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We study the linear scattering of gravity waves in longitudinal inhomogeneous sta-
tionary flows. When the flow becomes supercritical, it is known that counterflow
propagating shallow waves are blocked and converted into deep waves. Here we
show that in the zero-frequency limit, the reflected waves are amplified in such a
way that the free surface develops an undulation, i.e., a zero-frequency wave of
large amplitude with nodes located at specific places. This amplification involves
negative energy waves and implies that flat surfaces are unstable against incoming
perturbations of arbitrary small amplitude. The relation between this instability and
black hole radiation (the Hawking effect) is established. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4872025]

I. INTRODUCTION

It has long been observed that stationary flows that become supercritical, i.e., when the flow
velocity equals the speed of low frequency surface waves, are often associated with an undulation,
i.e., a zero-frequency wave with a macroscopic amplitude.1, 2 Undulations have been extensively
studied, often in the forced and in the nonlinear regime, see, e.g., Refs. 3–7. In this paper, we study
their appearance in another regime, namely from the scattering of low frequency shallow waves
which propagate against a background flow with a flat surface, i.e., when the forcing vanishes. In
this case, we shall show that an undulation develops because the background flow is unstable against
incoming waves with arbitrary small amplitudes. In this we have been inspired by the fact that their
scattering near the blocking point is akin to that governing the Hawking effect,8–13 which predicts
that black holes should spontaneously emit a thermal flux.

To understand the scattering of counterflow waves, one must take into account their dispersion
relation. In homogeneous stationary flows, when neglecting capillary effects,1 the relation between
� (the frequency measured in the fluid frame) and the wave vector k is given by

�2 = gk tanh(hBk), (1)

where hB is the height of the background flow, and g is the gravitational acceleration. When the
flow is inhomogeneous, at fixed frequency ω measured in the lab frame, the co-moving frequency
� becomes a function of x given by ω = � + vx (x)kω, where vx (x) is the longitudinal velocity
flow, and kω is the x-dependent wave vector. When ω is high enough, a counter flow wave packet
is blocked and generates two reflected wave packets, a long wavelength co-propagating mode, and
a short wavelength one which is dragged by the flow. In this case, the (positive) incoming energy
is shared among the two outgoing waves. When lowering ω below of certain critical frequency ωκ ,
which is related to the gradient of vx (x) evaluated when Fn crosses 1, a third wave acquires a non-
negligible amplitude. (We define the Froude number Fn as the ratio of the flow velocity vx over the
speed of low frequency waves.) This extra wave possesses a negative energy, which means that we
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are now facing an over-reflection,14 i.e., an amplification process.16, 18, 55 In a recent experiment,19, 20

the production of this extra wave have been clearly observed in the linear regime we shall use.
In the present paper, we study a limit which was not studied in Refs. 10, 12, 19, 21, and 22.

It concerns the limit ω � ωκ . In this case, the long wavelength co-propagating mode plays no
significant role, while unusual properties characterize the two short wavelength modes of opposite
energy. First, in the limit ω → 0, they acquire the same amplitude, merge, and form a single
standing wave with zero frequency and nodes at definite places. Second, the amplification factor
diverges as 1/ω. Using the correspondence with black hole geometry, we show that this divergence
is directly related to the famous prediction of Hawking radiation.8 Using the fact that perturbations
of inhomogeneous flows propagate as light waves on a curved space-time,10 one realizes that the
supercritical flows we consider correspond to “acoustic white holes”12, 19, 21, 22 with their horizon
located where Fn = 1. In fact, the generation of undulations and black hole emission are based
on a common amplification mechanism. This explains why undulations have been observed in the
experiments19–21 aiming at measuring the analogue Hawking effect.

The paper is organized as follows. In Sec. II, we present the wave equation, discuss the scattering
of stationary waves in supercritical flows, and demonstrate that the amplification factor diverges as
1/ω for ω → 0. In Sec. III, we study incoming waves packets and show that the two reflected waves
merge and form a single undulation in the limit ω → 0. We then show that incident low frequency
waves with random properties also give rise to the same undulation, but with a growing amplitude. In
Appendix A, we derive the wave equation and relate it to the relativistic equation used by Hawking.
In Appendix B, we review the main properties of the conserved inner product which governs the
amplification process. In Appendix C, we explain how to compute the amplification factor without
having recourse to standard WKB techniques which fail in the present case.

II. SETTINGS

In this section, we adapt to the present case results which have been recently obtained in other
works. The important new results are presented in Sec. III.

A. Wave equation and action formalism

We consider surface waves which propagate in a water tank of constant transverse dimension L⊥.
We assume that the flow is incompressible, non turbulent, and irrotational. We also assume that both
the bottom of the tank and the background free surface do not depend on the transverse coordinate,
and become asymptotically flat in the upstream region. We call has and vas the asymptotic values
of the water depth and the background flow velocity in this region. For simplicity, we only study
waves with no dependence in the transverse coordinate,56 and we neglect the effects of capillarity.
To incorporate the latter, one should consider the dispersion relation which generalizes Eq. (1) by
including the capillary length.12 Including these short wavelength effects will not affect the main
conclusions of our work.

When the background flow is non-uniform, the linear equation for surface waves is rather
complicated.12, 22 The origin of the difficulty stems from the fact that we aim to study the zero
frequency limit. As a result, we cannot use the standard slowly varying (WKB) approximation
where the wave vector kω is much larger than the typical spatial gradient of the background flow.
In Appendix A, we recall the main steps to obtain it and compare it with other models of water
waves. In the body of the text, we shall exploit the fact that this equation can be derived from an
action. Interestingly, this action possesses a rather simple structure which, moreover, is very similar
to that describing sound waves in an irrotational fluid.13, 24, 25, 57 In addition, the action formalism is
appropriate to efficiently describe the wave scattering, as well as to establish the relationship with
the Hawking treatment of black hole radiation.

The action for the perturbations φ of the velocity potential has the following structure:

S = 1

2

∫
ρ(x)

{
1

c2(x)
[(∂t + vx (x) ∂x )φ]2 − φ F̂2(d�(x)) φ

}
dxdt. (2)
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The function ρ(x) is an effective one-dimensional fluid density, vx (x) is the background flow velocity,
c(x) fixes the low frequency group velocity, and F̂2 is a differential operator which governs the
dispersion relation. The combination ρ F̂2 forms a self-adjoint operator, and d�(x) is the local
dispersive wavelength. (In an atomic Bose condensate, the latter is known as the healing length.29, 30)
For each fluid, these functions are related in a specific manner to the properties of the background
flow.

For gravity waves, assuming an incompressible fluid, i.e., a constant three-dimensional density
ρ3D

0 , there are several (physically equivalent) ways to identify these functions. Using the results of
Appendix A, a convenient choice is

F̂2(d�(x)) = 1

d�(x)
i∂x tanh(d�(x)i∂x ), (3a)

d�(x) = has
vasvx (x)

v2(x)
, (3b)

ρ(x) = ρ3D
0 L⊥d�(x), (3c)

c2(x) = d�(x)

[
g + v2

x

v2
∂y(v2/2)y = hB (x)

]
.= d�(x) geff(x). (3d)

In the above, v2 = v2
x + v2

y , where vx and vy are the horizontal and vertical components of the
background velocity, evaluated along the free surface y = hB(x). (Note that the local Froude number
is now unambiguously defined as Fn = vx (x)/c(x).) The quantity geff is the effective gravitational
acceleration which takes into account the centrifugal acceleration. Asymptotically, all x dependence
are negligible, and Eq. (3d) delivers the standard expression c2

as = hasg. For long wavelengths,
i.e., low gradients kd� � 1, the dispersive length d� drops out from Eq. (3a) and one gets the
dispersionless expression F2 → k2, since k = −i∂x. For smaller wavelengths, combining F2 and
c2, one finds a generalized version of Eq. (1) where d� acts as a dressed value of has. In fact, to
lowest order in ∂yvx , one can show that d�(x) reduces to the water depth at x (see Eq. (A28) in
Appendix A).

