphisms (2.16).

Likewise, we use

DMXAN = ∂MXAN +
1

4
ωM

αβγαβXAN +
1

2
QM A

BXBN , (3.4)

9We use spinor conventions from ref. [48], i.e. in particular γµνρσ = e−1ǫµνρσ γ5 and γ5ǫA = −ǫA.
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for the derivative without the Christoffel connection ΓMN
K . The required transforma-

tion rules for the connections are determined by covariance. Under generalized diffeomor-

phisms (2.16), the non-covariant variation of the first term in (3.3) is given by

∆nc
Λ

(
∂MXAN

)
= 12PKN

P
Q ∂M∂PΛ

QXAK , (3.5)

where we recall that the covariant terms carry a weight of −1
2 [15]. Thus, ΓMN

P also

carries a weight of −1
2 and has the inhomogeneous transformation

δΛΓMK
N = LΛΓMK

N + 12PNK
P
Q ∂M∂PΛ

Q . (3.6)

This implies in particular,

δΛΓMK
M = LΛΓMK

M +
3

2
∂K∂PΛ

P , (3.7)

explaining the factor 2
3 in the last term of (3.3). In the following, we will discuss the

definition of the internal spin- and SU(8) connection.

The internal spin connection ωM
αβ is defined by analogy with (2.27) by demanding that

DMeµ
α = πM

αβ eµβ , (3.8)

with πM
αβ = πM

(αβ) living on the coset GL(4)/SO(1, 3) . As a consequence,

ωM
αβ = eµ[α∂Meµ

β] , (3.9)

and

eµ[αDMeµ
β] = 0 = eα[µDMeν]

α . (3.10)

Later, it will turn out to be convenient to also introduce a modified spin connection ω̂M
αβ

ω̂M
αβ ≡ ωM

αβ − 1

4
MMN FµνN eµαeν β , (3.11)

including the non-abelian field strengths FµνN in a fashion reminiscent of Kaluza-Klein

theory, whereby we view fields eµ
α, VMAB, and Aµ

M as parts of a single big vielbein. We

will denote the corresponding covariant derivatives by D̂ and ∇̂, respectively.

In order to discuss the remaining connections in (3.3), let us first require that the in-

ternal SU(8) connection and the Christoffel connection are related by a generalized vielbein

postulate (or ‘GVP’, for short)

0 ≡ ∇MVNAB = ∂MVNAB +QM C
[AVNB]C − ΓMN

K VKAB , (3.12)

which is the analogue of (3.2) for the internal sector. In analogy with standard differential

geometry one would now like to solve this relation for both the SU(8) connection QM A
B

and the generalized affine connection ΓMN
P in terms of the 56-bein V and its derivatives

∂MV . While in ordinary differential geometry, a unique such answer can be obtained

by imposing vanishing torsion, here there remain further ambiguities. In addition one

would like the resulting expressions to satisfy all requisite covariance properties, to wit:
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QM A
B should transform as a proper connection under local SU(8) and as a generalized

vector under generalized diffeomorphisms, while ΓMN
P should transform as a generalized

affine connection under generalized diffeomorphisms and as a singlet under local SU(8).

However, parallel to DFT it is not possible to express a connection satisfying these combined

covariance requirements as a function of only V and ∂MV in a covariant way, as we will

also confirm in terms of a simplified example in appendix D, and in terms of an explicit

calculation for the SU(8) connection in appendix E.

The first step in reducing the ambiguities is to constrain the connections by requiring

the generalized torsion to vanish; this amounts to the constraint [18]

T (V,W )M = T M
NKV

NWK ≡ L∇
VW

M − LVW
M ≡ 0 (3.13)

for vectors V,W of weight 1
2 where L∇ denotes the generalized Lie derivative with all partial

derivatives replaced by covariant derivatives. Explicit evaluation of this condition yields

TNKM = ΓNK
M − 12PMK

P
Q ΓPN

Q + 4PMK
P
NΓQP

Q , (3.14)

with P the adjoint projector defined in equation (2.17). Indeed, it is a straightforward

computation to show that this combination transforms covariantly under generalized dif-

feomorphisms. From (3.6) and using the cubic identity (A.3) of ref. [15]

∆nc
Λ

(
ΓPM

N − 12PNM
K
L ΓKP

L
)
= −6 (tα)P

R(tα)M
N∂R∂KΛ

K

= −4PNM
R
P ∆nc

Λ ΓKR
K ,

(3.15)

where we have used equation (3.7) and the fact that all other terms in (A.3) vanish by

the section constraint. The last term is of the form of the non-covariant variation of the

final term in (3.14), with the opposite sign. Hence, the generalized torsion transforms as a

generalized tensor. The fact that the generalized torsion is gauge covariant means that it

can be set consistently to zero.

From equation (3.12), the last two indices in the generalized Christoffel connection

(ΓM )N
K take values in the adjoint of E7(7). Hence, the generalized connection lives in the

E7(7) representations

56⊗ 133 = 56+ 912+ 6480 . (3.16)

Using the explicit form of the corresponding projectors given in ref. [53], one can verify

that the vanishing torsion constraint (3.13) translates into [18, 35, 36]

ΓMN
K
∣∣∣
912

= 0 . (3.17)

In addition, requiring density compatibility of the internal derivatives according to

∇Me ≡ 0 , (3.18)

fixes
3

4
e−1∂Me = ΓKM

K = −ΩMNΩ
PQΓPQ

N , (3.19)

where the second equality is obtained from contraction of (3.17). As we will explain below,

this trace must drop out in all relevant expressions involving the fermions.
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Next, we work out the most general SU(8) connection compatible with vanishing gen-

eralized torsion. Using equation (3.12), the condition (3.17) is equivalent to the following

conditions on the internal SU(8) connection QM :

VK AB DPVKCD = 6VK [AB
(
DKVPCD]

)
− 1

4
ǫABCDEFGH VKEF (DKVP GH)

− 2ΓQK
Q

(
VK [ABVPCD] − 1

24
ǫABCDEFGH VKEFVP GH

)
, (3.20)

VK AC DPVKBC = 6
(
VKAC DKVPBC + VKBC DKVPAC

)

− 3

4
δBA
(
VKCD DKVPCD + VKCD DKVPCD

)

− 2ΓQK
Q

(
VKAC VPBC + VKBCVPAC − 1

8
δBA MP

K

)
, (3.21)

which constitute the analogue of (2.25) in the internal sector. Unlike in the external sector

and standard geometry, the vanishing torsion conditions (3.20), (3.21) are not sufficient

to fully determine the internal SU(8) connection [18, 36], but rather constrain it to the

following form

QMA
B = qMA

B +RMA
B + UMA

B +WMA
B . (3.22)

Here

qMA
B ≡ 2i

3
VNBC ∂MVNCA , pM

ABCD ≡ iVNAB ∂MVNCD (3.23)

are obtained in the standard way from the decomposition of the Cartan form V−1∂MV
along the compact and non-compact parts of the E7(7) Lie algebra. We note that qM A

B

transforms properly as a connection while pM
ABCD transforms covariantly under local

SU(8), but neither transforms as a vector under generalized diffeomorphisms. The remain-

ing pieces in (3.22) are given by

RM A
B ≡ 4i

3

(
VNBCVMDE pNACDE + VNACVMDE pN

BCDE
)

+
20i

27

(
VNDEVMBC pNACDE + VNDEVMAC pN

BCDE
)

− 7i

27
δBA
(
VNCDVMEF pNCDEF + VNCDVMEF pN

CDEF
)
,

WMA
B ≡ 8i

27

(
VMACVNBC + VMBCVNAC − 1

8
δBA MMKΩ

NK
)
ΓLN

L , (3.24)

and by

UMA
B = VM CD u

CD,B
A − VMCD uCD,A

B , (3.25)

where the SU(8) tensor uCD,A
B satisfies

u[CD,B]
A ≡ 0 , uCA,BC ≡ 0 , (3.26)

and thus belongs to the 1280 of SU(8). It is now straightforward to check that uCD,A
B

drops out of the vanishing torsion conditions (3.20), (3.21) and thus remains undetermined.

An explicit form of QMA
B in terms of the GL(7) components of VMAB has been given in

ref. [18]. With QM A
B given by (3.22), it is now straightforward to solve (3.12) for the

affine connection

ΓMN
P
(
V , ∂V ,Q

)
= i
(
VP ABDM (Q)VN AB − VPABDM (Q)VNAB

)
(3.27)
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using (2.9). This, then, is the most general expression for a torsion-free affine connection,

where the part UMA
B of the connection (3.22) corresponding to the 1280 representation of

SU(8) represents the irremovable ambiguity that remains even after imposition of the zero

torsion constraint [18, 36]. In appendix E we will derive the unique expression for UM A
B

in terms of only V and ∂MV that makes QM A
B a generalized vector, but the resulting

connection will no longer transform as a proper SU(8) connection, and as a consequence

the affine connection would no longer be an SU(8) singlet.10

In view of these subtleties it is therefore all the more remarkable how the supersym-

metric theory manages to sidestep these difficulties and ambiguities. Namely, in all relevant

expressions the internal covariant derivatives DM appear only in combinations in which the

undetermined part UMA
B of the connection is projected out and for which the covariance

under generalized diffeomorphisms is manifest. We illustrate this with a number of explicit

expressions that will be useful in the following. Using the explicit expression for QMA
B,

equation (3.22), in equation (3.4), we have, for example11

VMAB DMΞB = VMAB ∂MΞB +
1

2
VMAB qMB

C ΞC +
1

2
VMCD pM

ABCD ΞB

+
1

2
ΓKM

K VMAB ΞB ,

VM [AB DMΞC] = VM [AB ∂MΞC] − 1

2
VM [AB qMD

C]ΞD − 2

3
VMED pM

ABCD ΞE

+
1

2
VMDE pM

DE[AB ΞC] +
1

6
ΓKM

K VM [AB ΞC] , (3.28)

where the piece involving the trace of the affine connection comes from WM A
B (we have

ignored the possible appearance of the internal spin connection ωM
αβ). Indeed, UMA

B

does not survive in any of these combinations, as can be explicitly verified using equa-

tions (3.25). In other words, despite the non-covariance of the Cartan form, and thus

of qM and pM , under generalized diffeomorphisms, the above combinations are covariant

under generalized diffeomorphisms because under generalized diffeomorphisms all terms

with second derivatives of ΛM cancel out. Modulo density contributions resulting from

the non-vanishing weights of the fermions (see below), the particular contractions (3.28)

of covariant derivatives with the 56-bein turn out to be precisely those appearing in the

supersymmetry transformation rules and fermionic field equations. More specifically, now

also allowing for a non-trivial weight λ, and with fully covariant derivatives, we have

VMAB∇MΞB = VMAB ∂MΞB +
1

2
VMAB qMB

C ΞC +
1

2
VMCD pM

ABCD ΞB

+

(
1

2
− 2

3
λ(Ξ)

)
ΓKM

K VMAB ΞB ,

VM [AB∇MΞC] = VM [AB ∂MΞC] − 1

2
VM [AB qMD

C]ΞD − 2

3
VMED pM

ABCD ΞE

+
1

2
VMDE pM

DE[AB ΞC] +

(
1

6
− 2

3
λ(Ξ)

)
ΓKM

K VM [AB ΞC] . (3.29)

10By contrast, the connections to be derived directly from D = 11 supergravity in the following section

do satisfy the required covariance properties, but the corresponding UMA
B can then no longer be expressed

in a covariant way in terms of V and ∂MV alone.
11Such projections onto the 8 and 56 of SU(8) were shown to be insensitive to the ambiguity UMA

B in

ref. [18].
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As we will see in the following section, and as originally shown in ref. [3], there is no term

proportional to e−1∂Me (cf. (3.19)) in the supersymmetry variations of the fermions. Con-

sequently, the density terms proportional to ΓKM
K must cancel. This fixes the weight of

the corresponding spinors in (3.29) uniquely, and in agreement with the weight assignments

given in the table. In summary, the above expressions are indeed fully covariant under both

local SU(8) and generalized diffeomorphisms. We will furthermore show in the following

section that these expressions do agree with the ones already obtained in ref. [3], upon

imposition of the section constraint.

