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ABSTRACT

The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi
LAT, is primarily limited by the finite computational resources available. Addressing this “needle in a haystack”
problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing
cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search
sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the
entire parameter space using an efficient semicoherent method and promising candidates are then refined through
a fully coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of
powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we
present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations
we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by
almost 50% at the same computational expense.
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1. INTRODUCTION

The Fermi Large Area Telescope (LAT; Atwood et al. 2009)
has an unprecedented sensitivity to detect the periodic gamma-
ray emission from spinning neutron stars. Owing to the LAT,
the number of detected gamma-ray pulsars has vastly increased
from a handful to about 150 (for a recent review, see, e.g.,
Caraveo 2014), making these objects a dominant Galactic source
class at GeV energies.

So far, the largest fraction of LAT-detected gamma-ray
pulsars has been uncovered indirectly (Abdo et al. 2013).
In this approach, pulsar ephemerides known from previous
radio observations are used to assign rotational phases to
the gamma-ray photons, which are then tested for pulsations.
Dedicated radio searches at positions of unidentified gamma-ray
sources in the Fermi-LAT Second Source Catalog (2FGL; Nolan
et al. 2012) have been particularly successful in discovering
many new radio pulsars, and have provided ephemerides for
subsequent gamma-ray phase-folding (e.g., Ransom et al. 2011;
Guillemot et al. 2012; Abdo et al. 2013).

The direct detection of new gamma-ray pulsars, which are
not known beforehand from other wavelengths, requires blind
searches for periodicity in the sparse gamma-ray photon data
(e.g., Chandler et al. 2001). With the Fermi-LAT, for the first
time such blind searches have been successful (Abdo et al.
2009). Notably, many of the gamma-ray pulsars found this way
have so far remained undetected at radio wavelengths (Abdo
et al. 2013), implying that blind searches are the only way to
access this pulsar population. Currently, hundreds of Fermi-
LAT sources still remain unidentified, but feature pulsar-like
properties (Ackermann et al. 2012; Lee et al. 2012) and thus
likely harbor undiscovered pulsars.

The key problem in blind searches for gamma-ray pulsars
is the enormous computational demand involved, which is
what limits the search sensitivity. Since the relevant pulsar
parameters are unknown in advance, one has to search a dense
grid covering a multidimensional parameter space. The number

of search grid points increases rapidly with longer observation
times. For observations spanning multiple years, “brute-force”
(most sensitive but most expensive) methods, which involve
fully coherently tracking the pulsar rotational phase over the
entire observational data time span, are unfeasible. Therefore,
the efficiency of blind-search methods is crucial because optimal
strategies are those that provide the best search sensitivity at a
fixed computing cost. This is the main theme of this work.

The problem is generally best addressed by a multistage
search scheme (e.g., Meinshausen et al. 2009). This also applies
to blind searches for gravitational-wave pulsars, i.e., spinning
neutron stars emitting periodic gravitational waves (Brady et al.
1998; Brady & Creighton 2000; Cutler et al. 2005; Prix &
Shaltev 2012). The basic idea is that in a first stage, the
entire search parameter space is scanned but employing a much
lower resolution, and therefore at a much lower computing
cost, which can most efficiently discard unpromising regions.
This reduction in parameter resolution is accomplished by
semicoherent methods, in which only time intervals of data
much shorter than one year are coherently analyzed and whose
results are then incoherently summed over multiple years. In
subsequent stages, only small promising regions (i.e., pulsar
candidates) are followed up with higher resolution at higher
computational expense by using longer coherent integration
times.

One semicoherent method appropriate for the first search
stage in gamma-ray pulsar searches is the seminal “time dif-
ferencing technique” by Atwood et al. (2006, hereafter A06).
It can basically be seen as the application of the classic
Blackman–Tukey method (Blackman & Tukey 1958) to gamma-
ray data. To search along the f-dimension (estimating the power
spectrum), A06 calculated the discrete Fourier transform (DFT)
of the autocorrelation function between photon arrival times
up to a maximum lag. This significantly improved the effi-
ciency over earlier methods (e.g., Brady & Creighton 2000;
Chandler et al. 2001, summing power of many DFTs from subin-
tervals) because the autocorrelation function can be computed at
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negligible cost thanks to the sparsity of the photon arrival times.
The success of the A06 method has been spectacularly demon-
strated by the blind-search discovery of 24 gamma-ray pulsars
(Abdo et al. 2009; Saz Parkinson et al. 2010) within the first
Fermi mission year.

Using further improved methods, in part originally developed
for blind searches for gravitational-wave pulsars (Pletsch &
Allen 2009; Pletsch 2010), analyzing about three years of LAT
data revealed 10 new gamma-ray pulsars (Pletsch et al. 2012a,
2012c). Crucial methodological improvements included the use
of an analytic metric on parameter space to construct the grid
over both sky position and frequency derivative. This allowed
pulsars to be found that are much farther from the LAT catalog
sky position than was possible previously. In addition, a photon
weighting scheme (first studied by Kerr 2011) was used for
both photon selection and for the search computations to ensure
near-optimal detection significance. For enlarged computational
resources, we have recently moved this ongoing search effort
onto the volunteer computing system Einstein@Home.3 So
far, this has resulted in the discovery of another four young
pulsars (Pletsch et al. 2013). Here, we give a more detailed
description of the strategies and methods exploited in these
searches and consider related questions one be might faced
with when setting up a blind search. Could a fully coherent
blind search using a subset of data perhaps be more sensitive
than a semicoherent search using all of the data? Is harmonic
summing worthwhile under computational constraints? What
is the optimal search-grid point density to balance sensitivity
versus computing effort? In addressing such questions, we
present the technical framework to optimize the sensitivity of
blind pulsar searches in gamma-ray data at fixed computing
cost. Moreover, we present further important methodological
advances to improve the overall blind-search efficiency.

The paper is organized as follows. In Section 2, we describe
the statistical detection of pulsations in general. In Section 3, we
discuss the statistical properties of coherent blind searches and
study their computational cost scalings using the parameter-
space metric. We also investigate the efficiency of harmonic
summing for different pulse profiles. In Section 4, we describe
the statistical properties of a semicoherent blind-search method
and compare the respective computing demand using the semi-
coherent metric. Section 5 presents a collection of technical
improvements for the implementation of the semicoherent
search stage, including efficient interpolation methods and
automated candidate follow-up procedures. We demonstrate
the superiority from combining these advances through re-
alistic simulations in Section 6. Finally, conclusions follow
in Section 7.

2. STATISTICAL DETECTION OF PULSATIONS

In blind pulsar searches, the pulse profile (the periodic
light curve) and the exact parameters describing the rotational
evolution of the neutron star are unknown in advance. As Bickel
et al. (2008) have pointed out, unless the pulse profile shape
is precisely known, there is no universally optimal statistical
test because any most powerful test for one template profile
will not be most powerful against another. Any test can only be
most sensitive to a finite-dimensional class of targets. Thus,
for computational feasibility of a blind search, an efficient
(potentially suboptimal) template pulse profile to test against
should attain only modest reduction in detection sensitivity

3 http://einstein.phys.uwm.edu/

compared to an optimal template. The construction of such a
test can be guided by the profiles of known gamma-ray pulsars,
which we will consider below.

For isolated pulsars, the search parameters describing the
rotational phase of the neutron star is at least four-dimensional,
consisting of frequency f, spindown rate ḟ , and sky position
with right ascension α and declination δ. To the LAT-registered
arrival times tLAT, sky-position (α, δ)-dependent corrections
(“barycentric corrections”) are applied in order to obtain the
photon arrival times t at the solar system barycenter (SSB).
Then, the rotational phase Φ(t) is described by

Φ(t) = φ0 + 2π f (t − t0) + 2π ḟ
(t − t0)2

2
, (1)

where f and ḟ are defined at reference time t0, when the phase
equals the constant φ0.

Apart from the arrival time, for each of N detected gamma-
ray photons, indexed by j, the LAT also records the photon’s
reconstructed energy and direction. From these, a weight, wj ,
can be computed measuring the probability that it has originated
from the target source (Bickel et al. 2008; Kerr 2011). Using
these probability weights efficiently avoids testing different
hard selection cuts on energy and direction (implying binary
weights), providing near optimal pulsation detection sensitivity
(Kerr 2011; Pletsch et al. 2012a).

The observed gamma-ray pulse profile F (Φ), the flux as a
function of Φ, can be written as

F (Φ) ∝ 1 − p

2π
+ p Fs(Φ), (2)

where p is the pulsed fraction that is estimated by the number
of pulsed gamma-ray photons divided by the total number of
photons. Fs(Φ) represents the pulse profile (undisturbed by
background) and is a probability density function on [0, 2π ],
which can be expressed as a Fourier series

Fs(Φ) = 1

2π

(
1 +

∑
n�=0

αn ei n Φ

)
, (3)

with the complex Fourier coefficients αn, defined at harmonic
order n as

αn =
∫ 2π

0
Fs(Φ) e−i n Φ dΦ. (4)

Hence, the total flux F (Φ) can be rewritten as

F (Φ) ∝ 1 + p
∑
n�=0

αn ei n Φ. (5)

If Fs(Φ) is an exact sinusoidal pulse profile, then from
Equation (4) it follows that |α1| = 1/2 and all other coeffi-
cients vanish, |αn>1| = 0. As another example, if the pulse
profile Fs(Φ) is a Dirac delta function, i.e., the narrowest pos-
sible profile, then all coefficients are equal, |αn| = 1, implying
equal Fourier power at all harmonic orders.

In general, the null hypothesis is given by p = 0, meaning
that all phases are uniformly distributed (i.e., no pulsations).
From the likelihood for photon arrival times, Bickel et al. (2008)
derived a score test statistic QM for p > 0,

QM = 1

K2

M∑
n=1

|αn|2 |An|2, (6)
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where we defined the normalization constant K (different from
Bickel et al. 2008) as

K2 = 1

2M

M∑
n=1

|αn|2, (7)

and An is given by

An = 1

κ

N∑
j=1

wj e−i n φ(tj ), (8)

with the time-dependent part of the phase φ(t) = Φ(t) −φ0 and
the normalization constant κ defined as

κ2 = 1

2

N∑
j=1

w2
j . (9)

Thus, we denote by Pn the coherent Fourier power at the nth
harmonic,

Pn = |An|2 = 1

κ2

∣∣∣∣∣
N∑

j=1

wj e−i n φ(tj )

∣∣∣∣∣
2

. (10)

Appealing to the Central Limit Theorem (since N � 1 in all
practical cases), the normalization choice of Equation (9) has
the convenient property that the coefficients �(An) and �(An)
become independent Gaussian random variables with zero mean
and unit variance under the null hypothesis. Therefore, to good
approximation, each Pn is χ2-distributed with two degrees of
freedom, as will be discussed below. Thus, QM is the weighted
sum of coherent Fourier powers,

QM =
M∑

n=1

|αn|2
K2

Pn. (11)

Therefore, as noted by Bickel et al. (2008), the test statistic QM
is invariant under phase shifts (i.e., independent of reference
phase φ0) and only depends on the amplitudes of the Fourier
coefficients αn, but not on their phases. Moreover, Beran (1969)
showed earlier that if the pulse profile is known a priori, a
test statistic following from QM for binary weights is locally
most powerful for testing uniformity of a circular distribution,
assuming unknown and weak (small p) signal strength.

3. COHERENT TEST STATISTICS

In what follows, we examine the sensitivity of coherent blind
searches at fixed computational cost, taking into account the
statistical properties and sensitivity scalings in terms of relevant
quantities. For simplicity, during the remainder of this section
here we assume hard photon selection cuts, i.e., binary weights
only, wj ∈ {0, 1}, such that Pn reduces to

Pn = 2

N

∣∣∣∣∣
N∑

j=1

e−i n φ(tj )

∣∣∣∣∣
2

. (12)

However, the main conclusions obtained will also have applica-
bility when arbitrary (i.e., non-binary) weights are used.