As far as the scattering of waves is concerned, all we need is the knowledge of the differential
operator F̂2 and the functions ρ, v, c, d� entering in Eq. (2). In other words, the intricate aspects
of the above equations will play no significant role in the sequel. Yet, to make physical predictions,
and to test them, one needs the relation between the velocity potential φ and the vertical fluctuation
of the surface δh(t, x) = h(t, x) − hB(x) with respect to the background free surface y = hB(x). As
explained in Appendix A, see (A30), this relation is

δh(t, x) = − 1

geff(x)
(∂t + vx (x)∂x )φ(t, x). (4)

It is interesting to notice that δh(t, x) is related by a constant factor to π (t, x), the momentum
conjugated to φ(t, x) given the action of Eq. (2).58 Indeed, taking the variation of the action with
respect to ∂ tφ, one obtains

π (t, x)
.= ρ(x)

c2(x)
(∂t + vx (x)∂x )φ(t, x), (5a)

= −(ρ3D
0 L⊥) δh(t, x). (5b)

It is also interesting to notice that for sound waves, e.g., in an atomic Bose condensate, the
density fluctuation δρ is related to the momentum π , and the potential φ, by very similar equations,
see Eq. (B.11) in Ref. 30. Therefore, the forthcoming analysis also applies to these waves, when
using the appropriate F̂2 operator governing dispersion.
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When applying the Legendre transform (H
.= π∂tφ − L) to the action density of Eq. (2), one

obtains the Hamiltonian

H = 1

2

∫
ρ

c2

{[
c2π

ρ
− vx ∂xφ

]2

− v2
x (∂xφ)2 + c2 φ F̂2(d�)φ

}
dx . (6)

For stationary flows, H is conserved and furnishes the energy carried by the waves. For homogeneous
backgrounds, Eq. (6) coincides with standard expression.31 The wave equation can then be obtained
from Hamilton equations. The first equation ∂ tφ = {φ, H}, where { , } is the Poisson bracket, gives
back Eq. (5a). The second equation, ∂ tπ = {π , H}, gives

(∂t + ∂xvx (x))π (t, x) = −ρ(x)F̂2(d�(x)) φ(t, x), (7)

which corresponds to Eq. (86) in Ref. 22. Taken together, these equations give[
(∂t + ∂xvx (x))

ρ(x)

c2(x)
(∂t + vx (x)∂x ) + ρ(x)F̂2(d�(x))

]
φ(t, x) = 0. (8)

The forthcoming analysis is based on this wave equation applied to supercritical flows as that
depicted on Fig. 1. We emphasize that we shall neither make use of the standard slowly varying
approximation, i.e., κ/c0 � kω in term of the typical frequency defined in the figure caption, nor
assume that the flow is near critical (i.e., |Fn − 1| � 1). Our treatment thus applies to arbitrary low
frequencies, and is valid in flows where v and c significantly vary. This contrasts with the regimes
commonly explored, e.g., in Refs. 1, 31, and 43 (for further discussion on this, see Appendix A 4).

B. Incoming and outgoing mode bases

To study the scattering of monochromatic waves of fixed frequency ω, we introduce the complex
modes e−iωtφω(x). Equation (8) implies that their spatial part obeys[

(ω + i∂xvx (x))
ρ(x)

c2(x)
(ω + ivx (x)∂x ) − ρ(x)F̂2(d�(x))

]
φω(x) = 0. (9)

FIG. 1. Background profile vx − c as a function of x with v > 0. The chosen profile is vx − c = −c0 D tanh (κx/c0 D),
where c0 is the speed at x = 0. The parameter D governs the extension of the near wave blocking region where c − vx ∼ κx .
The frequency κ is defined by ∂x (vx − c)|x=0 = −κ . As explained in Appendix C it governs both the spatial properties of
the modes in this region, and the non-trivial mode mixing. In a gravitational context, it is known as the surface gravity.10 On
the asymptotic subcritical right side, vx (x) and c(x) reach the constant values vas and cas.
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The real time-dependent wave is then given by φ(t, x) = 2Re
(
e−iωtφω(x)

)
. To describe the scatter-

ing, we use two different mode bases, for more details in a similar context see Ref. 32. The in basis
describes modes that shall be scattered, while the out one describes modes that have been scattered.
These modes are identified through the standard procedure:15, 17, 33 in the past (respectively, in the
future), each incoming mode φin

ω (respectively, outgoing φout
ω ) asymptotes in the sense of a broad

wave packet to a single plane wave with a group velocity vg = (∂ωk)−1 directed toward (respectively,
away from) the blocking point. These asymptotic plane waves are given by ∼ eika

ωx where ka
ω is a

real root of the dispersion relation

(ω − vask
a
ω)2 = gka

ω tanh
(
hask

a
ω

) = (�a
ω)2. (10)

As a result, the number of independent modes is equal to the number of real solutions of Eq. (10)
with ω > 0.

For this reason, it is worth studying these roots. On the right asymptotic side, where the flow
is subcritical (|vas| < cas), there is a threshold value ωmax which separates two cases. For ω above
ωmax, there are 2 real roots, as in the absence of a flow. Instead, in the low frequency regime which
interests us, for 0 < ω < ωmax, there are 4 real roots, see Fig. 2, which means that there two new
types of stationary waves. Because each asymptotic root corresponds to either an in or out mode,
we call the various roots using the name of the corresponding mode. For instance, k in

ω describes the
(usual) long wavelength incoming left moving mode φin

ω . When ω → 0+, one has

k in
ω ∼ − ω

cas − vas
= ω/vin

g < 0. (11)

The group velocity vin
g = −cas + vas < 0 confirms that it is moving leftward. The positive long

wavelength root kco, out
ω describes the (usual) co-moving outgoing mode φco, out

ω since vco, out
g = cas +

vas > 0. The last roots kout
ω < 0 and −kout

−ω > 0 are the two new ones. They both correspond to short
wavelengths counter-propagating modes which are both swept along with the flow. When ω → 0,
as clearly seen in Fig. 2, they reach opposite value ∓kZ respectively, with kZ > 0. More precisely, to

FIG. 2. Dispersion relation of Eq. (10) in the ω − k plane when vas > 0 and sub-critical vas < cas. There are two double
branches: that with � > 0 (continuous lines) characterizes the positive norm modes, see Appendix B, while the dashed lines
describe the negative norm modes. For a low frequency ω > 0, there are four roots. One sees that only −kout−ω > 0 lives on
the second branch. As explained in the text, the corresponding mode (φout−ω)∗ carries negative energy, and its mixing with the
other modes leads to an over-reflection. One also sees that in the limit ω → 0, −kout−ω, and kout

ω reach ±kZ, respectively. As
shall be shown, kZ is the wave vector of the undulation.
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first order in ω,

kout
ω = −kZ + ω/vZ

g , (12)

where vZ
g > 0.

In Fig. 2, one also notices that three of the four roots, namely, k in
ω , kco, out

ω , and kout
ω , live on the

branch of solutions with a positive comoving frequency �ω = ω − vaskω. This branch characterizes
the modes with positive energy and positive norm, see Appendix B for more details concerning this
important aspect. Instead, the fourth root has a negative energy, and lives in the “unusual” branch
of solutions of negative � and negative norm. To keep this in mind, we call this root −kout

−ω. First,
because kout

−ω < 0 lives on the usual branch when considering the opposite value of ω, and second,
because the curves of Fig. 2 are left invariant under both ω → −ω and k → −k, which replaces the
positive � branch by the negative one, and vice versa. The outgoing modes which correspond to kout

ω

and −kout
−ω shall be, respectively, called φout

ω for the positive norm one, and
(
φout

−ω

)∗
for the negative

norm one.
In usual circumstances, i.e., when ω is not too small, the mixing of (φout

−ω)∗ with the positive
norm modes is so small that it can be safely ignored. In this case, one deals with an elastic scattering.
However, at low frequencies, for supercritical flows like that of Fig. 1, the mixing becomes so
important that it is must be included to account for the observed phenomena.19–21 On the other
hand, the co-propagating mode φco

ω plays essentially no role.59 Hence, we are effectively facing an
“over-reflection” involving only two pairs of modes.

The two out modes φout
ω , (φout

−ω)∗, and the in mode φin
ω have been already described. The last one

is the negative norm mode (φin
−ω)∗. At early times, it asymptotically describes an incoming mode

which comes from the left super-critical region. The corresponding root is negative and called −k in
−ω

because it has a negative �, and carries a negative energy.

C. Low frequency mode amplification

Since the in modes, and the out modes, form two basis of solutions of Eq. (9) (when neglecting
the co-propagating mode), they are related by a linear transformation,(

φin
ω

(φin
−ω)∗

)
=

(
αω βω

β̃ω α̃ω

)
·
(

φout
ω

(φout
−ω)∗

)
. (13)

Because the modes have opposite norm, the coefficients obey the anomalous scattering relation

|αω|2 − |βω|2 = |α̃ω|2 − |β̃ω|2 = 1, (14)

in the place of the standard relation |Rω|2 + |Tω|2 = 1 between the reflection and transmission
coefficients Rω and Tω. Equation (14) implies that |αω| > 1, which means that the scattering leads
to an amplification of the waves.

