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Abstract. Many geophysical quantities, such as atmospheric

temperature, water levels in rivers, and wind speeds, have

shown evidence of long memory (LM). LM implies that these

quantities experience non-trivial temporal memory, which

potentially not only enhances their predictability, but also

hampers the detection of externally forced trends. Thus, it

is important to reliably identify whether or not a system ex-

hibits LM. In this paper we present a modern and systematic

approach to the inference of LM. We use the flexible autore-

gressive fractional integrated moving average (ARFIMA)

model, which is widely used in time series analysis, and of

increasing interest in climate science. Unlike most previous

work on the inference of LM, which is frequentist in nature,

we provide a systematic treatment of Bayesian inference. In

particular, we provide a new approximate likelihood for ef-

ficient parameter inference, and show how nuisance param-

eters (e.g., short-memory effects) can be integrated over in

order to focus on long-memory parameters and hypothesis

testing more directly. We illustrate our new methodology on

the Nile water level data and the central England temperature

(CET) time series, with favorable comparison to the standard

estimators. For CET we also extend our method to seasonal

long memory.

1 Introduction

Many natural processes are sufficiently complex that a

stochastic model is essential, or at the very least an effi-

cient description (Watkins, 2013). Such a process will be

specified by several properties, of which a particularly im-

portant one is the degree of memory in a time series, often

expressed through a characteristic autocorrelation time over

which fluctuations will decay in magnitude. In this paper,

however, we are concerned with specific types of stochastic

processes that are capable of possessing long memory (LM)

(Beran, 1994a; Palma, 2007; Beran et al., 2013). Long mem-

ory is the notion of there being correlation between the

present and all points in the past. A standard definition (Be-

ran, 1994a; Palma, 2007; Beran et al., 2013) is that a (finite

variance, stationary) process has long memory if its autocor-

relation function (ACF) has power-law decay: ρ(·) such that

ρ(k)∼ cρ k
2d−1 as k→∞, for some non-zero constant cρ ,

and where 0<d < 1
2

. The parameter d is the memory pa-

rameter; if d = 0 the process does not exhibit long memory,

while if − 1
2
<d < 0 the process is said to be anti-persistent.

The asymptotic power-law form of the ACF corresponds

to an absence of a characteristic decay timescale, in strik-

ing contrast to many standard (stationary) stochastic pro-

cesses where the effect of each data point decays so fast that

it rapidly becomes indistinguishable from noise. An exam-
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ple of the latter is the exponential ACF, where the e-folding

timescale sets a characteristic correlation time. The study of

processes that do possess long memory is important because

they exhibit unusual properties, because many familiar math-

ematical results fail to hold, and because of the numerous

examples of data sets where LM is seen.

The study of long memory originated in the 1950s in the

field of hydrology, where studies of the levels of the Nile

(Hurst, 1951) demonstrated anomalously fast growth of the

rescaled range of the time series. After protracted debates1

about whether this was a transient (finite time) effect, the

mathematical pioneer Benoît B. Mandelbrot showed that if

one retained the assumption of stationarity, novel mathemat-

ics would then be essential to sufficiently explain the Hurst

effect. In doing so he rigorously defined the concept of long

memory (Mandelbrot and Van Ness, 1968; Mandelbrot and

Wallis, 1968).

Most research into long memory and its properties has

been based on classical statistical methods, spanning para-

metric, semi-parametric, and non-parametric modeling (see

Beran et al., 2013, for a review). Very few Bayesian meth-

ods have been studied, most probably due to computational

difficulties. The earliest works are parametric and include

Koop et al. (1997), Pai and Ravishanker (1998), and Hsu

and Breidt (2003). If computational challenges could be mit-

igated, the Bayesian paradigm would offer advantages over

classical methods including flexibility in specification of pri-

ors (i.e., physical expertise could be used to elicit an infor-

mative prior). It would offer the ability to marginalize out as-

pects of a model apparatus and data, such as short-memory or

seasonal effects and missing observations, so that statements

about long-memory effects can be made unconditionally.

Towards easing the computational burden, we focus

on the autoregressive fractional integrated moving aver-

age (ARFIMA) class of processes (Granger and Joyeux,

1980; Hosking, 1981) as the basis of developing a system-

atic and unifying Bayesian framework for modeling a vari-

ety of common time series phenomena, with particular em-

phasis on (marginally) detecting potential long-memory ef-

fects (i.e., averaging over short-memory and seasonal ef-

fects). ARFIMA has become very popular in statistics and

econometrics because it is generalizable and its connection

to the autoregressive moving average (ARMA) family and

to fractional Gaussian noise is relatively transparent. A key

property of ARFIMA is its ability to simultaneously yet sep-

arately model long and short memory.

Here we present a Bayesian framework for the efficient

and systematic estimation of the ARFIMA parameters. We

provide a new approximate likelihood for ARFIMA pro-

cesses that can be computed quickly for repeated evaluation

on large time series, and which underpins an efficient Markov

chain Monte Carlo (MCMC) scheme for Bayesian inference.

1For a detailed exposition of this period of mathematical history,

see Graves et al. (2014).

Our sampling scheme can be best described as a modern-

ization of a blocked MCMC scheme proposed by Pai and

Ravishanker (1998) – adapting it to the approximate likeli-

hood and extending it to handle a richer form of (known)

short-memory effects. We then further extend the analysis to

the case where the short-memory form is unknown, which

requires trans-dimensional MCMC, in which the model or-

der (the p and q parameters in the ARFIMA model) varies

and, thus, so does the dimension of the problem. This as-

pect is similar to the work of Ehlers and Brooks (2008), who

considered the simpler autoregressive-integrated moving av-

erage (ARIMA) model class, and to Holan et al. (2009), who

worked with a non-parametric long-memory process. Our

contribution has aspects in common with Eğri˙oğlu and Gü-

nay (2010), who presented a more limited method focused

on model selection rather than averaging. The advantage of

averaging is that the unknown form of short-memory effects

can be integrated out, focusing on long memory without con-

ditioning on nuisance parameters.

The aim of this paper is to introduce an efficient

Bayesian algorithm for the inference of the parameters of the

ARFIMA(p,d,q) model, with particular emphasis on the LM

parameter d. Our Bayesian inference algorithm has been de-

signed in a flexible fashion so that, for instance, the innova-

tions can come from a wide class of different distributions,

e.g., α stable or t distribution (to be published in a com-

panion paper). The remainder of the paper is organized as

follows. Section 2 discusses the important numerical calcu-

lation of likelihoods, representing a hybrid between earlier

classical statistical methods and our new contributions to-

wards a full-Bayesian approach. Section 3 describes our pro-

posed Bayesian framework and methodology in detail, focus-

ing on long memory only. Then, in Sect. 4, we consider ex-

tensions for additional short memory and the computational

techniques required to integrate them out. Empirical illustra-

tion and comparison of all methods is provided in Sect. 5 via

synthetic and real data including the Nile water level data and

the central England temperature (CET) time series, with fa-

vorable comparison to the standard estimators. In the case of

the Nile data, we find strong evidence for long memory. The

CET analysis requires a slight extension to handle seasonal

long memory, and we find that the situation here is more nu-

anced in terms of evidence for long memory. The paper con-

cludes with a discussion in Sect. 7 focused on the potential

for further extension.

2 Likelihood evaluation for Bayesian inference

2.1 ARFIMA model

We provide here a brief review of the ARFIMA model. More

details are given in Appendix A.
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An ARFIMA model is given by

8(B)(1−B)dXt =2(B)εt . (1)

We define the backshift operator B, where

BXt =Xt−1, and powers of B are defined iteratively:

BkXt =Bk−1Xt−1= ·· ·=Xt−k . 8 is the autoregressive

component and 2 is the moving average component and

constitute the short-memory components of the ARFIMA

model. These are defined in more detail in Appendix A and

in Graves (2013).

2.2 Likelihood function

For now, we restrict our attention to a Bayesian analysis of

an ARFIMA(0,d ,0) process, having no short-ranged ARMA

components (p= q = 0), placing emphasis squarely on the

memory parameter d . As we explain in our Appendix, the

resulting process is identical to a fractionally integrated pro-

cesses with memory parameter d .

Here we develop an efficient and new scheme for eval-

uating the (log) likelihood, via approximation. Throughout,

the reader should suppose that we have observed the vector

x= (x1, . . . , xn)
> as a realization of a stationary, causal and

invertible ARFIMA(0,d ,0) process {Xt } with mean µ∈R.

The innovations will be assumed to be independent, and

taken from a zero-mean location-scale probability density

f (·; 0, σ , λ), which means the density can be written as f (x;

δ, σ , λ)≡ 1
σ
f ( x−δ

σ
; 0, 1, λ). The parameters δ and σ are

called the location and scale parameters, respectively. Them-

dimensional λ is a shape parameter (if it exists, i.e., m> 0).

A common example is the Gaussian N (µ, σ 2), where δ≡µ

and there is no λ. We classify the four parameters µ, σ , λ,

and d into three distinct classes: (1) the mean of process,

µ; (2) innovation distribution parameters, υ = (σ , λ); and

(3) memory structure, d. Together, ψ = (µ, υ, ω), where ω

will later encompass the short-range parameters p and q.