Similar ‘miracles’ occur in the bosonic sector. For instance, in the bosonic field equa-

tions, we find after some computation that the scalar contribution to the vector field

equations from (2.36) can be expressed as

J µ
M = − 1

24
DµMKL∂MMKL + 2i e−1 ∂N

(
ePµ ABCDVNABVMCD − c.c.

)

= −2iVMAB VN CD∇N (gµνPν ABCD) + c.c. , (3.30)

with the undetermined connection UMA
B again dropping out from this contraction of

covariant derivatives.

We summarize the structure and definitions of the various components (external and

internal, SO(1, 3) and SU(8)) of the full spin connection as follows

ωµ

Γ[µν]
ρ = 0

Qµ

DµVMAB ≡ PµABCD VMCD

ωM

DMeµ
α ≡ πM

αβeµβ

QM

ΓMN
K |912 = 0

. (3.31)

The various components of its generalized curvature contain the building blocks for the

bosonic field equations (2.15), (2.23) as we shall discuss in section 3.3 below.

3.2 The supersymmetry algebra

A nice illustration of the properties of the full spin connection (3.31) is the algebra of

supersymmetry transformations. In particular, the closure of the algebra on the 56-bein

hinges on the vanishing of the generalized torsion (3.13) in the very same way as the closure

on the vierbein requires the vanishing of the external torsion (2.25). The supersymmetry

transformations of the bosonic fields (2.3) take the same structural form as in the four-

dimensional theory

δǫeµ
α = ǭAγαψµA + ǭAγ

αψµ
A ,

δǫVMAB = 2
√
2VMCD

(
ǭ[AχBCD] +

1

24
εABCDEFGH ǭEχFGH

)
,

δǫAµ
M = −i

√
2ΩMNVNAB

(
ǭC γµ χABC + 2

√
2 ǭA ψµB

)
+ c.c. ,

δǫBµνα = −2

3

√
2 (tα)

PQ
(
VP ABVQCD ǭ[A γµν χBCD] + 2

√
2VP BCVQAC ǭA γ[µ ψν]B + c.c.

)

− (tα)MN A[µ
M δǫAν]

N . (3.32)
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The supersymmetry variation of the constrained two-form Bµν M which is invisible in

the four-dimensional theory can be deduced from closure of the supersymmetry algebra

and yields

δǫBµν M =
16

3
VKAB DMVKBC ǭCγ[µψν]A − 4

√
2

3
VPABDMVP CD ǭ[A γµν χBCD]

− 8i
(
ǭA γ[µDMψν]A −DM ǭ

A γ[µ ψν]A
)
+ 2i eεµνρσ g

στ DM

(
ǭAγρψτ A

)
+ c.c.

+ΩKL
(
A[µ

K∂MδǫAν]
L − ∂MA[µ

KδǫAν]
L
)
, (3.33)

as we show explicitly in appendix C. Note, that all SU(8) connections cancel in the vari-

ation (3.33), such that the external index is carried by ∂M and this variation is indeed

compatible with the constraint (2.14) on Bµν M . In particular, the variation (3.33) consis-

tently vanishes when ∂M = 0 .

In terms of the full spin connection (3.11), (3.31), introduced in the previous section,

the fermionic supersymmetry transformation rules take a very compact form given by

δǫψ
A
µ = 2Dµǫ

A − 4iVM AB∇̂M (γµǫB) ,

δǫχ
ABC = −2

√
2PµABCDγµǫD − 12

√
2iVM [AB ∇̂M ǫ

C] . (3.34)

It is then straightforward to verify closure of the supersymmetry algebra. The algebra

takes the same structural form as in the four-dimensional theory,

[δ(ǫ1), δ(ǫ2)] = ξµDµ + δLorentz

(
Ωαβ

)
+ δsusy(ǫ3) + δSU(8)

(
ΛAB

)
+ δgauge

(
ΛM
)

+ δgauge(Ξµα ,ΞµM ) + δgauge
(
Ωµν

M
α ,ΩµνM

N
)
. (3.35)

The first term refers to a covariantized general coordinate transformation with diffeomor-

phism parameter

ξµ = 2 ǭ2
Aγµǫ1A + 2 ǭ2 Aγ

µǫ1
A . (3.36)

The last three terms refer to generalized diffeomorphisms and gauge transformations (2.19),

(2.21), with parameters

ΛN = −8i ΩNP
(
VPAB ǭ2Aǫ1B − VP AB ǭ

A
2 ǫ

B
1

)
≡ V−1N

AB ΛAB + V−1N AB ΛAB ,

Ξµα =
8

3
(tα)

PQ VP ACVQBC
(
ǭ2
Aγµǫ1B + ǭ2Bγµǫ1

A
)
, (3.37)

again, as specified by the four-dimensional theory [48]. The remaining (constrained) gauge

parameters ΞµM , Ωµν
M

α, ΩµνM
N are not present in the four-dimensional theory and will

be specified below.

Closure of the supersymmetry algebra on the vierbein eµ
α is confirmed by a standard

calculation:

[δǫ1 , δǫ2 ] eµ
α =

(
2 ǭ2Aγ

αDµǫ
A
1 − 4iVM AB ǭ2Aγ

α∇̂M (γµǫ1B) + c.c.
)
− (1 ↔ 2)

= 2Dµ

(
ǭ2Aγ

αǫA1
)
− 4i ∇̂M

(
VM AB ǭ2A ǫ1B

)
eµ
α − 8iVM AB ǭ2Aǫ1B ∇̂Meµ

α

− 4i eµβ VM AB
(
ǭ2Aγ

αβ ∇̂M ǫ1B − ∇̂M ǭ2Aγ
αβǫ1B

)
+ c.c.

= Dµ (ξ
νeν

α) + ΛM ∂Meµ
α +

1

2
∂MΛM eµ

α + Ω̃αβ eµβ , (3.38)
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with parameters from (3.36) and (3.37), and Lorentz transformation given by

Ω̃αβ = −8iVM AB ǭ2Aγ
αβ ∇̂M ǫ1B + c.c. . (3.39)

The ΛM terms in (3.38) reproduce the transformation of eµ
α under generalized diffeomor-

phisms as scalar densities of weight 1
2 , cf. table 1. Furthermore, the first term in (3.38) can

be rewritten in the standard way

Dµ (ξ
νeν

α) = eν
αDµξ

ν + ξνDνeµ
α + 2 ξνD[µeν]

α , (3.40)

into a sum of (covariantized) diffeomorphism and additional Lorentz transformation, upon

making use of the vanishing torsion condition (2.25) in the four-dimensional geometry.

An analogous calculation shows closure of the supersymmetry algebra on the 56-bein.

We concentrate on the projection of the algebra-valued variation V−1δV onto the 70 of

SU(8), since the remaining part will entirely be absorbed into a local SU(8) transformation.

Using transformations (3.34), we obtain

V−1M AB [δǫ1 , δǫ2 ]VMCD = ξµ PµABCD+6iVN [AB∇NΛ
CD]− i

4
ǫABCDEFGHVNEF∇NΛGH .

While the first term is the action of the covariantized diffeomorphism, the remaining terms

can be rewritten in complete analogy to (3.40) with the vanishing torsion condition in (3.40)

replaced by the corresponding condition (3.20) in the internal space. Specifically,

V−1M AB [δǫ1 , δǫ2 ]VMCD = ξµ PµABCD + 12VP [ABV−1CD]Q PPQ
N
L∇N

(
VKLΛK

)

= ξµ PµABCD + 12VP [ABV−1CD]M PPM
N
K ∂NΛ

K

+ ΛK
(
∇KVM [AB

)
V−1CD]M

= ξµ PµABCD + V−1M AB δΛ VMCD , (3.41)

where we have used (3.20) in the second equality. The second line of (3.20) has been

absorbed by the weight term associated with the non-trivial E7(7) weight
1
2 of ΛK .

Closure of the supersymmetry algebra on the vector and two-form fields can be verified

by similar but more lengthy computations, which we relegate to appendix C. Remarkably

(and necessarily for consistency), closure on the two-forms Bµν M reproduces not only the

action of generalized diffeomorphisms (2.19) but also the shift transformation (2.21) with

parameter Ωµν M
N and finally their rather unconventional transformation behaviour (2.34)

under external diffeomorphisms. Consistency of the algebra thus confirms the above su-

persymmetry transformation rules and determines the remaining gauge parameters on the

right hand side of (3.35):

ΞµM = 8i
(
ǭA2 γµDM ǫ1A +DM ǭ2A γµ ǫ

A
1

)
− 16

3
VKBC DMVKAB ǭC2 γµǫ1A + c.c. ,

Ωµν
M

α = −32

3
i(tα)

PQVPABVQCBVMAD ǭ
(C
2 γµνǫ

D)
1 + c.c. , (3.42)

Ωµν M
N = −32VNAB ǭA[2 γ[µ∇M

(
γν]ǫ

B
1]

)
− 32i

3
VNACVP ABDMVP BD ǭ(C2 γµνǫ

D)
1 + c.c. .
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As required for consistency, the parameter Ωµν
M

α lives in the 912, i.e. satisfies (2.22).

Moreover, the parameters ΞµM and Ωµν M
N satisfy the required algebraic constraints anal-

ogous to those given in (2.14): one can verify that all SU(8) connection terms above (which

would obstruct these constraints) mutually cancel.

3.3 Supersymmetric field equations

In this section we employ the formalism set up in the previous sections to spell out the

fermionic field equations and sketch how under supersymmetry they transform into the

bosonic field equations of the E7(7) EFT (2.15), (2.23). The Rarita-Schwinger equation is

of the form

0 = (Eψ)µA ≡ −e−1εµνρσγνDρψσ A −
√
2

6
γνγµχBCD Pν BCDA

− 2 i e−1εµνρσ VMAB γν∇̂M

(
γρψ

B
σ

)
− i

√
2VNBC ∇̂N (γµχABC) , (3.43)

where the first two terms can be read off from the dimensionally reduced theory and the

second line captures the dependence on the internal variables and can be derived from

verifying the supersymmetry transformation of (3.43). It is straightforward to check that

the contractions of covariant derivatives in (3.43) are such that the undetermined part

from the internal SU(8) connection QM precisely drops out, cf. (3.28) and [19]. Hence,

equation (3.43) is fully defined via (3.1) and (3.24).

Under supersymmetry (3.34), and upon using the first order duality equation (2.15), a

somewhat lengthy computation confirms that the Rarita-Schwinger equation (3.43) trans-

forms as

δǫ(Eψ)µA = (EEinstein)µν γνǫA − 2 (Evector)µAB ǫB , (3.44)

into the Einstein and the second order vector field equations of motion obtained from

varying the action (2.15). It is instructive to give a few details of this computation as it

illustrates the embedding of the bosonic equations of motion into the components of the cur-

vature associated to the various blocks of the internal and external spin connections (3.31).

Let us first collect all terms in the variation (3.44) that contain an even number of

γ-matrices acting on ǫA, which should combine into the second-order vector field equation.

These are the terms that carry precisely one internal derivative ∇̂M . After some calculation,

using in particular (2.11) and (3.10), we find

δǫ(Eψ)µA
∣∣∣
even #γ

= 4 i e−1εµνρσ VMAB γν [∇M ,Dρ]
(
γσǫ

B
)
+ 4iVMCD γµν∇MPν ABCDǫB

+ 4iVMCDǫB∇MPµ
ABCD + 2Pν ABCD Fµν CD ǫB . (3.45)

The commutator of covariant derivatives can be evaluated as

VMAB [∇M ,Dρ]X
C = −1

2
∇MPρABDE VMDE X

C +
1

4
VMABR̂Mρ

αβ γαβ X
C , (3.46)

where the first term describes the mixed SU(8) curvature, and the second term refers to

the ‘mixed’ curvature of the spin connections

R̂Mρ
αβ ≡ ∂M ωρ

αβ −D[ω]ρ ω̂M
αβ . (3.47)
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Evaluating this curvature in particular gives rise to the components

R̂M [ν ρσ] =
1

4
D[ν

(
Fρσ]N MNM

)
,

R̂Mν
µν = −1

2
ĴµM +

1

4
eα
µeβ

ν Dν

(
MMNFαβN

)
, (3.48)

with the current ĴµM from (2.36). Putting everything together, we find for the

variation (3.45)

δǫ(Eψ)µA
∣∣∣
even #γ

= −2Dν

(
Fνµ+

AB

)
ǫB − 2Pν ABCD Fνµ− CD ǫB + 2i ĴµMVMAB ǫ

B

+ 4iVMCD∇M (gµνPν ABCD) ǫB ≡ −2 (Evector)µAB ǫB , (3.49)

reproducing the second-order vector field equation obtained from varying the action (2.23),

cf. (3.30).