The real task is to compute the coefficients αω and βω. It turns out that for low frequencies
a proper evaluation in background profiles as in Fig. 1 is non-trivial. Indeed, the standard WKB
treatment gives βω ≡ 0, which means that modes of opposite norm (and energy) do not mix. To
obtain βω, one should therefore use more involved technics. These are presented in Appendix C.
The main result is as follows. When the supercritical flow is smooth enough,

|βω|2
|αω|2 = e− 2πω

κ , (15)

where κ is the background flow frequency defined in the caption of Fig. 1. It is worth mentioning
that Eq. (15) was found by Hawking8 in a gravitational context when he established that incipient
black holes should emit a thermal spectrum at a temperature given by kBTH = �κ/2π . A careful
comparison11, 28, 34 confirms the close connection between the scattering of waves on a supercritical
flow and in a black hole geometry. The main difficulty is to properly include dispersive effects.
In Appendix C, following,28 we recall that, to leading order in κd�/c0 � 1, the replacement of

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

194.94.224.254 On: Wed, 11 Jun 2014 09:19:43



044106-7 A. Coutant and R. Parentani Phys. Fluids 26, 044106 (2014)

the dispersion relation from the relativistic one used by Hawking to that of Eq. (1) does not affect
Eq. (15).

For frequencies larger than κ , Eq. (15) implies that the negative energy mode has an amplitude
exponentially reduced with respect to that of the standard wave, something which has been recently
verified.19, 20 This is the standard adiabatic regime where modes of opposite norms do not significantly
mix. Instead, in the opposite limit ω → 0, Eqs. (14) and (15) imply that the coefficients diverge as

|αω|2 ∼ |βω|2 ∼ κ

2πω
	

ω�κ
1. (16)

We here underline that this divergence is still found when the mixing with the co-propagating
mode is not negligible and taken into account, and also when the inequality κd�/c0 � 1 used in
Appendix C is no longer satisfied. In these cases, κ is replaced by a frequency κ̄ which depends on
several quantities, see the numerical and analytical work of Ref. 35. To indicate that our forthcoming
analysis covers these cases as well, we shall use the symbol κ̄ .

III. SCATTERING OF LOW FREQUENCY WAVE PACKETS

We combine the various elements of Sec. II to show that flat free surfaces are unstable against
incoming low frequency waves of arbitrary small amplitude. As a result, an undulation develops.

A. Incoming waves

Using stationary in modes, the general time-dependent solution of Eq. (8) can be written as

φ̄(t, x) = 2Re

{∫ ωmax

0
e−iωt

[
aω φin

ω (x) + bω (φin
−ω(x))∗

]
dω

}
, (17)

where the coefficients aω and bω weigh the contribution of φin
ω and (φin

−ω(x))∗. We now consider a
series of incoming wave packets of positive energy, sent from the right side against the flow. This
means that bω = 0. To get explicit expressions, we work with

aω = A

n1/2
ω̄

exp

(
− (ω − ω̄)2

2σ 2
0 ω̄2

)
, (18)

where A is a complex dimensionless amplitude A = |A|eiδ , and where the packets are normalized by∫ ωmax

0
|aω|2dω = |A|2. (19)

We also assume that the waves are almost monochromatic. Irrespectively of the value of ω̄, this is
realized if

σ0 � 1. (20)

In this regime, one finds nω̄ = σ0ω̄π1/2. The real character of Eq. (18) guarantees that the packets
are centered around x = 0 at t = 0.

Using the asymptotic behavior of φin
ω given in Eqs. (B4a) and (B4b), we get

φ̄(x, t → −∞) = 2Re

{
N̄ A

∫ ∞

0
e
− (ω−ω̄)2

2σ2
0 ω̄2 e−i(ωt−k in

ω x)

√
4πωcas

dω

n1/2
σ

}
. (21)

In the broad wave regime of Eq. (20), we can accurately evaluate the integral with a saddle point
approximation. Then, using Eq. (4) asymptotically, where geff = g, the corresponding incoming
height variation is

δh̄in(x) ∼ δh̄in
A × sin

(
ω̄t − k in

ω̄ x + δ
)

e− σ2
0 ω̄2

2 (t−x/vin
g )2

, (22)
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where the amplitude is

δh̄in
A = |A|N̄ ω̄has

cas − vas

√
2σ0

π1/2c3
as

. (23)

As expected, the incoming wave (22) oscillates at a frequency ω̄, has a wavenumber k in
ω̄ , and its

envelope is propagating toward the wave blocking region at a speed vin
g < 0. We see that the argument

of A, the phase δ, governs the precise initial positions of the nodes. We also see that at fixed A,
its amplitude δh̄in decreases linearly for with ω̄. In this respect, it is also instructive to evaluate the
conserved energy transported by the wave packet. Using Eqs. (6) with Eq. (21), one finds

Ē = 2ω̄N |A|2. (24)

At fixed A, the wave energy linearly vanishes in the limit ω̄ → 0.

B. Outgoing waves

At a time near t = 0, the packet of Eq. (21) reaches the wave blocking region around x = 0,
where it undergoes a nontrivial scattering which is governed by Eq. (13). Then two outgoing wave
packets are generated and propagate to the right, see Fig. 3. To analyze them, it is convenient to
introduce the complex wave φ̄C , such that φ̄ = 2Re(φ̄C) in Eq. (17). At late time, using the out
mode basis and Eq. (13), one finds

φ̄C(x, t → +∞) = φ̄+
C(t, x) + φ̄−

C(t, x). (25)

The two complex waves are

φ̄+
C(x, t → +∞) = N̄ A

∫
αωe

− (ω−ω̄)2

2σ2
0 ω̄2 e−i(ωt−kωx)√

4π |�outvout
g |

dω

n1/2
σ

, (26a)

φ̄−
C(x, t → +∞) = N̄ A

∫
βωe

− (ω−ω̄)2

2σ2
0 ω̄2 e−i(ωt+k−ωx)√

4π |�outvout
g |

dω

n1/2
σ

, (26b)

where �out = �(kout
ω ) is the co-moving frequency of the outgoing modes, and vout

g their group
velocity. Evaluated through a saddle point method, one obtains

φ̄+
C(x, t → +∞) ∼ Aω̄ × αω̄ ϕout

ω̄ (x)e−iω̄t × e− σ2
0 ω̄2

2 (t−x/vout
g )2

, (27a)

φ̄−
C(x, t → +∞) ∼ Aω̄ × βω̄ (ϕout

−ω̄(x))∗e−iω̄t × e− σ2
0 ω̄2

2 (t−x/vout
g )2

, (27b)

where their common amplitude factor Aω̄ is given by

Aω̄ = A
√

2σ0ω̄π1/2. (28)

We now have all the ingredients to consider the limit ω̄ → 0, keeping σ 0 constant. Using Eq. (16),
and

αω ∼ |αω|ei(θ+θ ′), βω ∼ |αω|ei(θ ′−θ), (29)

to characterize the phase of the coefficients, we see that the two outgoing waves of Eq. (27) merge
with each other and give a (real) zero-frequency wave of fixed profile. Indeed, using

αω̄ ϕout
ω̄ (x)e−iω̄t + βω̄ (ϕout

−ω̄(x))∗e−iω̄t ∼
ω̄→0

2|αω̄|ei(δ+θ ′) × e−iω̄(t−x/vZ
g )�U (x), (30)

where

�U (x)
.= Re

{
eiθφout

0 (x)
}
. (31)
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Using the limit ω → 0 of Eq. (30), we get

�U (x) = N̄
cos (kZ x + θ )√

4πvaskZvZ
g

. (32)

We see that �U(x) is independent of t, ω̄, and δ. Taking the real part of Eq. (30), we see that the
outgoing real wave factorizes and takes the simple form

φ̄(x, t → +∞) ∼ 4 |Aω̄αω̄| × �U (x) × cos(ω̄(t − x/vZ
g ) − δ − θ ′) e− σ2

0 ω̄2

2 (t−x/vZ
g )2

. (33)

From this expression, we see that �U(x) gives the profile of the undulation of φ, and that the cosines
furnishes a long wavelength modulation.60 Since this slow modulation becomes a constant when
ω̄ → 0, the outcome is a standing wave described by �U(x), with nodes at fixed locations. This is
our first important result.

To discuss this wave in physical terms, we compute the corresponding fluctuation of the free
surface. Using Eqs. (4) and (32), one finds

δh̄out(x) ∼ δh̄out sin (kZ x + θ ) × cos(ω̄(t − x/vZ
g ) − δ − θ ′) e− σ2

0 ω̄2

2 (t−x/vZ
g )2

, (34)

where the amplitude is

δh̄out = has N̄

√
4�out

πvZ
g c4

as

|Aω̄αω̄|. (35)

To get rid of the dependence on the amplitude |A| and the normalization N̄ , we compute the
amplification factor. Using Eqs. (23) and (35), we find

δh̄out

δh̄in
= (cas − vas)

ω̄

√
vaskZ κ̄

2πcasvZ
g

. (36)

Irrespectively of any choice, the ratio diverges as 1/ω̄ for ω̄ → 0. This is our second important
result.