Our proposed likelihood approximation uses a truncated

autoregressive model (AR) (∞) approximation (cf. Haslett

and Raftery, 1989). We first re-write the AR(∞) approx-

imation of ARFIMA(0,d,0) to incorporate the unknown

parameter µ, and drop the (d) superscript for conve-

nience: Xt −µ= εt −
∞∑
k=1

πk(Xt−k −µ). Then we truncate

this AR(∞) representation to obtain an AR(P ) one, with P

large enough to retain low frequency effects, e.g., P = n. We

denote5P =
P∑
k=0

πk and, with π0= 1, rearrange terms to ob-

tain the following modified model:

Xt = εt +5Pµ−

P∑
k=1

πkXt−k. (2)

It is now possible to write down a conditional likeli-

hood. For convenience the notation xk = (x1, . . . , xk)
> for

k= 1, . . . , n will be used (and x0 is interpreted as appro-

priate where necessary). Denote the unobserved P vector

of random variables (x1−P , . . . , x−1, x0)
> by xA (in the

Bayesian context these will be auxiliary, hence “A”). Con-

sider the likelihood L(x|ψ) as a joint density, which can be

factorized as a product of conditionals. Writing gt (xt |xt−1,

ψ) for the density of Xt conditional on xt−1, we obtain

L(x|ψ)=
∏n
t=1 gt (xt |xt−1, ψ).

This is still of little use because the gt may have a com-

plicated form. However, by further conditioning on xA, and

writing ht (xt |xA, xt−1, ψ) for the density of Xt conditional

on xt−1 and xA, we obtain L(x|ψ , xA)=
∏n
t=1 ht (xt |xA,

xt−1, ψ). Returning to Eq. (2) observe that, conditional

on both the observed and unobserved past values, Xt is

simply distributed according to the innovations’ density f

with a suitable change in location: Xt |xt−1, xA∼ f (·;

[5P µ−
P∑
k=1

πk xt−k], σ , λ). Then using location-scale rep-

resentation:

ht (xt |xA,xt−1,ψ)≈ f

(
xt ;

[
5Pµ−

P∑
k=1

πkxt−k

]
,σ,λ

)

≡
1

σ
f

(
ct −5Pµ

σ
;0,1,λ

)
,

where ct =

P∑
k=0

πkxt−k, t = 1, . . .,n. (3)

Therefore, L(x|ψ , xA)≈ σ−n
∏n
t=1 f

(
ct −5Pµ

σ
; λ
)

, or

equivalently

`(x|ψ,xA)≈−n logσ +

n∑
t=1

log

{
f

(
ct −5Pµ

σ
;λ

)}
. (4)

Evaluating this expression efficiently depends upon ef-

ficient calculation of c= (c1, . . . , cn)
t and log f (·). From

Eq. (3), c is a convolution of the augmented data, (x, xA), and

coefficients depending on d, which can be evaluated quickly

in the R language for statistical computing via convolve

via fast Fourier transform (FFT). Consequently, evaluation

of the conditional on xA likelihood in the Gaussian case

costs only O(n log n) – a clear improvement over the ex-

act method. Obtaining the unconditional likelihood requires

marginalization over xA, which is analytically infeasible.

However, this conditional form will suffice in the context of

our Bayesian inferential scheme, presented below.

3 A Bayesian approach to long-memory inference

We are now ready to consider Bayesian inference for

ARFIMA(0,d ,0) processes. Our method can be succinctly

described as a modernization of the blocked MCMC method

of Pai and Ravishanker (1998). Isolating parameters by

blocking provides significant scope for modularization,
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which helps to accommodate our extensions for short mem-

ory. Pairing with efficient likelihood evaluations allows much

longer time series to be entertained than ever before. Our de-

scription begins with the appropriate specification of priors,

which are more general than previous choices, yet still en-

courages tractable inference. We then provide the relevant

updating calculations for all parameters, including those for

auxiliary parameters xA.

We follow earlier work (Koop et al., 1997; Pai and Rav-

ishanker, 1998) and assume a priori independence for com-

ponents of ψ . Each component will leverage familiar prior

forms with diffuse versions as limiting cases. Specifically,

we use a diffuse Gaussian prior on µ: µ∼N (µ0, σ 2
0 ),

with σ0 large. The improper flat prior is obtained as the

limiting distribution when σ0→∞: pµ(µ)∝ 1. We place

a gamma prior on the precision τ = σ−2 implying a root-

inverse gamma distribution R(α0, β0) for σ , with den-

sity f (σ)= 2
0(α)

β0
α0 σ−(2α0+1) exp

(
−
β0

y2

)
, σ > 0. A dif-

fuse/improper prior is obtained as the limiting distribution

when α0, β0→ 0: pσ (σ )∝ σ
−1, which, in the asymptotic

limit, is equivalent to a log uniform prior. Finally, we specify

d ∼U(− 1
2

, 1
2

).

Updating µ: following Pai and Ravishanker (1998), we use

a symmetric random walk (RW) Metropolis–Hastings (MH)

update with proposals ξµ∼N (µ, σ 2
µ), for some σ 2

µ. The ac-

ceptance ratio is

Aµ
(
µ,ξµ

)
=

n∑
t=1

log

{
f

(
ct −5P ξµ

σ
;λ

)}

−

n∑
t=1

log

{
f

(
ct −5Pµ

σ
;λ

)}
+ log

[
pµ
(
ξµ
)

pµ(µ)

]
(5)

under the approximate likelihood.

Updating σ : we diverge from Pai and Ravishanker (1998)

here, who suggest independent MH with moment-matched

inverse gamma proposals, finding poor performance un-

der poor moment estimates. We instead prefer a RW MH

approach, which we conduct in log space since the do-

main is R+. Specifically, we set: log ξσ = log σ + υ, where

υ ∼N (0, σ 2
σ ) for some σ 2

σ . ξσ |σ is log-normal and we ob-

tain
q(σ ;ξσ )
q(ξσ ;σ)

=
ξσ
σ

. Recalling Eq. (5), the MH acceptance ratio

under the approximate likelihood is

Aσ (σ,ξσ )=

n∑
t=1

log

{
f

(
ct −5Pµ

ξσ
;λ

)}

−

n∑
t=1

log

{
f

(
ct −5Pµ

σ
;λ

)}
+ log

[
pσ (ξσ )

pσ (σ )

]
+ (n− 1) log

[
σ

ξσ

]
.

The MH algorithm, applied alternately in a Metropolis-

within-Gibbs fashion to the parameters µ and σ , works well.

However, actual Gibbs sampling is an efficient alternative in

this two-parameter case (i.e., for known d; see Graves, 2013).

Update of d: updating the memory parameter d is

far less straightforward than either µ or σ . Regardless

of the innovations’ distribution, the conditional posterior

πd|ψ−d (d|ψ−d ,x) is not amenable to Gibbs sampling. We

use RW proposals from truncated Gaussian ξd ∼N (a,b)(d ,

σ 2
d ), with density

f (x;µ,σ,a,b)=
1

σ

φ(N )[(x−µ)/σ ]

8(N )[(b−µ)/σ ] −8(N )[(a−µ)/σ ],

a < x < b, (6)

where 8(N ) and φ(N ) are the standard normal cu-

mulative density function (CDF) and probability den-

sity function (PDF), respectively. In particular, we use

ξd |d ∼N (−1/2,1/2)(d , σ 2
d ) via rejection sampling from N (d ,

σ 2
d ) until ξd ,∈ (− 1

2
, 1

2
). Although this may seem inefficient, it

is perfectly acceptable; for example, if σd = 0.5 the expected

number of required variates is still less than 2, regardless of

d . More refined methods of directly sampling from truncated

normal distributions exist – see for example Robert (1995) –

but we find little added benefit in our context.

A useful cancellation in q(d; ξd)/q(ξd ; d) obtained from

Eq. (6) yields

Ad = `
(
x|ξd ,ψ−d

)
− `

(
x|d,ψ−d

)
+ log

[
pd (ξd)

pd(d)

]

+ log

 8(N )
[(

1
2
− d

)
/σd

]
−8(N )

[(
−

1
2
− d

)
/σd

]
8(N )

[(
1
2
− ξd

)
/σd

]
−8(N )

[(
−

1
2
− ξd

)
/σd

]
 .

Denote ξct =
P∑
k=0

ξπk xt−k for t = 1, . . . , n, where {ξπk } are

the proposed coefficients {π
(ξd )
k }; π

(d)
k =

1
0(k+1)

0(k−d)
0(−d)

; fur-

thermore, ξ5P −
P∑
k=0

ξπk . Then in the approximate case

Ad =

n∑
t=1

log

{
f

(
ξct − ξ5Pµ

σ
;λ

)}

−

n∑
t=1

log

{
f

(
ct −5Pµ

σ
;λ

)}
+ log

[
pd (ξd)

pd(d)

]

+ log

 8(N )
[(

1
2
− d

)
/σd

]
−8(N )

[(
−

1
2
− d

)
/σd

]
8(N )

[(
1
2
− ξd

)
/σd

]
−8(N )

[(
−

1
2
− ξd

)
/σd

]
 . (7)

Optional update of xA: when using the approximate like-

lihood method, one must account for the auxiliary variables

xA, a P vector (e.g., P = n). We find that, in practice, it is

not necessary to update all the auxiliary parameters at each

iteration. In fact the method can be shown to work perfectly

well, empirically, if we never update them, provided they are

given a sensible initial value (such as the sample mean of

the observed data x). This is not an uncommon tactic in the

long-memory (big-n) context (e.g., Beran, 1994b); for fur-

ther discussion refer to Graves (2013, Appendix C).
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For a full-MH approach, we recommend an inde-

pendence sampler to backward project the observed

time series. Specifically, first relabel the observed data:

y−i = xi+1, i= 0, . . . n− 1; furthermore, use the vec-

tor (y−(n−1), . . . , y−1, y0)
t to generate a new vec-

tor of length n, (Y1, . . . , Yn)
t where Yt via Eq. (2):

Yt = εt +5P µ−
n∑
k=1

πk Yt−k , where the coefficients {π} are

determined by the current value of the memory parameter(s).