3.1. Statistical Properties

Under the null hypothesis p = 0 and assuming N � 1,
the coherent power Pn as of Equation (12) follows a central
χ2 distribution with two degrees of freedom (see Appendix A),
whose the first two moments are

E0 [Pn] = 2, V ar0 [Pn] = 4. (13)

Suppose the photon data contain a pulsed signal, p > 0, whose
pulse profile can be expressed in terms of complex Fourier
coefficients, γn as in Equation (4). In this case, we show
in Appendix A that for moderately strong pulsed signals the
distribution of Pn can be well approximated by a noncentral χ2

distribution (Groth 1975; Guidorzi 2011) with two degrees of
freedom. Thus, in the perfect-match case (the pulsar parameters
f, ḟ , and sky position are precisely known), the first two
moments are approximately given by

Ep [Pn] ≈ 2 + 2p2N |γn|2 , (14a)

V arp [Pn] ≈ 4 + 8p2N |γn|2 , (14b)

where pN photons are assumed to be “pulsed” and accordingly
(1−p)N photons are “non-pulsed” (i.e., background). Thus, the
second summand in Equation (14a) represents the noncentrality
parameter.4 We can also identify the amplitude signal-to-noise
ratio (S/N) at the nth harmonic, θPn

, as

θ2
Pn

= Ep [Pn] − E0 [Pn]√
V ar0 [Pn]

≈ p2 N |γn|2. (15)

Therefore, by comparison with Equation (14a), the noncentrality
parameter is just 2θ2

Pn
.

A similar calculation for QM , based on the above relations,
shows that if p = 0,

E0 [QM ] = 2M, V ar0 [QM ] = 4

K4

M∑
n=1

|αn|4, (16)

and for p > 0, one obtains

Ep [QM ] ≈ 2M +
2 p2 N

K2

M∑
n=1

|αn|2|γn|2. (17)

Thus, the amplitude S/N θQM
for the test statistic QM can be

expressed as

θ2
QM

≈ p2 N
∑M

n=1 |αn|2|γn|2√∑M
n=1 |αn|4

. (18)

A similar expression has been derived by Bickel et al. (2008),
who used this parameter as an approximate measure of the
sensitivity of the test statistic QM since the larger the S/N
θQM

, the higher the probability of detection. However, it is only
an approximate sensitivity measure because any meaningful
sensitivity comparison must be done at a fixed probability of
false alarm as will be described below. Equation (18) also
shows that the S/N is maximized if |αn|2 ∝ |γn|2, i.e., when the
template pulse profile αn perfectly matches the γn, representing

4 A random variable X following a noncentral χ2-distribution with two
degrees of freedom and noncentrality parameter λ has expectation value 2 + λ.
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the signal pulse profile. However, as Bickel et al. (2008)
correctly note, practical blind searches can only test for a finite-
dimensional class of template pulse profiles.

A particularly simple template profile for a given value of M
is

|αn| =
{

1, n � M

0, n > M
. (19)

With this choice, QM measures the coherent Fourier power
summed over the first M harmonics, which we therefore refer to
as incoherent harmonic summing. The resulting statistic is also
known as Z2

M (Buccheri et al. 1983),

Z2
M =

M∑
n=1

Pn. (20)

Maximizing Z2
M over different values of M as H =

max1�M�20(Z2
M −4M + 4) also recovers the widely used H-test

by de Jager et al. (1989).
The template of Equation (19) has the additional benefit

that the statistical distribution of Z2
M is known analytically.

Therefore, we use this to obtain realistic sensitivity scalings
for such coherent test statistics. Since Pn is χ2

2 -distributed,5 it
follows that Z2

M is distributed as χ2
2M . Thus, one obtains

E0
[
Z2

M

] = 2M, V ar0
[
Z2

M

] = 4M, (21)

and
Ep

[
Z2

M

] ≈ 2M + 2θ2
M

√
M. (22)

Correspondingly, the S/N θM is written as

θ2
M = 1√

M

M∑
n=1

θ2
Pn

= p2 N√
M

M∑
n=1

|γn|2. (23)

In the Neyman–Pearson sense, we define search sensitivity
from the lowest threshold pulsed fraction required to achieve a
certain detection probability P ∗

DET for a given number of photons
N and at given false alarm probability P ∗

FA. For Z2
M the false

alarm probability is computed as

PFA
(
Z2

M,th

) =
∫ ∞

Z2
M,th

χ2
2M

(
Z2

M; 0
)

dZ2
M, (24)

where χ2
k (X; λ) denotes the probability density function for

the χ2
k -distributed variable X with noncentrality parameter λ.

The probability of detection for a noncentrality parameter of
2θ2

M

√
M is

PDET
(
Z2

M,th, 2θ2
M

√
M

) =
∫ ∞

Z2
M,th

χ2
2M

(
Z2

M; 2θ2
M

√
M

)
dZ2

M.

(25)
The minimum detectable pulsed-fraction threshold for summing
coherent power from M harmonics, pcoh,M , is obtained by
first inverting Equation (24) to get the threshold test-statistic
value Z2

M,th(P ∗
FA), which in a second step is substituted in

Equation (25) to numerically find the required threshold S/N:

θ∗
M = θM (P ∗

FA, P ∗
DET). (26)

5 We use the notation χ2
k to indicate a χ2 distribution with k degrees of

freedom.

Finally, Equation (23) can be used to convert the threshold S/N
θ∗
M into pcoh,M , which defines the coherent search sensitivity as

p−1
coh,M =

√
N

M1/4 θ∗
M

[
M∑

n=1

|γn|2
]1/2

. (27)

Assuming the overall photon count rate, μ = N/Tcoh,1, is
constant throughout the entire coherent integration time, Tcoh,1
then the search sensitivity increases with the well-known square-
root scaling of Tcoh,1,

p−1
coh,M =

√
μTcoh,1

M1/4 θ∗
M

[
M∑

n=1

|γn|2
]1/2

. (28)

Thus, we have obtained an expression for the search sensitivity,
separating the two effects of photon count rate (or integration
time) and pulse profile shape. Regarding the latter effect,
Equation (28) reveals that the sensitivity only improves with
including higher harmonics (i.e., increasing M) if the pulse
profile shape is such that (

∑M
n=1 |γn|2)1/2 increases more quickly

than the “statistical penalty” factor M1/4 θ∗
M . While this is true

for the narrowest possible pulse profile (a Dirac delta function),
we show below that the same does not hold in general for typical
gamma-ray pulsar profiles.

3.2. Effects of Pulse Profile on Sensitivity

From Equation (28) in the previous section, we have seen
how the sensitivity for pulsation detection depends on the shape
of the pulse profile, represented by the Fourier coefficients γn.
Therefore, it is instructive to examine the change in sensitivity
as a function of the number of harmonics M for some exemplary
profiles. Thus, we consider the following ratio:

p−1
coh,M

p−1
coh,1

= θ∗
1

M1/4 θ∗
M

1

|γ1|

[
M∑

n=1

|γn|2
]1/2

, (29)

which compares in the statistical sense the search sensitivity
of including M harmonics, compared to using the fundamental
only (in the absence of any computational constraints).

In the ideal case, where all harmonics have equal power
|γn|2 = 1, the pulse profile is a Dirac delta function as described
above. In this case, (

∑M
n=1 |γn|2)1/2 = M1/2, and the sensitivity

is a monotonically increasing function of M at fixed detection
probability, P ∗

DET, and fixed false alarm probability, P ∗
FA. To

illustrate this, consider the following example, assuming that
P ∗

FA = 1% and P ∗
DET = 90%. Then, to good approximation, the

corresponding S/N threshold θ∗
M can be described by

θ∗
M ≈

(
3.715 +

4.987√
M

)1/2

. (30)

Hence, with increasing M, the threshold S/N θ∗
M decreases and

becomes constant in the limit of large M, in which case the
statistical penalty factor (M1/4 θ∗

M ) becomes ∝ M1/4. Since this
scaling is slower than the pulse profile factor (

∑M
n=1 |γn|2)1/2 =

M1/2 in this case, the sensitivity is monotonically increasing
with M. This is also shown in Figure 1, using the exact values
for θ∗

M that we calculated numerically.
To obtain a more realistic signal pulse-profile model, we

considered those of the known gamma-ray pulsars. We carried
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Figure 1. Sensitivity as a function of the number of harmonics M included
in absence of computational constraints and for three different pulse-profile
models. In each panel, we fixed the detection probability P ∗

DET = 90% and
the four curves correspond to different values of false alarm probability P ∗

FA
as shown by the legend. The upper panel is for a Dirac delta function pulse
profile (implying equal Fourier power at all harmonics). The middle panel is
for a typical pulse profile, obtained from the known gamma-ray pulsars by
averaging those profiles that are mostly single-peaked (i.e., the γn values shown
in the bottom left panel in Figure 2). The bottom panel is also for a realistic
pulse profile, obtained from the known gamma-ray pulsars by averaging those
profiles that are mostly two-peaked (i.e., the γn values shown in the bottom
right panel in Figure 2). Since for these profiles the Fourier power |γ2|2 is
highest at the second harmonic (n = 2), in this plot the vertical axis shows the
sensitivity compared to a blind search which would report the highest detection
significance at the second harmonic (i.e., “misidentify” the fundamental).

(A color version of this figure is available in the online journal.)

out a harmonic analysis of the pulse profile shapes of the
117 known gamma-ray pulsars listed in the second Fermi
LAT pulsar catalog (Abdo et al. 2013) and computed their
Fourier coefficients, γn. These are shown in Figure 2 (top panel)
and illustrate that for most of the known gamma-ray pulsars
the largest fraction of Fourier power is typically in a single
harmonic that is either the first (mostly single-peaked profiles)
or the second (mostly two-peaked profiles). Therefore, before
computing an average profile (by averaging the |γn|), it makes
sense to divide the pulsars into these two groups (based on
whether or not |γ1| > |γ2|). These results, separately for each
group, are displayed in the two bottom panels of Figure 2.

We use the resulting two sets of coefficients γn to calculate
the sensitivity scaling with M from Equation (28) as also shown
in Figure 1. Notice that for the typical pulse profiles, in contrast
to the Dirac delta pulse-profile, when summing more than a
certain number of harmonics, the sensitivity starts to decrease
(at fixed P ∗

DET and P ∗
FA). This is because the Fourier powers

|γn|2 at the higher harmonics become vanishingly small and
thus effectively only contribute “noise” when summed (i.e., the
statistical penalty factor cannot be overcome anymore).

These results also illustrate the success of the H-test for
targeted pulsation searches in gamma-ray data with known
pulsar ephemerides, because this test maximizes the Fourier
power sums over the first 20 harmonics. Maximizing only over
fewer harmonics could likely already be sufficient (or even be
more sensitive due to the reduced trials factor) in most cases,
as suggested by Figure 1. Besides, further improvements over
the H-test could also be achieved by employing one or more
template profiles αn that are more representative of the typical
gamma-ray profile (than the delta function) to compute the QM
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Figure 2. Harmonic analysis of pulse profiles of the 117 gamma-ray pulsars
in the second Fermi LAT pulsar catalog (Abdo et al. 2013). Top panel: Fourier
power |γn|2 (color-coded) at the nth harmonic (vertical axis) for each of the
117 pulsars (horizontal axis). Bottom left panel: Fourier power |γn|2 at the
nth harmonic averaged over the 76 out of the 117 pulsars, whose power at
the fundamental is highest (mostly single-peaked profiles). Bottom right panel:
Fourier power |γn|2 at the nth harmonic averaged over 41 out of the 117 pulsars,
whose power at the second harmonic is highest (mostly two-peaked profiles).

(A color version of this figure is available in the online journal.)

test statistic. Using the average profile from the known pulsars
from above for this seems the simplest first step. While also
conducting a principal component analysis appears worthwhile,
we defer a detailed study of this to future work.

So far, we have not considered the computational costs in-
volved, which is only justifiable for computationally inexpen-
sive targeted searches. In contrast, blind searches are limited
by computational power. Therefore, in the following section,
we will revisit the efficiency of harmonic summing under the
constraint of a fixed computational cost.