It remains to collect the remaining terms with odd number of γ-matrices in the vari-

ation (3.44) which should combine into the Einstein field equations. Many of these terms

arrange precisely as in the dimensionally reduced theory. Here we just focus on the addi-

tional terms carrying internal derivatives ∇M and combining into

δǫ(Eψ)µA
∣∣∣
∇∇

= 16VMBCVNAB∇M (γµ∇N ǫC) + 8VMBCVNBC ∇M (γµ∇N ǫA)

− 8 e−1εµνρσ VMABVN BC γν∇M (γρ∇N (γσǫC)) . (3.50)

Collecting all ∇M∇N ǫA terms in this variation gives rise to

2
(
8V [M

ACVN ]CB + iΩMNδBA

)
γµ [∇M ,∇N ] ǫB

+ 4
(
16V(M

ACVN)CB +MMNδBA

)
γµ∇M∇N ǫB , (3.51)

showing that all double derivatives ∂M∂N ǫA vanish due to the section condition (B.5). We

evaluate the full expression (3.51) using the fact that the following combination of covariant

derivatives [19]
(
6VMACVN CB + 2VNACVM CB + VM CD VNCD δBA

)
∇M∇N ǫB

≡
(

1

16
R δBA − 1

4
VMACVN CBγνρgστ∇Mgνσ∇Ngρτ

)
ǫB, (3.52)

gives rise to the definition of the curvature R

R ≡ −4VM [ABVNCD]

(
∂MpN

ABCD − 1

2
qM E

A pN
EBCD

)
− 1

6
MMN pM

ABCDpN ABCD

− 4VMABVN CD pM
ABEF pN CDEF − 3

2
MMN e−1∂M∂Ne+

3

4
MMN e−2∂Me ∂Ne

− 6VMABVNCD e−1∂Me pN
ABCD , (3.53)

which is invariant under generalized internal diffeomorphisms. Comparing the explicit

expression for the curvature to the scalar potential V (2.32), we see that they are related by

e V = −eR− 1

4
eMMN∇Mg

µν∇Ngµν + total derivative , (3.54)
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in a form analogous to the O(d, d) DFT case discussed in ref. [54]. The operator on the

left hand side of (3.52) is such that the double derivatives ∂M∂N ǫA as well as the single

derivatives ∂M ǫA disappear by virtue of the section constraint, and also all ambiguities

drop out [19].

The remaining terms in expression (3.50) can be written as

4
(
16V(M

ACVN)CB +MMNδBA

)
∇Mγ

µ∇N ǫB − 8VMACVN CBγµνρ∇Mγν∇NγρǫB

+ 16VMACVN CBγµν∇M∇NγνǫB , (3.55)

showing that ∂M ǫ terms are also absent in these terms. These terms, which are independent

of the ambiguities, can be further evaluated to give

− 1

2
∂Mg

µν∂NMMNγνǫA−
1

4
e−1∂Me ∂NMMNγµǫA+2VMACVN CBγµνρgστ∂Mgνσ∂Ngρτ ǫB

+
1

8
MMNγµ

(
∂Mg

ρσ ∂Ngρσ − 2 e−1∂M∂Ne+ e−2∂Me ∂Ne
)
ǫA

+
1

2
MMNgµσgνρ

(
∂M∂Ngρσ − gτη ∂Mgρτ∂Ngση + e−1∂Me ∂Ngρσ

)
γνǫA . (3.56)

Together, using equation (3.52) and the expression above, the variation (3.50) reduces to

1

2
R γµ ǫA − 1

2
∂Mg

µν∂NMMNγνǫA − 1

4
e−1∂Me ∂NMMNγµǫA (3.57)

+
1

8
MMNγµ

(
∂Mg

ρσ ∂Ngρσ − 2 e−1∂M∂Ne+ e−2∂Me ∂Ne
)
ǫA

+
1

2
MMNgµσgνρ

(
∂M∂Ngρσ − gτη ∂Mgρτ∂Ngση + e−1∂Me ∂Ngρσ

)
γνǫA ≡ T µν γνǫA ,

and gives part of the scalar matter contributions to the Einstein field equations, cf. (3.44).

Indeed, ignoring the first term in the expression above, the remaining terms in T µν precisely

come from a variation of
1

4
eMMN∇Mg

µν∇Ngµν (3.58)

with respect to the metric gµν . Together with (3.54), and noting that the variation

e δR = −3

2
∂M
(
eMMN ∂N

(
e−1δe

))

is a total derivative, we find that the variation of the potential (2.32) with respect to the

external metric is given by

δ(−e V ) = R δe+
1

4
δ
(
eMMN∇Mg

µν∇Ngµν
)
= T µν δgµν , (3.59)

and precisely coincides with (3.57). In summary, the supersymmetry variation of the

gravitino equation (3.43) correctly reproduces the full Einstein equations from (2.23).

Finally, a similar discussion can be repeated for the field equation of the spin-1/2

fermions χABC , which under supersymmetry transforms into vector and scalar field equa-

tions from (2.23). Rather than going through the details of this computation, we present
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the final result in the compact form of the full fermionic completion of the bosonic La-

grangian (2.23), given by

Lferm = −εµνρσ ψ̄µAγνDρψσ A − 1

6
e χ̄ABCγµDµχABC − 1

3

√
2 e χ̄ABCγνγµψDν PµABCD

− 2i εµνρσ VMAB ψ̄
A
µ γν ∇̂M

(
γρψ

B
σ

)
− 2

√
2i eVNAB ψ̄Cµ ∇̂N (γµχABC)

− i

18
e ǫABCDEFGHVMAB χ̄CDE ∇̂Mχ

FGH + c.c. , (3.60)

up to terms quartic in the fermions. The latter can be directly lifted from the dimen-

sionally reduced theory [55], for dimensional reasons they are insensitive to ∇M correc-

tions. We have thus obtained the complete supersymmetric extension of the bosonic E7(7)

EFT (2.15), (2.23). In the rest of this paper, we shall discuss in detail how this theory after

the explicit solution (2.2a) of the section constraint relates to the reformulation [3, 7, 8] of

the full (untruncated) D = 11 supergravity.

4 Exceptional geometry from D = 11 supergravity

Independently of the construction of a field theory based on a particular duality group in

ref. [15] and other references alluded to earlier, and described in detail in the two fore-

going sections, there is the reciprocal (‘ground up’) approach of reformulating the higher-

dimensional theory in such a way that makes the role of duality groups directly manifest in

higher dimensions. This approach goes back to the early work of refs. [3, 4], and has been

taken up again recently in a series of papers [6–8], which have succeeded in providing an

on-shell equivalent generalized geometric reformulation of the D = 11 theory in which the

bosonic degrees of freedom are assembled into E7(7) objects and where the supersymmetry

transformations of the bosons assume a manifestly E7(7)× SU(8) covariant form.12 This

reformulation is achieved by starting from the known supersymmetry variations of D = 11

supergravity, and then rewriting the theory in such a way that the E7(7) and SU(8) struc-

tures become manifest (following the work of Cremmer and Julia [1], where this strategy

was applied first in the restricted context of the dimensionally reduced theory). One main

advantage of this procedure is that the on-shell equivalence of the reformulation with the

original D = 11 supergravity is guaranteed at each step of the construction; the detailed

comparison between the E7(7)-covariant expressions and those originating from D = 11

supergravity is also an essential prerequisite for deriving non-linear Kaluza-Klein ansätze

for all fields.13 In this section, we briefly review these developments, and show how they

tie up with the results of the two foregoing sections, eventually establishing the equivalence

of the two approaches. As we will see, the full identification is subtle, not only because it

involves various redefinitions, but also because the ambiguities exhibited in the foregoing

sections play a key role in establishing the precise relation.

12There exist partial results along similar lines for the case of the E8(8) duality group [4, 5, 7]; the full

bosonic E8(8)-covariant EFT is constructed in ref. [56].
13While the section constraint does admit a solution corresponding to IIB theory (with only six internal

dimensions), the full consistency of the AdS5 × S5 reduction remains to be established; this would in fact

require a detailed analysis of supersymmetric E6(6) theory similar to the one presented in this section.
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4.1 56-bein and GVP from eleven dimensions

The first step is to identify an E7(7) 56-bein VMAB
14 in eleven dimensions with the bosonic

degrees of freedom that reduce to scalars under a reduction of the D = 11 theory to

four dimensions; this 56-bein will be eventually identified with the one introduced in the

previous sections. Decomposing the 56 of E7(7) under its SL(8) and GL(7) subgroups

56 → 28⊕ 28 → 7⊕ 21⊕ 21⊕ 7, (4.1)

we have the following decomposition of the 56-bein

VM AB ≡
(
VmAB,VmnAB,VmnAB,VmAB

)
, (4.2)

where we will often employ the simplifying notation VmAB ≡ Vm8
AB = −V8m

AB, when con-

sidering the embedding of GL(7) into SL(8). The main task is then to directly express this

56-bein in terms of components of eleven-dimensional fields along the seven-dimensional

directions, viz.

VM AB ≡ VM AB

(
em

a, Amnp, Amnpqrs
)
, (4.3)

where em
a is the siebenbein, Amnp are the internal components of the three-form field, and

Amnpqrs the internal components of the dual six-form field. In other words, the 56-bein

whose existence in eleven dimensions was postulated on the basis of symmetry considera-

tions in the previous section is here given concretely in terms of certain components of the

D = 11 fields and their duals. The calculation [7] yields the explicit formulae

VmAB =
1

8
∆−1/2ΓmAB, (4.4)

VmnAB =
1

8
∆−1/2

(
ΓmnAB + 6

√
2AmnpΓ

p
AB

)
, (4.5)

VmnAB =
1

4 · 5! η
mnp1···p5∆−1/2

[
Γp1···p5AB + 60

√
2Ap1p2p3Γp4p5AB

− 6!
√
2

(
Aqp1···p5 −

√
2

4
Aqp1p2Ap3p4p5

)
ΓqAB

]
, (4.6)

VmAB =
1

4 · 7! η
p1···p7∆−1/2

[
(Γp1···p7Γm)AB + 126

√
2 Amp1p2Γp3···p7AB (4.7)

+ 3
√
2× 7!

(
Amp1···p5 +

√
2

4
Amp1p2Ap3p4p5

)
Γp6p7AB

+
9!

2

(
Amp1···p5+

√
2

12
Amp1p2Ap3p4p5

)
Ap6p7qΓ

q
AB

]
,

where ∆ is the determinant of the siebenbein em
a. In particular, it can be explicitly verified

that the 56-bein defined by the components above satisfies the identities (2.9), and thus is

14The notations and conventions used here are slightly different to those used in [3, 7].
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indeed an element of the most general duality group Sp(56,R). To show that that it is more

specifically an E7(7)-valued matrix one either verifies (2.6) directly, or invokes eqs. (14), (17)

and (18) of ref. [8] where it is shown that V transforms as a generalized E7(7) covector. From

the point of view of refs. [3, 7], this matrix corresponds to an element of the coset space

E7(7)/SU(8) in a specific gauge (where the local SU(8) is taken to act in the obvious way

on the indices A,B, . . .), such that after a local SU(8) rotation the direct identification as

given above is lost. Note also the appearance of components of the six-form potential in the

expressions, as a consequence of whose presence the identification of the EFT formulated

in the previous section and the D = 11 supergravity can only be achieved at the level of the

equations of motion (which, of course, does not preclude the existence of suitable actions

for either formulation).

