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Supplementary Figure 1 | Simulations and high‐resolution analysis of single‐molecule pairs with different distances and orientations. 

Average intensity images, high resolution images and intensity profiles of simulated signals of various molecule pairs with decreasing distance 
and increasing phase differences, Δα, including modulation, shot noise and background noise. Scale bar corresponds to ~1 µm when assuming an 
emission wavelength of 620 nm and a numerical aperture of 1.3.
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Supplementary Figure 2 | Comparison of diffraction limited fluorescence images with Richardson‐Lucy deconvolution and SPoD‐images from 
various samples. 

Comparison of diffraction limited fluorescence images (a, d, g, j) with Richardson‐Lucy deconvolution (b, e, h, k) and SPoD‐images (c, f, i, l) from 
various samples shown in Figs. 2‐4. (a), (b), (c) Comparison of the experimental diffraction limited fluorescence image with Richardson‐Lucy 
deconvolution and the SPoD‐image shown in Fig. 2e and g. (d), (e), (f) Corresponding comparison for the experimental images shown in the insets 
of Fig. 3a and 3b. (g), (h), (i) Corresponding comparison for the spine marked in Fig. 4b by the arrow on the left. (j), (k), (l) Corresponding 
comparison for the spine shown in Fig. 4a and 4b on the top left. 
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Supplementary Figure 3 | Two‐photon imaging in thick brain slices

(a), (b) two‐photon imaging of spine heads from transgenic mice brain slices labeled with pfEGFP. Images were recorded at tissue depths of a 0.4 
mm and b 0.6 mm using two‐photon excitation at 940 nm and a special deep tissue multi‐photon microscope objective (25 x, NA =1.05). (c), (d) 
SPoD images of data in a and b. Scalebars represent 1 µm.
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Supplementary Figure 4 | Simulations and high‐resolution analysis of membrane‐like sectional views.

(a) Structural mask and single molecule positions for the signal simulation in b. (b) Average intensity image, high resolution image and intensity 
profiles of a simulation of 800 single molecules at positions as marked in a including modulation, shot noise, background noise and single‐
molecule blinking as well as phase (orientation) fluctuations. (c) As in b but with ten times more molecules. Insets represent intensity profile plots 
along the blue lines. For the profile plots only a pixel oversampling factor of two in comparison to the original image pixels was used, i.e. the 
actual resolution is higher. Scale bar corresponds to ~ 1 µm when assuming an emission wavelength of 620 nm and a numerical aperture of 1.3.
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Supplementary Note 1 

Demodulation Algorithm  

The emission from a single molecule or nanoarea which modulates with the amplitude A and phase ∆t (or ∆α) 
around an average intensity I, is blurred over several pixels by the diffraction limited PSF of width ~250 nm. 
Thus, in the raw data each nanoarea (each containing a certain number n of molecules) with different phases 
contributes dominantly to about 25 pixels of size 50 x 50 nm2 with different contributions according to the PSF. 
The intensity, I, in the final image with 50 x 50 nm2 nanoareas is proportional to the number of molecules 
present in the real structure in these nanoareas. The task of the analysis is to find the best set of parameters A, I, 
∆t for each of these ~25 nanoareas that fits the actual overall modulation I(pixel,t) observed  in all ~25 pixels 
simultaneously.  All other parameters that are needed to describe the observed picture (frequency, pixel size, 
PSF) are fixed.  In contrast to steady state excitation in which only one intensity is observable per pixel, the 
algorithm here has notably more than one data point available per pixel and each data point carries additional 
information due to the modulation. 

Our statistical data analysis method is therefore based on an explicit model of the observation process. The i-th 
molecule, located at position ri in the focal plane, emits photons with a rate k(α(t)−αi) which depends on time t 
due to the temporal variation of the polarization angle and its difference to the transition dipole moment 
orientation αi of the molecule (α(t)−αi=∆α). These photons are blurred by the point spread function U(r) of the 
microscope, resulting in a Poisson distributed number of photons registered by the camera at location r. The 
average value of photons registered is U(r−ri)·k(α(t)−αi). Summing over all molecules the resulting image is 

   𝐼(𝑟, 𝑡)~Poisson(𝐼0 ∑𝑈(𝑟 − 𝑟𝑖) ⋅ 𝑘(𝛼(𝑡) − 𝛼𝑖))     (4) 

The constant I0 is a prefactor containing such influences as the excitation intensity, the exposure time of the 
camera, the pixel size and so on.  