3.3. Grid-point Counting for Coherent Search

In blind searches, the pulsar’s rotational and positional
parameters are unknown a priori. Therefore, one has to construct
a grid in the multidimensional search parameter space that is
explicitly searched, i.e., the test statistic is to be computed
at each grid point. Therefore the question arises: What is the
most efficient scheme for constructing the search grid? If grid
points are placed too far apart potential pulsar signals might be
missed. On the other hand, it is highly inefficient to place grid
points too closely together, because of redundancy resulting
from strongly correlated nearby grid points. The problem of
constructing efficient search grids has been intensively studied

5
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in the context of gravitational-wave searches (see, e.g., Brady
et al. 1998; Brady & Creighton 2000; Prix 2007; Pletsch & Allen
2009; Pletsch 2010), and we employ some of these concepts
here.

The key element is a distance metric on the search space
(Balasubramanian et al. 1996; Owen 1996). The metric provides
an analytic geometric tool measuring the expected fractional loss
in squared S/N for any given pulsar-signal location at a nearby
grid point.

Let the vector usig collect the actual pulsar signal parame-
ters. In a blind search for isolated pulsars, this vector is at least
four-dimensional, usig = (fsig, ḟsig, αsig, δsig). For simplicity,
we begin by considering the metric at the fundamental har-
monic (n = 1). As will be shown below, it is subsequently
straightforward to generalize the results to higher harmonic or-
ders. Following Equation (15), let θP1 (usig) denote the S/N for
the perfect-match case, i.e., at the signal parameter-space loca-
tion. In a blind search, the signal parameters generally will not
coincide with a grid point u, but will typically have some offset,

Δu = u − usig. (31)

These offsets lead to a (time-dependent) residual phase φ(t; u)−
φ(t; usig) and therefore a fractional loss in squared S/N results,
which is commonly referred to as mismatch,

m(Δu) = 1 − θ2
P1

(u)

θ2
P1

(usig)
= 1 − θ2

P1
(usig + Δu)

θ2
P1

(usig)
. (32)

The metric is obtained from a Taylor expansion of the mismatch
to second order in the offsets Δu at the signal location usig,

m(Δu) ≈
∑
k,�

Gk� Δuk Δu� + O(Δu3), (33)

This equation defines a positive definite metric tensor G with
components Gk�, where k and � label the tensor indices. In
Appendix B, we derive explicit expressions for the coherent
metric for a simplified phase model that is appropriate for the
purpose of grid construction. We also find that the resulting
metric tensor G is diagonal, which greatly simplifies the grid
construction. The results of this derivation will therefore be
used in what follows.

As noted by Prix & Shaltev (2012), the probability distri-
bution of signal mismatches in a given search grid constructed
with a certain maximal mismatch m depends on the structure and
dimensionality of the search parameter space. The correspond-
ing average mismatch in each dimension, ξ m, will generally
be smaller by a characteristic geometric factor ξ ∈ (0, 1), de-
pending on the actual search-grid construction. For example,
for hyper-cubical lattices, ξ is known to be ξ = 1/3. In order
to construct a hyper-cubical grid in which the maximum mis-
match due to an offset in each parameter is m, then the grid point
spacing in each parameter should be

Δuk = 2

√
m

Gkk

. (34)

Denote by U the four-dimensional parameter space, spanned by
u, which is to be searched. Thus, when searching for pulsars
with spin frequencies in the range [0, fmax], with spin-down
rates in the range [ḟmax, 0], and whose sky location is confined
by the LAT to a region of area Asky, the proper volume U can be
written as

U = fmax

∣∣ḟmax

∣∣Asky. (35)
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Figure 3. Scaling of the determinant of the coherent metric G as function of the
coherent integration time Tcoh,1 (black solid curve). The red dot–dashed curve
shows the model of the coherent metric determinant from the approximation of
Equation (39) used to estimate the computing cost scaling.

(A color version of this figure is available in the online journal.)

In principle, the metric coefficients (and hence also the grid point
spacings) can vary throughout the parameter space. Indeed, for
the metrics considered in this work, the grid point spacing
in the sky dimensions depends on the spin frequency of the
pulsar. In order to avoid having to construct a separate sky
grid for each search frequency value, we adopt the conservative
approach of using the highest frequency searched fmax for the
sky grid construction. The metric (and hence also the grid point
spacing) becomes uniform throughout U . The total number of
search-grid points Ncoh,1 for a coherent blind search over U is
therefore simply the product of the number of grid points in
each dimension.

Ncoh,1 = U
∏
k

1

Δuk
= 1

16
U m−2

√
det G, (36)

as G is found to be diagonal. In Appendix B, we derive that

√
det G = π4

√
135

T 3
coh,1 f 2 r2

E Ψ(Tcoh,1), (37)

where we defined6

Ψ2(Tcoh,1) = [1 + sinc(ΩE Tcoh,1/π ) − 2 sinc2(ΩE Tcoh,1/2π )]

× [1 − sinc(ΩE Tcoh,1/π )], (38)

and where we have denoted the Earth’s orbital angular frequency
as ΩE = 2π/1 yr and the light travel-time from the Earth to the
SSB as rE = 1 AU/c ∼ 500 s.

To analytically study the scaling of Ncoh,1 as a function of
Tcoh,1, the function Ψ(Tcoh,1) can be well approximated by

Ψ(Tcoh,1) ≈

⎧⎪⎨
⎪⎩

Ω3
E T 3

coh,1

12
√

15
, Tcoh,1 < 0.572 yr

1, Tcoh,1 � 0.572 yr

. (39)

The validity of this approximation is illustrated in Figure 3.
Hence, the total number of grid points required in a coherent
search is

Ncoh,1 = π4

48
√

15

(
Ω3

E

12
√

15

)(a−3)/3

r2
E m−2 f 2

max T a
coh,1 U,

(40)

6 We use the definition sinc(x) = sin(πx)/(πx) throughout this article.
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where

a ≈
{

6, Tcoh,1 < 0.572yr

3, Tcoh,1 � 0.572yr
. (41)

Equation (40) tells us that for coherent integration times much
shorter than half a year the sky metric components also still
scale with Tcoh,1, such that Ncoh,1 increases approximately as
T 6

coh,1. After half a year of coherent integration the sky metric
components quickly approach the resolution saturation as the
maximum baseline (1 AU) is reached, and thereafter become
approximately independent of Tcoh,1. Therefore, Ncoh,1 scales
only as T 3

coh,1 in this regime.

3.4. Coherent Search Sensitivity at Fixed Computing Cost

For computational efficiency, we use the fast Fourier trans-
form (FFT) algorithm (Frigo & Johnson 2005) to scan the
f dimension. There are two steps involved in calculating an
FFT, each with an associated computational cost. First, it is nec-
essary to construct a discrete time series by interpolating (e.g.,
by binning) the photon arrival times into equidistant samples.
The cost of this step is proportional to the number of photon
arrival times which must be interpolated. Second, the discrete
time series must be transformed into a discretely sampled fre-
quency spectrum using the FFT algorithm. For a maximum
frequency of fmax and a coherent integration time of Tcoh,1,
there are fmaxTcoh,1 frequency samples, and the compu-
tational cost of calculating the FFT is proportional to
fmaxTcoh,1 log2(fmaxTcoh,1). We assume that the cost of calculat-
ing the FFT is much larger than the cost of creating the discrete
time series. Compared to the cost of computing P1 explicitly
for N photon times at fmaxTcoh,1 frequencies, which is propor-
tional to NfmaxTcoh,1, it is clear that the FFT method offers more
efficiency provided N � log2(fmaxTcoh,1).

The spacing of frequency samples output by the FFT is
1/Tcoh,1. According to the metric (see Equation (B11a)), this
implies a worst-case mismatch due to frequency offsets of m =
Gff /(4T 2

coh,1) = π2/12 = 0.82, which obviously also leads to
a high average of mismatches. However, as we will discuss in
Section 5.2, it is possible to reduce this mismatch at almost
no extra computational cost by interpolating the frequency
spectrum. In the following derivations, we therefore separate the
total mismatch mtot into two components: a constant mismatch
due to the frequency spacing, mf determined by the interpolation
method used, which has a negligible effect on the overall
computing cost; and the mismatch due to offsets in the remaining
parameters, m, which can be freely varied to construct an
optimal grid.

For every grid point in {ḟ , α, δ}, an FFT must be computed,
and hence the overall computation time for the search is simply
the cost of calculating one FFT multiplied by the number of
FFTs that must be computed. The total cost, Ccoh,1 (measured
in units of time), is

Ccoh,1 = KFFTfmaxTcoh,1 log2(fmaxTcoh,1)
Ncoh,1

Nf

, (42)

where KFFT is an implementation and computing hardware
dependent constant, and where Nf is the number of frequency
samples that would be calculated using a grid with an arbitrary
maximum mismatch per dimension of m,

Nf = fmax

2

√
Gff

m
= π

2
√

3m
fmaxTcoh,1. (43)

The total computational cost is therefore

Ccoh,1 = Kcoh,a m−3/2 T a
coh,1 log2(Tcoh,1fmax), (44)

where the constant Kcoh,a depends on a,

Kcoh,a = KFFT
π3 r2

E f 2
max U

24
√

5

(
Ω3

E

12
√

15

)(a−3)/3

. (45)

For a search grid constructed with maximum mismatch mtot =
mf + 3m, the search sensitivity will scale with the average
mismatch 〈mtot〉 = 〈mf 〉 + 3ξm as

√
1 − 〈mtot〉 (Prix & Shaltev

2012). Thus, from Equation (28) it follows that the search
sensitivity without harmonic summing scales as

p−1
coh,1 =

√
(1 − 〈mtot〉) μ Tcoh,1

θ∗
1

|γ1|. (46)

For a computing cost Ccoh,1, Equation (44) can be used to obtain
(numerically) the maximum Tcoh,1. Substituting this value of
Tcoh,1 in Equation (46) finally yields the search sensitivity at the
given computational cost.

3.5. Efficiency of Harmonic Summing at Fixed Computing Cost

Based on the results of the previous sections, we now in-
vestigate the efficiency of incoherent harmonic summing under
computational cost constraints. More precisely, we address the
question of whether it is more efficient in blind searches to sum
M harmonics, or to instead use a longer coherent integration
time without harmonic summing at the same computing cost.

Thus, we consider the test statistic Z2
M , which incoher-

ently sums Fourier powers Pn from M higher harmonics. In
Appendix C, we derive the parameter space metric for the Z2

M

statistic, denoted by G̃, and find that
√

det G̃ = r4
√

det G,
where r represents a refinement factor due to harmonic sum-
ming, and G is the metric tensor for P1 of Equation (37).
Therefore, to ensure equal sensitivity throughout the original
parameter space7 the required number of grid points increases
by the factor of r4 compared to using P1 only. The value of
r � 1 depends on the pulse profile γn. For a sinusoidal pulse
profile (|γ1| = 1/2 and |γn>1| = 0), obviously, r = 1 (i.e., no
refinement), and for a Dirac delta function (|γn| = 1), one finds
r ∼ M , as derived in Equation (C6). In principle, one could
construct a grid with r4Ncoh,1 points, and calculate and sum M
values of Pn at each point, leading to the cost of a harmonic
summing search being simply Mr4 times greater than that of
a coherent search at the fundamental frequency with the same
coherent integration time.

In practice, to utilize the efficiency of the FFT, it would be
necessary to construct a sub-optimal grid in which the range
in f and ḟ is extended by a factor of M, and the coherent
powers summed appropriately over harmonics. The sky-grid
in this case may still be constructed using the refinement factor
r, leading to the computing cost being M2r2 times Ccoh,1 at the
same coherent integration time. While this method may quickly
become infeasible due to the amount of memory required, we
use this only as a theoretically efficient method to compare to
an equally costly search using only the fundamental harmonic
power.

7 This constraint is imposed to eliminate any detection bias in favor of
pulsars with low frequencies and frequency derivatives, allowing for estimates
of the true astrophysical pulsar populations.
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Here, we assume that the small extra cost of actually summing
the Pn is negligible.8 The computational expense for incoherent
harmonic summing, Ccoh,M , using the Z2

M statistic for a coherent
integration time Tcoh,M becomes

Ccoh,M = Kcoh,a m−3/2 T a
coh,M M2 r2 log2(Tcoh,Mfmax M).