In the same manner, one identifies a 56-plet of E7(7) vector fields Aµ
M that incorpo-

rate the degrees of freedom corresponding to vectors under a reduction to four dimensions,

combining the 28 electric and the 28 magnetic vectors of maximal supergravity into a single

representation that now live in eleven dimensions. As before, the components in a GL(7) de-

composition of the 56 of E7(7) can be explicitly written in terms of eleven-dimensional fields

Aµ
m =

1

2
Bµ

m, Aµmn = 3
√
2
(
Aµmn −Bµ

pApmn
)
, (4.8)

Aµ
mn = 6

√
2 ηmnp1...p5

(
Aµp1···p5 −Bµ

qAqp1···p5 −
√
2

4

(
Aµp1p2 −Bµ

qAqp1p2
)
Ap3p4p5

)
,

Aµm = 36 ηn1...n7

(
Aµn1...n7,m + (3c̃− 1) (Aµn1...n5 −Bµ

pApn1...n5)An6n7m

+ c̃An1...n6 (Aµn7m −Bµ
pApn7m) +

√
2

12
(Aµn1n2 −Bµ

pApn1n2)An3n4n5An6n7m

)
.

The components of the six-form potential appear again in the expression above. However,

in the Aµm component, there appears a new field Aµn1...n7,m (as well as an undetermined

constant c̃), related to the dual graviphoton.

These E7(7) objects are found by analysing theD = 11 supersymmetry transformations,

which in the SU(8) invariant reformulation were found to take the precise form [3, 6–8]

δeµ
α = ǭAγαψµA + ǭAγ

αψµ
A ,

δVMAB = 2
√
2VMCD

(
ǭ[AχBCD] +

1

24
εABCDEFGH ǭDχEFG

)
,

δAµ
M = −i

√
2ΩMNVNAB

(
ǭC γµ χABC + 2

√
2 ǭA ψµB

)
+ c.c. , (4.9)

where a compensating SU(8) rotation has been discarded in the variation δVMAB, as ex-

plained in refs. [3, 7]. Strictly speaking, the supersymmetry transformations of the last

seven components of the vectors cannot be derived from D = 11 supergravity, due to

the absence of a non-linear formulation of dual gravity, but are here obtained by ‘E7(7)-

covariantization’. The supersymmetry transformations of the last seven components of the

vector field instead determine the supersymmetry transformation of the new field Aµn1...n7,m

as discussed in ref. [7]. While Aµn1...n7,m, which is introduced to complete the 56 of E7(7)
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for the vectors, is clearly related to dual gravity degrees of freedom from a four-dimensional

tensor hierarchy point of view, its direct relation to the eleven-dimensional fields cannot

be determined. This is in stark contrast to the six-form potential that is related to the

three-form potential via an explicit duality relation. Nevertheless, our ignorance regarding

this field is compensated by the fact that it does not appear in the GVPs (see below).

While the agreement in the supersymmetry variations of the boson fields as derived

above and the exceptional field theory approach of the foregoing sections is thus manifest,

the agreement in the fermionic variations is much more subtle. This is because the latter

depend on the connections, and a detailed comparison would thus require an analysis of the

connection (3.22) in terms of the D = 11 fields. Of course, ignoring the ambiguity (3.25)

for the moment, we could simply try to work out the expressions (3.23) and (3.24) by

substituting the explicit formulae (4.4)–(4.7). However, this would lead to extremely cum-

bersome expressions (but see appendix D for a simplified calculation), whose relation with

the ones given below would be far from obvious. We will therefore proceed differently by

starting ‘from the other end’. The supersymmetry transformations of the fermions were

already derived in [3], viz.

δψAµ = 2

(
∂µ −Bµ

m∂m − 1

4
∂mBµ

m

)
ǫA +

1

2
ωµ

αβγαβǫ
A +Qµ

A
Bǫ

B

+ 2G−
αβ

ABγαβγµǫB − 1

4
emABeν β∂meρ

βγνργµǫB

+ emAB∂m (γµǫB) +
1

2
emABQ′

mB
CγµǫC − 1

2
emCDP

′
m
ABCDγµǫB,

δχABC = −2
√
2PµABCDγµǫD + 6

√
2G−

αβ
[AB|γαβǫ|C] − 3

2
√
2
eµβ∂meν

βem[ABγµνǫC]

+ 3
√
2em[AB∂mǫ

C] − 3
√
2

2
em[ABQ′

mD
C]ǫD − 3

√
2

2
emDEP

′
m
DE[ABǫC]

− 2
√
2emDEP

′
m
ABCDǫE , (4.10)

where

emAB = emAB = i∆−1/2ΓmAB (4.11)

is just part of the 56-bein VMAB given above in (4.4), and

GαβAB ≡ − i

8
∆1/2e[α

µeβ]
ν(∂µ −Bµ

m∂m)Bν
nΓnAB +

√
2

32
i∆−1/2FαβmnΓ

mn
AB (4.12)

comprises the contribution from the spin one degrees of freedom. The link of the particular

expressions involving the Kaluza-Klein vectors Bµ
m with those of the previous two sections

is easily seen by noting that

∂µ −Bµ
m∂m ≡ ∂µ −Aµ

M∂M (4.13)

upon taking the canonical solution of the section constraint. Furthermore, the direct

comparison with the fermion transformations of D = 11 supergravity yields the expressions

Q′
mA

B =
1

2
qmab Γ

ab
AB +

√
2

48
Fmabc Γ

abc
AB +

√
2

14 · 6!Fmabcdef Γ
abcdef
AB , (4.14)

P ′
mABCD = −3

4
pmab Γ

a
[ABΓ

b
CD] +

√
2

32
FmabcΓ

a
[ABΓ

bc
CD] −

√
2

56 · 5!Fmabcdef Γ
a
[ABΓ

bcdef
CD] ,
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where

qmab ≡ e[a
n∂|men|b] , pmab ≡ e(a

n∂|men|b) (4.15)

are the components of the GL(7) Cartan form, with analogous notation as in the previous

section. These objects transform properly under local SU(8): Q′
mA

B is the SU(8) con-

nection, while P ′
mABCD transforms covariantly in the complex self-dual 35 representation

of SU(8). However, as written, these connections are not fully covariant under internal

diffeomorphisms, because qmab and pmab do not transform as proper vectors under inter-

nal diffeomorphisms. For this reason we will switch to a slightly different choice below,

see (4.17) and (4.18), which satisfies all covariance requirements.

The other important feature of the reformulation [3, 7, 8] is the so-called generalized

vielbein postulate (GVP). When evaluated on the different components of VMAB this con-

sists of certain differential equations satisfied by the 56-bein which are analogous to the

usual vielbein postulate in differential geometry. The GVPs are equations satisfied by the

56-bein and in the approach of [3, 7, 8] they can be checked explicitly on a component

by component basis, while they appear as genuine postulates in the approach of the pre-

vious section. Moreover, the direct comparison with D = 11 supergravity allows for a

direct understanding of four-dimensional maximal gauged theories and the embedding ten-

sor [8, 42, 45] that defines them from a higher-dimensional perspective as well as providing

generalized geometric structures that can be interpreted as generalized connections and

used to construct a generalized curvature tensor.

The external GVP, which gives the dependence of the 56-bein on the four-dimensional

coordinates is given by equation (2.27) (see refs. [7, 8]), where the explicit expressions for

Qµ and Pµ in terms of the D = 11 fields were already given in ref. [3]. Here we concentrate

on the internal part of the GVP which was given in [7, 8] in the form

∂mVM AB − ΓmM
NVN AB + QCm[AVM B]C = PmABCDVMCD, (4.16)

where15

QmA
B =

1

2
ωmab Γ

ab
AB +

√
2

48
Fmabc Γ

abc
AB +

√
2

14 · 6!Fmabcdef Γ
abcdef
AB , (4.17)

PmABCD =

√
2

32
FmabcΓ

a
[ABΓ

bc
CD] −

√
2

56 · 5!Fmabcdef Γ
a
[ABΓ

bcdef
CD] . (4.18)

Notice that Q′
mA

B and P ′
mABCD defined in equations (4.14) and QmA

B and PmABCD

defined above, (4.18), differ in their components relating to the siebenbein since we have

replaced qmab by the spin connection ωmab and pmab by zero. As explained in ref. [8] this

change is required if the connections are to satisfy all the requisite covariance properties, as

is indeed the case for (4.17) and (4.18). However, there appears to be no way to reproduce

these covariant expressions in terms of the 56-bein V and its internal derivatives ∂mV
without ‘breaking up’ the matrix V , and this is one of the main difficulties in establishing

agreement between the above expressions and the ones obtained in the previous section.

15Note that in this paper our conventions are such that Cartan’s first structure equation takes the form

T a = dea + ωa
b ∧ eb.
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Fortunately, the apparent discrepancy turns out to reside in the 1280 part of the SU(8)

connection (see (3.25)) and the hook ambiguity described in section 4.3 and will thus drop

out in all relevant expressions.

The internal GVP as given in (3.12) and (4.16) (and also (4.24), see below) differ in

two respects. First of all, and prior to imposing the section constraint, (3.12) involves

all 56 components, whereas (4.16) involves only the seven internal dimensions with index

M = m. The second distinctive feature is the appearance of a non-zero term proportional

to Pm on the right-hand side of the GVP. As we will explain in more detail below, this

term corresponds to a generalized non-metricity.16 We will show below how to absorb

this non-metricity, and thereby bring the GVP into the same form as (3.12). Finally,

the connection coefficients Γm can appear in the supersymmetry transformations of the

fermions only via their traces, because the fermions, while transforming as densities, are

otherwise only sensitive to the local SU(8).

Given the coefficients QmA
B and Pm

ABCD we can solve for the affine connection

coefficients ΓmM
N in terms of the fields of D = 11 supergravity; we use boldface letters

here to indicate that these coefficients are different from the ones identified in (3.27) of the

previous section. With (4.17) and (4.18), ΓmM
N takes values in the Lie algebra of E7(7)

ΓmM
N = Γm

α(tα)M
N . (4.19)

The comparison with D = 11 supergravity allows to solve for the components of Γm
α

directly in terms of D = 11 fields; the non-vanishing components are

(Γm)n
p ≡ −Γpmn +

1

4
δpnΓ

q
mq, (Γm)8

8 = −3

4
Γnmn,

(Γm)8
n =

√
2ηnp1···p6 Ξm|p1···p6 , (Γm)

n1···n4 =
1√
2
ηn1···n4p1p2p3 Ξm|p1p2p3 , (4.20)

where Γmn
p is the usual Christoffel symbol, and where

Ξp|mnq ≡ DpAmnq −
1

4!
Fpmnq, (4.21)

Ξp|m1···m6
≡ DpAm1···m6 +

√
2

48
Fp[m1m2m3

Am4m5m6]

−
√
2

2

(
DpA[m1m2m3

− 1

4!
Fp[m1m2m3

)
Am4m5m6] −

1

7!
Fpm1...m6 . (4.22)

One notices that these objects, like the usual Christoffel symbol, indeed transform with

second derivatives of the tensor gauge parameters, as would be expected for a generalized

affine connection (see ref. [8] for details). Another noteworthy feature is that they vanish

under full antisymmetrization:

Ξ[p|mnq] = 0, Ξ[p|m1...m6] = 0. (4.23)

Therefore, they correspond to hook-type Young tableaux diagrams, and thus encapsulate

the non-gauge invariant part of the derivatives of the three-form and the six-form fields.

16We would like to thank Malcolm Perry for pointing this out to us.
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In terms of SL(7) these Ξ’s correspond to the 210 and 48 representations, respectively;

when further decomposed into SO(7) representations, these will become the 21⊕ 189 and

21 ⊕ 27 of SO(7), all of which appear in the 1280 of SU(8). We will also see below

that the irreducibility property (4.23) is crucial for the absence of torsion in the sense of

generalized geometry.

As given above, the connection coefficients QmA
B, Pm

ABCD and ΓmN
P have all the

desired transformation properties with respect to local SU(8) and generalized diffeomor-

phisms, as can be verified explicitly from their definitions (see ref. [8]). That is, QmA
B

transforms as an SU(8) connection (as is obvious from the way the local SU(8) has been

introduced in ref. [3] as a Stückelberg-type symmetry), while Pm
ABCD transforms covari-

antly under SU(8) transformations. Both QmA
B and Pm

ABCD transform as generalized

vectors under generalized diffeomorphisms (for the natural truncation of generalized Lie

derivatives to vectors with only seven vector indices). Furthermore, the generalized affine

connection Γ is invariant under SU(8) transformations, and transforms as a generalized

connection (with a second derivative of the gauge parameters).