When sending several low frequency wave packets, each characterized by its own phase δi, the
outgoing waves Eq. (34) will all have in common the same short wavelength profile characterized
by the sin (kZx + θ ). Hence, the undulation profile is insensitive to initial phases δi. Instead, the
undulation amplitude does depend on them since it given by a sum containing the cos(ω̄(t − x/vZ

g ) −
δi − θ ′). As we shall see in Sec. III C, when taking into account the low frequency noise that would
be present in every experiment, this implies that in the linear regime the amplitude of the undulation
is, in effect, unpredictable. Before studying this important fact, we make three extra comments that
lead to specific predictions which could hopefully also be tested in future experiments.

First, the linear treatment predicts that both signs of the amplitude are equally possible, since
the sign is governed by the cosine factor in Eq. (34), or by an oscillating sum if several waves are
sent. This is not the case when working with the forced KdV equation.3 In addition, this symmetry
will also be lost when including nonlinear effects. This lost has been recently found in a similar
context.36

Second, to be more specific, we suppose that vas � cas. This means that the outgoing reflected
waves are deep water waves. It simplifies the expressions and is relevant for many experiments. In
this case, using Eqs. (12) and (10), we get

kZ = c2
as

hasv2
as

and vZ
g = vas/2. (37)

Hence the net amplification factor of Eq. (36) becomes

δh̄out
A

δh̄in
A

= c2
as

ω̄

√
κ̄

πhasvas
. (38)

We see that the amplification grows as 1/
√

vas for vas → 0. This growth will be regulated by capillary
effects which have not been taken into account in the present analysis.
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Third, the phase θ which governs the location of the asymptotic nodes in Eq. (34) is complicated
because it accounts for the propagation from the blocking region to the asymptotic region. On the
contrary, the undulation profile has a rather universal behavior near the blocking region, where
the linearized approximation vx − c ∼ −κx holds, that is, for |κx| � D (see Fig. 1). In addition
we restrict our attention to the region where kω � 1/d� (i.e., |κx| � 1), meaning that one can
approximate F2(k) in Eq. (10) by k2 − d2

�k4/3. In this region, using the results of Appendix C and
Eq. (4), up to an overall constant factor, we get

δhU (x) ∝ Ai (−x/dbroad) , (39)

where Ai is the Airy function,37 and where the effective length is given by

dbroad =
(

c0d 2
�(0)

6κ

)1/3

. (40)

In agreement with the results of Refs. 28,38, and 39, this broadening length governs the behavior of
the undulation near the blocking point. This is our third result. Notice that dbroad depends on three
quantities with fractional powers: the dispersive length d�(0), the gradient κ = ∂x (vx − c), and the
speed c, all evaluated at the blocking point.

We also note that these results also apply to undulations (of density fluctuation) found in Bose
condensates where the dispersion is anomalous: F2

BEC = k2 + ξ 2k4/4. In that case, d�(0) is related
to the healing length ξ by d�(0) = √

3ξ/2, and the undulation lives where the flow is supercritical,
as was verified in the experiment of Ref. 26.

C. Inclusion of low frequency noise

In realistic conditions, low frequency modes are excited in a non-controllable manner, for
instance, by the noise of the pump used to create the flow. To describe in simple terms the noise, we
assume that the incoming waves are described by a Gaussian distribution with a power growing like
kBT/ω for ω → 0. Hence T can be seen as an effective temperature. Using the field decomposition of
Eq. (17) in terms of in modes, this means that the coefficients aω and bω are now treated as random
variables,40 with the following statistical moments:

〈aω〉 = 0, 〈a∗
ω′aω〉 = na

ωδ(ω − ω′), (41a)

〈bω〉 = 0, 〈b∗
ω′bω〉 = nb

ωδ(ω − ω′). (41b)

We also assume that the two variables are independent, i.e., 〈b∗
ω′aω〉 = 0. Since positive and

negative energy modes, respectively, come from the right (R) and left (L) asymptotic regions, they
do not share the same effective temperature. Moreover, their co-moving frequency � is Doppler
shifted by the right or left asymptotic values of the flow velocity, see Ref. 30 for a discussion about
thermal states in fluid flows. To take both effects into account, we parameterize the low frequency
powers as

na
ω = kB TR

Nω
, (42a)

nb
ω = kB TL

Nω
. (42b)

In this state, the average value of the surface perturbation identically vanishes 〈δh(t, x)〉 = 0.
Indeed, since initial phases are random, when averaging over δ in Eq. (34), the mean value vanishes.
On the other hand, the spread of δh is nontrivial. By a calculation similar to that of Eq. (30), and
using Eqs. (4), (17) and (41), one finds61

〈(δh(t, x))2〉 = 8
∫

0
(na

ω + nb
ω)|αω|2dω × (δhU (x))2 . (43)
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This expression establishes that the relative amplitude and the position of the nodes are not affected
by the randomness of initial conditions. On the other hand, its amplitude is a stochastic variable
whose spread is fixed by the above expression. Therefore, the linearized treatment predicts that there
is a high probability of observing a macroscopic undulation, with equal probability to find either
sign. This is our fourth result.

In addition, when integrating over low frequencies, the above integral diverges since its integrand
behaves as 1/ω2. To regulate it, we consider a flow which has been formed for a finite amount of
time t. This effectively introduces a low frequency cut-off ∼1/t in Eq. (43), and gives

∫
1/t

(na
ω + nb

ω)|αω|2dω ∼ kB(TR + TL )

2π N
× κ̄t. (44)

We see that the diverging character for low frequencies engenders a linear growth in time. (This result
has been confirmed by numerical simulations in atomic Bose condensates.27) We also see that the
low frequency waves coming from the right and the left both contribute, with their respective powers
given in Eq. (42). Of course, the growth will ultimately saturate due to nonlinearities, dissipation,
or an infrared cut-off as in the case of transverse modes.23

IV. CONCLUSIONS

In this paper, we studied the scattering of low frequency waves in supercritical flows when the
stationary free surface is flat. In the zero-frequency limit, we showed that the scattering possesses
very specific properties. First, the two reflected waves of opposite energy merge and form a single
wave with a fixed spatial profile and nodes at specific places, see Eq. (30). Second, the amplification
factor relating the amplitude of the incoming and outgoing waves diverges as the inverse of the
conserved frequency, see Eq. (36). Third, this factor also depends on a combination of initial phases.
When considering several wave packets, the outgoing waves interfere, and affect the undulation
amplitude but not its spatial profile. Fourth, near the blocking point, this profile is given by an Airy
function governed by a composite length scale formed with the dispersive length d� and the gradient
of the flow κ , see Eq. (40).

These properties tell us that free surfaces (which contain no undulation) are unstable when
sending low frequency incoming waves, and that the large and unpredictable amplitude of the
undulation is an expression of this instability. This is confirmed when taking into account the low
frequency noise that would inevitably present in any flume. In agreement with Refs. 23, 27, and
28 we found in Eq. (43) that the undulation spatial profile is not subject to any randomness, while
its amplitude is a random quantity. In addition, the spread of this amplitude diverges for very low
frequencies. This divergence is regulated when considering that the stationary flow only existed
for a finite lapse of time. The linear treatment predicts a growth of the squared amplitude which is
linear in this lapse when the incident noise diverges as 1/ω, see Eq. (42). It would be interesting to
experimentally test this prediction, as that concerning the profile of the undulation given in Eq. (39).

As we saw in Eq. (33), the first effect due to the non-vanishing character of the mean frequency
of the incident wave is a long wavelength modulation of the undulation. This modulation describes
the intermediate regime which interpolates between the zero frequency limit which produces a single
stationary wave described �U(x) of Eq. (32), and the usual scattering at higher frequencies, where
two distinct wave packets with different respective weights propagate away from each other with
different group velocities. In a future work, we hope to describe in more detail this intermediate
regime. In addition, the low frequency divergence of Eq. (16) should be regulated when including
nonlinear effects. In this respect it would be particularly interesting to understand the transition
from a growing undulation whose amplitude is a random variable to a saturated amplitude which is
deterministically fixed by nonlinear equations. This question is relevant for both classical fluids and
quantum ones, such as dilute atomic Bose gazes, see Ref. 36 for a first study.
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APPENDIX A: DYNAMICS OF TWO-DIMENSIONAL SURFACE WAVES

In this Appendix, we consider the propagation of surface waves in the presence of both a current
and an uneven bottom. Following the recent treatment of Ref. 22, we first derive a nonlinear equation
for the surface, when the flow is stationary. As often done in two-dimensional problems,42 we use
the potential and stream function as a new pair of coordinates. This hodograph transformation allows
us to map the uneven shape of the water flow into a rectangular strip. Then, we obtain the equation
for the linear perturbations on a background solution. Notice that we shall not solve the nonlinear
equation for the background. Rather we show that, by an appropriate choice of the bottom, one can
obtain a super-critical background flow with a flat surface, i.e., without undulation. As a result, the
(linear) perturbations are not forced but freely propagate.