Then take the proposed xA, denoted ξxA
, as the reverse se-

quence: ξx−i = yi+1, i= 0, . . . , n− 1. Since this is an inde-

pendence sampler, calculation of the acceptance probability

is straightforward. It is only necessary to evaluate the pro-

posal density q(ξxA
|x, ψ). But this is easy using the results

from Sect. 2. For simplicity, we prefer uniform prior for xA.

Besides simplicity, justification for this approach lies pri-

marily in is preservation of the autocorrelation structure –

this is clear since the ACF is symmetric in time. The pro-

posed vector has a low acceptance rate, and the potential

remedies (e.g., multiple-try methods) seem unnecessarily

complicated given the success of the simpler method.

4 Extensions to accommodate short memory

Simple ARFIMA(0,d ,0) models are mathematically conve-

nient but have limited practical applicability because the en-

tire memory structure is determined by just one parameter,

d . Although d is often of primary interest, it may be unre-

alistic to assume no short-memory effects. This issue is of-

ten implicitly acknowledged since semi-parametric estima-

tion methods, such as those used as comparators in Sect. 5.1,

are motivated by a desire to circumvent the problem of spec-

ifying precisely (and inferring) the form of short memory

(i.e., the values of p and q in an ARIMA model). Full

parametric Bayesian modeling of ARFIMA(p,d ,q) processes

represents an essentially untried alternative, primarily due

to computational challenges. Related, more discrete, alterna-

tives show potential. Pai and Ravishanker (1998) considered

all four models with p, q ≤ 1, whereas Koop et al. (1997)

considered 16 with p, q ≤ 3.

Such approaches, especially ones allowing larger p, q, can

be computationally burdensome as much effort is spent mod-

eling unsuitable processes towards a goal (inferring p, q),

which is not of primary interest (d is). To develop an ef-

ficient, fully parametric, Bayesian method of inference that

properly accounts for varying models, and to marginalize

out these nuisance quantities, we use reversible-jump (RJ)

MCMC (Green, 1995). We extend the parameter space to

include the set of models (p and q), with chains moving

between (i.e., changing p and/or q) and within (sampling

φ and θ given particular fixed p and q) models, and fo-

cus on the marginal posterior distribution of d obtained

by (Monte Carlo) integration over all models and param-

eters therein. RJ methods, which mixes so-called trans-

dimensional, between-model moves with the conventional

within-model ones, have previously been applied to both

autoregressive models (Vermaak et al., 2004), and full-

ARMA models (Ehlers and Brooks, 2006, 2008). In the long-

memory context, Holan et al. (2009) applied RJ to fractional

exponential processes (FEXP). However for ARFIMA, the

only related work we are aware of is by Eğri˙oğlu and Günay

(2010) who demonstrated a promising if limited alternative.

Below we show how the likelihood may be calculated with

extra short-memory components when p and q are known,

and subsequently how Bayesian inference can be applied in

this case. Then, the more general case of unknown p and q

via RJ is described. The result is a Monte Carlo inferential

scheme that allows short-memory effects to be marginalized

out when summarizing inferences for the main parameter of

interest: d, for long memory.

4.1 Likelihood derivation and inference for known

short memory

Recall that short-memory components of an ARFIMA pro-

cess are defined by the AR and moving average (MA) poly-

nomials, 8 and 2, respectively (see Sect. 2.1). Here, we dis-

tinguish between the polynomial,8, and the vector of its co-

efficients, φ= (φ1, . . . , φp). When the polynomial degree is

required explicitly, bracketed superscripts will be used:8(p),

φ(p), 2(p), θ (p).

We combine the short-memory parameters φ and θ with

d to create a single memory parameter, ω= (φ, θ , d).

For a given unit-variance ARFIMA(p,d,q) process, we de-

note its autocovariance (ACV) by γω(·), with γd(·) and γφ ,

θ(·) those of the relevant unit-variance ARFIMA(0,d,0) and

ARMA(p,q) processes, respectively. The spectral density

function (SDF) of the unit-variance ARFIMA(p,d,q) process

is written as fω(·), and its covariance matrix is 6ω.

An exact likelihood evaluation requires an explicit calcu-

lation of the ACV γω(·); however, there is no simple closed

form for arbitrary ARFIMA processes. Fortunately, our pro-

posed approximate likelihood method of section 2 can be

ported over directly. Given the coefficients {π
(d)
k } and poly-

nomials8 and2, it is straightforward to calculate the {π
(ω)
k }

coefficients required by again applying the numerical meth-

ods of Brockwell and Davis (1991, Sect. 3.3).

To focus the exposition, consider the simple, yet useful,

ARFIMA(1,d,0) model where the full memory parameter is

ω= (d, φ1). Because the parameter spaces of d and φ1 are

independent, it is simplest to update each of these parame-

ters separately; d with the methods of Sect. 3 and φ1 sim-

ilarly: ξφ1
|φ1∼N (−1,1)(φ1, σ 2

φ1
), for some σ 2

φ1
. In practice

however, the posteriors of d and φ1 typically exhibit signifi-

cant correlation so independent proposals are inefficient. One

solution would be to parametrize to some d∗ and orthogo-

nal φ∗2 , but the interpretation of d∗ would not be clear. An

alternative to explicit reparametrization is to update the pa-

rameters jointly, but in such a way that proposals are aligned
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with the correlation structure. This will ensure a reasonable

acceptance rate and mixing.

To propose parameters in the manner described above, a

two-dimensional, suitably truncated Gaussian random walk,

with covariance matrix aligned with the posterior covari-

ance, is required. To make proposals of this sort, and indeed

for arbitrary ω in larger p and q cases, requires sampling

from a hypercuboid-truncated multivariate normal (MVN)

N (a,b)
r (ω, 6ω), where (a, b) describe the coordinates of the

hypercube. We find that rejection sampling-based uncon-

strained similarly parametrized MVN samples (e.g., using

mvtnorm, Genz et al., 2012) works well, because in the RW

setup the mode of the distribution always lies inside the hy-

percuboid. Returning to the specific ARFIMA(1,d,0) case,

r = 2, b= (0.5, 1), and a=−b are appropriate choices. Cal-

culation of the MH acceptance ratio Aω(ω, ξω) is trivial;

it simply requires numerical evaluation of 8
(N )
r (·; ·, 6ω),

e.g., via mvtnorm, since the ratios of hypercuboid normal-

ization terms would cancel. We find that initial values φ[0]

chosen uniformly in C1; i.e., the interval (−1, 1), and d[0]

from {−0.4,−0.2, 0, 0.2, 0.4}work well. Any choice of prior

for ω can be made, although we prefer flat (proper) priors.

The only technical difficulty is the choice of proposal co-

variance matrix6ω. Ideally, it would be aligned with the pos-

terior covariance; however, this is not a priori known. We

find that running a pilot chain with independent proposals

via N (a,b)
r (ω, σ 2

ω Ir ) can help choose a 6ω. A rescaled ver-

sion of the sample covariance matrix from the pilot posterior

chain, following Roberts and Rosenthal (2001), works well

(see Sect. 5.2).

4.2 Unknown short-memory form

We now expand the parameter space to include models

M ∈M, the set of ARFIMA models with p and q short-

memory parameters, indexing the size of the parameter space

9(M). For our trans-dimensional moves, we only consider

adjacent models, on which we will be more specific later.

For now, note that the choice of bijective function map-

ping between model spaces (whose Jacobian term appears

in the acceptance ratio) is crucial to the success of the sam-

pler. To illustrate, consider transforming from8(p+1)
∈ Cp+1

down to 8(p) ∈ Cp. This turns out to be a non-trivial prob-

lem, however, because (for p> 1) Cp has a very compli-

cated shape. The most natural map would be (φ1, . . . , φp,

φp+1) 7−→ (φ1, . . . , φp). However, there is no guarantee that

the image will lie in Cp. Even if the model dimension is fixed,

difficulties are still encountered; a natural proposal method

would be to update each component of φ separately but, be-

cause of the awkward shape of Cp, the allowable values for

each component are a complicated function of the others.

Non-trivial proposals are required.

A potential approach is to parametrize in terms of the in-

verse roots (poles) of 8, as advocated by Ehlers and Brooks

(2006, 2008): by writing 8(z)=
∏p

i=1(1−αi z), we have

φ(p) ∈ Cp⇐⇒|αi |< 1 for all i. This looks attractive because

it transforms Cp into Dp =D× ·· ·×D (p times) where D

is the open unit disc, which is easy to sample from. But this

method has serious drawbacks when we consider the RJ step.

To decrease dimension, the natural map would be to remove

one of the roots from the polynomial. But because it is as-

sumed that 8 has real coefficients (otherwise the model has

no realistic interpretation), any complex αi must appear as

conjugate pairs. There is then no obvious way to remove a

root; a contrived method might be to remove the conjugate

pair and replace it with a real root with the same modulus;

however, it is unclear how this new polynomial is related to

the original, and to other aspects of the process, like ACV.

4.2.1 Reparametrization of 8 and 2

We therefore propose reparametrization 8 (and 2) using the

bijection between Cp and (−1, 1)p advocated by various au-

thors, e.g., Marriott et al. (1995) and Vermaak et al. (2004).