(47)

From Equation (27) above, we found that the search sensitivity
of incoherent harmonic summing is given by

p−1
coh,M =

√
(1 − 〈mtot〉) μ Tcoh,M

M1/4 θ∗
M

[
M∑

n=1

|γn|2
]1/2

. (48)

Hence, to compare the search sensitivities p−1
coh,1 and p−1

coh,M

at fixed computing cost, in principle, the following steps are
required. First, for a given computing cost Ccoh,1, Equations (44)
and (46) provide the corresponding coherence time Tcoh,1 and
sensitivity p−1

coh,1, respectively. Second, by equating Ccoh,1 =
Ccoh,M , Equation (47) then can be solved (numerically) for
Tcoh,M , which finally is used to obtain the sensitivity p−1

coh,M from
Equation (48). It should be noted that in comparing p−1

coh,1 and
p−1

coh,M the same values of P ∗
FA and P ∗

DET must be assumed. We
here also assume the same mismatch m in either case, because as
shown in Appendix E, the optimal mismatch at fixed computing
cost is independent of coherent integration time, number of
harmonics summed, and computing power available. Notably,
a similar result has been found previously by Prix & Shaltev
(2012) in the context of gravitational-wave pulsar searches.

In the following, we describe an analytical approximation to
the numerical approach above which we show to be sufficiently
accurate for typical search setups. This approximation is based
on ignoring the slowly varying log2 factors in Equations (44)
and (47), such that

Ccoh,M ∼ Kcoh,a m−3/2 T a
coh,M M2 r2. (49)

Then from Ccoh,1 = Ccoh,M , it immediately follows that Tcoh,M

must be shorter by the factor (M2 r2)(1/a),

Tcoh,M = Tcoh,1(M2 r2)−1/a. (50)

We show in Appendix D that the Tcoh,M obtained from this
approximation slightly overestimates the sensitivity p−1

coh,M ,
while being accurate to within less than about 1% for typical
search setups. Using Equation (50) to substitute Tcoh,M in
Equation (48), one obtains for the ratio of search sensitivities,

p−1
coh,1

p−1
coh,M

= M1/4+1/a r1/a θ∗
M

θ∗
1

|γ1|
[

M∑
n=1

|γn|2
]−1/2

, (51)

which, remarkably, is independent of Tcoh,1 and Tcoh,M . This
sensitivity ratio p−1

coh,1/p
−1
coh,M of Equation (51) is shown in

Figure 4 and is found to be greater than unity for typical gamma-
ray pulsars. Only for unrealistically narrow pulse profiles (i.e.,
a Dirac delta function), the sensitivity ratio can remain close to
or slightly below unity. It also should be pointed out that we
obtained these results despite the generous assumptions in favor

8 Note that this makes the computing cost estimate generous in favor of the
harmonic summing approach in this comparison.
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Figure 4. Ratio of search sensitivities p−1
coh,1 (without harmonic summing) and

p−1
coh,M (summing power from M harmonics) at fixed computational cost. The

Z2
M test statistic used here assumes a delta function pulse profile, so optimizing

the search grid for this profile leads to the curves shown by the filled squares and
circles. The red crosses and pluses are for the same statistic and grid, but where
the signal pulse profile is a more typical one (derived from averaging those
of the known gamma-ray pulsars of Figure 1). The open squares and circles
are for the same statistic, but using the same typical signal pulse profile and
a grid that is also optimized for that same pulse profile. For each case, the
results of two different scalings of the computing cost with T a

coh,M are shown,
corresponding to a = 6 and a = 3 (see the text for details). While all points
shown are for P ∗

DET = 90% and P ∗
FA = 1%, they remain qualitatively similar

for lower P ∗
FA values, too.

(A color version of this figure is available in the online journal.)

of the harmonic summing approach. First, we ignored the extra
costs of summing the M power values. Second, we neglected
the possible extra trials when one would maximize the test
statistics over different M. Third, the analytical approximation
of Equation (50) overestimates the true Tcoh,M (and hence the
sensitivity p−1

coh,M ) as we show by numerical evaluation in
Figure 11.

Hence, the basic moral is clear. For blind searches for isolated
gamma-ray pulsars, whose sensitivity is limited by computing
power rather than the amount of available data, a more sensitive
search strategy is to employ a longer coherence time instead of
using incoherent harmonic summing at the same computational
cost.

4. SEMICOHERENT TEST STATISTICS

The key property of the semicoherent test statistics is that
only pairs of photon arrival times (tj , tk) whose separation
τjk = tj − tk , also called lag, is at most T (which is much shorter
than Tobs) are combined coherently, otherwise incoherently.
Hence, we refer to T as the coherence window size and denote
by R the ratio of total observational data time span Tobs of the
semicoherent search and T,

R = Tobs/T . (52)

Compared to fully coherent methods, this semicoherent ap-
proach drastically reduces the computing cost since fewer search
grid points are required (due to the lower parameter-space reso-
lution as will be described in Section 4.2) at the expense of re-
duced search sensitivity. In Section 4.3, we argue that this trade-
off is a profitable one, because at fixed given computing cost
the overall search sensitivity of the semicoherent searches out-
perform fully coherent searches restricted to data spans shorter
than Tobs by the computational constraints.

8
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To derive a semicoherent test statistic, notice the (unnormal-
ized) coherent Fourier power from Equation (10) for the fun-
damental frequency (first harmonic) can also be written in the
following form:

P1 ∝
∣∣∣∣∣

N∑
j=1

wj e−iφ(tj )

∣∣∣∣∣
2

=
N∑

j,k=1

wj wk e−i[φ(tj )−φ(tk )]. (53)

Thus, the semicoherent statistic S1 is formed by multiplying the
terms in the above double sum with a real lag window ŴT (τjk),
such that

S1 =
N∑

j,k=1

wj wk e−i[φ(tj )−φ(tk )] ŴT (τjk), (54)

where the lag window has an effective size T,

∫ ∞

−∞
ŴT (τ ) dτ = T , (55)

and thus must fall off rapidly outside the interval [−T/2, T /2].
Blackman & Tukey (1958) were the first to consider power
spectral estimators of the form of S1, which can be seen as
the Fourier transform of the lag-windowed covariance sequence
(Stoica & Moses 2005). The semicoherent statistic S1 is just a
more general version of the classic Blackman–Tukey method
(Blackman & Tukey 1958) in spectral analysis, e.g., if the phase
model was simply φ(tj ) = 2πf tj only. Hence, S1 can also be
seen as a local spectral average of P1 values over neighboring
frequencies weighted according to the frequency response of
ŴT (Stoica & Moses 2005).

As outlined in Pletsch et al. (2012a), for special forms
of the lag window, S1 can also be obtained by summing
time-windowed coherent power from overlapping subsets of
data. This implies a lag window that must be always positive
semidefinite, because it is formed by the convolution of the time
window with itself in this case (Stoica & Moses 2005), whereas
the more general form as of Equation (54) in principle can have
arbitrary lag windows.

In general, the choice of lag-window function ŴT (τ ) has
an impact on the sensitivity of the statistic S1. In tests with
simulated LAT data, for the purpose of pulsation detection,
we found that the best sensitivity is provided by the simple
rectangular lag window,

Ŵ rect
T (τ ) =

{
1, |τ | � T/2

0, otherwise
, (56)

which also allows for an efficient implementation as will be
described in more detail in Section 5. The usage of the rectan-
gular lag window could also be motivated from the following
viewpoint. Considering the significant sparseness of the LAT
data, typically all pairs of photon times fall at different lags (for
any practical sampling time, see Section 5.1). Therefore, one
could argue that optimally (for minimum variance) all lags (i.e.,
all photon pairs) should be weighted equally when forming S1,
which is exactly what Ŵ rect

T (τ ) implements. Thus, in the remain-
der of this manuscript we will keep using the rectangular lag
window Ŵ rect

T (τ ) to calculate S1.

4.1. Statistical Properties

To examine the statistical properties of the semicoherent
statistic, S1, it is useful to rewrite Equation (54) as

S1 =
N∑

j=1

w2
j + 2

N∑
j=1

N∑
k=j+1

wjwk cos[φ(tj ) − φ(tk)] Ŵ rect
T (τjk).

(57)
Under the null hypothesis, p = 0 and assuming N � 1, we
show in Appendix F that S1 follows a normal distribution, whose
first two moments of the noise distribution of S1 are

E0[S1] =
N∑

j=1

w2
j , (58)

V ar0[S1] = 2
N∑

j=1

N∑
k=j+1

w2
j w2

k

[
Ŵ rect

T (τjk)
]2

, (59)

Now consider that the photon data contain a pulsed signal (i.e.,
p > 0) with a pulse profile defined by Fourier coefficients γn.
Then, the expectation value of S1 is obtained as

Ep[S1] ≈ E0[S1] + 2 Ep

[
N∑

j=1

N∑
k=j+1

wjwk

× cos(φ(tj ) − φ(tk)) Ŵ rect
T (τjk)

]
. (60)

Thus, for S1 we can identify the amplitude S/N θS1 as

θ2
S1

= Ep[S1] − E0[S1]√
V ar0[S1]

=
√

2Ep

[∑N
j=1

∑N
k=j+1 wjwk cos(φ(tj )−φ(tk))Ŵ rect

T (τjk)
]

√∑N
j=1

∑N
k=j+1 w2

jw
2
k

[
Ŵ rect

T (τjk)
]2

.

(61)

To extract the scalings of the semicoherent S/N θS1 in terms
of the relevant search parameters, we assume hard photon-
selection cuts, i.e., binary photon weights, for the remainder
of this section. Then Equation (57) reduces to

S1 = N + 2
N∑

j=1

N∑
k=j+1

cos[φ(tj ) − φ(tk)] Ŵ rect
T (τjk). (62)

In this case, as derived in Appendix F, the first two moments of
the noise distribution are

E0[S1] = N, V ar0[S1] ≈ N2 R−1. (63)

We show in Appendix F that for moderately strong signals, the
first two moments of the distribution of S1 are approximately
given by

Ep[S1] ≈ N + p2N2|γ1|2R−1, (64a)

V arp[S1] ≈ N2R−1(1 + 2p2N |γ1|2R−1), (64b)

and the squared S/N of Equation (61) becomes

θ2
S1

≈ p2 N R−1/2|γ1|2. (65)
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As shown in Appendix F, the probability density function
of S1 can be approximated by a normal distribution with the
above expectation values and variances. The sensitivity of a
semicoherent search is the lowest threshold pulsed fraction
p for a given number of photons N and at given false alarm
probability P ∗

FA to achieve a certain detection probability P ∗
DET.

For a threshold S1,th the false alarm probability is computed as

PFA(S1,th) ≈
∫ ∞

S1,th

N {S1;E0[S1], V ar0[S1]} dS1

≈ 1

2
erfc

(
S1,th − E0[S1]√

2 V ar0[S1]

)
, (66)

where, in this context, N {X;μ, σ 2} denotes a normal distribu-
tion with mean μ and variance σ 2, and should not be con-
fused with the number of grid-points, Ncoh,1. We compute
the probability of detection using V arp[S1] ≈ V ar0[S1](1 +
2p2N |γ1|2 R−1) as

PDET(S1,th, θ
2
S1

) ≈
∫ ∞

S1,th

N
{
S1;Ep[S1], V arp[S1]

}
dS1

≈ 1

2
erfc

{(
S1,th − E0[S1]√

V ar0[S1]
− θ2

S1

)
1√

2 + 4p2N |γ1|2R−1

}
.