A significant difficulty comes from the fact that we cannot work in the standard slowly varying
approximation where the wavelength is assumed to be smaller that the typical length characterizing
the background variation. We shall thus carefully derive the wave equation without any short
wavelength approximation. To complete this presentation, we briefly compare our equation with
standard approaches.1, 43

As a last step, for the interested readers, we show that in the shallow-water wave limit, surface
perturbations propagate as a relativistic field on a curved space-time metric. This leads to the notion
of acoustic black hole,10, 13 and to experiments aiming at detecting the analog of the Hawking effect.

1. Setup

The fluid is assumed to be inviscid, incompressible, irrotational, and in a constant gravitational
field −→g = g−→ey . In this case, it is well-known that the Navier-Stokes equation and the continuity

equations simplify. To proceed we define the velocity potential −→v = −−→
grad(�) which satisfies the

Laplace equation

�� = 0. (A1)

Moreover, the pressure field is obtained through the Bernouilli equation

∂t� + 1

2
v2 + gy + p(x, y, z) = 0. (A2)

We now also assume that the flow in two-dimensional. Hence the above quantities only depend on the
cartesian coordinate y (height) and x (longitudinal direction) but not on the transverse direction z. The
main advantages is that in 2 dimensions, the Laplace equation possesses interesting mathematical
properties related to its conformal invariance.

To study the dynamics of a free surface, one needs to consider the boundary conditions for
Eqs. (A1) and (A2). In our case, we have a one-dimensional water tank, with a given (static) profile
on the bottom at y = ζ B(x). At ζ B, the velocity component orthogonal to the bottom vanishes, i.e.,

vy|y=ζB − vx |y=ζB ∂xζB = 0, (A3)

where vy and vx are the vertical and longitudinal components of �v, here evaluated along the bottom
surface. At the free surface ζ S(x, t), we also have the condition that no flux goes across it

vy|y=ζS − ∂tζS(x, t) − vx |y=ζS ∂xζS = 0, (A4)
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where the second term accounts for the time dependence of the free surface. The other difference
is that here ζ S is an unknown function. Therefore, we need an extra boundary condition which in
our case states that the surface is unconstrained. When capillary effects are neglected, it is given by
the fact that the pressure is constant on the surface, equal to the atmospheric one p0. Hence, ζ S also
obeys

∂t�y=ζS + 1

2
v2

y=ζS
+ gζS = 0, (A5)

where p0 has been absorbed in the definition of �. These boundary conditions are quite complicated
because they depend on the value of the unknown potential function evaluated at the unknown
position of the free surface, i.e., the dynamical quantities act both as function and arguments of
functions. However, in 2 dimensions, this can be circumvented by using an appropriate set of
coordinate, and by treating the cartesian coordinates x, y as functions.

2. Appropriate coordinates

We define the stream function � by the relation

−→∇ � = −→ez ∧ −→v . (A6)

An alternative way is to build � such that � − i� is an holomorphic function of x + iy. The 2
potential functions �(x, y) and �(x, y) satisfy

−→∇ �.
−→∇ � = 0, (A7a)

−→∇ �.
−→∇ � = v2, (A7b)

−→∇ �.
−→∇ � = v2, (A7c)

and are both harmonic functions. The idea is to use � and � as new coordinates, and x and y as
unknown functions. To this end, we assume that the velocity flow is nowhere vanishing. In that case,
Eqs. (A7a)–(A7c) guarantee that the mapping (x, y) �→ (�, �) is a diffeomorphism, and defines the
cartesian functions x̂ and ŷ by the relation

x̂ (�(x, y), �(x, y)) = x, (A8a)

ŷ (�(x, y), �(x, y)) = y. (A8b)

This means that (x̂, ŷ) is the reciprocal function of (�, �). To distinguish functions from variables,
we note (φ, ψ) (instead of (�, �)) the new coordinate set. Moreover, their partial derivatives are
related by (

∂φ x̂ ∂ψ x̂

∂φ ŷ ∂ψ ŷ

)
= 1

v2

(
∂yψ −∂yφ

−∂xψ ∂xφ

)
. (A9)

Using Eqs. (A7a)–(A7c), a straightforward computation shows that x̂, ŷ are harmonic, i.e.,

∂2
φ x̂ + ∂2

ψ x̂ = �(φ,ψ) x̂ = 0, (A10)

and similarly for ŷ. The main interest of this new coordinate set is that surfaces of constant � are
streamline. Therefore, for stationary flows, the bottom and the surface are both located at constant
�. By convention, we set the bottom at � = 0, hence the boundary condition reads

ŷ(φ, 0) = ζB(x̂(φ, 0)). (A11)
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Similarly, at the surface, at ψ = ψS we have Eq. (A5) in the new coordinate set62, 63

1

2
(
(∂φ ŷ)2 + (∂ψ ŷ)2

) + gŷ = const = 1

2
v2

as + ghas. (A12)

This equation is still a complicated nonlinear differential equation, and its resolution might be rather
involved. However, this equation is quite convenient to solve the “inverse problem,” namely, if one
chooses the shape of the free surface ŷ(φ,ψS), one can easily determine the profile of the bottom
from the latter equations, as done in Ref. 22. In addition, this description will turn out to be very
efficient to derive the wave equation for linear perturbations.

3. Linear perturbations

We now study linear perturbations on top of a stationary solution �0(x, y) of the preceding
set of equations. In other words, we study the free (un-forced) solutions of the form �(x, y; t)
= �0(x, y) + δ�(x, y; t) to first order in δ�. The corresponding perturbation of the velocity
flow is δ−→v = −→∇ (x,y)δ�. (To enlighten the notations, we shall refer to the background flow as−→v = vx

−→ex + vy
−→ey , without 0-index.) Because the location of the free surface also changes, we

must perform two linear expansions, one for the functions, and the other for the argument. Hence,
we shall keep explicitly the zeroth order quantities. As a first step, we write Bernouilli equation (A2)
at first order

1

2
v2(x, y) + gy + ∂tδ�(x, y; t) + −→v .

−→∇ δ�(x, y; t) + p(x, y; t) = 1

2
v2

as + ghas + p0. (A13)

The pressure term is given by p = p0 + δp, where δp is small and vanishes at the free surface. As
above, the location of the free surface is best expressed in terms of the abstract set of coordinates (φ,
ψ). We must be cautious here: we shall use the background potentials as coordinates, not the exact
ones. This means that we change functions of cartesian coordinates as

f (x, y; t) → f (x̂0(φ,ψ), ŷ0(φ,ψ); t) . (A14)

In these coordinates, we have −→v .
−→∇ = v2∂φ . Since the exact flow is not stationary, the free surface

is no longer characterized by a constant value of ψ . To first order it is described by

ψ = ψS + δ�S(φ, t). (A15)

Hence the vanishing pressure change δp at the free surface gives[
1

2
v2(x, y) + gy + ∂tδ�(x, y; t) + −→v .

−→∇ δ�(x, y; t)

]
ψ=ψS+δ�S

= 1

2
v2

as + ghas. (A16)

Since the background flow satisfy the zeroth order equation, the remaining terms give[
(∂t + v2∂φ)δ� + ∂t∂ψφδ�S︸ ︷︷ ︸

=0

+Gδ�S

]
ψ=ψS

= 0, (A17)

where G = ∂ψ (gŷ0 + v2/2). A few calculations using Eqs. (A4) and (A5) give

vx G = g + v2
x

v2
∂y(v2/2). (A18)

To determine δ�S, we know that Eq. (A15) holds when taking the Lagrangian time derivative
Dt = ∂t + −→v .