To our knowledge, these methods have not previously been

deployed towards integrating out short-memory components

in Bayesian analysis of ARFIMA processes.

Monahan (1984) defined a mapping φ(p)←→ϕ(p) recur-

sively as follows:

φ
(k−1)
i =

φ
(k)
i −φ

(k)
k φ

(k)
k−i

1−
(
φ
(k)
k

)2
, k = p,. . .,2, i = 1, . . .,k− 1. (8)

Then set ϕ
(p)
k =φ

(k)
k for k= 1, . . . , p. The reverse recursion

is given by

φ
(k)
i =

{
ϕ
(p)
k for i = k k = 1, . . ., p

φ
(k−1)
i +ϕ

(p)
k φ

(k−1)
k−i for i = 1, . . ., k− 1 k = 2, . . ., p

.

Note that φ
(p)
p =ϕ

(p)
p . Moreover, if p= 1, the two

parametrizations are the same, i.e., φ1=ϕ1 (consequently

the brief study of ARFIMA(1,d,0) in Sect. 4.1 fits in

this framework). The equivalent parametrized form for

θ is ϑ . The full memory parameter ω is parametrized

as �= (−1/2, 1/2)× (the image of Cp,q ). However, re-

call that in practice, Cp,q will be assumed equiva-

lent to Cp × Cq , so the parameter space is effectively

�= (−1/2, 1/2)× (−1, 1)p+q .

Besides mathematical convenience, this bijection has a

very useful property (Kay and Marple, 1981, cf.), which

helps motivate its use in defining RJ maps. If d = q = 0, using

this parametrization for ϕ when moving between different

values of p allows one to automatically choose processes that

have very closely matching ACFs at low lags. In the MCMC

context this is useful because it allows the chain to propose

models that have a similar correlation structure to the current

one. Although this property is nice, it may be of limited value

for full-ARFIMA models, since the proof of the main result

does not easily lend itself to the inclusion of either a MA or

long-memory component. Nevertheless, our empirical results
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similarly indicate a near match for a full-ARFIMA(p,d,q)

model.

4.2.2 Application of RJ MCMC to ARFIMA(p,d ,q)

processes

We now use this reparametrization to efficiently propose new

parameter values. Firstly, it is necessary to propose a new

memory parameter $ while keeping the model fixed. At-

tempts at updating each component individually suffer from

the same problems of excessive posterior correlation that

were encountered in Sect. 4.1. Therefore, the simultaneous

update of the entire r = (p+ q + 1)-dimensional parameter

$ is performed using the hypercuboid-truncated Gaussian

distribution from definition ξ$ |$ ∼N
Hr
r ($ , 6$ ), where

Hr defines the r-dimensional rectangle. The covariance ma-

trix 6$ is discussed in some detail below. The choice of

prior p$ (·) is arbitrary. Pai and Ravishanker (1998) used a

uniform prior for ω, which has an explicit expression in the

$ parametrization (Monahan, 1984). However, their expres-

sion is unnecessarily complicated since a uniform prior over

� holds no special interpretation. We therefore prefer uni-

form prior over �: p$ ($ )∝ 1, $ ∈�.

Now consider the between-model transition. We must first

choose a model prior pM(·). A variety of priors are possible;

the simplest option would be to have a uniform prior over

M, but this would of course be improper. We may in prac-

tice want to restrict the possible values of p, q to 0≤p≤P

and 0≤ q ≤Q for some P , Q (say 5), which would render

the uniform prior proper. However, even in this formulation,

a lot of prior weight is being put onto (larger) more com-

plicated models that, in the interests of parsimony, might

be undesired. As a simple representative of potential priors

that give greater weight to smaller models, we prefer a trun-

cated joint Poisson distribution with parameter λ: pM(p,

q)∝ λp+q

p!q!
I(p≤P , q ≤Q).

Now, denote the probability of jumping from model Mp,q

to model Mp′,q ′ by U(p,q),(p′,q ′). U could allocate non-

zero probability for every model pair, but for convenience

we severely restrict the possible jumps (while retaining ir-

reducibility) using a two-dimensional bounded birth and

death process. Consider the subgraph of Z2: G={(p,q):

0≤p≤P , 0≤ q ≤Q}, and allocate uniform non-zero prob-

ability only to neighboring values, i.e., if and only if

|p−p′| + |q − q ′| = 1. Each point in the body of G has four

neighbors, each point on the line boundaries has three, and

each of the four corner points has only two neighbors. There-

fore, the model transition probabilities U(p,q),(p′,q ′) are ei-

ther 1/4, 1/3, 1/2, or 0.

Now suppose the current (p+ q + 3)-dimensional param-

eter is ψ (p,q), given by ψ (p,q)= (µ, σ , d , ϕ(p), ϑ (q)), us-

ing a slight abuse of notation. Because the mathematical de-

tail of the AR and MA components are almost identical,

we consider only the case of decreasing/increasing p by 1

here; all of the following remains valid if p is replaced by

q, and ϕ replaced by ϑ . We therefore seek to propose a pa-

rameter ξ (p+1,q)
= (ξµ, ξσ , ξd , ξ (p+1)

ϕ , ξ
(q)
ϑ ), that is some-

how based on ψ (p,q). We further simplify by regarding the

other three parameters (µ, σ , and d) as having the same

interpretation in every model, choosing ξµ=µ, ξσ = σ and

ξd = d. For simplicity we also set ξ
(q)
ϑ =ϑ

(q). Now consider

the map ϕ(p)→ ξ (p+1)
ϕ . To specify a bijection, we match

dimensions by adding in a random scalar u. The most ob-

vious map is to specify u, so that its support is the in-

terval (−1, 1) and then set: ξ (p+1)
ϕ = (ϕ(p), u). The corre-

sponding map for decreasing the dimension ϕ(p+1)
→ ξ (p)ϕ

is ξ (p)ϕ = (ϕ
(p+1)

1 , . . . , ϕ
(p+1)
p ). We either add, or remove the

final parameter, while keeping all others fixed with the iden-

tity map, so the Jacobian is unity. The proposal q(u|ψ (p,q))

can be made in many ways – we prefer the simple U(−1,1).

With these choices the RJ acceptance ratio is

A= `(p′,q ′)

(
x|ξ (p

′,q ′)
)
− `(p,q)

(
x|ψ (p,q)

)
+ log

{
pM(p′,q ′)

pM(p,q)

U(p′,q ′),(p,q)

U(p,q),(p′,q ′)

}
,

which applies to both increasing and decreasing dimensional

moves.

Construction of 6$ : much of the efficiency of the above

scheme, including within- and between-model moves, de-

pends on the choice of 6$ ≡6
(p,q), the within-model move

RW proposal covariance matrix. We first seek an appropri-

ate 6(1,1), as in Sect. 4.1, with a pilot tuning scheme. That

matrix is shown on the left below, where we have blocked it

out

6(1,1) =

 σ 2
d σd,ϕ1

σd,ϑ1

σ 2
ϕ1

σϕ1,ϑ1

σ 2
ϑ1

 ,
6(p,q) =

 σ 2
d 6

(p)
d,ϕ 6

(q)
d,ϑ

6
(p)
ϕ ,ϕ(p) 6

(p)
ϕ ,ϑ (q)

6
(q)
ϑ ,ϑ (q)

 (9)

(where each block is a scalar), so that we can extend this idea

to the (p, q) case in the obvious way – on the right above –

where 6
(p)
ϕ , ϕ(p) is a p×p matrix,6

(q)
ϑ , ϑ (q) is a q × q ma-

trix, etc. If either (or both) p, q = 0 then the relevant blocks

are simply omitted. To specify the various sub-matrices, we

propose ϕ2, . . . , ϕp with equal variances, and independently

of d, ϕ1, ϑ1, (and similarly for ϑ2, . . . , ϑq ). In the context of

Eq. (9), the following holds true:

6
(p)
d,ϕ =

(
σd,ϕ1

0
)
,

6
(q)
d,ϑ =

(
σd,ϑ1

0
)
,
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Figure 1. Posterior outputs; (a) Bayesian estimate d̂(B) values on the y axis against the true dI on the x axis, (b) residuals d̂R
(B)

from the

Bayesian estimate from the truth against that truth, dI . Each “x” plotted represts one estimate or residual.

6(p)ϕ ,ϕ(p) =

(
σ 2
ϕ1

0

0 σ 2
ϕ Ip−1

)
,

6
(q)
ϑ ,ϑ (q) =

(
σ 2
ϑ1

0

0 σ 2
ϑIq−1

)
,

6(p)ϕ ,ϑ (q) =

(
σϕ1,ϑ1

0

.0 O

)
,

where the dotted lines indicate further blocking, 0 is a row

vector of zeros, and O is a zero matrix. This choice of 6ϕ is

conceptually simple, computationally easy and preserves the

positive definiteness as required (see Graves, 2013).

5 Empirical illustration and comparison

Here we provide empirical illustrations for the methods

above: for classical and Bayesian analysis of long-memory

models, and extensions for short memory. To ensure con-

sistency throughout, the location and scale parameters will

always be chosen as µI = 0 and σI = 1. Furthermore, un-

less stated otherwise, the simulated series will be of length

n= 210
= 1024. This is a reasonable size for many appli-

cations; it is equivalent to 85 years of monthly observa-

tions. When using the approximate likelihood method we set

P = n.

5.1 Long memory

Standard MCMC diagnostics were used throughout to en-

sure, and tune for, good mixing. Because d is the parame-

ter of primary interest, the initial values d[0] will be chosen

to systematically cover its parameter space, usually starting

five chains at the regularly spaced points {−0.4,−0.2, 0, 0.2,

0.4}. Initial values for other parameters are not varied: µ will

start at the sample mean x; σ at the sample standard deviation

of the observed series x.