(67)

The minimum detectable pulsed fraction is obtained by first
inverting Equation (66) to get S1,th(P ∗

FA), which in a second
step is substituted in Equation (67) to obtain the threshold
S/N θ∗

S1
as

θ∗
S1

= θS1 (P ∗
FA, P ∗

DET)

≈ [
√

2erfc−1(2P ∗
FA)

−
√

2 + 4p2N |γ1|2R−1 erfc−1(2P ∗
DET)]1/2. (68)

Finally, using Equation (68), one can convert Equation (65)
into the threshold pulsed fraction p−1

scoh,1, determining the
semicoherent sensitivity as

p−1
scoh,1 =

√
N R−1/4

θ∗
S1

|γ1| =
√

μ T R1/4

θ∗
S1

|γ1|, (69)

where we used N = μT R. This reveals the square-root scaling
with the coherence window size T and the expected fourth-root
scaling with R of the semicoherent sensitivity. Furthermore,
using R = Tobs/T , we can rewrite the previous equation as

p−1
scoh,1 =

√
μ (T Tobs)1/4

θ∗
S1

|γ1|. (70)

As a comparison, recall that the coherent sensitivity as of
Equation (46), p−1

coh,1 ∝ √
Tcoh,1 increases with the square root

of the coherent integration time Tcoh,1. Here, Equation (70)
shows that the semicoherent sensitivity, p−1

scoh,1 ∝
√

(T Tobs)1/2,
increases with the square root of the geometric mean of the
coherence window size T and the total observation time Tobs.

It should be noted that while the semicoherent method allows
for the use of short lag windows in order to detect pulsations,
there is the additional requirement that there is at least one pair
of pulsed photons that arrive within T of each another. This sets
a fundamental lower limit on T. However, for typical pulsed
fractions and photon arrival rates considered in this work, this
lower limit is on the order of only a few hours.

4.2. Grid-point Counting for Semicoherent Search

To optimally construct the search grid for the semicoherent
statistic S1, it is necessary to re-evaluate the appropriate metric
on parameter space. Analog to Equation (32), we define the
mismatch for S1 as the fractional loss in semicoherent S/N
squared,

m̄ = 1 − θ2
S1

(u)

θ2
S1

(usig)
= 1 − θ2

S1
(usig + Δu)

θ2
S1

(usig)
. (71)

Expanding the mismatch m̄ to second order in the offsets Δu as
in Equation (33) yields the semicoherent metric tensor Ḡ,

m̄ =
∑
k,�

Ḡk�ΔukΔu� + O(Δu3). (72)

We derive the components Ḡk� from the phase model in
Appendix G analog to the methods described in Pletsch (2010).
Following the same steps as in Section 3.3, we find that Ḡ is also
diagonal, and the total number of grid points for a semicoherent
step can thus be written as

Nscoh = 1

16
U m̄−2

√
det Ḡ, (73)

where m̄ here represents the maximum mismatch per dimension
used for grid construction. As derived in Appendix G, the
determinant of the semicoherent metric is

√
det Ḡ = π4

12
√

3
T 3 f 2 r2

E R

[
1 − sinc2

(
ΩE T

2π

)]
. (74)

As in Section 3.3, for practical purposes we construct the grid
for the highest frequency searched fmax in a given frequency
band. Thus, we can rewrite Equation (73) as

Nscoh = m̄−2 π4

192
√

3
T 3 f 2

max r2
E R

[
1 − sinc2

(
ΩE T

2π

)]
U,

(75)
where the proper search volume U has been defined previously
in Equation (35).

To extract the scaling of Nscoh with T, we use the following
approximation:

[
1 − sinc2

(
ΩE T

2π

)]
≈

{
Ω2

E T 2

12 , T < 0.551yr

1, T � 0.551yr,
(76)

which is illustrated in Figure 5. Hence, using R = Tobs/T , one
finds that the total number of grid points in the semicoherent
search scales as

Nscoh ∝ m̄−2

(
Ω2

E

12

) (s−3)
2

T s−1 Tobs f 2
max, (77)

where the exponent s is given by

s ≈
{

5, T < 0.551yr

3, T � 0.551yr
. (78)
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Figure 5. Scaling of the determinant of the semicoherent metric Ḡ as function of
the coherent window size T (black solid curve). The red dot–dashed curve shows
the model for the semicoherent metric determinant from the approximation of
Equation (76) used to estimate the computing cost scaling.

(A color version of this figure is available in the online journal.)

4.3. Semicoherent Search Sensitivity at Fixed Computing Cost

In analogy to Section 3.4, here we adopt a similar model
for the computational cost of a semicoherent search, which is
proportional to the number of search-grid points Nscoh needed.
We again assume that the FFT algorithm is used to compute S1
over fmaxT frequency bins and again split the total mismatch
m̄tot into the mismatch due to a frequency offset m̄f and the
mismatch due to offsets in the other parameters m̄. Hence, using
Equations (77) and (52), the semicoherent computing cost model
Cscoh,1 is obtained as

Cscoh,1 = Kscoh,s m̄−3/2 T s−1 Tobs log2(T fmax), (79)

where Kscoh,s denotes a constant of proportionality that depends
on s,

Kscoh,s = KFFT

√
2 π3 r2

E f 2
max U

96

(
Ω2

E

12

)(s−3)/2

, (80)

as well as on the implementation and computing-hardware-
dependent constant KFFT as in Equation (45). Analog to
Equation (44), here we also assume that the FFT algorithm is
used, hence the log2 factor in Equation (79). In Section 4.1,
we found the sensitivity of the semicoherent search as of
Equation (70) can be approximately described by

p−1
scoh,1 =

√
(1 − 〈m̄tot〉) μ

|γ1|
θ∗
S1

T 1/4 T
1/4

obs , (81)

where 〈m̄tot〉 = 〈m̄f 〉 + 3ξm̄ denotes again the total average
mismatch of the search grid.

With the sensitivity and computing-cost model at hand, we
can now illustrate the increased efficiency that a semicoherent
search offers over a fully coherent search. We compare the sen-
sitivity p−1

scoh,1 of a semicoherent search with coherence window
size T over a data set that in total spans the observational time
interval Tobs to the sensitivity p−1

coh,1 of a fully coherent search
with coherent integration time Tcoh,1, at the same computational
cost: Cscoh,1 = Ccoh,1. For a given computing cost Cscoh,1 and
observational data set spanning Tobs, Equation (79) determines
T. This value of T can then be used to obtain the sensitivity
p−1

scoh,1 via Equation (81). Similarly, as described in Section 3.5,
the given value of Ccoh,1 determines Tcoh,1 and thus provides the
corresponding p−1

coh,1.
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Figure 6. Comparison of a semicoherent and fully coherent search sensitivity
at equal computing cost and given observational data time spans of Tobs = 2 yr
(dotted–dashed curves), Tobs = 5 yr (solid curves), Tobs = 10 yr (dashed
curves). The top panel shows the coherence window size T of the corresponding
semicoherent search as a function of the sensitivity ratio. The bottom panel
shows, for a coherent search, the integration time Tcoh,1, i.e., the subset of Tobs
that could be fully coherently analyzed with the same computing cost as the
semicoherent search with the corresponding T shown in the upper panel. The
sensitivity is for P ∗

FA = 10−3 and P ∗
DET = 0.9 in each case and a typical pulsed

signal with p = 0.1 and |γ1|2 = 0.35 (see Figure 2). Since the sensitivity ratio
is in all practically relevant cases much greater than unity, the semicoherent
search approach more efficient.

(A color version of this figure is available in the online journal.)

The so-obtained ratio of sensitivities p−1
scoh,1/p

−1
coh,1 is studied

numerically in Figure 6 for realistic computational power
available, such as Einstein@Home. In both cases, the optimal
mismatch parameters are assumed, which are independent of
computing cost (see Appendices E and H). As can be seen in
the figure, this sensitivity ratio is always greater than unity and
increases as T decreases, which is representative of the fact that
the sensitivity of a semicoherent search decreases more slowly
than that of a coherent search as the available computing power
decreases. While this ratio decreases as T (and, therefore, the
computing cost) increases, the absolute search sensitivity always
increases with T, and so it is still beneficial to use the largest
achievable lag-window size T at the available computational
power.

Using a simplified approximation for the semicoherent com-
puting cost model of Equation (79) allows us to obtain some
analytical insight into the ratio p−1

scoh,1/p
−1
coh,1 at fixed computing

cost, similar to what has been done in Section 3.5. Ignoring the
slowly varying log2 term gives the approximate semicoherent
computing cost model as

Cscoh,1 ∼ Kscoh,s m̄−3/2 T s−1 Tobs. (82)

With this simplified model, Cscoh,1 = Ccoh,1 can be rewritten
using the approximation of Equation (49) as

Kscoh,s Tobs T s−1

m̄3/2
= Kcoh,a T a

coh,1

m3/2
. (83)

Furthermore, using Equations (45) and (80) to replace Kcoh,a

and Kscoh,s , we can rewrite Equation (83) as

T =
(

4 ΩE m̄3/2 T 6
coh,1

5
√

6 m3/2 Tobs

)1/4

, (84)
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where we assume a = 6 and s = 5 since coherent integration
times Tcoh,1 less than half a year will be practically feasible in
the near future. This relation can then be used to substitute T in
the ratio p−1

scoh,1/p
−1
coh,1 using Equations (81) and (46), yielding

p−1
scoh,1

p−1
coh,1

≈ 2
θ∗

1

θ∗
S1

(
Tobs

1yr

)1/16 (
Tobs

Tcoh,1

)1/8

, (85)

where we again assumed the optimal mismatch choices for
m and m̄ (see Appendices E and H) that are independent of
computational cost. For a = 6 and s = 5 these are mopt = 0.172
and m̄opt = 0.146. Hence, as Fermi-LAT data spans several years
(implying Tobs � 1yr) and typically θ∗

1 � θ∗
S1

, the sensitivity
ratio of Equation (85) exceeds unity in all practically relevant
cases. This clearly indicates that at fixed computational cost, a
semicoherent blind search is always more sensitive than a fully
coherent search over the same parameter space.

5. EFFICIENT IMPLEMENTATION OF A
MULTISTAGE SEARCH SCHEME

In Section 3, we argued that under computational cost con-
straints, blind fully coherent searches without harmonic sum-
ming are more efficient, i.e., can typically achieve higher search
sensitivity. In Section 4, we showed that at fixed computing cost
semicoherent searches are more efficient than fully coherent
searches to scan wide parameter space.

These considerations motivate a multistage search strategy, in
which the first and by far most computationally expensive stage
uses the most efficient method (i.e., a semicoherent search) to
explore the entire parameter space. In subsequent stages, the
most promising candidates are automatically “followed up” in
further, more sensitive steps, ultimately using fully coherent
search methods. Since the parameter space relevant for these
candidates has been previously narrowed down by the first-
stage search, the computing cost constraints are relaxed (i.e.,
the computing cost of the follow-ups is negligible compared to
the overall cost of the first stage of the blind search). Hence,
then the usage of fully coherent methods offering the highest
sensitivity is made possible.

In this multistage search scheme, before statistically signif-
icant candidates from the first-stage semicoherent search are
followed-up with fully coherent methods, it is advisable to re-
fine the location of each semicoherent candidate by searching,
again semicoherently, using a refined grid with a smaller mis-
match. We then “zoom in” on each significant candidate by
performing a fully coherent search of the local parameter space
around the refined location of the semicoherent candidate, us-
ing the full observational data time span, Tobs. The search-grid
construction of each stage is guided by the metric, as described
in Appendices B, G, and I.

When searching for weak signals in the presence of noise, this
can cause the refined semicoherent candidate to occur at a small
but unknown offset from the true signal parameters. This offset
depends on the candidate S/N; candidates with higher S/N have
a smaller uncertainty region. In order not to miss weak signals,
the coherent follow-up has to cover a conservative region in
each dimension around the semicoherent candidate location.
Since the parameter space that must be searched coherently has
been greatly reduced, this step represents a very small fraction
of the overall cost of the search. If the ratio of the coherence
window size T used in the first stage and Tobs is very large, it is
more efficient to insert another intermediate zooming stage that

does another semicoherent search with a coherence window size
between T and Tobs. This would further reduce the parameter
space to be searched in the fully coherent step, ensuring that
the follow-up remains a negligible fraction compared to overall
search. Finally, candidates from this coherent follow-up step are
then ranked for further investigation (e.g., by taking into account
higher harmonics, or a more complex phase model) according
to their false alarm probability.