−→∇ + δ−→v .
−→∇ . This gives the equation

(∂t + v2∂φ)δ�S = v2∂ψδ�. (A19)

Therefore, applying (∂t + v2∂φ) to Eq. (A17), we obtain

(∂t + v2∂φ)
1

G
(∂t + v2∂φ)δ� + v2∂ψδ� = 0. (A20)
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The last step is to relate ∂ψδ� to ∂φδ�. To this aim, we shall use the standard method,1 i.e., integrate
the harmonic equation in the volume of the fluid, and use the bottom boundary condition. The bottom
is still characterized by � = 0 and thus δ�(φ, 0) = 0. Moreover, using Eq. (A7a) at first order, we
have

v2∂φδ� = −v2∂ψδ�. (A21)

In particular, in the bottom, ∂ψδ� = 0. Therefore, in Fourier transform, we solve the harmonic
equation for δ�,

δ�(φ,ψ ; t) =
∫

A(k, t)eikφ cosh(kψ)dk. (A22)

From this, we deduce at the surface

∂ψδ� = −i∂φ tanh(−iψS∂φ)δ�. (A23)

This gives us the wave equation for surface waves over arbitrary bottoms

(∂t + v2∂φ)
1

G
(∂t + v2∂φ)δ� − iv2∂φ tanh(−iψS∂φ)δ� = 0. (A24)

To obtain the equation of the body of the paper, we shall use the x coordinate instead of φ. This does
not mean that we go back to cartesian coordinate set (x, y). Rather it means that we use a mixed set
(x, ψ), so that first, the longitudinal coordinate has its usual physical interpretation, and second the
(background) free surface is still simply characterized by ψ = ψS. Hence, along the background
free surface, using v2∂φ = vx∂x , we get

(∂t + ∂xvx )
1

vx G
(∂t + vx∂x )δ� − i∂x tanh

(
−i

ψSvx

v2
∂x

)
δ� = 0, (A25)

where we divided by vx in order to change the ordering of ∂x and vx in the first parenthesis, and to
obtain a self-adjoint wave operator.

We here note that the value of ψS can be related to the (cartesian) water depth hB ≡ ζ S − ζ B at
fixed x. Indeed, from Eq. (A9), we have

hB(x) =
∫ ψS

0

vx

v2
d�. (A26)

Asymptotically, this means

has = ψS

vas
. (A27)

In addition, to lowest order in the (vertical) gradient ∂� , the depth hB(x) reduces to

hB(x) � has
vxvas

v2
≡ d�(x). (A28)

To conclude, we relate δ� to the vertical variation of the free surface with respect to the background
one δh(x, t) = ζ S(x, t) − ζ S0(x). By definition of the free surface in Eq. (A15) (remember that the ψ

there is the background stream function) we have

�(x, ζS0(x) + δh(x, t)) = ψS + δ�S

(
�0

(
x, ζS0(x) + δh(x, t)

)
; t

)
. (A29)

At first order in δh, this gives

∂y�0︸︷︷︸
=vx

δh = δ�S. (A30)

From Eq. (A17) in the mixed coordinate set (x, ψ), we derive the relation δ�S = (1/G)(∂t +
vx∂x )δ�. Combining it with Eq. (A30) and the expression for vx G of Eq. (A18), we get Eq. (4). In
the body of the paper, we enlighten the notations by writing φ instead of δ� and use the dispersive
scale d�(x) ≡ ψSvx/v

2. Using Eq. (A27), d� reduces to the expression used in Eq. (3b).
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4. Validity conditions

We now briefly discuss the validity of the key equations, i.e., the background equation (A12)
and the linear wave equation (A25).

Our wave equation (A25) describes the propagation of linearized waves on the top of a inhomo-
geneous background flow which is due to a current above an uneven bottom. In standard treatments,
inhomogeneities are assumed to be “slowly varying,”1, 31, 43 or the current is neglected in order to
consider appreciable variations of the water height.43, 68 Importantly, Eq. (A25) is not based of any
kind of WKB approximations, which means that it applies to modes with arbitrary long wavelength.
This is essential for the present paper since the peculiar aspects of the scattering we studied are
(only) found in the zero frequency limit. This is to be contrasted to the standard description of wave
blocking involving an Airy function. As shown in Ref. 44, the later becomes valid precisely when
the mode amplification we studied disappears.

In addition, the nonlinear equation for the background is not restricted to a “weakly non-linear”
regime. Rather it applies only to stationary backgrounds. This is in contrast with descriptions using
Boussinesq or Korteweg-de Vries type of equations.1, 3 Finally, we did not assume that the flow
is “near critical” (Fn ∼ 1). The maximum value of the Froude number is only restricted by the
requirement that the flow stays non-turbulent. According to, e.g., Ref. 1, this is the case if F � 1.2.
The description of the undulation we obtained is thus valid for flows with F from 1 < F � 1.2.

5. Link with relativity

A remarkable fact of Eq. (A25), which is the root of the notion of “acoustic black hole,”10 is
its close relationship with the propagation of a relativistic field in a curved space-time. Explicitly, in
the hydrodynamical regime (when tanh (k) ∼ k) Eq. (A25) reads

[(∂t + ∂xvx )
ρ

c2
(∂t + vx∂x ) − ∂xρ∂x ]δ� = 0, (A31)

where we used the functions defined in Eq. (3). Written under this form, this equation is identical to
that of sound waves in a moving fluid.13, 45 More remarkably, it also coincides with the d’Alembert
equation of a scalar field in a space-time described by the metric

ds2 = ρ(x)

c(x)

[
c2(x)dt2 − (dx − vx (x)dt)2 − dy2 − dz2] , (A32)

when assuming that the field does not depend on y and z.
The relationship between flows that becomes supercritical and black hole geometries is then

straightforward: In a stationary flow, whenever c2 crosses v2
x , the associated metric possesses a black

hole (or white hole) horizon. For more explanations, we refer to Refs. 13 and 46.

APPENDIX B: INNER SCALAR PRODUCT AND SIGN OF ENERGY

The conserved product canonically associated with Eqs. (2) and (8), plays many roles. For
instance, it governs the anomalous sign in Eq. (14), and the notions of completeness and orthogonality
of the stationary modes used to build the wave packets in Eq. (17). For any pair φ1, φ2 of complex
solutions of Eq. (8), it is given by

(φ1|φ2) = i
∫

(φ∗
1π2 − π∗

1 φ2 )dx, (B1)

where we used Eq. (5a) to define the momenta π1 and π2 associated with φ1 and φ2. Several
important properties should be mentioned.

First, it is constant, in virtue of Hamilton’s equations. Second, the norm (φ1|φ1) of any complex
solution φ1(t, x) is the opposite of the norm of its complex conjugated φ1(t, x)∗. In the mathematical
literature, this is called a Krein scalar product.47 It implies that the norm of the real solutions
φ̄(t, x) of Eq. (17) always vanishes. At first sight, this seems to imply that it would play no role in
hydrodynamics. As we shall see, this is not the case.
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Third, when considering two stationary (complex) modes, Eq. (B1) vanishes when ω1 �= ω2.
This guarantees that the ω-sectors do not mix with each other, and can thus be studied separately.
To form a complete basis, it is appropriate to separate the modes of positive norm from those of
negative norm. The latter are then given by the complex conjugated of the former. Irrespectively of
the sign of ω, e−iωtφin

ω has a positive norm, whereas (eiωtφin
−ω)∗ has a negative norm. The mode basis

can thus be taken orthonormal, with all positive norm modes obeying

((e−iωtφin
ω )|(e−iω′tφin

ω′)) = N δ(ω − ω′), (B2)

where δ(ω − ω′) is the Dirac distribution (because the domain of x is the entire real axis), and where
N is an arbitrary (real and positive) constant which has the dimension of an action. A possible choice
for gravity waves which depends on the flow properties is

Ngw = ρ3D
0 L⊥ × h3

ascas = ρ3D
0 L⊥
gN̄ 2

. (B3)

When using Eqs. (5a) and (B1), one verifies that N̄ = hasc
3/2
as is the “net” amplitude of the modes,

which guarantees that they are normalized as in Eq. (B2). We can then normalize the asymptotic
plane waves ϕ

j
ω and (ϕ j

−ω)∗ associated with the roots discussed in Sec. II B. They are given by

ϕ j
ω = N̄

eik j
ωx√

4π |�(k j
ω)v j

g |
, (B4a)

(ϕ j
−ω)∗ = N̄

e−ik j
−ωx√

4π |�(k j
ω)v j

g |
, (B4b)

where the superscript j stands for in or out. Notice also that we use the symbol ϕ to designate the
asymptotic plane waves, whereas φ designates the corresponding globally defined solution.64

Fourth, it is instructive to relate the above mathematical properties to the sign of the energy of
the wave which has a clear physical meaning. For ω > 0, one finds that the sign of the norm agrees
with that of the energy. Hence one can trade one for the other. This can be verified by expressing the
energy transported by a wave φ̄ in two different ways:

Ē = H
[
φ̄
] = 1

2
(φ̄|i∂t φ̄). (B5)

In the first equality we used H of Eq. (6), and in the second ( . | . ) is the scalar product of Eq. (B1).
Using Eq. (17), we get

Ē = N
∫ ωmax

0
ω

[|aω|2 − |bω|2] dω. (B6)

The origin of the minus sign in Eq. (B6) can be viewed as coming from either the negative frequency
of the positive norm solution eiωtφ−ω, or alternatively from negative norm of the positive frequency
solution e−iωt(φ−ω)∗. In any case, the real wave Re(e−iωtφω) carries a positive energy, whereas
Re(eiωtφ−ω) carries a negative one. Unlike the sign of the frequency and that of the norm which are
conventional, the sign of the energy is physically unambiguous.