5.1.1 Efficacy of approximate likelihood method

We start with the null case; i.e., how does the algorithm per-

form when the data are not from a long-memory process?

One hundred independent ARFIMA(0,0,0), or Gaussian

white noise, processes are simulated, from which marginal

posterior means, standard deviations, and credibility interval

end points are extracted. Table 1 shows averages over the

runs.

The average estimate for each of the three parameters is

less than a quarter of a standard deviation away from the

truth. Credibility intervals are nearly symmetric about the es-

timate and the marginal posteriors are, to a good approxima-

tion, locally Gaussian (not shown). Upon, applying a proxy

credible-interval-based hypothesis test, one would conclude

in 98 of the cases that d = 0 could not be ruled out. A similar

analysis for µ and σ shows that hypotheses µ= 0 and σ = 1

would each have been accepted 96 times. These results in-

dicate that the 95 % credibility intervals are approximately

correctly sized.

Next, consider the more interesting case of dI 6= 0. We re-

peat the above experiment except that 10 processes are gen-

erated with dI set to each of {−0.45,−0.35, . . . , 0.45}, giving

100 series total. Figure 1 shows a graphical analog of results

from this experiment. The plot axes involve a Bayesian resid-

ual estimate of d, d̂R
(B)

, defined as d̂R
(B)
= d̂(B)− dI , where

d̂(B) is the Bayesian estimate of d.

From the figure is clear that the estimator for d is perform-

ing well. Figure 1a shows how tight the estimates of d are

around the input value – recall that the parameter space for

d is the whole interval (− 1
2
, 1

2
). Moreover, Fig. 1b indicates

that there is no significant change of posterior bias or vari-

ance as dI is varied.

Next, the corresponding plots for the parameters σ and µ

are shown in Fig. 2. We see from Fig. 2a that the estimate of

σ also appears to be unaffected by the input value dI . The sit-
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Figure 2. Posterior outputs: (a) Bayesian estimated standard deviation σ̂ (B) against true dI values; (b) Bayesian estimated mean µ̂(B) against

dI ; and (c) uncertainty in the posterior for µ, the standard deviation σ̂µ
(B) against dI (semi-log scale). Each “x” plotted corresponds to an

estimate.

Table 1. Posterior summary statistics for an ARFIMA(0,0,0)

process. Results are based on averaging over 100 independent

ARFIMA(0,0,0) simulations for the long-memory parameter d,

mean µ and noise variance σ .

Mean SD 95 % CI

d 0.006 0.025 −0.042 0.055

µ −0.004 0.035 −0.073 0.063

σ 1.002 0.022 0.956 1.041

uation is different however in Fig. 2b for the location parame-

ter µ. Although the bias appears to be roughly zero for all dI ,

the posterior variance clearly is affected by dI . To ascertain

the precise functional dependence, consider Fig. 2c, which

shows, on a semi-log scale, the marginal posterior standard

deviation of µ, σ̂µ
(B) against dI .

It appears that the marginal posterior standard deviation

σ̂µ
(B) is a function of dI ; specifically, σ̂µ

(B)
∝AdI , for some

A. The constant A could be estimated via least-squares re-

gression. Instead however, inspired by asymptotic results in

literature concerning classical estimation of long-memory

processes (Beran, 1994a), we set A= n and plotted the best-

fitting such line (shown in Fig. 2c). Observe that, although

not fitting exactly, the relation σ̂µ
(B)
∝ ndI holds reasonably

well for dI ∈ (− 1
2

, 1
2

). Indeed, Beran (1994a) motivated long

memory in this way, and derived asymptotic consistency re-

sults for optimum (likelihood-based) estimators and found

indeed that the standard error for µ is proportional to nd−1/2

but the standard errors of all other parameters are propor-

tional to n−1/2.

5.1.2 Effect of varying time series length

We now analyze the effect of changing the time series

length. For this we conduct a similar experiment but fix

dI = 0 and vary n. The posterior statistics of interest are the

posterior standard deviations σ̂d
(B), σ̂µ

(B), and σ̂σ
(B). For

each n∈ {128= 27, 28, . . . , 214
= 16 384}, 10 independent

ARFIMA(0,0,0) time series are generated. The resulting pos-

terior standard deviations are plotted against n (on log–log

scale) in Fig. 3.

Observe that all three marginal posterior standard de-

viations are proportional to 1
√
n

, although the posterior of

µ is less reliable. Combining these observations with our

earlier deduction that σ
(B)
µ ∝ n

dI , we conclude that for an

ARFIMA(0,dI ,0) process of length n, the marginal posterior

standard deviations follow those of Beran (1994a).

5.1.3 Comparison with common estimators

In many practical applications, the long-memory parameter

is estimated using non-/semi-parametric methods. These may

be appropriate in many situations, where the exact form of

the underlying process is unknown. However, when a spe-

cific model form is known (or at least assumed) they tend

to perform poorly compared with fully parametric alterna-

tives (Franzke et al., 2012). Our aim here is to demonstrate,

via a short Monte Carlo study involving ARFIMA(0,d ,0)

data, that our Bayesian likelihood-based method significantly

outperforms other common methods in that case. We con-

sider the following comparators: (i) rescaled adjusted range,

or R/S (Hurst, 1951; Graves, 2013) – we use the R im-

plementation in the FGN (McLeod et al., 2007) package;

(ii) semi-parametric Geweke–Porter–Hudak (GPH) method

(Geweke and Porter-Hudak, 1983) – implemented in R pack-

age fracdiff (Fraley et al., 2012); (iii) detrended fluc-

tuation analysis (DFA), originally devised by Peng et al.

(1994) – in the R package PowerSpectrum (Vyushin

et al., 2009); and (iv) wavelet-based semi-parametric esti-

mators (Abry et al., 2003) available in R package fARMA

(Wuertz, 2012).
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Figure 3. Posterior outputs from an ARFIMA(0,0,0) series: (a) the posterior standard deviation in d , σ̂d
(B) against the sample size n;

(b) posterior standard deviation in µ, σ̂µ
(B) against n; and (c) σ̂σ

(B) against n (log–log scale).

n mean difference
128 0.057
256 0.029
512 0.015

1024 0.007
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Figure 4. Table: mean difference of estimates d̂(B) under alternative prior assumption. Plots: comparison of posteriors (solid lines) obtained

under different priors (dotted lines). Time series used: ARFIMA(0,0.25,0) – (a) n= 27
= 128, (b) n= 210

= 1024.

Each of these four methods will be applied to the same

100 time series with varying dI as were used earlier experi-

ments above. We extend the idea of a residual, d̂R
(R)

, d̂R
(G)

,

d̂R
(D)

, and d̂R
(W)

, to accommodate the new comparators, re-

spectively, and plot them against d̂R
(B)

in Fig. 5.

Observe that all four methods have a much larger variance

than our Bayesian method, and moreover the R/S is posi-

tively biased. Actually, the bias in some cases would seem

to depend on dI : R/S is significantly (i.e., > 0.25) biased

for dI <−0.3 but slightly negatively biased for d > 0.3 (not

shown); DFA is only unbiased for dI > 0; both the GPH and

wavelet methods are unbiased for all d ∈ (− 1
2

, 1
2

).

5.2 Extensions for short memory

Known form: we first consider the MCMC algorithm from

Sect. 4.1 for sampling under an ARFIMA(1,d ,0) model

where the full memory parameter is ω= (d, φ1). Recall that

method involved proposals from a hypercuboid MVN using

a pilot-tuned covariance matrix. Also recall that it is a special

case of the reparametrized method from Sect. 4.2.

In general, this method works very well; two example

outputs are presented in Fig. 6, under two similar data-

generating mechanisms.

Figure 6a shows relatively mild correlation (ρ= 0.21)

compared with Fig. 6b, which shows strong correlation

(ρ= 0.91). This differential behavior can be explained

heuristically by considering the differing data-generating

values. For the process in Fig. 6a the short-memory and long-

memory components exhibit their effects at opposite ends of

the spectrum; see Fig. 7a. The resulting ARFIMA spectrum,

with peaks at either end, makes it easy to distinguish between

short and long-memory effects, and consequently the poste-

riors of d and φ are largely uncorrelated. In contrast, the pa-

rameters of the process in Fig. 7b express their behavior at

the same end of the spectrum. With negative d these effects

partially cancel each other out, except very near the origin

where the negative memory effect dominates; see Fig. 7b.

Distinguishing between the effects of φ and d is much more
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Figure 5. Comparison of Bayesian estimator with common classical estimators: (a) R/S, (b) GPH, (c) DFA, and (d) wavelet.
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Figure 6. Posterior samples of (d , φ): input time series (a) (1+ 0.92B)(1−B)0.25Xt = εt , (b) (1− 0.83B)(1−B)−0.35Xt = εt .

difficult in this case; consequently the posteriors are much

more dependent.