Since this multistage scheme is designed such that the
largest computational burden is associated with the first stage,
it is important to optimize this method of calculating the
semicoherent test statistic S1 as much as possible. In the
following, we describe various complementary methods which
improve the efficiency and sensitivity of a computationally
limited semicoherent search.

5.1. Efficient Computation of Semicoherent Test Statistic

For each sky-position grid point of the search region,
the barycentric corrections are applied directly to the LAT-
registered arrival times tLAT to obtain the corresponding photon
arrival times t at the SSB. The semicoherent detection statistic
S1 as of Equation (54) is then computed over the f and ḟ ranges.
However, directly computing S1 from Equation (54) is compu-
tationally inefficient. Therefore, here we discuss more efficient
ways of how to do this.

Making the dependence of S1 on the search parameters f and
ḟ explicit for clarity, we rewrite Equation (57) as

S1(f, ḟ ) =
N∑

j,k=1

wj wk e−i[φ(tj ;f,ḟ )−φ(tk;f,ḟ )] Ŵ rect
T (τjk), (86)

where the phase differences in terms of f and ḟ are given by

φ(tj ; f, ḟ ) − φ(tk; f, ḟ )

= 2πf τjk + πḟ [(tj − t0)2 − (tk − t0)2]

= 2πf τjk + πḟ
[
t2
j − t2

k − 2t0τjk

]
. (87)

Thus, S1 of Equation (86) takes the following form:

S1(f, ḟ ) =
N∑

j,k=1

wjwk e−πiḟ [t2
j −t2

k −2t0τjk] Ŵ rect
T (τjk) e−2πif τjk ,

(88)

which allows us to utilize the efficiency of the FFT to scan along
the f direction. In the following, we describe how to achieve this.
First, we construct an equidistant lag series whose separation
is the sampling interval δτ = 1/(2fmax), where fmax is equal to
the Nyquist frequency fNy. Then, for each pair of times (tj , tk)
having a lag τjk smaller than the lag window (i.e., for which
Ŵ rect

T (τjk) = 1), we determine the corresponding bin index b of
the equidistant lag series via interpolation. While we study the
efficiency of different lag-domain-interpolation schemes below,
let us assume here nearest-neighbor interpolation for simplicity.
Thus, we just round to the nearest lag-bin index b,

b = round [τjk/δτ ]. (89)

The FFT performance is generally best for input sizes that are a
power of two (radix-2 FFTs). Therefore, we choose T and fmax,
such that the total number of lag bins BT = T/δτ = 2 Tfmax
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is a power of two. We denote the lag-interpolated version of S1

from Equation (88) by Ŝ, which can be written using the lag-bin
index b as

Ŝ(f, ḟ ) =
BT /2∑

b=−BT /2

Yb(ḟ ) e−2πi f δτ b, (90)

where terms depending on ḟ and the photon weights have been
absorbed into the complex numbers Yb(ḟ ). More precisely, each
Yb(ḟ ) is the sum of pairwise weight and ḟ phase factors, falling
into the same lag bin b,

Yb(ḟ ) =
N∑

j=1

yj (b; ḟ ), (91)

where

yj (b, ḟ ) =
⎧⎨
⎩wj wk e

−πiḟ
[
t2
j −t2

k −2t0τjk

]
, round [τjk/δτ ] = b,

0, else.
(92)

Note that the so-constructed lag series Yb has Hermitian symme-
try, i.e., Yb = Y ∗

−b, and therefore Ŝ remains entirely real valued.

The above expression for Ŝ in Equation (90) can be seen as a
Fourier transform of the complex lag series Yb, and so Ŝ can be
computed efficiently at many discrete frequencies by exploiting
the FFT algorithm, i.e., by calculating

Ŝg(ḟ ) =
BT /2∑

b=−BT /2

Yb(ḟ ) e−2πi g b /BT , (93)

where the frequency at the gth bin is f = g/T . There exist
efficient FFT algorithms (Frigo & Johnson 2005) that can
be used to evaluate this complex-to-real (c2r) transform of
Equation (93) and that only require the positive lag portion
of Yb to be calculated as an input.

The above formulation of the semicoherent detection statistic,
Ŝg , is very similar to the D� statistic described in A06 as the DFT
of the discrete autocorrelation function of the (binned) photon
arrival times. However, there are some key differences. While
further differences are discussed in the following subsections
as we encounter them, here we note a first difference between
the methods related to the correction of the frequency derivative
ḟ . When calculating D�, the frequency derivative is corrected
by constructing a new time series in which the photon arrival
times are stretched out according to tj = t̃j + 1/2(ḟ /f )t̃2

j . In

order to search the {f, ḟ } parameter space, the ratio ḟ /f is
increased by small increments. According to this scheme, the
search points in the {f, ḟ } plane lie along straight lines with
increasing gradient, intersecting at the origin. As a result, the
search-grid-point density is highly non-uniform in the {f, ḟ }
plane, decreasing from low to high search frequencies. The
result is that the search parameter space is highly oversampled
in the ḟ dimension at low frequencies. This sub-optimal grid-
point density implies that far more grid points are needed to
cover the parameter space. Decreasing the lag-window size to
account for this extra computational cost causes a reduction
in sensitivity which more than accounts for the decrease in
the average mismatch.9 Calculating Ŝg in the manner described

9 This is because despite the reduced mismatch in the ḟ dimension, the
contributions of the other three dimensions still remain and dominate the total
mismatch that is relevant for the search sensitivity.

above, where the effect of the frequency derivative is accounted
for by the complex lag-series, Yb(ḟ ), allows us to uniformly
sample the {f, ḟ } plane with the optimal average mismatch.

5.2. Frequency Domain Interpolation

When performing a semicoherent search using Ŝg , computed
via the FFT as in Equation (93), for a pulsar signal frequency
that does not lie exactly at a Fourier frequency (i.e., not at an
integer multiple of 1/T ) a loss in signal power (mismatch) will
result. To evaluate the response of Ŝg to signals at a non-Fourier
frequency, we consider the case when the lag-series contains a
pure sinusoid, with amplitude Ŝ0, at a frequency h/T . Including
an appropriate normalization factor of 1/BT for the Fourier
transform so that

Yb(0) = Ŝ0

BT

e2πihb/BT . (94)

This represents the (unlikely) case of a strong signal, in the
absence of noise, where the frequency derivative and sky
location have been perfectly matched. Using Equation (93) the
response at the gth frequency bin is therefore

Ŝg =
BT /2∑

b=−BT /2

Yb(0) e−2πi g b / BT

= Ŝ0

BT

BT /2∑
b=−BT /2

e−2πi b (g−h) /BT . (95)

The above summation over b can be explicitly calculated and is
also called the Dirichlet kernel, which is given by

DN (x) =
N∑

b=−N

e−i b x = sin ((N + 1/2)x)

sin(x/2)
. (96)

Using this identity gives rise to rewrite Equation (95),

Ŝg = Ŝ0

BT

DBT /2−1 (2π (g − h)/BT )

= Ŝ0

BT

sin (π (g − h) (1 − 1/BT ))

sin (π (g − h)/BT )

≈ Ŝ0

BT

sin (π (g − h))

sin (π (g − h)/BT )

≈ Ŝ0 sinc(g − h), (97)

where in the approximation made in the third step we assumed
that 1/2 � 1/BT , and in the fourth step we used in addition the
following approximation sin(π (g − h)/BT ) ≈ π (g − h)/BT ,
since typically for nearby frequency bins BT � (g − h).
Therefore, the match is well described by a sinc function for
signals at non-Fourier frequencies and is smallest (i.e., greatest
mismatch) if the signal lies exactly halfway between two Fourier
frequencies. This is shown in Figure 7, which displays the
approximated response of Equation (97).

This loss can be reduced by interpolating the Fourier response
halfway between two Fourier frequency bins. One method of
interpolating the Fourier transform output, known as zero-
padding, is to extend the original lag series (or time series)
to twice its original length by adding zeros onto the end.
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Figure 7. Illustration of frequency domain interpolation. The dashed blue curve
shows the relative response (match) of Ŝg at neighboring Fourier bins as a
function of the signal frequency offset. The solid black curve represents the
overall DFT response. The overlaid dotted–dashed red curve is the overall DFT
response match obtained via the frequency domain interpolation as described in
the text.

(A color version of this figure is available in the online journal.)

However, this requires calculating a Fourier transform which
is twice as long, and therefore more than twice as costly. To
avoid increasing the computational cost, we use a more efficient
interpolation technique in the frequency domain, also known as
“interbinning” (van der Klis 1989; Ransom et al. 2002). Note
that Ransom et al. (2002) gives a formulation for calculating
interbin amplitudes for real- or complex-to-complex Fourier
transforms. However, in our case, where Ŝg is entirely real
valued, it is sufficient to calculate interbins by summing the
amplitude of neighboring frequency bins,

Ŝg+1/2 = 1√
2

(Ŝg + Ŝg+1). (98)

It is also important to emphasize that our chosen normalization
differs from that used by van der Klis (1989) and Ransom et al.
(2002), where the interbins are normalized to ensure that all
of the signal power is recovered in an interbin if the signal
lies exactly halfway between two Fourier bins. Instead, here
we use a normalization factor of 1/

√
2 ensuring that interbins

have the same noise variance as the standard Fourier bins (as
was first done by Astone et al. 2010). While the method used in
Equation (98) results in a mismatch even for signals at the center
of an interbin, ensuring that the noise variance is consistent
between bins and interbins facilitates semicoherent candidate
ranking for follow-up procedures.

The overall response for signals at non-Fourier frequencies
before and after interbinning is shown in Figure 7. Using the
interbinning method, the average mismatch due to a frequency
offset is reduced from ∼0.13 to ∼0.075, while the maximum
mismatch is reduced from ∼0.36 to ∼0.14. Thanks to their
simplicity, interbins can be calculated very quickly, and so
this performance gain comes at negligible extra computing cost
(when compared to the dominant FFT computing cost).

5.3. Complex Heterodyning

Searching a wide range of frequencies (i.e., large fmax) using
the test statistic Ŝ would require computing a single FFT of large
size, BT . The length of an FFT that can be computed is limited
by the amount of memory accessible. In particular, extending
the frequency search band to the millisecond pulsar regime (i.e.,
near 1 kHz frequencies) would require a large increase in the
sampling rate and would potentially require decreasing the lag-
window size (and hence the sensitivity of the search) to make
the FFT short enough to fit into memory.

To address this problem, we divide the total frequency range
into smaller bands of size Δf (that can be efficiently searched
in parallel) using complex heterodyning, without sacrificing
sensitivity. Using this method, the center frequency, fH, of
a given subband is shifted to DC, which in the lag domain
corresponds to multiplying each lag bin by e−2πi fH δτ b. The
heterodyned lag series is therefore defined as

Y ′
b(ḟ , fH) = Yb(ḟ ) e−2πi fHδτ b, (99)

and the frequency at the gth bin becomes

f = g/T + fH. (100)

One can therefore compute Ŝg(ḟ ) over the subband [fH −
Δf/2; fH + Δf/2] via

Ŝg(ḟ ) =
BT /2∑

b=−BT /2

Y ′
b(ḟ , fH) e−2πi g b/BT , (101)

in the same way as described in Equation (93), but using a
sampling interval of only δτ = 1/(Δf ). Hence, we can search
subbands in the millisecond-pulsar regime, while the FFT size
remains at BT = T Δf .

5.4. Lag Domain Interpolation

As outlined above, before the FFT can be performed, the lags
τjk have to be binned into an equidistant lag series. Because the
lags τjk will in general not coincide with the lag-bin centers,
the nearest-neighbor interpolation of Equation (89) introduces
an additional, frequency-dependent loss (mismatch) of signal
power across the frequency band analyzed (e.g., van der Klis
1989; Ransom et al. 2002).

The process of binning in lag can be thought of as convolving
the lag series with a binning function. By the convolution
theorem, the resulting response across the frequency band is the
Fourier transform of this convolving function. For Ŝg as derived
above, the binning function (for nearest-neighbor interpolation)
is a simple rectangular function of width δτ , leading to the sinc
response in the frequency domain. As a consequence, this results
in an average loss (mismatch) in signal power of ∼13% across
the entire search band, illustrated in Figure 8.