Since the polarization angle is a linear function of time (the polarizer is rotated with constant velocity), we may 
express the angle dependent function k(α(t)−αi) by the time dependent function f(t−ti) with a suitably chosen ti, 
the time shift of molecule i. The function f(t) is periodic because after the time T corresponding to half a rotation 
of the polarizer the emission rate repeats itself.  In the simplest case (no ExPAN) the function f(t) is  

 
𝑓(𝑡) =  𝑐𝑜𝑠2 �π𝑡

𝑇
�  (5) 

 

It is more convenient to rewrite the above expression in terms of a density g(r, t) of molecules at r with time shift 
t, 

(𝑟, 𝑡) = ∑ δ(𝑟 − 𝑟𝑖)δ(𝑡 − 𝑡𝑖)𝑖      (6) 

 

where δ(r) is a two-dimensional Dirac δ -function and δ(t) a one-dimensional one. Then the registered number of 
photons in Eq. 4 is distributed according to 

 
𝐼(𝑟, 𝑡)~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 �𝐼0 ∫ ∫𝑈(𝑟 − 𝑟′)𝑓(𝑡 − 𝑡′) 𝑑𝑟′𝑑𝑡′𝑇

0 �    (7) 

Now the additional information due to the polarization modulation becomes apparent: without polarization 
modulation, only the marginal density 𝑔�(𝑟) = ∫ 𝑔(𝑟, 𝑡)𝑑𝑡𝑇

0  can be used for the reconstruction whereas SPoD 
allows for additional time resolution resulting in a much sparser representation. This can be seen most easily by 
considering a discretized version of g(r, t) as it is done for the algorithmic implementation. For N molecules and 
S phase or time dependent images with P pixels the fraction of nonzero entries (measuring the sparsity) of the 
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marginal density is N/P (which may be of order 1) whereas it is N/PS for the full density, i.e. reduced by a factor 
of S. The density ĝ(r)  is what a Richardson-Lucy algorithm could aim to reconstruct directly in an experimental 
setup without the rotating polarizer, hence we see that the gain of the method compared to conventional imaging 
consists of a sparsification of the data by allowing for a representation in terms of g(r, t).  

The analysis becomes even more robust when the following experimental effects are also considered. Due to the 
properties of the dichroitic mirrors used in the experimental setup the overall intensity of the excitation laser 
beam varies somewhat with the polarization angle, hence the intensity of the emitted light also varies 
accordingly. This results in a time dependent but periodic correction factor I0(t) instead of the constant I0. 
Moreover, light from molecules outside of the focal plane is also registered to some degree but it is heavily 
blurred. Due to the strong blurring its time shift information is lost since at any particular point of the image the 
contributions from many such molecules are added. This unmodulated background can be modeled by a time 
independent function b(r). Since it represents the blurred background, it is expected to be slowly varying in 
space. This property can be enforced by demanding sparsity of its cosine transform b̃(k) (we use the cosine 
transform instead of the Fourier transform in order to avoid unnecessary complications due to the complex 
values appearing in the Fourier transform). Our complete model hence is 

 

𝐼(𝑟, 𝑡) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (µ(𝑟, 𝑡))     (8) 

where 

 
µ(𝑟, 𝑡) = 𝐼0(𝑡) �∫ ∫𝑈(𝑟 − 𝑟′)𝑓(𝑡 − 𝑡′)𝑔(𝑟′, 𝑡′)𝑑𝑟′𝑑𝑡′ + 𝑏(𝑟)𝑇

0 �    (9) 

In order to estimate the density g(r, t) and the background b(r), we apply penalized maximum likelihood 
estimation for Poisson statistics enhanced by sparsity enforcing terms for both g(r, t) and b̃(k). The negative log 
likelihood of Poisson statistics with intensity µ for an observation of n photons is l(µ; n) = µ - n log µ. In our 
model we have an observation I(r, t) at each r and t with parameter µ(r, t). In order to estimate µ(r, t) from the 
data we then suggest to minimize the functional L[g, b; I] given by 

 
𝐿[𝑔, 𝑏, 𝐼] = ∫ ∫ 𝑙�µ(𝑟, 𝑡); 𝐼(𝑟, 𝑡)� 𝑑𝑟 𝑑𝑡 + λ1|𝑔|1 +  λ2�𝑏��1

𝑇
0      (10) 

with respect to g(r, t)  and b̃(k). The first term is the negative log likelihood of Poisson statistics and the sparsity 
enforcing terms are the ℓ1 -norms |g|1 and |b̃|1. The parameters λ1 and λ2 are empirical parameters that depend, for 
example, on the above mentioned back-ground modulation caused by the overall excitation beam variation in the 
specific experimental set-up used. In general, we term the method that is used here to analyse the modulation 
data “Sparsity penalty enhanced estimation by demodulation" (SPEED).  