In cases where there is significant correlation between d

and φ, it arguably makes little sense to consider only the

marginal posterior distribution of d . For example the 95 %

credibility interval for d from Fig. 7b is (−0.473, −0.247),

and the corresponding interval for φ is (−0.910, −0.753),

yet these clearly give a rather pessimistic view of our joint

knowledge about d and φ; see Fig. 7c. In theory an ellip-

soidal credibility set could be constructed although this is

clearly less practical when ∼ω> 2.
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Figure 7. Spectra for processes in Fig. 6. Green line is relevant ARMA(1,0) process, red line is relevant ARFIMA(0,d ,0) process, black line

is ARFIMA(1,d,0) process: (a) (1+ 0.92B)(1−B)0.25Xt = εt ; (b) (1− 0.83B)(1−B)−0.35Xt = εt . (c) Shows posterior samples of (d , φ)

from series considered in (b) with credibility sets: red is 95 % credibility set for (d, φ), green is 95 % credibility interval for d , blue is 95 %

credibility interval for φ.
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Figure 8. Marginal posterior density of d from series in Fig. 6, (a, b). Solid line is density obtained using reversible-jump algorithm. Dotted

line is density obtained using fixed p= 1 and q = 0. The true values are dl = 0.25 and−0.35, respectively. (c, d) Shows the posterior densities

for µ and σ , respectively, corresponding to the series in Fig. 6a; those for Fig. 6b look similar. The true values are µ= 0 and σ = 1. True

values are marked by an X.

Unknown form: the RJ scheme outlined in Sect. 4.2 works

well for data simulated with p and q up to 3. The marginal

posteriors for d are generally roughly centered around dI (the

data-generating value) and the modal posterior model proba-

bility is usually the correct one. To illustrate, consider again

the two example data-generating contexts used above.

For both series, kernel density for the marginal posterior

for d are plotted in Fig. 8a and b, together with the equivalent

density estimated assuming unknown model orders.

Notice how the densities obtained via the RJ method are

very close to those obtained assuming p= 1 and q = 0. The

former are slightly more heavy tailed, reflecting a greater

level of uncertainty about d . Interestingly, the corresponding

plots for the posteriors of µ and σ do not appear to exhibit

this effect; see Fig. 8c and d. The posterior model probabili-

ties are presented in Table 2, showing that the correct modes

are being picked up consistently.
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Figure 9. Marginal posterior densities (a) d , (b) α from the model

Eq. (10).
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Table 2. Posterior model probabilities for time series from

Figs. 6a, b and 8a, b for the autoregressive parameter p and moving

average parameter q. Bold numbers denote the true model.

p\q 0 1 2 3 4 5 Marginal

(a)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.805 0.101 0.003 0.000 0.000 0.000 0.908

2 0.038 0.043 0.001 0.000 0.000 0.000 0.082

3 0.005 0.004 0.000 0.000 0.000 0.000 0.009

4 0.000 0.001 0.000 0.000 0.000 0.000 0.001

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Marginal 0.848 0.148 0.004 0.000 0.000 0.000

(b)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.829 0.125 0.002 0.000 0.000 0.000 0.956

2 0.031 0.013 0.000 0.000 0.000 0.000 0.044

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Marginal 0.860 0.138 0.002 0.000 0.000 0.000

As a test of the robustness of the method, consider a com-

plicated short-memory input combined with a heavy-tailed

α-stable innovations distribution. Specifically, the time series

that will be used is the following ARFIMA(2,d ,1) process(
1−

9

16
B2

)
(1−B)0.25Xt =

(
1+

1

3
B
)
εt ,

where εt ∼ S1.75,0. (10)

For more details, see Graves (2013, Sect. 7.1). The marginal

posterior densities of d and α are presented in Fig. 9.

Performance looks good despite the complicated structure.

The posterior estimate for d is d̂(B)= 0.22, with 95 % CI

(0.04, 0.41). Although this interval is admittedly rather wide,

it is reasonably clear that long memory is present in the sig-

nal. The corresponding interval for α is (1.71, 1.88) with es-

timate α̂(B)= 1.79. Finally, we see from Table 3 that the al-

gorithm is very rarely in the wrong model.

6 Observational data analysis

We conclude with the application of our method to two long

data sets: the Nile water level minima data and the CET. The

Nile data are part of the R package “longmemo” and the CET

time series can be downloaded from http://www.metoffice.

gov.uk/hadobs/hadcet/.

6.1 The Nile data

Because of the fundamental importance of the Nile river to

the civilizations it has supported, local rulers kept measure-

ments of the annual maximal and minimal heights obtained

by the river at certain points (called gauges). The longest un-

interrupted sequence of recordings is from the Roda gauge

Table 3. Posterior model probabilities based on simulations of

model Eq. (10) for the autoregressive parameter p and moving av-

erage parameter q. Bold numbers denote the true model.

p\q 0 1 2 3 4 5 Marginal

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.822 0.098 0.001 0.000 0.000 0.921

3 0.014 0.056 0.004 0.000 0.000 0.000 0.075

4 0.003 0.001 0.000 0.000 0.000 0.000 0.004

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Marginal 0.017 0.880 0.102 0.002 0.000 0.000
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Figure 10. Annual Nile minima time series.
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Figure 11. Marginal posterior densities for Nile minima; (a) d ,

(b) µ.

(near Cairo), between AD 622 and 1284 (n= 663).2 These

data are plotted in Fig. 10.

We immediately observe the apparent low frequency com-

ponent of the data. The data appear to be on the “verge” of be-

ing stationary; however, the general consensus amongst the

statistical community is that the series is stationary. The pos-

terior summary statistics are presented in Table 5, density es-

timates of the marginal posteriors of d and µ are presented in

Fig. 12, and the posterior model probabilities are presented

in Table 4.

2There is evidence (e.g., Ko and Vannucci, 2006b) that the se-

quence is not actually homogeneous.
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mean 95% CI
d 0.402 0.336 0.482
µ 1158 1037 1284
σ 70.15 66.46 73.97
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Figure 12. Table: summary posterior statistics for Nile minima. Plots: marginal posterior densities for Nile minima – (a) d, (b) µ.

Table 4. Posterior model probabilities for Nile minima time series

for the autoregressive parameter p and moving average parameter q.

Bold numbers denote the best fit model.

p\q 0 1 2 3 4 5 Marginal

0 0.638 0.101 0.010 0.000 0.000 0.000 0.750

1 0.097 0.124 0.011 0.000 0.000 0.000 0.232

2 0.007 0.010 0.000 0.000 0.000 0.000 0.018

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Marginal 0.742 0.236 0.022 0.000 0.000 0.000

Table 5. Summary posterior statistics for Nile minima time series

for the long-memory parameter d, mean µ, and noise variance σ .

Mean SD 95 % CI end points

d 0.402 0.039 0.336 0.482

µ 1158 62 1037 1284

σ 70.15 1.91 66.46 73.97

The posterior summary statistics and marginal densities

of d and µ for the Nile data are presented in Fig. 12. Pos-

terior model probabilities are presented in Table 6. We see

that the model with the highest posterior probability is the

ARFIMA(0,d,0) model with d ≈ 0.4. This suggests a strong,

pure, long-memory feature. Our results compare favorably

with other studies (Liseo et al., 2001; Hsu and Breidt, 2003;

Ko and Vannucci, 2006a).

It is interesting to compare these findings with other lit-

erature. Liseo et al. (2001) used a semi-parametric Bayesian

method on the first 512 observations of the sequence and ob-

tained an estimate for d of 0.278. Hsu and Breidt (2003) used

a similar method to Pai and Ravishanker (1998) to estimate d

(within an ARFIMA(0,d ,0) model) at 0.416 with an approx-

imate credibility interval of (0.315, 0.463). Ko and Vannucci

(2006a) similarly found using wavelets d̂B= 0.379 with a

credibility interval of (0.327, 0.427). Palma (2007) obtained

d̂B= 0.420. Holan et al. (2009) obtained d̂B= 0.387 with
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Figure 13. CET time series (deseasonalized).

a credibility interval of (0.316, 0.475) using their Bayesian

FEXP method.

We note that the interpretation as persistence of the d ≈ 0.4

(H ≈ 0.9) value that we and others have obtained has been

challenged by Kärner (2001). In his view the analysis should

be applied to the increments of the level heights rather than

the level heights themselves, giving an anti-persistent time

series with a negative d value. The need for a short-range-

dependent component that he argues for is, however, auto-

matically included in the use of an ARFIMA model. Al-

though ARFIMA was originally introduced in econometrics

as a phenomenological model of LM, very recent progress is

being made in statistics and physics on building a bridge be-

tween it and continuous time linear dynamical systems (see

e.g., Slezak and Weron, 2015).

In conclusion, our findings agree with all published

Bayesian long-memory results (except for the anomalous

finding of Liseo et al. (2001)). Moreover, these findings

agree with numerous classical methods of analysis (e.g.,

Beran, 1994a) that have found the best model fit is an

ARFIMA(0,d ,0) model with d ≈ 0.4. We note that it is a re-

sult of our data analysis method that short-memory can be

neglected, rather than being an a priori assumption.
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Figure 14. CET time series; (a) assumed deterministic seasonal component S(t), (b) spectrum of deseasonalized index.

Table 6. Posterior model probabilities for Nile minima time series

for the autoregressive parameter p and moving average parameter q.

p\q 0 1 2 3 4 5 Marginal

0 0.638 0.101 0.010 0.000 0.000 0.000 0.750

1 0.097 0.124 0.011 0.000 0.000 0.000 0.232

2 0.007 0.010 0.000 0.000 0.000 0.000 0.018

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Marginal 0.742 0.236 0.022 0.000 0.000 0.000

6.2 Central England temperature

There is increasing evidence that surface air temperatures

posses long memory (Gil-Alana, 2003, 2008; Bunde et al.,

2014; Franzke, 2010, 2012) but long time series are needed

to get robust results. The CET index is a famous measure of

the monthly mean temperature in an area of southern-central

England dating back to 1659 (Manley, 1974). Given to a pre-

cision of 0.5 ◦C prior to 1699 and 0.1 ◦C thereafter, the index

is considered to be the longest reliable known temperature

record from station data. As expected, the CET exhibits a

significant seasonal signal, at least some of which must be

considered as deterministic. Following the approach of Mon-

tanari et al. (2000), the index is first deseasonalized using the

additive “STL” method (Cleveland et al., 1990). This desea-

sonalized CET index is shown in Fig. 13.