A distinctive feature of the internal GVP as given here, to be contrasted with the one

given in (3.12), is that, at this point, the connections have non-zero components only along

the seven internal dimensions, but vanish otherwise — just like the partial derivative ∂M
after imposition of the section constraint. Nevertheless, we can formally write the internal

GVP as

∂MVN AB − ΓMN
PVP AB + QCM [AVN B]C = PM ABCDVNCD (4.24)

by trivially promoting the GL(7) index m to part of a 56 of E7(7). Hence, taking

∂M =

{
∂m if M = m8,

0 otherwise
(4.25)

and identifying the m components of the connection coefficients with those that appear

in equation (4.16), with all other components vanishing, gives back (4.16). In this form

the internal GVP can be compared to equation (3.12), with the proviso that the section

constraint also applies to the connections. However, in view of the derivation given in the

foregoing section, a natural question that arises at this point is why all other components

of the connection coefficients should vanish. Would it not be more “natural” from a gen-

eralized geometric point of view if the connection coefficients had non-trivial components

in the other directions of the 56 representation, as has been assumed in section 3 and,

for example, ref. [18]? Indeed, we will see below that the introduction of non-vanishing

connection components along the other directions will actually be required if we want to

recast the supersymmetry variations of the fermions in order to achieve full agreement with

the formalism of the preceding section.

We now proceed to reformulate these structures in order to exhibit their precise rela-

tionship to those constructed in section 3. However, given that vanishing torsion is taken

to be an important ingredient for defining generalized connections in section 3, we will first

consider the generalized torsion associated to the generalized affine connection Γ.
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4.2 Generalized torsion

In ref. [8], the generalized torsion TMN
P is defined as follows

[∇M ,∇N ]S = TMN
P∂PS (4.26)

for some scalar S and where ∇M is defined using the connection ΓMN
P . The generalized

torsion as defined above vanishes [8]. An alternative (and a priori independent) definition

of the torsion is given in equation (3.13) of section 3, which leads to the formula (3.14).

While the above definition of torsion and that defined in (3.13) are equivalent in usual

differential geometry, this is not the case in generalized geometry. Here we will evaluate

the generalized torsion (3.14) explicitly in terms of the connection coefficients ΓmN
P given

in ref. [8] and above. A simple component-wise calculation using the components of ΓmN
P

identified above now shows that the generalized torsion does indeed vanish. For example,

consider

Tm8n8
p8 = Γm8n8

p8 − 48Pp8n8
q8
r8 Γq8m8

r8 + 16Pp8n8
q8
m8Γr8 q8

r8. (4.27)

Using the fact that

Pp8r8
q8
s8 =

1

96
(2δpsδ

q
r + δprδ

q
s) , (4.28)

the above equation reduces to

Tm8n8
p8 = 2Γ[mn]

p − 2

3
Γr [m

rδpn] . (4.29)

However, the right hand side of the above equation vanishes by substituting the relevant

components of Γ from (4.20). Hence,

Tm8n8
p8 = 0 . (4.30)

Next consider, for example,

Tm8 pq r8 = Γm8 pq r8 − 24Ppq r8
st u8Γu8m8 st . (4.31)

Using the fact that

Ppq r8
st u8 =

1

8
δstupqr , (4.32)

the above equation reduces to

Tm8 pq r8 = 4Γ[mpq r] . (4.33)

However,

Γ[mpq r] ∼ Ξ[m|pqr] = 0 (4.34)

by equation (4.23). Finally, consider the following components

Tm8n8
pq = Γm8n8

pq − 24Ppqn8
r8
stΓr8m8

st. (4.35)

Using the fact that

Ppqn8
r8
st = − 1

12
δpqn[sδ

r
t] , (4.36)
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we obtain

Tm8n8
pq = Γm8n8

pq + 2Γr8m8
r[pδq]n

= 3
√
2ηpqt1...t5

(
Ξm|nt1...t5 − Ξn|mt1...t5 + 5Ξt1|mnt2...t5

)

= 21
√
2ηpqt1...t5Ξ[m|nt1...t5] = 0 , (4.37)

where we have used the expression for Γm8n8
pq in the second equality and equation (4.23)

in the final equality. All other components of the generalized torsion can be similarly shown

to be zero. It should be emphasized that the fact that the full antisymmetrization of the

Ξ quantities is zero, equation (4.23), is crucial for this argument.

In summary, the generalized torsion, as defined by equation (3.14) is zero

TMN
P = 0 . (4.38)

Let us emphasize again the remarkable feature that the vanishing of the generalized torsion,

as originally defined on the basis of very different considerations based on generalized

geometry, here follows from the direct comparison with D = 11 supergravity.

4.3 Hook ambiguity

As we have already mentioned, the supersymmetry transformations are insensitive to the

generalized affine connection, modulo density contributions involving the trace of the affine

connection, because the fermions transform only under the chiral SU(8). With the connec-

tions as originally given in ref. [3], or equivalently from equations (4.10), the supersymmetry

variations of the eight gravitini and the 56 dilatini contain the following combinations of

Q′
m and P ′

m

δψAµ ∝ . . .+
(
emACQ′

mC
B − emCDP

′
m
ABCD

)
γµεB,

δχABC ∝ . . .+
(
3 em [ABQ′

m
C]
D + 3 emEFP

′
m
EF [ABδ

C]
D + 4P ′

m
ABCEemED

)
εD. (4.39)

An important property of the expressions appearing here on the right hand side, is that they

are actually insensitive to certain modifications of the connections. We first recognize that

these are exactly the same combinations that appear in the two first equations of (3.28).

Secondly, the expressions on the right hand side of (4.39) admit a non-trivial kernel which

is found by looking for solutions of

0 = ΓmAC δQ
′
mC

B − ΓmCD δP
′ABCD
m ,

0 = 3Γm[AB δQ′
m
C]
D − 3ΓmEF δP

′
m
EF [ABδ

C]
D − 4 δP ′

m
ABCE ΓmED. (4.40)

Let us proceed with the following ansätze

δQ′
mA

B = X
(3)
m|ab Γ

ab
AB +X

(4)
m|abc Γ

abc
AB +X

(7)
m|abcdef Γ

abcdef
AB ,

δP ′ABCD
m = Y

(3)
m|ab Γ

a
[ABΓ

b
CD] + Y

(4)
m|abc Γ

[a
[ABΓ

bc]
CD] + Y

(7)
m|abcdef Γ

[a
[ABΓ

bcdef ]
CD] , (4.41)

where the slash | simply indicates that no a priori symmetry conditions are imposed on the

X’s and Y ’s other than the obvious ones (to wit, anti-symmetry in [ab], [abc] and [abcdef ],
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respectively). For the form field contributions it was already shown in ref. [41] that the

GVP remains valid if

Y
(4)
m|abc =

3

2
X

(4)
m|abc , Y

(7)
m|abcdef = −3

2
X

(7)
m|abcdef (4.42)

with no further restrictions on the X’s and Y ’s. Notice that both X(4) and X(7) have two

irreducible parts: besides the fully antisymmetric pieces appearing in (4.14) there are the

hook diagram contributions. Furthermore, it was shown in ref. [41] that X(4), Y (4) and

X(7), Y (7) are in the kernel of the supersymmetry variations (4.40) provided that

X
(4)
[m|abc] = 0 , X

(7)
[m|abcdef ] = 0 . (4.43)

That is, the fully antisymmetric parts (the four-form and seven-form field strengths) are

determined, but the hook diagram contributions can be chosen freely, as they drop out in

the supersymmetry variations of the fermions in (4.39). Note that Ξm|npq and Ξm|npqrst

that appear in the generalized affine connection in (4.21) and (4.22) are precisely of the

hook-type, hence providing a geometrical explanation for the ambiguities found in [41].

As for the remaining SO(7) part X
(3)
m|ab, which was not considered in ref. [41], the first

expression in equations (4.40) reduces to

X
(3)
a|bc Γ

abc
AB +

(
2X

(3)
a|ab +

4

3
Y

(3)
a|ab

)
ΓbAB − Y

(3)
a|bbΓ

a
AB = 0 . (4.44)

Whence we read off the condition

Y
(3)
m|ab = −3

2
X

(3)
m|ab. (4.45)

With this identification the second line in (4.40) becomes

X
(3)
a|bc

(
2Γ

[a
[ABΓ

b]c
C]D − Γc[ABΓ

ab
C]D

)
−X

(3)
a|bbΓ

a
[ABδC]D = 0 . (4.46)

We now see that all terms in (4.44) and (4.46) except the last ones involving X
(3)
a|bb cancel,

provided we demand that

X
(3)
[a|b]c = 0 . (4.47)

To interpret the remaining term let us check the difference between the expressions for

the connection coefficients given in ref. [3], equation (4.14), and in ref. [8], equations (4.17)

and (4.18). These connections are fully covariant under internal diffeomorphisms. The

difference is thus

X
(3)
m|ab =

1

2

(
enb∂mena + ωmab

)
=

1

2
enaep bΓ

p
mn , (4.48)

where we have used the usual vielbein postulate satisfied by the siebenbein and Γpmn is the

usual Christoffel symbol. Hence (4.47) is indeed satisfied for a torsion-free affine connection.

The only extra term in the supersymmetry variations then comes from the ‘leftover’ term

in (4.46) which is just a density term proportional to Γkm
k, which is required here because

the supersymmetry parameter is a density. This is the same term that was obtained
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above with the connections (4.14) just from Q′
mab and P

′
mab alone. We thus see that the

switch from (4.14) to (4.17) and (4.18) reintroduces the density term proportional to Γkm
k

that was absent in ref. [3]. In other words, even the density term which is there with the

correct weight if the GVP is formulated with the usual affine connection as in ref. [8] can be

absorbed into a redefinition of QmA
B and Pm

ABCD, as they were originally given in ref. [3].

In fact we are free to also choose any interpolating solution where the coefficient of the

density term changes, as part of it is absorbed into QmA
B, while the other into Pm

ABCD.

Let us also point out how the apparent discrepancy between (3.19), where Γkm
k ∝

e−1∂me (with e the usual vierbein determinant), and the above result, where Γkm
k ∝

∆−1∂m∆, is resolved: while in (3.29) the contribution proportional to ΓKM
K cancels with

the weight assignments given there, the contribution proportional to Γkm
k here can be

eliminated by shifting back to the non-covariant connections Q′
m and P ′

m, and only then

the two pictures can be made to agree. Otherwise the two sets of connections (both of

which are consistent) simply reflect the unavoidable ambiguities identified in section 3.1.

Let us emphasize once again that the connections given in equations (4.17) and (4.18)

satisfy all required covariance properties of generalized or exceptional geometry provided we

break up V by choosing the specific ‘frame’ as derived from D=11 supergravity. First of all,

the covariance under local SU(8) follows by the same arguments as in ref. [3]: as given, these

expressions correspond to objects in a special SU(8) gauge (namely the one that accords

with the D=11 theory), such that QmA
B transforms as a proper SU(8) connection (for

the SO(7) subgroup this is anyhow obvious). Secondly, Pm
ABCD transforms covariantly

when we apply an SU(8) rotation that moves us out of the given gauge. Furthermore,

these objects are also covariant under generalized diffeomorphisms: for the 7-dimensional

internal diffeomorphisms this is manifestly true, while the fact that they do not transform

at all under the remaining generalized diffeomorphisms with parameters ξmn , ξ
mn and

ξm is consistent with the formulae (17) and (18) of ref. [8] because QM = PM = 0 for

M 6= m. Of course, these statements apply only to the specific ‘frame’ as derived from

D = 11 supergravity, that we have adopted here, where the connections have non-vanishing

coefficients only along the seven internal dimensions. However, it is straightforward to see

that the manipulations we are now going to perform on these specific connections to bring

them in line with the constructions described in the two foregoing sections are themselves

fully covariant and therefore preserve these covariance properties.

Let us point out once more that the existence of covariant connections is possible here

because we have given the connections explicitly in terms of D = 11 fields. It is not possible

to achieve if all quantities are to be expressed only in terms of the generalized vielbein V
and its derivatives in an E7(7)-covariant manner, as we already saw in the foregoing section

(and will explain again for a simplified example in appendix D).