The guaranteed sparsity of the representation is a great help in reconstructing the true molecule distribution due 
to the compressive sensing paradigm. Although it has been shown that this is more difficult for Poisson statistics 
than for, e.g., Gaussian noise1, the shrinkage property of the ℓ1-norm remains and the reconstruction error as 
measured by a weaker measure than the ℓ2-norm will still be small under suitable assumptions.2 However, a full 
detailed theoretical analysis of the situation of this experimental setup in the compressive sensing framework is 
not yet available and is the subject of future research.  

The functional L[g, b; I] consists of a convex smooth part (the Poisson likelihood) and a convex non-smooth part 
(the  ℓ1-norms). Fast minimization of such a functional can be accomplished with the Beck-Teboulle algorithm3, 
which we used for this publication. 

There are several factors which are not included in this simplified model, for instance possible jumps in the 
dipole moment orientation αi or photobleaching. The inclusion of these additions is left for future work. 
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Supplementary Note 2 

Estimate of resolution 

An exact mathematical description for the resolution that can be achieved under various different experimental 
conditions is subject of ongoing studies. However a first order estimate for an upper limit of the resolution of 
SPoD images (without considering the modulation enhancement available with ExPAN) can be obtained as 
follows. We first assume two spots at which Nmol molecules with random orientations are positioned.  The 

number of photons observed from a single spot corresponds on average to Nph = Nmol ⋅ Nph/mol ⋅ t photons where 
Nph/mol  is the average number emitted from a single molecule per unit time and t the data acquisition time. During 
polarization rotation, the signal observed from such a spot modulates around this average value (Compare also to 
the black curves in Fig. 1b). Due to averaging of the modulation from individual emitters, the relative amplitude 
of this modulation becomes the smaller the more molecules, Nmol, contribute to one spot. On average the number 

of photons in the modulated signal is Nmod = Nph ⋅ (1/Nmol) 1/2. During polarization rotation the total signal 
observed from one spot is thus represented by a constant photon fraction Nconst = Nph – Nmod plus a modulated 
photon fraction Nmod (see e.g. Fig. 1g). 

The analysis described in the Supplementary Note 1 derives the final images by a simultaneous analysis of the 
time-dependent modulation and constant signals and their different space-dependent contribution to different 
pixels. However, to provide a analysis -independent estimate for the upper limit of the resolution enhancement 
available from the modulation information it is conceptually easier to divide the analysis into two steps. In the 
first step, the differences in the modulation phase of the spots are used to distribute the  intensity from both spots 
to a series of phase-dependent images in which the signals emitted from one and the other spot are still spatially 
blurred but occur only in that image which belongs to its phase of the modulation. 

When the difference in the modulation phases of the two spots is maximal (∆α = |α1 – α2|=90°), they appear 
maximally separated in the phase-dependent image series as one spot in one image and another spot in another 

image with total intensities corresponding to Nmod photons. For smaller phase differences ∆α and when the 
distance of both spots, r, is small compared to the standard deviation of the point-spread function, s, the amount 

of information available for distinguishing the spots is proportional to sin∆α, i.e. for close-by spots of similar 
phase only a certain fraction of the signal can be assigned reliably to the different phase dependent images. 

Maximum information is available for ∆α =90° or when the distance r is significantly larger then s. Thus, the 
information that can be used to determine the position of one spot is contained in the position of at least 

sin∆α ⋅ Nmod detected photons or on average of (2/π)⋅Nmod photons. 