As a last comment, we wish to point out that the scalar product must be used, and has been
used in Ref. 19, to test, from experimental data concerning δh(t, x), the validity of the Hawking’s
prediction of Eq. (15). To this end, one should send a series of monochromatic waves, or of broad
wave packets as those of Sec. III described by the real profiles δh̄in(t, x). The next step consists
in extracting from observational data (by making use of a double Fourier transform in ω, k space)
the complex functions δh±

C(t, x) (i.e., the equivalent of φ±
C of Eq. (25)) describing the positive and

the negative energy outgoing waves. Their norm can then be computed by evaluating Eq. (B1)
sufficiently far away from the blocking point where the mode mixing has taken place, i.e., so that
the WKB approximation applies, see Eq. (C11). Using Eq. (7) to relate δh±

C to π±
C , and the WKB
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relation δh±
C = (i�out

± /g)φ±
C , where �out

± (x) = ω ∓ vkout
±ω, Eq. (B1) is given by

(δh±
C|δh±

C) = 2gρ3D
0 L⊥

∫ |δh±
C(x)|2

�out± (x)
dx . (B7)

The ratio (δh−
C|δh−

C)/(δh+
C|δh+

C) must then be compared with the theoretical prediction of
Appendix C, see Eq. (C10).

APPENDIX C: CALCULATION OF THE S-MATRIX

We summarize the essential steps leading to Eq. (15) in a dispersive medium. We follow Ref. 28,
where the interested reader will find a detailed treatment. The basic idea is to solve the mode equation
(9) at leading order in the quantity κd�/c � 1. This means that the flows have low gradients in the
units of the dispersive length d�. This condition which should not be confused with the standard
short wave length approximation which is κ/c � kω, and which implies κ � ω.65

We first simplify Eq. (9) by replacing the centrifugal acceleration, geff(x), by the constant g. A
first order expansion of Eq. (3) in κd�/c � 1 shows that it is a legitimate approximation. In this
case ρ/c2 is a constant, and Eq. (9) becomes[

(ω + i∂xvx (x))(ω + ivx (x)∂x ) − c2(x)F̂2(d�(x))
]
φω(x) = 0. (C1)

As we shall see, the non-trivial properties of the scattering originate from the region surrounding
x = 0 where the flow becomes super-critical. In this region, two additional approximations can
be implemented. First, the background flow quantities can be expanded to first order in x, i.e.,
vx ∼ c0 − κvx , c ∼ c0 + κcx, and thus d� ∼ d0(1 + 2κcx/c0). Second, for low frequencies ω, the
typical wave numbers are much smaller than 1/d�, which means that dispersive effects can be
described to first order in d2

0 k2. Using Eq. (3), one has

c2(x)F̂2(d�(x)) ∼ c2
0 F2

4 = −∂x c2(x)∂x − c2
0d2

0

3
∂4

x . (C2)

These approximations are supported by the fact that the location of the blocking point, and kb.p.(ω),
the wave number at that point, obey (κ/c0)xb.p.(ω) � 1 and d0kb.p.(ω) � 1.66

Under these assumptions, it is appropriate to solve Eq. (C1) in Fourier space. Indeed, the Fourier
transform φ̃ω(k) obeys a second order equation in x̂ = i∂k . (This is similar to the Airy equation,
which is a first order equation in x̂ = i∂k , from which one immediately obtains the Fourier transform
of the Airy functions.). In the present case, the WKB solution has the form28

φ̃ω(k) ∼ N̄

√
∂ω Xω(k)

4πc0 F4(k, Xω(k))
e−i

∫ k Xω(k ′)dk ′
, (C3)

where Xω(k) is a k-dependent solution of the Hamilton-Jacobi equation at fixed ω associated with
Eq. (C1). Using Eq. (C2), one gets

(ω − v(Xω)k)2 = c2
0 F2

4 (k, Xω) (C4a)

= (c(Xω)k)2 − c2
0d2

0

3
k4. (C4b)

The important fact is that in momentum space, there is no turning point (i.e., ∂ωX = (dk/dt)−1 stays
finite). As a result, the validity of Eq. (C3) is rather easy to handle. In fact, one first verifies that for
large momenta Eq. (C3) becomes exact. Hence, the corrections only arise from low momenta. Second,
for these momenta, dispersion effects can be neglected (i.e., one can send d0k → 0). Therefore, the
corrections can be evaluated in the hydrodynamical regime, by working with a second order equation
in x-space. These corrections describe the mode mixing between the counter-propagating and co-
propagating hydrodynamical roots of Fig. 2. The evaluation of this mixing goes beyond the scope
of the present paper, and is not included in what follows.67
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When working with Eq. (C3), we limit ourselves to the counter-propagating sector of Eq. (C4b),
i.e., ω − vk = −c0 F4. To first order in d2

0 k2, the dispersion relation reads

ω = − (c(Xω) − v(Xω)) k + c0d2
0 k3

6
. (C5)

Near the blocking point, to first order in Xω, the unique solution is

Xω(k) = − ω

κk
+ c0d2

0 k2

6κ
. (C6)

Having computed Xω(k), we apparently know the WKB mode of Eq. (C3). However, to fully specify

it, one still needs to choose a branch cut for the logarithm appearing in
∫

Xω(k)dk = −ω
κ

ln k + c0d2
0 k3

18κ
.

Interestingly, the two inequivalent choices of the branch cut deliver the two in modes involved in the
S-matrix of Eq. (13).

Indeed, to obtain the positive energy (positive norm) incoming mode φin
ω , the cut should chosen

to be such that Eq. (C3) is analytic in the lower half-plane, because this guarantees that the mode
is completely reflected in x-space, and vanishes for x → −∞, see Fig. 3 right panel. Had one
chosen the mode which is analytic in the upper half-plane, one would have described the negative
energy incoming mode (φin

−ω)∗. (Notice that this situation is the white hole (time reversed) version
of the standard discussion of Refs. 28,34, and 52 which applies to black hole flows.) In k-space, the
incoming mode φin

ω is thus described by

φ̃in
ω (k) = N̄

exp
[
i
(

ω
κ

ln(k − iε) − c0d2
0 k3

18κ

)]
k
√

4πκc0(e
2πω
κ − 1)

, (C7)

where the iε prescription ensures analyticity in the lower half-plane. We normalized the mode using
the scalar product of Eq. (B1) re-expressed in Fourier space, see the Appendix of Ref. 54. Notice also
that the prefactor of Eq. (C3) has been here evaluated under the approximation cF ∼ c0k, something
valid in the weakly dispersive regime we are considering. Using an improved expression would not
affect the expression of the scattering coefficients and would barely alter the expression of the modes
in x-space.

In x-space, φin
ω is given by the inverse Fourier transform

φin
ω (x) =

∫
R

eikx φ̃in
ω (k)

dk√
2π

, (C8)

where the integral is taken along the real k axis. When evaluating it using a saddle point approximation
(something which is equivalent to work with the standard WKB approximation), the saddle points
exactly correspond to the roots of the dispersion relation (10) (when ignoring the co-propagating root
kco.
ω ), see Fig. 3. However, this approximation is valid only for ω 	 κ , which is not the regime we are

interested in. To go beyond the saddle point approximation, we treat the exponential exp (iω/κln k)
as a “slowly varying amplitude” instead of a “rapidly oscillating phase.” As explained in Sec. III C
of Ref. 28, this drastically extends the validity range of the result so as to include the limit ω � κ .