4.4 Non-metricity and redefinition of the generalized connection

In order to understand how the appearance of PM on the right-hand side of the GVP (4.24)

can be reconciled with the absence in the corresponding relation given previously in

equation (3.12), it is useful to recall that similar ambiguities arise in standard differen-
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tial geometry. While the vielbein postulate is usually quoted as

∂men
a + ωm

a
ben

b − Γpmnep
a = 0 (4.49)

with Γpmn the Christoffel symbols, there is a more general expression

∂men
a + ωm

a
ben

b − Γpmnep
a = Tmn

pep
a + Pm

a
b en

b, (4.50)

where Γpmn is no longer given by the Christoffel symbols, Tmn
p = T[mn]

p is referred to as the

torsion and Pmab = Pm (ab) is referred to as the non-metricity, as it ‘measures’ the failure of

the metric to be covariantly constant (see for example ref. [57]). Notice that there is quite

a lot of freedom in the definition of the various objects in the equation above. For example,

the antisymmetric part of the affine connection Γp[mn] can be absorbed into a redefinition of

T pmn so that Γpmn = Γp(mn). Similarly, the non-metricity can be absorbed into a redefinition

of the affine connection and the torsion:

Γpmn −→ Γpmn − P(m
c
|d| en)

depc ,

Tmn
p −→ Tmn

p − P[m
c
|d| en]

depc . (4.51)

Furthermore, the fully anti-symmetric part of the torsion can be absorbed into a redefinition

of the spin connection

ωmab −→ ωmab − Tmnp e
n
a e

p
b . (4.52)

Hence, in differential geometry there is a great deal of freedom in how one defines various

structures such as non-metricity, torsion and the affine and spin connections.

In complete analogy with this discussion, connection coefficient PM can be absorbed

into a redefinition of ΓM in the internal GVP, equation (4.24):

ΓMN
P −→ Γ̃MN

P = ΓMN
P + i

(
VNABPM ABCDVP CD − VN ABPM

ABCDVPCD
)

(4.53)

so that the internal GVP becomes

∂MVN AB − Γ̃MN
PVP AB +QM

C
[AVN B]C = 0 . (4.54)

We note that this shift only changes the affine connection, but does not affect the SU(8)

connection QM A
B. The GVP is now of the form of (3.12) in section 3, but the connections

are still different. In particular, the QM A
B and Γ̃MN

P are still non-zero only for the first

seven components given by equations (4.17). However, by removing the non-metricity in

the affine connection we have reintroduced torsion in Γ̃ where there was none before, in

analogy to ordinary differential geometry. Therefore, in order to recover a torsion-free

affine connection we follow the same procedure as in section 3.1, and accordingly redefine

the affine connection once more, as follows:

QM A
B −→ Q̂M A

B ≡ QM A
B +QM A

B, (4.55)

Γ̃MN
P −→ Γ̂MN

P ≡ Γ̃MN
P + i

(
VPABQM

A
CVNBC − VPABQM A

CVNBC
)
, (4.56)
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where, modulo the remaining ambiguity UM A
B, the modification QM is now chosen to

obtain precisely the connection Q in section 3, namely

QM A
B = RM A

B + UM A
B +WM A

B +
2i

3
ΓMN

PVP ACVN CB. (4.57)

With the redefinitions (4.56), we have now brought the GVP into the standard form

∂MVN AB − Γ̂MN
PVP AB + QC

M [AVN B]C = 0, (4.58)

with the following properties:

• the affine connection Γ̂MN
P is torsion-free, an SU(8) singlet and transforms properly

under generalized diffeomorphisms.

• The SU(8) connection QM A
B transforms as a connection under SU(8), and as a

generalized vector under generalized diffeomorphisms.

• The connections have non-vanishing components for all 56 components, and this is

necessary for the supersymmetry variations of the fermions to be expressible in terms

of the SU(8) connection QM A
B alone (see the previous section).

• The remaining differences between the above connections and the ones obtained in

the previous section are all contained in the hook-type ambiguity.

Modulo the ambiguity, these connections are now equivalent to the connections defined

in section 3, namely Γ̂ ∼= Γ. We should point out that, with the formulae at hand, we could

in principle proceed to work out explicit expressions for QM A
B and ΓMN

P in terms of the

D = 11 fields. However, after the redefinitions these expressions will be very complicated,

and by themselves not very illuminating.

The trace of the affine connection Γ is given by the determinant of the siebenbein [8],

ΓKM
K =

3

2
∂M log∆ . (4.59)

The connection used to construct the exceptional geometry in section 3 is required to be

compatible with the vierbein density, (3.18), which implies equation (3.19). This con-

dition can be satisfied by the torsion-free connection by choosing W in equation (4.57)

appropriately. In particular the trace of Γ drops out of ΓKM
K :

ΓKM
K = Γ̃KM

K + i
(
VKABQK

A
CVMBC − VKABQKA

CVMBC

)

= i
(
VKABWK

A
CVMBC − VKABWKA

CVM BC

)
.

The W given in equation (3.24) ensures that the affine connection Γ satisfies the

condition (3.19). Note that the part of the fermion supersymmetry transformations given

by the internal connection are independent of the vierbein determinant. This remains so

despite the contribution from W , which is cancelled by the density contributions in the

covariant derivative ∇M of weighted tensors in the supersymmetry transformations.
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4.5 Connections and fermion supersymmetry transformations

In section 3.2, we give the fermion supersymmetry transformations (3.34) in terms of the

torsion-free connection constructed in section 3.1. Solving the section condition to obtain

the D = 11 supergravity, the fermion supersymmetry transformation should yield those

of the SU(8) invariant reformulation [3], (4.10). Using the definition of the covariant

derivative (3.3) and equations (3.11) and (3.22), transformations (3.34) become

δǫψ
A
µ = 2Dµǫ

A +
1

4
F−
ρσ
ABγρσγµǫB + i eν β∂Meρ

βVM ABγνργµǫB − 4 i VM AB∂M (γµǫB)

− 2 i VM ABqM B
CγµǫC − 2 i VMCDpM

ABCDγµǫB ,

δǫχ
ABC = −2

√
2PµABCDγµǫD +

3
√
2

4
F−
µν

[ABγµνǫC] + 3
√
2 i eµβ∂Meν

βVM [ABγµνǫC]

− 12
√
2iVM [AB ∂M ǫ

C] + 6
√
2 i VM [ABqM D

C]ǫD − 8
√
2 i VMDEpM

ABCDǫE

− 6
√
2 i VMDEpM

DE[ABǫC] . (4.60)

In this form, the supersymmetry transformations (3.34) reduce to the following expressions

upon use of the canonical solution of the section condition

δψAµ = 2

(
∂µ −Bµ

m∂m − 1

4
∂mBµ

m

)
ǫA +

1

2
ωµ

αβγαβǫ
A +Qµ

A
Bǫ

B

+
1

4
F−
αβ

ABγαβγµǫB − 1

4
emABeν β∂meρ

βγνργµǫB

+ emAB∂m (γµǫB) +
1

2
emABqmB

CγµǫC − 1

2
emCD pm

ABCDγµǫB,

δχABC = −2
√
2PµABCDγµǫD +

3
√
2

4
F−
αβ

[AB|γαβǫ|C] − 3
√
2

4
eµβ∂meν

βem[ABγµνǫC]

+ 3
√
2em[AB∂mǫ

C] − 3
√
2

2
em[ABqmD

C]ǫD − 3
√
2

2
emDE pm

DE[ABǫC]

− 2
√
2emDE pm

ABCDǫE . (4.61)

Comparing the supersymmetry transformations above that come from the supersymmetric

EFT with the canonical solution of the section condition with those of the D = 11 theory

as written in ref. [3], transformation (4.10), we find that they are identical upon identifying
1
8FαβAB with GαβAB and Q′, P ′ with q, p, respectively.

First, let us consider the relation between FαβAB and GαβAB. Note that FαβAB satisfies

a twisted self-duality condition, which means that on-shell

F−
αβ

AB = FαβAB.

The GαβAB, however, does not satisfy a twisted self-duality condition and in order to modify

it so that it does, we need to add to it the Hodge dual of the field strengths, viz.

GαβAB ≡ − i

16
∆1/2e[α

µeβ]
ν(∂µ −Bµ

m∂m)Bν
nΓnAB +

√
2

64
i∆−1/2FαβmnΓ

mn
AB

+

√
2

64 · 5!∆
−1/2ǫαβγδF

γδm1...m5Γm1...m5 AB + i∆1/2ǫαβγδX
γδ|nΓnAB, (4.62)
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where Xαβ|m would correspond to the field strength of the field dual to Bµ
m. However,

since the first term in the expression above is not exact, Bµ
m cannot be dualized in the

usual way. This is why the new field BµνM is necessary in the definition of FµνM , (2.13),

schematically “eating up” the non-exact terms to allow dualization.

Regarding the relation between Q′, P ′ and q, p: as explained in section 4.3, the Q′ and

P ′ are related to Q and P by the usual Christoffel symbol associated with the siebenbein.

Moreover, the Q and P are related to q and p by the generalized affine connection Γ,

QmA
B = qmA

B − 2i

3
ΓmN

PVP ACVN CB,

PmABCD = pmABCD + iΓmN
PVPABVNCD. (4.63)

In both cases, the redefinitions correspond to hook-type redefinitions to which the super-

symmetry transformations are insensitive, as explained in section 4.3. Therefore, at the

level of the supersymmetry transformations, the two sets of connection coefficients are

equivalent.

The fermion supersymmetry transformations of a truncation of the D = 11 theory

have been studied in ref. [19], where they are also given in terms of a generalized SU(8)

connection constructed in ref. [18]. In this paper, we use a connection that allows us to

express the fermion supersymmetry transformations covariantly in terms of the 56-bein,

rather than its components. This is done by using some of the components in the 1280

representation, to which supersymmetry transformations are insensitive to [18] (see also

section 3). Therefore, the connection Q− U still contains terms, not expressible in terms

of the 56-bein and its derivatives, that are in the 1280 representation. These terms are

precisely the difference between the Q− U and the unambiguous part of the connection of

ref. [18]. In practice, an explicit expression of this difference is rather complicated.
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A Notations and conventions

The index notation used in this paper is as follows:

• µ, ν, . . . and α, β, . . . denote D = 4 spacetime and tangent space indices, respectively.

• m,n, . . . and a, b, . . . denote D = 7 spacetime and tangent space indices, respectively.

• M,N, . . . label the fundamental (56) of E7(7).

• α labels the adjoint (133) of E7(7).

• A,B, . . . denote SU(8) indices.

Furthermore, the following notations are used for covariant derivatives:

• Dµ = ∂µ − LAµ denotes the E7(7)-covariant derivative.

• Dµ = Dµ+ωµ
α
β+Qµ

A
B denotes the E7(7)-covariant derivative that is also covariant

with respect to the local SO(1,3) and SU(8) symmetries.

• ∇µ = Dµ + Γρµν is the fully covariant derivative.

Analogously,

• DM = ∂M + ωM
α
β +QM

A
B denotes derivative that is also covariant with respect to

the local SO(1,3) and SU(8) symmetries.

• ∇M = DM + ΓPMN is the fully covariant derivative,

and D̂M and ∇̂M are defined with the modified spin connection ω̂M .

B Useful identities

In this appendix we collect a handful of useful relations and identities in order to deal

with the E7(7) projectors (2.17) and the section constraint (2.1) upon contractions with the

56-bein. Let us first note the projector identity

PMN
P
Q VPAB VQCD =

1

3
VNE[A VME[C δB]

D] +
1

3
VME[A VNE[C δB]

D]

− 1

24

(
VNEF VMEF + VMEF VNEF

)
δCDAB . (B.1)

As a consistency check, we may calculate the trace of this relation

PMN
P
Q VPAB VQCB =

1

2
VNAB VMCB +

1

2
VMAB VNCB

− 1

16

(
VNEF VMEF + VMEF VNEF

)
δA

C , (B.2)

confirming that PMN
P
Q acts as an identity on the right hand side. Similarly, one finds that

PMN
P
Q VPAB VQCD =

1

2
VN [AB VMCD] −

1

48
ǫABCDEFGHVNEF VMGH . (B.3)
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The section constraint (2.1) states that

(P1+133)PQ
MN ∂M ⊗ ∂N = 0 , (B.4)

where 133 and 1 are in the symmetric and antisymmetric tensor product, respectively.