Improved lag domain interpolation can reduce these losses.
A given frequency response can be achieved by weighting the
lag series bins around each τjk with an appropriate interpo-
lation function. Ideal (i.e., lossless) interpolation would lead
to a frequency response that is a rectangular function: unity
within the search band to remove all bias in the spectrum,
and zero outside to prevent any noise from being aliased into
the band. Therefore, this ideal case of a rectangular frequency
response requires a lag interpolation function that is the sinc
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Figure 8. Upper panel: comparison of different lag domain interpolation
functions, with the interpolating bin weights calculated over the range of the
nearest 15 lag bins on either side of the center. For clarity, the inset shows a
zoom of the central region. Lower panel: overall frequency response of each
interpolation function from the upper panel, which Ŝ is multiplied with in the
frequency domain. The ideal response would be unity within the search band,
i.e., for −fNy < (f − fH ) < fNy, and zero otherwise. For this specific choice
of using the nearest 15 bins for the interpolation, the average mismatch (loss in
signal power) across the search band from is ∼23% for the rectangular binning
function in time, ∼13% for the rectangular binning function in lag domain, but
only ∼1% for the sinc kernel and also for the Welch-windowed sinc kernel that
shows reduced Gibbs oscillations.

(A color version of this figure is available in the online journal.)

function. However, this interpolation function has infinite ex-
tent in the lag domain and is therefore impossible to realize
in practice.

A practical solution is to truncate the sinc function in the
lag domain around each τjk , such that the computational cost
of this interpolation remains a negligible fraction of the overall
computation time. In fact, one can show that using lag domain
interpolation with the sinc function truncated to only the d
nearest lag bins for each τjk is the best dth order approximation
in the least squares sense to the ideal (rectangular) response
function (e.g., Percival & Walden 1993). As a result, the average
loss (mismatch) across the frequency search band is drastically
reduced. In the example shown in Figure 8, with a truncated
sinc kernel using the d = 15 nearest lag bins are on either side
reduces this average mismatch to only ∼1%, as compared to the
nearest-neighbor interpolation. Generally, it is often practical to
use even more neighboring bins without significantly affecting
the computational cost, but reducing the average mismatch even
further.

However, as can also be seen in Figure 8, an inconvenient
property of the truncated sinc kernel is the Gibbs oscillation
throughout the frequency band. These oscillations mean that

the false alarm probabilities of candidates can vary significantly
across the frequency band, making it difficult to rank candidate
pulsars for follow-up. This problem can be mitigated by mul-
tiplying the sinc kernel by another windowing function (Lyons
2004, p. 176). This windowing function is required to be simple
(and therefore efficient) to compute, and must still have a rea-
sonably sharp fall-off in frequency near the edges of the bands.
We find that the Welch window (an inverted parabola) provides
a useful compromise between these requirements. The inter-
polated lag series, Ỹb, is constructed by spreading the original
lag-series Y ′

b among the first d bins on either side of the nearest
bin to a single photon pair with lag τjk ,

Ỹb+l(ḟ , fH) = Y ′
b(ḟ , fH) sinc

(
b + l − τjk

δτ

)

×
[

1 −
(

b + l − τjk

δτ

)2 1

d2

]
, (102)

for l = 0,±1, ...,±d. The frequency response of the Welch-
windowed sinc kernel is displayed Figure 8. While the average
mismatch with the Welch-windowed sinc kernel is comparable
to the truncated sinc kernel, the reduced Gibbs oscillation means
that the false alarm probabilities of candidates are much more
consistent across the frequency band, allowing candidate pulsars
to be more easily ranked, albeit with almost no increase in the
cost of interpolating the lag-series. Fortunately, the interpolation
functions can be efficiently computed using trigonometric look-
up tables and recurrence relations. When this efficiency is
combined with the typical sparseness of the lag series, the
interpolation step remains a negligible fraction of the overall
computation time.

Within this framework of lag domain interpolation, another
key difference to the A06 method is worth pointing out. In
A06, the SSB photon arrival times tj are binned directly prior
to calculating the lags τjk and the DFT (the D� in their no-
tation). This implies a rectangular window function in time,
which then is convolved with itself leading to a triangular win-
dow shape in the lag domain. Hence, the resulting frequency
response is effectively the sinc function squared (also shown
in Figure 8). This causes significant loss in signal power, es-
pecially at the edges of the frequency band, and amounts to a
loss of ∼23% averaged across the entire frequency band. For
comparison, by using the lag domain interpolation technique
with the Welch-windowed sinc kernel as presented above, this
average loss can be reduced by more than an order of mag-
nitude, from ∼23% to ∼1%, at about the same computational
expense.

6. PERFORMANCE DEMONSTRATION

In order to validate the expected sensitivity gain from the
improved methods presented in this paper, we perform ex-
tensive Monte Carlo simulations. The false alarm probabili-
ties are obtained using simulated data sets with different re-
alizations of 8000 photon arrival times (with unit weights),
spanning a realistic observation time of Tobs = 5 yr. To find
the detection probabilities (for a given false alarm probabil-
ity), simulated pulsar signals are added, which have the same
pulse profile of Gaussian shape whose Fourier coefficient at
the fundamental frequency is |γ1| = 0.82, and varying pulsed
fractions p.

While for computational reasons, the actual parameter space
searched in each simulation was chosen smaller than in a real
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Figure 9. Comparison of search efficiency of different search methods at fixed
computational cost. Shown is the detection probability PDET at increasing pulsed
fractions p for the simulated gamma-ray pulsar signals at PFA = 10−3. The solid
curves represents fits to each set of data points. Green stars: estimated sensitivity
using the A06 method for the same computing cost. Black circles: semicoherent
search method, using only nearest-neighbor lag-domain interpolation. Blue
crosses: semicoherent search method, using interbinning frequency-domain
interpolation, and lag-domain interpolation with a Welch-windowed sinc kernel.
Red squares: multistage search method (semicoherent search method using lag-
domain and interbinning frequency-domain interpolation, plus fully coherent
follow-up). In all cases, the number of simulations was chosen large enough
so that the uncertainties of the data points become smaller than the size of the
data markers.

(A color version of this figure is available in the online journal.)

search, the main conclusions from these results are unaffected
by this. In each simulation, the search covered a frequency band-
width of 1 Hz and a frequency derivative range of 10−13 Hz s−1.
Each simulation searched the nearest nine sky positions around
the signal location, at a uniformly random location on the sky.
In the semicoherent search stage, we used a coherence window
size of T = 220 s ≈ 12 d.

For further comparison, we also apply the A06 method to
the simulated data sets. However, here we obtain a generous
sensitivity estimation. This is because the non-uniform sampling
of the {f, ḟ } parameter space (discussed in more detail in
Section 5.1) was not accounted for. While this is justifiable for
a search for isolated millisecond pulsars, at lower frequencies
and larger frequency derivatives (i.e., where most young pulsars
are found) this non-optimal sampling requires reducing the lag-
window size (and therefore reducing the sensitivity) to achieve
the same computational cost.

The results from all simulations are summarized in Figure 9,
which shows the detection probability as a function of pulsed
fraction for each of the search methods discussed in this
paper. From best-fit curves (of typical sigmoid shape) shown
in Figure 9, we compare the pulsed fraction required to give a
detection probability of 95% at a false alarm probability of 0.1%.
We find that this pulsed fraction is around 48% lower for the full
multistage method presented here than for the A06 method with
approximately the same computational cost. This sensitivity
increase is due to several improvements described in previous
sections, in particular, use of the parameter space metric to
allow optimally spaced grid points; lag- and frequency-domain
interpolation to reduce mismatch; and an automated coherent
follow-up step to increase sensitivity to weak gamma-ray pulsar
signals.

7. CONCLUSIONS

We have presented optimized strategies to improve the effi-
ciency of blind searches for isolated gamma-ray pulsars, whose
search sensitivity is computationally limited. Under these con-
ditions, our results confirm that fully coherent searches are gen-
erally less efficient than semicoherent searches, as well as that
harmonic summing is typically less efficient than searching only
for the strongest individual harmonic. We also derived the pa-
rameters for most efficient search grids. As motivated by these
results, we presented and studied the implementation of a mul-
tistage search strategy. We have also presented efficient com-
putation and interpolation techniques for the semicoherent test
statistic, offering further important sensitivity gains. Finally, we
have conducted realistic simulations which demonstrate the im-
proved performance from our combined advances, providing
in a substantial increase in sensitivity (i.e., lowering the mini-
mum detectable pulsed fraction by almost 50%) over previous
methods at the same computational cost.

The methods presented here are being implemented with
the Einstein@Home volunteer computing project to increase
the chances of detecting new gamma-ray pulsars among the
unidentified LAT sources. While here we have focused on
searches for isolated pulsars, the methods also apply to searches
for pulsars in binaries, where partial knowledge of the orbit
is available from observations at other wavelengths (Pletsch
et al. 2012b).

Furthermore, the framework derived in this work in order
to obtain an improved understanding of the pulsation search
sensitivities underlying the different methods should also be
useful for population studies. Specifically, these estimates can
facilitate identifying the selection biases in the known gamma-
ray pulsar sample, for example, due to the difference in pulse
profile shape. In future work, we shall also explore using this
framework to improve the efficiency of harmonic summing
employing one or more realistic pulse profile templates built
from the existing population of known gamma-ray pulsars.

This work was supported by the Max-Planck-Gesellschaft
(MPG), as well as by the Deutsche Forschungsgemeinschaft
(DFG) through an Emmy Noether research grant PL 710/1-1
(PI: Holger J. Pletsch). We also thank the anonymous referee
for suggestions that helped improve the manuscript.

APPENDIX A

DERIVATION OF STATISTICAL PROPERTIES
OF COHERENT TEST STATISTIC

From Equation (12) in Section 3.1, the coherent power Pn

can be rewritten as Pn = c2
n + s2

n , where

cn =
√

2

N

N∑
j=1

cos[nφ(tj )], (A1)

sn =
√

2

N

N∑
j=1

sin[nφ(tj )]. (A2)

Under the null hypothesis p = 0, the phases φ(tj ) are uniformly
distributed on [0, 2π ], and it is straightforward to show that

E0[cos(nφ(tj ))] = E0[sin(nφ(tj ))] = 0, (A3a)
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V ar0[cos(nφ(tj ))] = V ar0[sin(nφ(tj ))] = 1/2. (A3b)

Since we typically have N � 1, by appealing to the Central
Limit Theorem, the random variables cn and sn are normally
distributed with zero mean and unit variance,

E0[cn] = E0[sn] = 0, (A4a)

V ar0[cn] = V ar0[sn] = 1. (A4b)

Hence, Pn follows a central χ2 distribution with two degrees
of freedom (e.g., Blackman & Tukey 1958). Therefore, the first
two moments are E0 [Pn] = 2 and V ar0[Pn] = 4, as given in
Equation (13).

Suppose a pulsed signal is present, p > 0, with a pulse
profile having the complex Fourier coefficients γn as defined by
Equation (4). While in this case for the (1 − p)N “non-pulsed”
photons (i.e., background), Equations (A3) still hold; however,
for the pN “pulsed” photons (i.e., not background), one obtains

Ep[cos(nφ(tj ))] = �(γn), (A5a)

Ep[sin(nφ(tj ))] = −�(γn), (A5b)

V arp[cos(nφ(tj ))] = 1

2
+

�(γ2n)

2
− �(γn)2, (A5c)

V arp[sin(nφ(tj ))] = 1

2
− �(γ2n)

2
− �(γn)2. (A5d)

Therefore, the random variables cn and sn are normally dis-
tributed (since N � 1) with the following mean values and
variances:

Ep[cn] = p
√

2N �(γn), (A6a)

Ep[sn] = −p
√

2N �(γn), (A6b)

V arp[cn] = 1 + p �(γ2n) + 2p �(γn)2, (A6c)

V arp[sn] = 1 − p �(γ2n) − 2p �(γn)2. (A6d)

For weak signals (i.e., small pulsed fractions) and typical
gamma-ray pulse profiles (see Figure 2), we can approximate
these variances as

V arp[cn] ≈ V arp[sn] ≈ 1. (A7)

With this approximation, the distribution of Pn follows a
noncentral χ2 distribution (Groth 1975; Guidorzi 2011) with
two degrees of freedom, whose first two moments are

Ep[Pn] ≈ 2 + 2p2N |γn|2, (A8a)

V arp[Pn] ≈ 4 + 8p2N |γn|2, (A8b)

recovering Equations (14a) and (14b). The noncentrality
parameter of that distribution is the second summand in
Equation (A8a), 2p2N |γn|2.