The estimated seasonal function S(t) that was removed

is shown in Fig. 14a. The spectrum of the deseasonalized

process is shown in Fig. 14b. D denotes the seasonal long-

memory parameter. Notice that, in addition to the obvi-

ous spectral peak at the origin, there still remains a no-

ticeable peak at the monthly frequency ω= π
6

. However,

there are no further peaks in the spectrum, which would ap-

pear to rule out a seasonal ARFIMA (SARFIMA) model.

These observations therefore suggest that a simple two-
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Figure 15. Joint posterior samples of (d, D) with 95 % credibility

set in red for CET time series.

frequency Gegenbauer(d ,D;π
6
)2 process might be an appro-

priate model. See Appendix B for more details about sea-

sonal long memory.

Applying this model, the marginal posterior statistics are

presented in Table 7 and the joint posterior samples of (d ,

D) from this model are plotted in Fig. 15. These clearly indi-

cate that both d and D are non-zero (albeit small in the case

of D) suggesting the presence of long memory in both the

conventional and seasonal sense.

In order to compare these results with other publications’,

it is important to note that to remove annual seasonality from

the CET, the series of annual means is often used instead

of the monthly series. This of course reduces the fidelity of

the analysis. Hosking (1984) found (using rather crude esti-

mation procedures) that the best-fitting model for the annual

means of the CET was the ARFIMA(1,0.33,0) model with

φ= 0.16. Pai and Ravishanker (1998) used the same series

as test data for their Bayesian method; they fitted each of
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Figure 16. CET time series; posterior estimate (solid line) and 95 % credibility interval (dotted line) for four blocks (black) and whole index

(red) for (a) d, (b) µ.

Table 7. Posterior summary statistics for CET index for the long-

memory parameter d, seasonal long-memory parameterD, mean µ,

and noise variance σ .

Mean SD 95 % CI end points

d 0.209 0.013 0.186 0.235

D 0.040 0.011 0.018 0.062

µ 9.266 0.144 9.010 9.576

σ 1.322 0.015 1.294 1.353

the ARFIMA models with p, q ≤ 1 and found that all mod-

els were suitable. Their estimates of d ranged from 0.24 for

p= q = 0 to 0.34 for p= 0, q = 1.

Of course all these studies assume the time series is sta-

tionary and, in particular, has a constant mean. The validity

of this assumption was considered by Gil-Alana (2003) who

used formal hypothesis testing to consider models:

Yt = β0+β1t +Xt , (11)

where {Xt } is an ARFIMA(0,d ,0) process. For values of

d = 0, 0.05, 0.10, 0.15, β1 was found to be significantly non-

zero (at about 0.23 ◦C per century) but for d ≥ 0.20, statis-

tical significance was not found. Gil-Alana (2008) later ex-

tended this work by replacing the ARFIMA(0,d ,0) process

in Eq. (11) with a Gegenbauer(d;ω) process to obtain sim-

ilar results. However, choice of ω was rather ad hoc, likely

influencing the results.

In order to consider the stationarity of the time series, we

divided the series up into four blocks of length 1024 months

(chosen to maximize efficiency of the fast Fourier transform)

and analyzed each block independently. The posterior statis-

tics for each block are presented in Table 8 with some results

presented graphically in Fig. 16.

Table 8. Posterior summary statistics for four blocks of CET index

for the long-memory parameter d , seasonal long-memory parame-

ter D, mean µ, and noise variance σ .

Mean SD 95 % CI end points

1659–1744 d 0.277 0.026 0.231 0.332

D 0.054 0.022 0.013 0.097

µ 9.036 0.347 8.332 9.702

σ 1.217 0.027 1.167 1.271

1744–1829 d 0.204 0.028 0.151 0.259

D 0.017 0.023 −0.028 0.063

µ 9.107 0.216 8.671 9.533

σ 1.348 0.031 1.290 1.409

1829–1914 d 0.172 0.027 0.118 0.223

D 0.036 0.022 −0.010 0.076

µ 9.172 0.168 8.859 9.517

σ 1.364 0.030 1.312 1.429

1914–2000 d 0.163 0.027 0.108 0.213

D 0.063 0.022 0.023 0.109

µ 9.591 0.152 9.314 9.906

σ 1.348 0.030 1.291 1.406

It is interesting to note that the degree of (conventional)

long memory is roughly constant over the last three blocks

but appears to be larger in the first block. Of particular

concern is that there is no value of d that is included in

all four 95 % credibility intervals; this would suggest non-

stationarity. Although this phenomenon may indeed have a

physical explanation, it is more likely caused by the inho-

mogeneity of the time series. Recall that the first 50 years

of the index are only given to an accuracy of 0.5 ◦C com-

pared to 0.1 ◦C afterwards; this lack of resolution clearly has

the potential to bias in favor of strong autocorrelation when

compared with later periods.
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Interestingly, the seasonal long-memory parameter D has

95 % credibility intervals that include zero for the both the

second and third blocks. Finally, note that the 95 % cred-

ibility intervals for µ all include the range (9.314, 9.517),

in other words it is entirely credible that the mean is non-

varying over the time period.

7 Conclusions

We have provided a systematic treatment of efficient

Bayesian inference for ARFIMA models, the most popu-

lar parametric model combining long- and short-memory ef-

fects. Through a mixture of theoretical and empirical work

we have demonstrated that our method can handle the sorts

of time series data with possible long memory that we are

typically confronted with.

Many of the choices made throughout, but in particular

those leading to our likelihood approximation, stem from a

need to accommodate further extension. For example, in fu-

ture work we intend to extend them to cope with heavy-tailed

innovation distributions. For more evidence of potential in

this context, see Graves (2013, Sect. 7).

Finally, an advantage of the Bayesian approach is that it

provides a natural mechanism for dealing with missing data,

via data augmentation. This is particularly relevant for long

historical time series, which may, for a myriad of reasons,

have recording gaps. For example, some of the data recorded

at other gauges along the Nile have missing observations al-

though otherwise span a similarly long time frame. For a

demonstration of how this might fit within our framework,

see Sect. 5.6 of Graves (2013).
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Appendix A: ARFIMA model

We define an autocovariance ACV γ (·) of a weakly station-

ary process as γ (k)=Cov(Xt (E)[X])(X− (E)[X])] is the

lag-covariance matrix. The (normalized) ACF ρ(·) is defined

as ρ(k)=
γ (k)
γ (0)

. A stationary process {Xt } is said to be causal

if there exists a sequence of coefficients {ψk}, with finite total

mean square
∞∑
k=0

ψ2
k <∞ such that for all t , a given member

of the process can be expanded as a power series in the back-

shift operator acting on the innovations, {εt }:

Xt =9(B)εt , where 9(z)=

∞∑
k=0

ψkz
k. (A1)

The innovations are a white (i.e., stationary, zero mean, iid)

noise process with variance σ 2. Causality specifies that for

every t ,Xt can only depend on the past and present values of

the innovations {εt }.

A process {Xt } is said to be an autoregressive process of

order p, AR(p), if for all t :

8(B)Xt =εt , where 8(z)= 1+

p∑
k=1

φkz
k,

and
(
φ1, . . .,φp

)
∈ Rp. (A2)

AR(p) processes are invertible, stationary and causal if and

only if8(z) 6= 0 for all z∈C such that |z| ≤ 1. {Xt } is said to

be a moving average process on the order of q, MA(q), if

Xt =2(B)εt , where 2(z)= 1+

q∑
k=1

θkz
k,

and
(
θ1, . . .,θp

)
∈ Rq , (A3)

for all t .3 MA(q) processes are stationary and causal, and

are invertible if and only if 2(z) 6= 0 for all z∈C such that

|z| ≤ 1. A natural extension of the AR and MA classes arises

by combining them (Box and Jenkins, 1970).

The process {Xt } is said to be an ARMA process of or-

ders p and q, ARMA(p,q), if for all t :

8(B)Xt =2(B)εt . (A4)

Although there is no simple closed form for the ACV of an

ARMA process with arbitrary p and q, so long as the pro-

cess is causal and invertible, then |ρ(k)| ≤C rk , for k > 0;

i.e., it decays exponentially fast. In other words, although

correlation between nearby points may be high, dependence

between distant points is negligible.

Before turning to long memory, we require one further

result. Under some extra conditions, stationary processes

with ACV γ (·) possess a SDF fsd(·) defined such that

3Many authors define 8(z)= 1−
∑
φk z

k . Our version empha-

sizes connections between 8 and Eqs. (A2)–(A3).

γ (k)=
π∫
−π

eikλ fsd(λ) dλ, ∀k ∈Z. This can be inverted to

obtain an explicit expression for the SDF (e.g., Brockwell

and Davis, 1991, §4.3): fsd(λ)=
1

2π

∞∑
k=−∞

γ (k)e−ikλ, where

−π ≤ λ≤π .4 Finally, the SDF of an ARMA process is

fsd(λ)=
σ 2

2π

|2
(
e−iλ

)
|
2

|8
(
e−iλ

)
|2
, 0≤ λ≤ π. (A5)

For an ARFIMA process (Eq. 1) the restriction |d|< 1
2

is

necessary to ensure stationarity; clearly if |d| ≥ 1
2

the ACF

would not decay. The continuity between stationary and non-

stationary processes around |d| = 1
2

is similar to those that

occur for the AR(1) process with |φ1|→ 1 (such processes

are stationary for |φ1|< 1, but the case |φ1| = 1 is the non-

stationary random walk).