Contracting this equation with the 56-bein, we obtain explicitly

V(M
ACVN)BC ∂M ⊗ ∂N =

1

8
δBA V(M

CDVN)CD ∂M ⊗ ∂N ,

VM [ABVNCD] ∂M ⊗ ∂N =
1

24
ǫABCDEFGH VMEFVNGH ∂M ⊗ ∂N . (B.5)

C The supersymmetry algebra

In this appendix, we show that the commutator of supersymmetry transformations (3.32)–

(3.34) closes into the supersymmetry algebra (3.35). For the commutator on the external

and internal vielbeine eµ
α and VMAB we have seen in section 3.2 above that closure of

the algebra is a direct consequence of the vanishing torsion conditions (2.25) and (3.13),

respectively. Here, we complete the algebra on the vectors Aµ
M and two-forms Bµνα

and Bµν M .

We start with the vector fields, for which the commutator of two supersymmetry

transformations yields

[δǫ1 , δǫ2 ]Aµ
M = −8iDµ

(
VMAB ǭ2Aǫ1B

)
+ 16VNAB VMAB ǭC2 γµ ∇̂N ǫ1C

+ 32VNCA VMAB ǭC2 γµ∇N ǫ1B + 32VMABVKBC ǭ2A ∇̂K

(
γµǫ

C
1

)
+ c.c.

= DµΛ
M + 4 gµνMMN∂N

(
ǭA2 γ

νǫ1A
)
+ 8MMN

(
ǭA2 γαǫ1A

)
eµβ e

ν[α∇̂Neν
β]

+ 8iΩMN
(
ǭA2 γµ∇̂N ǫ1A − ∇̂N ǭ

A
2 γµ ǫ1A

)

+ 32

(
VMABVKBC+VMBCVKAB+

1

8
δAC MMK

)
∇K

(
ǭC2 γµǫ1A

)
. (C.1)

In the first line, we recognize the action of a gauge transformation together with the non-

covariant contribution gµνMMN∂Nξ
ν of the diffeomorphism action (2.34). The third term

can be reduced using (3.10). Let us rewrite the last term of (C.1) as

32∇K

{(
VMABVKBC + VMBCVKAB +

1

8
δAC MMK

)(
ǭC2 γµǫ1A

)}

= 32 ∂K

{(
VMABVKBC + VMBCVKAB +

1

8
δAC MMK

)(
ǭC2 γµǫ1A

)}

− 32

(
VKBCDKVMAB + VKABDKVMBC − 1

8
δAC (trace)

)(
ǭC2 γµǫ1A

)

+ 8
(
e−1∂Ke

)(
VKBCVMAB + VKABVMBC +

1

8
δAC MMK

)(
ǭC2 γµǫ1A

)

= 12 (tα)MN ∂NΞµα − 8

3
ΩMN

(
VK BC DNVKAB + VK AB DNVKBC

) (
ǭC2 γµǫ1A

)
,
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reproducing the parameter Ξµα from (3.37), and where we have used (3.19) in the first

equality and the vanishing torsion condition (3.21) in the second. Together, we obtain

[δǫ1 , δǫ2 ]Aµ
M = DµΛ

M + gµνMMN∂Nξ
ν − 1

2
ξνFµνM − 12 (tα)MN ∂NΞµα

+ 8iΩMN
(
ǭA2 γµD̂N ǫ1A − D̂N ǭ

A
2 γµ ǫ1A

)

− 8

3
ΩMN

(
VKBC DNVKAB + VKAB DNVKBC

) (
ǭC2 γµǫ1A

)
. (C.2)

We observe, that we can simultaneously drop the SU(8) connection part in the last two lines

since they mutually cancel. The spin connection ω̂M
αβ in the second line yields additional

contributions which explicitly carry the field strength FµνM and can be simplified using

the twisted self-duality equation (2.15):

− iΩMN εµνρσ ǭ
A
2 γ

ν ǫ1AMNK FρσK = −1

2
ξν FµνM . (C.3)

In total, the commutator (C.2) then takes the expected form

[δǫ1 , δǫ2 ]Aµ
M = ξνFνµM + gµνMMN∂Nξ

ν +DµΛ
M + 12 (tα)MN ∂NΞµα

+
1

2
ΩMN ΞµN , (C.4)

with the last term corresponding to the action of a tensor gauge transformation (2.19) with

parameter ΞµM from (3.42).

Next, let us check the commutator of supersymmetry transformations on the two-forms

Bµνα. First, we note that to lowest order in the fermions the terms descending from varia-

tion of the (tα)MN A[µ
M δǫAν]

N contribution in (3.32) simply reproduce the corresponding

terms of type (tα)MN A[µ
M [δ1, δ2]Aν]

N in the action of gauge transformations (2.19) and

diffeomorphisms (2.34), by virtue of the closure of the algebra (C.2) on the vector fields.

We can thus in the following ignore all terms that carry explicit gauge fields Aµ
M . With

some calculation the various remaining terms organize into

[δ1, δ2]Bµνα = −8

3
(tα)

PQ
(
− VP ABVQCD ǭ[A2 γµν PρBCD]Eγρǫ1E (C.5)

+ 2VP BCVQAC ǭ2A γ[µDν]ǫ
B
1

− 6iVP ABVQCD ǭ[A2 γµν VMBC ∇̂M ǫ
D]
1

− 4iVP BCVQAC ǭ2Aγ[µVMBD ∇̂M (γν]ǫ1D) + c.c.
)
− (1 ↔ 2)

= 2D[µΞν]α +
1

3
(tα)

PQ VP ABVQCD PσABCD eεµνρσ ξ
ρ + (tα)MN ΛMFµνN

− 32

3
(tα)

PQ ∂M
(
iVPACVQBCVMBD ǭ

A
2 γµνǫ

D
1 + c.c.

)

− 4

3
(tα)

PQ
(
− 12VP CD ǭC2 γµν∂QǫD1 + 4iVPACVN CD∂QVN DB ǭ

A
2 γµνǫ

B
1

+ 3VP CDΩQρσ ǭC2 γµνγρσǫD1 + c.c. − (1 ↔ 2)
)

= 2D[µΞν]α + ξρHρµνα + (tα)MN ΛMFµνN + ∂MΩµν
M

α + (tα)M
NΩµνN

M ,
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with the gauge parameters ΛM and Ξµα defined in (3.37) above, and the shift pa-

rameters Ωµν
M

α, ΩµνN
M given in (3.42). Finally, we have used the first-order duality

equations (2.39) for the last equality in (C.5) in order to reproduce on-shell the transfor-

mation (2.34) under external diffeomorphisms. Together, we confirm the supersymmetry

algebra (3.35) on the two-forms Bµν α.
Closure of the supersymmetry algebra on the vector fields and two-forms Bµνα thus

has not only determined the supersymmetry transformation rules but also uniquely fixed

all the gauge parameters appearing on the right hand side of (3.35). The remaining com-

mutator for the constrained two-forms Bµν M thus becomes a consistency check of the entire

construction with no more free or adjustable parameters to be determined. Indeed, clo-

sure of two supersymmetry transformations on Bµν M into (3.35) can be shown by a rather

lengthy calculation of which we will give only a few essential ingredients here.

As for Bµνα, we can consistently ignore all terms that carry explicit gauge fields Aµ
M

which separately organize into the correct contributions due to closure (C.2) on the vector

fields. After some calculation, we then find for the remaining commutator

[δǫ1 , δǫ2 ]Bµν M = 2D[µΞν]M − 4i ξρ eεµνρσ RMτ
στ

− 2i eεµνρ
σ Dρ

(
gσλ∂Mξ

λ
)
− 2

3
eεµνρσ PρABCD VPABDMVP CD ξσ

+
128

3
i ǭ

(A
2 γ[µ∇̂L(γν]ǫ

B)
1 )DMVKCAVLBDVKCD + c.c.

− 64i ǭC2 ǫ
D
1 e[µ

α∇̂Keν]αVKABVNABDMVNCD + c.c.

+ 64VKCD ǭC2 γ[µD̂M∇̂K(γν]ǫ
D
1 )) + c.c.

− 64DM ǭ
C
2 γ[µ VKCD∇̂K(γν]ǫ

D
1 ) + c.c.

− 16iΩMN Fρ[µN ǭC2 γρ∇̂K(γν]ǫ
D
1 )VKCD + c.c.

− 16 eεµνρ
σ∇M

(
ǭC2 γ

ρVNCD∇̂N (γσǫ
D
1 )
)
+ c.c. . (C.6)

Here the curvature in the second term refers to the curvature of the corresponding spin

connections

RMτ
στ ≡ eα

σeβ
ρ
(
∂M ωρ

αβ −D[A,ω]ρ ωM
αβ
)

= eα
σeβ

ρ
(
∂Mωρ

αβ −Dρ

(
eτ [α∂Meτ

β]
))

. (C.7)

In the calculation of (C.6), we have made use of

DMVLAB =
2i

3
VKCDDMVKC[BVLA]D − iVLCDVKCDDMVKAB , (C.8)

⇐⇒ VPAB ΓMP
L =

2i

3
VKCDVPC[AVLB]D ΓMK

P + iVLCDVKCDVPAB ΓMK
P ,

as well as

8i eεµνρ
σ ∂M

(
ǭA2 γ

ρDσǫ1A
)
+ c.c. = 8i eεµνρ

σ ∂M∇σ

(
ǭA2 γ

ρǫ1A
)

(C.9)

= 8i eεµνρ
σ∇σ∂M

(
ǭA2 γ

ρǫ1A
)
+ 2i eεµνρ

σ ∂MΓστ
ρξτ

= −2i eεµνρ
σ Dρ

(
gσλ∂Mξ

λ
)
+ 2i eεµνστ RMρ

στ ξρ ,
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and

32i
(
ǭA2 γ[µ[Dν], D̂M ]spin ǫ1A − c.c.

)
= −2ieεαβ[µ|ρξ

ρ R̂M |ν]
αβ + c.c.

= −4ieεαβ[µ|ρξ
ρRM |ν]

αβ − 2ΩMNξ
ρD[µFν]ρN

= −4ieεµντρξ
ρRMσ

στ − 2ieεµνστξ
ρRMρ

στ

− 2ΩMNξ
ρD[µFν]ρN . (C.10)

Let us start by considering the first five terms of (C.6). After some further calculation

and upon using the first-order duality equation (2.39), they reduce to

−→ 2D[µΞν]M − 4i ξρ eερµνσRMτ
στ

− 2i eεµν
ρσ Dρ

(
gσλ∂Mξ

λ
)
− 2

3
eεµνρσ PρABCD VPABDMVP CD ξσ

= 2D[µΞν]M + 2iξρ eερµνσ

(
ĴM

σ +
1

3
PσABCD pM ABCD

)

− 2i eεµνρ
σ Dρ

(
gσλ∂Mξ

λ
)

= 2D[µΞν]M + ξρHρµν M − 2i eεµνρσg
στ Dρ

(
gτλ ∂Mξ

λ
)
. (C.11)

This exactly reproduces the expected transformation of Bµν M under external diffeomor-

phisms (2.34). Next, we collect all FM terms on the right hand side of (C.6). This yields

[δ1, δ2]Bµν M
∣∣∣
F
=

8

3
VNCBVKCD DMVKDA ǭA2 γ[µγρσγν]ǫ1B FρσN

− 4VPABDMVP CD ǭA2 γµν γρσǫB1 VNCDFρσN

− 4i ǭA2 γ[µDM

(
γρσγν]ǫ1

B FρσNVNAB
)

+ 4iDM ǭ
A
2 γ[µ γ

ρσγν]ǫ1
B FρσNVNAB

+ i eεµνρ
σ DM

(
ǭA2 γ

ργλτγσǫ1
B FλτNVNAB

)
+ c.c. . (C.12)

After some further calculation, these terms may be brought into the form

= −32

3
VKCDDMVKAD FµνCB ǭA2 ǫ1B + 16VKCDDMVKABFµνCD ǭA2 ǫ1B

+ 8iFµνABDM (ǭA2 ǫ1
B)− 8iVKABVKCDDM (FµνAB)ǭC2 ǫ1D

= −8VKCDFµνCDDM (VKAB ǭA2 ǫ1B) + 8VKCDFµνCDDM (VKAB ǭA2 ǫ1B)
+ 8DM (VKCDFµνCD)VKAB ǭA2 ǫ1B − 8DM (VKCDFµνCD)VKAB ǭA2 ǫ1B

= FµνK∂MΛK − ΛK∂MFµνK , (C.13)

and precisely reproduce the gauge transformation (2.19) of the two-form Bµν M .