In addition, each spot is also affected by the shot noise from the constant (non-modulated) background 

corresponding maximally to 2 ⋅ NConst. from both spots. For our upper limit estimate we conservatively assume 
that this total background noise is entirely contributing as background to the single phase-dependent image that 
belongs to the phase of the modulated fraction of one spot even though in reality the background for each phase 
image is reduced since it is distributed over several phase-dependent images. This conservative assumption also 
accounts for the possibility that the intensity of the modulated signal, Nmod, of one spot might be blurred to some 
extent over several phase-images. In any case, the number of photons that can be used to determine the position 

of one spot corresponds on average at least to (2/π)⋅Nmod. The constant photon number per one pixel in this 

phase-dependent image is approximately equal to ��������		����
 ≈ Nconst /(2s/q)2 ⋅Nspots, where q is the pixel size in the 
image space and Nspots = 2  the number of spots that overlap in a diffraction limited zone.4 

Assuming photon shot noise statistics for the background noise per pixel, b, yields: b = (��������		����
) 1/2. Then the 

positioning accuracy of one spot in its phase dependent image relative to other spots is given by:  

��,� 	= 	� ��	�	��/���������∆� 		+ 	  !�"#�$����������∆�	 = % ��	�	��/��&�'�(∙�*+/��(∙���∆�∙� 		+ 	
�,-�.�/ 012∆3&4'�(5∙�06�70���(*+ ⋅�∙����∆� 	  (11) 
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Please note that Nmod is the total number of photons in the modulated signal per spot, not per pixel whereas b is 
the background noise per pixel, (not the background intensity, Nconst). Please note that here a modified definition 

for Nconst = Nph – sin∆α ⋅ Nmod   was used that considers also the phase difference ∆9. In case of only one 

molecule per spot (Nmol =1) and ∆α = 90° this formula becomes identical to the localization precision in STORM 
and PALM without background noise. 

This estimate is still valid for more than two spots per diffraction limited area as long as the spots can be 
separated by their phase information. Then still each spot shows up in a single phase-dependent image and can 
be localized according to eq. 11. There is also no big conceptual difference between considering spots containing 
a certain number Nmol molecules or small nanoareas of a pixel size of, e.g., 50 x 50 nm2 in which Nmol molecules 
are located. For example, for the data shown in Fig. 2g, Fig. 3b and large parts in Fig. 4b the structure of the 
modulating signals in the focal plane usually do not exceed much more than NSpots=5 nanoareas or pixels in a 
diffraction limited area of ~5 x 5 Pixels = 250 x 250 nm2. This is a number of nanoareas per diffraction limited 
region that is usually easily assigned to different phases by the analysis at least if the modulation is averaged 
over several periods or if ExPAN is applied. Therefore eq. 11 gives a reasonable upper limit for the resolution 
also in these cases. Indeed, when assuming for the data shown in Fig. 2e-g Nmol ~20 per pixel (as inferred from 

the total intensity), NSpots ~5 nanoareas per diffraction limited area, a minimum phase difference of ∆α ~10°, 

Nph/mol  ≈ 25000 photons per second, for  s ~250 nm, a data acquisition time of t = 1 s and a pixel size of q = 48 
nm then eq. 11 yields an upper resolution limit of σx,y ~40 nm that corresponds very well to our experimental 
observations. The equation predicts also very well the resolution obtained with the two single molecules shown 

in Fig. 2d. With Nmol=1, NSpots=2, a phase difference of ~20°, Nph/mol  ≈ 50000 photons per second, for  s ~250 
nm, a data acquisition time of t = 0,3 s and a pixel size of q = 48 nm eq. 11 predicts a resolution limit of ~18 nm 
that corresponds also very well to our experimental observations. 

Eq. 11 also predicts that the resolution increases by a factor of  ~ (2)1/2 when doubling the data acquisition time 
or the photons emitted per molecule, Nph/mol , as well as approximately a factor of ~2 when increasing the phase 
difference, Δα, by a factor of two. The influence of the number of molecules per pixel on the resolution 
decreases quickly for Nmol > 5. If single molecules can be separated by their phase with or without ExPAN the 
equation for this estimate becomes identical to the localization precision achievable by PALM and STORM. 

However, for higher densities of spots or nanoareas the estimate given by eq. 11 breaks down because the actual 
resolution enhancement is based on the simultaneous analysis of the entire time-dependent modulation and time-
independent signals and their different space-dependent contribution to different pixels. Also, data generated 
with ExPAN (see red lines in Fig. 2b and in Fig. 1 g) contains a multitude of additional information that can be 
used to robustly reconstruct the original structure and which is not considered in the first order estimate provided 
by eq. 11. For these experimental conditions a much more elaborated estimate than eq. 11 has to be employed 
which is the subject of ongoing studies.  

4. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual 
fluorescent probes. Biophys. J. 82, 2775-2783, (2002). 
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