There are a number of alternative definitions of LM, one

of which is particularly useful, as it considers the frequency

domain: a stationary process has long memory when its SDF

follows fsd(λ)∼ cf λ
−2d , as λ→ 0+ for some positive con-

stant cf , and where 0<d < 1
2
.

The simplest way of creating a process that exhibits long

memory is through the SDF. Consider fsd(λ)= |1− e
iλ
|
−2d ,

where 0< |d|< 1
2
. By simple algebraic manipulation, this is

equivalently fsd(λ)=
(
2 sin λ

2

)−2d
, from which we deduce

that f (λ)∼ λ−2d as λ→ 0+. Therefore, assuming stationar-

ity, the process that has this SDF (or any scalar multiple of it)

is a long-memory process. More generally, a process having

spectral density

fsd(λ)=
σ 2

2π

∣∣∣1− eiλ∣∣∣−2d

, 0< λ≤ π, (A6)

is called fractionally integrated with memory parameter d ,

Fractionally Integrated FI(d) with memory parameter d

(Barnes and Allan, 1966; Adenstedt, 1974). The full tri-

chotomy of negative, short, and long memory is determined

solely by d.

In practice this model is of limited appeal to time series

analysts because the entire memory structure is determined

by just one parameter, d . One often therefore generalizes

it by taking any short-memory SDF f ∗sd(·), and defining a

new SDF: fsd(λ)= f
∗

sd(λ)
∣∣1 − eiλ∣∣−2d

, 0≤ λ≤π . An ob-

vious class of short-memory processes to use this way is

ARMA. Taking f ∗ from Eq. (A5) yields so-called autore-

gressive fractionally integrated moving average process with

parameter d, and orders p and q (ARFIMA(p,d,q)), having

SDF:

4Since ACV of a stationary process is an even function of lag,

the above equation implies that the associated SDF is an even func-

tion. One therefore only needs to be interested positive arguments:

0≤ λ≤π .
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f (λ)=
σ 2

2π

|2
(
e−iλ

)
|
2

|8(e−iλ)|2
|1− eiλ|−2d , 0≤ λ≤ π. (A7)

Choosing p= q = 0 recovers FI(d)≡ARFIMA(0,d ,0).

Practical utility from the perspective of (Bayesian) in-

ference demands finding a representation in the temporal

domain. To obtain this, consider the operator (1−B)d for

real d >−1, which is formally defined using the generalized

form of the binomial expansion (Brockwell and Davis, 1991,

Eq. 13.2.2):

(1−B)d =:
∞∑
k=0

π
(d)
k Bk, where π

(d)
k = (−1)k

1

0(k+ 1)

0(d + 1)

0(d − k+ 1)
. (A8)

From this observation, one can show thatXt = (1−B)−d Zt ,
where {Zt } is an ARMA process, has SDF (Eq. ). The

operator (1−B)d is called the fractional differencing op-

erator since it allows a degree of differencing between

the zeroth and first order. The process {Xt } is fraction-

ally inverse differenced; i.e., it is an integrated process.

The operator is used to re-define both the ARFIMA(0,d,0)

and more general ARFIMA(p,d,q) processes in the time

domain. A process {Xt } is an ARFIMA(0,d,0) pro-

cess if for all t : (1−B)d Xt = εt . Likewise, a pro-

cess {Xt } is an ARFIMA(p,d ,q) process if for all t :

8(B)(1−B)d Xt =2(B) εt , where 8 and 2 are given in

Eqs. (A2) and (A3), respectively.

Finally, to connect back to our first definition of long mem-

ory, consider the ACV of the ARFIMA(0,d ,0) process. By

using the definition of spectral density to directly integrate

Eq. (), and an alternative expression for π
(d)
k in Eq. (A8)

π
(d)
k =

1

0(k+ 1)

0(k− d)

0(−d)
, (A9)

one can obtain the following representation of the ACV of

the ARFIMA(0,d,0) process:

γd(k;σ)= σ
2 0(1− 2d)

0(1− d)0(d)

0(k+ d)

0(1+ k− d)
. (A10)

Because the parameter σ 2 is just a scalar multiplier, we may

simplify notation by defining γd(k)= γd(k; σ)/σ
2, whereby

γd(·)≡ γd(·; 1). Then the ACF is

ρd(k)=
0(1− d)

0(d)

0(k+ d)

0(1+ k− d)
, (A11)

from which Stirling’s approximation gives ρd(k)∼
0(1−d)
0(d)

k2d−1, confirming a power-law relationship for

the ACF. Finally, note that Eq. (A9) can be used to

represent ARFIMA(0,d ,0) as an AR(∞) process, as

Xt +
∞∑
k=1

π
(d)
k Xt−k = εt . Furthermore, noting that in this

case ψ
(d)
k =π

(−d)
k leads to the following MA(∞) analog:

Xt =
∞∑
k=0

1
0(k+1)

0(k+d)
0(d)

εt−k .

Appendix B: Seasonal long-memory models

We define a seasonal differencing operator (1−Bs), as a

natural extension to a SARFIMA processes by combining

seasonal and non-seasonal fractional differencing operators

(Porter-Hudak, 1990):

(1−B)d
(
1−Bs

)D
Xt = εt .

The generalization to include both seasonal and non-

seasonal short-memory components is obvious (Porter-

Hudak, 1990):

8(p)(B)8(P )s

(
Bs
)
(1−B)d

(
1−Bs

)D
Xt

=2(q)(B)2(Q)s

(
Bs
)
εt .

Focusing on the first of these issues, Hosking (1981) con-

sidered generalising the ARFIMA(0,d ,0) process in a differ-

ent manner by retaining only one pole but at any given fre-

quency in [0, π ]. The model he suggested was later stud-

ied and popularized by Anděl (1986) and Gray et al. (1989,

1994), and became known as the “Gegenbauer process”.

A process {Xt } is a Gegenbauer (d; ω) process if for all t :(
1− 2uB+B2

)d
Xt = εt , (B1)

where ω= cos−1 u is called the Gegenbauer frequency. The

obvious extension to include short-memory components

8(p) and 2(p) is denoted GARMA(p,d,q;ω).

The term “Gegenbauer” derives from the close relation-

ship to the Gegenbauer polynomials, a set of orthogonal

polynomials useful in applied mathematics. The Gegenbauer

polynomials are most usefully defined in terms of their gen-

erating function. The Gegenbauer polynomial on the order

of k with parameter d , G
(d)
k (·) satisfies(

1− 2uz+ z2
)−d
≡

∞∑
k=0

G
(d)
k (u)zk. (B2)

The spectral density function of the Gegenbauer(d;ω) pro-

cess is (Gray et al., 1989)

f (λ)=
σ 2

2π
|2(cosλ− cosω)|−2d , 0≤ λ≤ π.

Note that Gegenbauer(d;ω) processes possess a pole at the

Gegenbauer frequencyω. Gegenbauer processes may be con-

sidered to be somewhat ambiguous in terms of long memory.

Non-trivial (i.e., ω 6= 0) Gegenbauer processes have bounded

spectral density functions at the origin, and therefore do not

have long memory according to our strict definition. Conse-

quently a more general Gegenbauer process was developed:

let d= (d1, . . . , dk) and ω= (ω1, . . . , ωk), and for all j ,

uj = cos ωj (assumed distinct). Then a process {Xt } is a k-

factor Gegenbauer(d;ω) process if for all t (Woodward et al.,

1998):
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k∏
j=1

(
1− 2ujB+B2

)dj
Xt = εt . (B3)

The spectral density function of the k-factor

Gegenbauer(d;ω) process is (Woodward et al., 1998)

f (λ)=
σ 2

2π

k∏
j=1

∣∣2(cosλ− cosωj
)∣∣−2dj , 0≤ λ≤ π.

Indeed, k-factor Gegenbauer models are very flexible,

and include nearly all other seasonal variants of ARFIMA

processes such as the flexible-seasonal ARFIMA (Has-

sler, 1994) and fractional ARUMA (Robinson, 1994; Gi-

raitis and Leipus, 1995) processes. Importantly, they also

includes SARFIMA processes (Reisen et al., 2006): a

SARFIMA(0,d ,0)× (0,D,0)s process is equivalent to a⌊
s+2

2

⌋
factor Gegenbauer(d;ω) process where:

ωj =
2π(j − 1)

s
, j = 1, . . .,k,

and d1=
d+D

2
, dj =D for j = 2, . . . , k, unless s is even in

which case dk =
D
2

.

Although k-factor Gegenbauer models are very general,

one particular sub-model is potentially very appealing. This

is the two-factor model, with one pole at the origin and

one at a non-zero frequency. In order to conform with no-

tation for ARFIMA(0,d,0) processes, we will slightly re-

define this model: a process {Xt } is a simple two-frequency

Gegenbauer process with parameters d , D, and ω, denoted

Gegenbauer(d,D;ω)2 if for all t :(
1− (2cosω)B+B2

)D
(1−B)dXt = εt .

The Bayesian MCMC methodology developed here is easily

extended to incorporate these seasonal fractional models. It

is assumed that the frequency ω, or seasonal period s, is a

priori known.
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