To evaluate the integral in this case, we need to deform the real line of integration of Eq. (C8)
into the contour in the complex k-plane which is depicted on Fig. 3, left panel. Along the C1 and
C2 parts, a saddle point approximation is valid because the locations of the two saddles are k =
∓ksaddle where ksaddle = (6κx/c0d2

0 )1/2 is a high wave number irrespectively of the value of ω/κ �
1. These two saddle points correspond to the zero frequency limit of the short wavelength roots
kout
ω (x) < 0 and −kout

−ω(x) > 0 evaluated in the near the blocking point. The contributions of these
saddles describe, respectively, the two outgoing reflected waves ϕout

ω (x) and (ϕout
−ω(x))∗. On the other

hand, the contribution of the branch cut, which describes the incoming long wavelength mode ϕin
ω (x),

cannot be correctly evaluated by a saddle point approximation, precisely because it has a very long
wavelength k in

ω (x) = ω/κx in the limit ω → 0, fixed x > 0. Collecting the three contributions, one
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FIG. 3. On the left: Contour of integration of Eq. (C8) in the complex k-plane. The contributions of C1 and C2 can be
evaluated by a saddle point approximation (the locations of the saddles ±ksaddle are indicated by black dots). They give the
two outgoing modes with high wave number. Instead the contribution of C3 is obtained by setting d0 → 0, and gives the low
wavenumber incoming branch. The hatched zones represent the directions in the complex plane where the integrand of Eq.
(C8) diverges for |k| → ∞. The contours giving rise to physical modes will asymptote outside these zones. On the right: the
low frequency characteristics of the incoming mode φin

ω of Eq. (C9). They approximatively describe the trajectories followed
by the wave packets of Sec. III. For |x| 	 dbroad, the mode is well approximated by a superposition of the 3 WKB modes of
Eq. (C), the low wave number incoming one, and the two outgoing ones. For each mode, we give its root and the origin of
its contribution to Eq. (C8). See also Ref. 19 (Fig. 4), where these wave properties have been clearly observed.

gets

φin
ω (x) = αωϕout

ω (x) + βω(ϕout
−ω(x))∗︸ ︷︷ ︸

saddle point contributions

+ ϕin
ω (x)︸ ︷︷ ︸

branch cut contribution

. (C9)

In this expression, the functions ϕ designate the normalized waves which asymptote to the modes of
Eqs. (B4a) and (B4b) when c and v become constant. The identification of the above coefficients with
those entering Eq. (13) is unambiguous because we work with normalized modes, and sufficiently
far from the blocking point. (This point is discussed below.)
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It is now easy to verify that the coefficients αω and βω, which weigh respectively the positive
and negative energy outgoing waves, agree up to the flip of the sign of k from negative to positive
value. Taking into account the branch cut of ln (k) in Eq. (C7), their ratio is given by∣∣∣∣βω

αω

∣∣∣∣ =
∣∣∣ei ω

κ
ln(eiπ )

∣∣∣ = e− πω
κ . (C10)

This gives Eq. (15). For the interested reader, we signal that this derivation is closely related to the
original works,8, 9 as explained in Ref. 34.

To complete our analysis, we give the expressions of the three waves entering Eq. (C9) in the
region where the linearized expression c − vx ∼ κx holds. Using the standard WKB approximation,
their expressions are given by

ϕout
ω (x) ∼ e−i 2

3 (x/dbr)3/2
e−i ω

2κ
ln(x/dbr)√

8πκ(x/dbr)3/2
, (C11a)

(ϕout
−ω(x))∗ ∼ ei 2

3 (x/dbr)3/2
e−i ω

2κ
ln(x/dbr)√

8πκ(x/dbr)3/2
, (C11b)

ϕin
ω (x) ∼ |x/dbr|i ω

κ√
4πω

. (C11c)

Since, they only depend on x/dbr, this demonstrates that, for low ω/κ , dbr of Eq. (40) is the only
characteristic length which governs the modes near the blocking point.

It is also important to remember that while the expressions of Eqs. (C11a)–(C11c) make use of
the WKB approximation (in position space), the scattering coefficients βω and αω do not because
their values follow from the evaluation of the integral along the cut. In addition, it should be
noticed that the corrections to Eqs. (C11a)–(C11c) decrease when the size of the region (where
c − v ∼ κx holds) increases. This size is controlled by the parameter D of Fig. 1. This means that
the residual errors induced by identification of the coefficients of Eq. (C9) with the asymptotic
scattering coefficients of Eq. (13) also decrease when D increases. For more details on this, we refer
to Sec. III C of Ref. 28.

To conclude, we use the above results to derive Eq. (39). Considering the limit ω → 0 in
Eq. (C8), one obtains a primitive integral of the Airy function. Then, when acting on it with the
derivative of Eq. (4) to compute the corresponding δh(x), we get the Airy function of Eq. (39).
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55 Such scattering is also said anomalous because the energy carried by the other outgoing waves is higher than the incoming
wave energy. Negative energy waves are also known in particle physics and quantum field theory. In these contexts, when
mixing with positive energy waves, they are responsible for spontaneous pair creation effects.15–17 While negative energy
waves can often be ignored (because they do not significantly mix with the positive energy waves), they are responsible
for various types of instabilities, see Ref. 18 for examples in shear flows.

56 Modes with a non-zero transverse momentum p⊥ are studied in Ref. 23.
57 It should be emphasized that undulations occur in other dispersive media. In fact they are closely related to the “layered

structures” found in4He,24 and in Bose gases,25 when the flow exceeds the Landau critical velocity. They also occur in
supersonic flows liquid helium26, and in atomic Bose Einstein condensates27, 28 where the dispersion relation is F2

BEC(k) =
k2 + ξ2k4/4 instead of Eq. (1). In the present paper, even though we have in mind gravity waves, we formulate the problem
in terms which apply to the general case.

58 Notice that in the standard Hamiltonian formulation of surface wave propagation, the variable is δh, and φ its conjugate
momentum31. Here we have chosen to work in the opposite convention as the relation to the relativistic space-time
description is straightforward using φ, see Appendix A.

59 Notice that neglecting this mode is also done in weakly nonlinear treatments when passing from the Boussinesq to the
Korteweg-de Vries equation.

60 This factor was absent the first version of this work. We are grateful to Iacopo Carusotto to have pointed out its presence.
This modulation was observed and discussed in Sec. 3.1 of Ref. 27.

61 For more details, we refer to the Chap. 4 of Ref. 41, which presents results from Refs. 23 and 28.
62 Notice that since we assume a stationary flow, the constant term of the Bernoulli equation cannot be absorbed in the time

derivative of the potential. Here we determined it using the knowledge of the asymptotic value of the velocity and water
height.

63 Using Eq. (A9), one can alternatively write this equation with the unknown function x̂ only.
64 On the right of the blocking point, the four roots have been already discussed. On the left, since the flow is supercritical,

only two real roots exist. (In total, there are thus six real roots. They are associated with the three in and three out modes.32)
On the usual branch with � > 0, one finds kco, in

ω , the incoming co-propagating mode, and on the negative � one, there is
−kin−ω , which describes the incoming mode with negative energy. The two other roots are complex and conjugated to each
other. They describe a growing and a decaying mode. Since physical modes must be asymptotically bounded,15, 17, 33 the
contribution of the growing mode must vanish.

65 After Unruh’s proposal to mimic black hole physics in fluid flows,10 it was emphasized that in such systems, dispersive
effects must be taken into account.48 Subsequently, a large amount of (analytical and numerical) work was done to identify
under which conditions Eq. (15) would apply to spectra in dispersive media.11, 13, 32, 34, 35, 38, 49–53 It is now clear that the
crucial inequality which guarantees small deviations is κd�/c0 � 1.

66 When ω is low enough, their precise expressions are xb.p.(ω) = 1/(2κ)(35/6d0ω)3/2, and kb.p.(ω) = −(3ω/d2
0 )1/3, where

κ = κc + κv , see Sec. I.D.1 of Ref. 28.
67 It is worth noticing that the linearized Korteweg-de Vries (LKdV) equation also gives the Hamilton-Jacobi equation of Eq.

(C5). Therefore, the same analysis could also be performed starting with the LKdV equation generalized to inhomogeneous
background flows. However, we decided to work with Eq. (8) for two main reasons: (1) to be able to use the conserved
scalar product of Eq. (B1) which is canonically associated with Eq. (8); (2) to make contact with the relativistic equation
(A31) used by Hawking.

68 For the interested reader, we here explain with more details why the standard treatments are inadequate to compute the
scattering coefficients in the flow we considered. We use the treaty of C.C. Mei43 to explain the situation. In chapter 3,
currents and varying bottoms are both considered (see in particular Sec. 3.6), but they are assumed to be “slowly varying,”
and therefore the physical predictions are limited to the regime of “ray approximation.” As we explained, when using this
(WKB) approximation, the “over-reflection,” i.e., the mixing amongst modes of opposite norms is automatically neglected.
Hence this treatment cannot be used to derive the key equation (C10). In chapter 4, the author considers bottoms with
appreciable variations, and hence the scattering of long wavelengths can be, and in fact is, studied in details. However, in this
treatment, the crucial roles played by the current (and especially when it becomes supercritical) are simply not considered.
In particular, the role of “negative energy waves” which are necessary to obtain an “over-reflection,” is simply not discussed.
When consulting other treaties, such as Refs. 1 and 31, we meet the same situation: there is no treatment allowing the
description of the scattering of long wavelength modes in inhomogeneous super-critical flows with non-negligible spatial
gradients.
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