It remains to show that all the remaining terms in (C.6) combine into the Ω transfor-

mations of (2.21) with parameter Ωµν M
N from (3.42). This can be verified by a lengthy

but direct computation. In the course of this computation, it is useful to explicitly develop

the curvature

RMN
αβ ≡ 2∂[MωN ]

αβ + 2ω[M
αγωN ]γ

β

= eνγe
ρ[α∂[Meν

β]∂N ]eρ
γ − 1

2
gµν∂[Meν

α∂N ]eµ
β − 1

2
eναeµβ∂[Meν

γ∂N ]eµγ , (C.14)
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from which one obtains

RMNµν ≡ RMN
αβ eµαeνβ

= −1

2
gλκ∂[Mgµλ∂N ]gνκ = −1

2
gλκ∇[Mgµλ∇N ]gνκ . (C.15)

We conclude that the supersymmetry algebra consistently closes also on the field Bµν M .

D Non-exceptional gravity

In this appendix we will illustrate in terms of a simple example (taken from standard

differential geometry) how the difficulties encountered in constructing a fully covariant

connection can be understood and resolved in our framework. The main point will be that

fully covariant expressions can be obtained in terms of the D = 11 connections, but that

these cannot be written just in terms of the generalized vielbein and its ordinary derivatives

— unlike in ordinary differential geometry.

In standard differential geometry and in the absence of torsion, the spin connection is

defined as

ωmab = −1

2
em

c
(
Ωab c − Ωbc a − Ωca b

)

with coefficients of anholonomy

Ωab c ≡ ea
peb

q∂peqc − eb
pea

q∂peqc .

Now define the Cartan form

Smab ≡ ea
n∂menb ,

which is the analogue of V−1∂V in (3.23), and decompose this into a symmetric and an

antisymmetric part

qmab ≡ Sm [ab] , pmab ≡ Sm (ab) .

These are the same as the qmab and pmab in (4.14). Now a quick calculation shows that

ωmab = qmab −
(
ea
pem

cpp bc − eb
pem

cpp ac
)
≡ qmab − 2p[a b]m .

Under an arbitrary diffeomorphism, the non-covariant contributions are

∆ncqmab = e[a
req|b]∂m∂rξ

q , ∆ncpmab = e(a
req|b)∂m∂rξ

q

and these two contributions cancel in the variation of ωmab, as expected. So the spin

connection is indeed a covariant object under diffeomorphisms, and we also know that it

is the only such object that can be built from the vielbein and its derivative. Under local

SO(1,3) we have

δqmab = ∂mΛab + Λa
cqmcb + Λb

cqmac , δpmab = Λa
cpmcb + Λb

cpmac ,

so qmab and hence ωmab transform non-covariantly as SO(1,3) gauge fields, while pmab is

covariant under local SO(1,3).
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Next we repeat this calculation in the E7(7) formalism, replacing the siebenbein by the

56-bein VMAB of exceptional geometry. To simplify things we set A(3) = A(6) = 0, and

this will suffice to make clear our main point. Then the E7(7) 56-bein (whose components

are explicitly given in (4.4)–(4.7)) simplifies to

Vm8
AB =

1

8
∆−1/2ΓmAB , VmnAB =

1

8
∆−1/2ΓmnAB,

VmnAB =
i

4
∆1/2ΓmnAB , Vm8AB = − i

4
∆1/2ΓmAB. (D.1)

Note that Vm8
AB and VmnAB are imaginary, while Vm8AB and VmnAB are real (this is true

only in this particular SU(8) gauge). By direct computation we find

qmA
B =

2i

3
VN BC∂mVN CA =

1

2
qmabΓ

ab
AB,

pmABCD = −iVNAB∂mVN CD = −3

4
pmabΓ

a
[ABΓ

b
CD]. (D.2)

As a check on the coefficients we compute (this is the combination appearing in the variation

of the gravitino)

emACqmC
B − emCD pm

ABCD = −1

2
ωmab(Γ

mΓab)AB − 1

2
PmaaΓ

m
AB, (D.3)

which is indeed the correct result. The last term proportional to −1
2∆

−1∂m∆ is just

the density contribution proportional to Γpmp that is required because the supersymmetry

parameter ε is a density, showing again how the density contribution was absorbed into

the connections given in ref. [3].

With this information we can now compute

RM A
B =

4i

3

(
VN BCVMDEpN ACDE + VNACVMDEpN

BCDE
)

+
20i

27

(
VN DEVMBCpN ACDE + VNDEVM ACpN

BCDE
)

− 7i

27
δBA

(
VNCDVMEF pN CDEF + VNCDVM EF pN

CDEF
)
. (D.4)

This gives

RmA
B = −1

6
pa bmΓ

ab
AB +

5

54
pa abΓbmAB +

1

27
pa bbΓmaAB,

Rpq A
B = − 4i

27
∆−1pa a[pΓq]AB − i

3
∆−1p[p q]aΓ

a
AB +

7i

27
p[p aaΓq]AB,

RpqA
B =

1

3
pa b

[pΓ
q]ab
AB +

5

54
pa abΓ

bpq
AB − 1

27
pa bbΓ

apq
AB,

RmA
B = 0. (D.5)

The last component drops out because for this term the first two lines in (D.4) give some-

thing proportional to δBA , and hence are cancelled by the third term in the definition of

RM A
B. This shows very explicitly, that no matter how we combine expressions depend-

ing only on V and its derivative, there is no way of getting rid of pmab and replacing
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qmab → ωmab by such manipulations, without ‘breaking up’ the 56-bein V . In other words,

full covariance cannot be achieved in this way, but requires the explicit introduction ‘by

hand’ of the spin connection.

In principle we could extend the above calculation to non-vanishing form fields; but

this will be far more tedious than the calculation just presented (and the resulting expres-

sions will not be any prettier). Perhaps the only interesting aspect here is that, again,

there appears to be no combination of V ’s and ∂V ’s that would produce the fully anti-

symmetrized (exterior) derivatives on the 3-form and the 6-form field, and this is the

reason why the hook-like contributions in the affine connection are needed. It is therefore

very remarkable that the supersymmetric theory avoids this problem by picking precisely

the combinations (3.28) where these terms drop out.

E Covariant SU(8) connection

In this appendix we provide yet more evidence that an SU(8) connection satisfying all

desired covariance properties cannot be constructed in terms of only V and its derivative ∂V .
Namely, we will show by explicit computation how the SU(8) connection of section 3 can be

made to transform as a generalized vector under generalized diffeomorphisms, which implies

a unique expression for UM A
B in terms of V and its derivatives. However, the modifications

required to achieve this come at the price of destroying the covariance under SU(8).

Let the SU(8) connection be

QMA
B = qMA

B +RMA
B + UMA

B +WMA
B , (E.1)

with qMA
B, RMA

B, and WMA
B given by (3.23) and (3.24), and we make the following

choice for the undetermined part UMA
B

UMA
B ≡ −2

3
qMA

B +
2i

3

(
VM CDVNBCqNAD − VMCDVNACqNDB

)

− 34i

189

(
VM AC VNCDqNDB − VMBC VNCDqNAD

)

− 20i

189

(
VM AD VNBC qNCD − VMBD VNAC qNDC

)

− 2i

27
δBA
(
VM CD VNECqNED − VMCD VNECqNDE

)
. (E.2)

These are indeed all the objects that one can construct in terms of V and its derivative

∂V . However, while the first term qM A
B, RMA

B, and WMA
B have indeed the required

covariance properties of an SU(8) connection, the expression (E.2) for UM A
B does not, and

will therefore violate SU(8) covariance if general covariance requires such a contribution.

To see that the full connection can be made to transform covariantly under generalized

diffeomorphisms, consider the non-covariant contributions in the transformation of qM A
B

and pMABCD

∆ncqM A
B = 8iVNBC PKN

S
R ∂M∂SΛ

R VKCA, (E.3)

∆ncpM
ABCD = 12iVNAB PKN

S
R ∂M∂SΛ

R VKCD, (E.4)

– 45 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
4

where we have used

PMN
P
Q =

1

24

(
2δMQ δ

P
N + δMN δ

P
Q − ΩNQΩ

MP
)
+ (tα)NQ(t

α)MP (E.5)

and the section condition. Note that the covariant part of the transformations of qM and

pM contain a weight term. So in fact they transform as generalized tensor densities of

weight −1/2.

Furthermore,

∆ncRM A
B = VM CD

(
−8VNAEVR[BE|VS |CD] + 10 δ

[B|
A VN |CD|VS |EF ]VREF (E.6)

− 40

9
δCAVNEFVR[BD|VS |EF ] +

40

9
δCAVN [BD|VS|EF ]VREF

+
14

9
δABVNEFVR[EF |VS|CD] − 14

9
δABVN [EF |VS|CD]VREF

)
∂N∂SΛ

R + c.c. ,

where we have used equations (E.4), (A.3) and

VM [ABVNCD]∂M∂N · =
1

24
ǫABCDEFGHVM EFVN GH∂M∂N ·

which can be proved using identity (A.3) and the section condition. Now using,

VMACVNBC∂M∂N · =
1

8
δAB VMCDVNCD∂M∂N · , (E.7)

which holds by identity (A.2) and the section condition, equation (E.6) can be simplified to:

∆ncRM A
B =

−1

3
VM CD

(
4VN CD

[
VRAEVS BE+VSAEVRBE − 1

36
δBA
(
4VREFVS EF+7VSEFVREF

)]

+ 8VNBC
[
VRAEVS DE + VSAEVRDE

]
+

1

9
δCAVNEFVSEFVRBD

− 8

9
δCAVN DEVS BFVREF − 4

9
δCAVN BD

[
VREFVS EF − 5VSEFVREF

]

+
1

9
δBAVN EFVSEFVRCD+

8

9
δBAVN ECVS FDVREF

)
∂N∂SΛ

R+c.c. . (E.8)

Similarly, using identities (A.2) and (E.7)

∆ncUM A
B =

−1

3
VM CD

(
8VN CD

[
VRAEVS BE + VSAEVRBE − 1

9
δBA
(
VREFVS EF + VSEFVREF

)]

− 8VN BC
[
VRAEVS DE + VSAEVRDE

]
− 1

9
δCAVN EFVSEFVRBD

+
8

9
δCAVN DEVS BFVREF − 8

9
δCAVN BD

[
VREFVS EF + VSEFVREF

]

−1

9
δBAVN EFVSEFVRCD− 8

9
δBAVN ECVS FDVREF

)
∂N∂SΛ

R+c.c. . (E.9)
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It is straightforward to verify that

∆nc
(
RM A

B + UM A
B
)
=

− 4VM CD

(
VN CD

[
VRAEVS BE+VSAEVRBE−

1

36
δBA
(
4VREFVS EF+5VSEFVREF

)]

−1

9
δCAVN BD

[
VREFVS EF − VSEFVREF

])
∂N∂SΛ

R + c.c. ,

= 8
(
VM CDVN CD − VMCDVNCD

)
PPQ

S
R VPAEVQBE ∂N∂SΛR

− 4i

9

[
VMACVNBC + VMACVNBC − 1

8
δBA
(
VMCDVNCD + VMCDVNCD

)]
∂N∂SΛ

S ,

= −∆ncqmA
B −∆ncWmA

B. (E.10)

Therefore, QM A
B defined in equation (E.1) is a generalized tensor density of weight −1/2.

However, as the term UM A
B itself depends on qM A

B in a definite manner, the total SU(8)

connection no longer transforms properly under SU(8). As we explained, this conclusion

can only be evaded if one drops the assumption that all parts of QM should be expressible

in terms of V and ∂MV .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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