APPENDIX B

COHERENT METRIC

For the purpose of efficient search-grid construction, we
exploit a simplified phase model that captures the most dominant
effects. It is to be emphasized that we do not use this phase model
in the actual search when computing the phases at the photon
arrival times. Thus, here we assume that the LAT data set spans
at least one year, such that the Doppler modulation is dominated
by the Earth motion around the SSB.

For very short coherent integration times, the orbital motion of
the Fermi satellite around the Earth could also introduce further
Doppler effects. Comparing this effect to the much larger effect
of the Earth’s orbital motion around the sun, which is responsible
for the behavior of the metric visible in, e.g., Figure 3, it is clear
that this effect would saturate after a small number of orbits.
Hence, for coherent integration times of more than a few hours,
here it is safe to neglect the rapidly oscillating components of
the motion of the Fermi satellite around the Earth. Doing so
yields the following phase model:

φ(t, u) = 2π f (t − t0) + π ḟ (t − t0)2 + 2π f
n · rE(t)

c

= 2π f (t − t0) + π ḟ (t − t0)2

+ 2π f rE[nx cos(ΩEt) + ny sin(ΩEt)], (B1)

where nx and ny are the components of n, the unit vector pointing
from the SSB to the sky location (α, δ), projected into the ecliptic
plane (using the obliquity of the ecliptic, ε),

nx = cos(α) cos(δ), (B2)

ny = cos(ε) sin(α) cos(δ) + sin(ε) sin(δ), (B3)

and ΩE = 2π/1yr, and rE = 1 AU/c ∼ 500 s.
In the presence of a small offset Δu from a signal’s location

in parameter space usig, we can write the mismatch, m[tj ], in the
coherent power in a window of length T, centered on the jth
photon as

m[tj ] = 1 −
(
θ2
P1

(usig + Δu)
)[tj ]

θ2
P1

(usig)
(B4)

= 1 − |〈e−iφ(t,Δu)〉[tj ]|2, (B5)

where we have replaced the discrete sum of Equation (10) for
simplicity by a continuous integral over the coherent integration
time T, i.e.,

〈x〉[tj ] ≡ 1

T

∫ tj +T/2

tj −T/2
x(t) dt. (B6)

Following the derivation in Pletsch (2010), the mismatch can be
Taylor expanded up to second order in terms of the parameter
offsets, Δuk to give

m[tj ] =
∑
k,�

G
[tj ]
k� Δuk Δu� + O(Δu3). (B7)

The coherent metric components are defined as

G
[tj ]
k� = 〈∂kφ ∂�φ〉[tj ] − 〈∂kφ〉[tj ] 〈∂�φ〉[tj ], (B8)
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Figure 10. Comparison of mismatch in P1 (dashed curves) with coherent metric prediction (solid curves). In each panel, the horizontal axis shows the offset from
the signal parameters in f (left), ḟ (middle), and sky position (right). The sky-location offset is

√
Δn2

x + Δn2
y , which measures the offset in coordinates (nx, ny ) in

the ecliptic plane. The underlying pulsar signal has been simulated with spin parameters f = 32 Hz, ḟ = −10−12 Hz s−1 for a total coherent observation time of
Tcoh = 3.4 yr.

(A color version of this figure is available in the online journal.)

where ∂kφ is the partial derivative of the phase at the signal
location with respect to the kth component of the parameter
offset:

∂kφ ≡ ∂ φ(t; usig + Δu)

∂(Δuk)

∣∣∣∣
Δu=0

. (B9)

Using the simplified phase model of Equation (B1), the metric
components for a coherent window, centered on tj are given by

G
[tj ]
ff = π2T 2

3
, (B10a)

G
[tj ]

ḟ ḟ
= π2T 4

180
+

π2(tj − t0)2T 2

3
, (B10b)

G
[tj ]
nxnx

= 2π2f 2r2
E[1 + sinc(ΩET /π ) cos(2ΩEtj )

−2 sinc2(ΩET /2π ) cos2(ΩEtj )], (B10c)

G
[tj ]
nyny

= 2π2f 2r2
E[1 − sinc(ΩET /π ) cos(2ΩEtj )

− 2 sinc2(ΩET /2π ) sin2(ΩEtj )]. (B10d)

For the specific case of the general expressions above, where
tj = t0 = 0, the metric components for the coherent detection
statistic simplify to the following form:

Gff = π2T 2

3
, (B11a)

Gḟ ḟ = π2T 4

180
, (B11b)

Gnxnx
= 2π2f 2r2

E[1 + sinc(ΩE T /π ) − 2 sinc2(ΩE T /2π )],
(B11c)

Gnyny
= 2π2f 2r2

E [1 − sinc (ΩE T /π )] . (B11d)

The mismatches predicted by these derived metric components
are compared to the measured mismatches in P1 for a simulated
pulsar signal in Figure 10.

Therefore, the determinant of the coherent metric is found as

√
det G = π4

√
135

T 3 f 2 r2
E

× [1 + sinc(ΩE Tcoh,1/π ) − 2 sinc2(ΩE Tcoh,1/2π )]

× [1 − sinc(ΩE Tcoh,1/π )]. (B12)

APPENDIX C

COHERENT METRIC WITH INCOHERENT
HARMONIC SUMMING

If a search is performed using the Z2
M statistic, i.e., incoher-

ently summing the coherent power Pn in the first M harmonics,
the mismatch, m̃, becomes

m̃ = 1 −
∑M

n=1 θ2
Pn

(usig + Δu)∑M
n=1 θ2

Pn
(usig)

= 1 −
∑M

n=1 |γn|2|〈e−inφ(t,Δu)〉[tj ]|2∑M
n=1 |γn|2

. (C1)

Taylor expanding this mismatch to the second order gives the
metric components

m̃ =
∑
k,�

G̃
[tj ]
k� Δuk Δu� + O(Δu3), (C2)

which can be expressed using Equation (B8) as

G̃
[tj ]
k� = r2 G

[tj ]
k� , (C3)

where we defined the harmonic refinement factor r from

r2 =
∑M

n=1 |γn|2 n2∑M
n=1 |γn|2

. (C4)

Thus, Equation (C3) indicates that the parameter space must be
sampled r times more finely in each dimension when summing
the power from M harmonics:√

det G̃ = r4
√

det G. (C5)

The value of this refinement factor r also depends on the
signal pulse profile γn, which of course is unknown in advance.
However, we can consider the two limiting cases. First, for the
narrowest possible pulse profile, a Delta function, all coefficients
are equal, |γn| = 1, such that

r2 = 1

M

M∑
n=1

n2 = M2

3
+

M

2
+

1

6
. (C6)
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Therefore, for M > 1, the parameter space must be sampled
more finely in each dimension by a factor of approximately
M2/3 (to leading order). On the other limiting case, for a
sinusoidal pulse profile, where |γn>1| = 0, r = 1, and thus
G̃

[tj ]
k� = G

[tj ]
k� , requiring no refinement. Therefore, the range

of the harmonic-summing refinement factor is approximately
limited to r ∈ [1,M].

Finally, we would like to point out a further generalization.
Suppose a search is performed using the QM statistic and a
template pulse profile αn, which is not equal to the Dirac delta
function (in this case, QM would reduce again to Z2

M ). Then by
a straightforward repetition of arguments from the beginning of
this section, one obtains the resulting metric tensor Ĝ

[tj ]
k� for the

QM test statistic as

Ĝ
[tj ]
k� = r̂2 G

[tj ]
k� , (C7)

where the harmonic refinement factor r̂ in this case would be
different from Equation (C4), namely,

r̂2 =
∑M

n=1 |γn|4 n2∑M
n=1 |γn|4

. (C8)

APPENDIX D

APPROXIMATE HARMONIC-SUMMING
COMPUTING COST

In Section 3.5, we describe an analytical approximation for
the computing cost model of incoherent harmonic summing.
This approximation is based on ignoring the slowly varying
log2 factors in Equations (44) and (47). If one then equates
Ccoh,1 = Ccoh,M , it follows that Tcoh,M must be shorter by the
factor (M2 r2)(1/a), as given in Equation (50). Here, we study
the accuracy of the analytical approximation in terms of the
search sensitivity p−1

coh,M ∝ √
Tcoh,M , in comparison to the exact

value for Tcoh,M obtained from numerical evaluation. For a given
value of Tcoh,1, we find numerically the exact value of Tcoh,M

such that Ccoh,1 = Ccoh,M . Here, we assume a wide search
frequency range, fmax = 1000 Hz. The results are displayed in
Figure 11, showing that the approximation is accurate to within
less than 1% for typical search setups. As can also be seen for the
realistic case of a = 6, the approximation is generous in favor
of the harmonic summing approach; because T

approx
coh,M � T exact

coh,M ,
the approximation overestimates the true search sensitivity.

APPENDIX E

OPTIMAL MISMATCH IN COHERENT SEARCH

In this section, we use the method of Lagrange multipliers as
in Prix & Shaltev (2012) to obtain the optimal average mismatch
for a fully coherent search. We use the scalings of the sensitivity
p−1

coh,M and computing cost Ccoh,M, ignoring the log2 FFT scaling
factor, from Equations (28) and (49), respectively. In order to
find the optimal mismatch at a fixed computing cost C0, we
search for stationary points of the Lagrange function:

L(Tcoh,M,m,M, λ) = p−1
coh,M − λ(Ccoh,M − C0)

= (1 − 〈mtot〉)1/2 T
1/2

coh,M h∗(M)

+ λ(K ′
coh,am

−3/2T a
coh,MM2r2(M) − C0),

(E1)
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Figure 11. Comparison of the analytical approximation for the harmonic-
summing computing cost model (leading to T

approx
coh,M ) to the results obtained

from fully numerical evaluation (leading to T exact
coh,M ), as a function of Tcoh,1

corresponding to the same computing cost Ccoh,1 = Ccoh,M . Since we are
interested in the impact on search sensitivity p−1

coh,M ∝ √
Tcoh,M , the vertical

axis shows the square root of the ratio. As indicated by the legend the different
curves are for different values of scaling exponent a of Equation (41) and number
of harmonics summed M.

(A color version of this figure is available in the online journal.)

where λ is a Lagrange multiplier, and we defined K ′
coh,a =

Kcoh,af
2
max, as well as the function h∗(M) as

h∗(M) = 1

M1/4 θ∗
M

[
M∑

n=1

|γn|2
]1/2

, (E2)

using ∗ to indicate the implicit dependence on P ∗
FA and P ∗

DET
through θ∗

M . Taking partial derivatives with respect to Tcoh,M , m
and M, respectively, yields

∂L

∂Tcoh,M

= 1

2
(1 − 〈mtot〉)1/2T

−1/2
coh h∗(M) +

aλCcoh,M

Tcoh,M

= 0,

(E3)

∂L

∂m
= 1

2
(1 − 〈mtot〉)−1/23ξ T

1/2
coh h∗(M) +

3λCcoh,M

2 m
= 0,

(E4)

∂L

∂M
= (1 − 〈mtot〉)1/2T

1/2
coh,M

∂h∗(M)

∂M

+ λCcoh,M

(
2

M
+

2

r(M)

∂r

∂M

)
= 0. (E5)

Equating these and rearranging for ξm, we find that the optimal
average mismatch for a fully coherent search is

3ξ mopt = 1 − 〈mf 〉
2a
3 + 1

. (E6)

As we argue in Section 3.4, practical fully coherent searches are
computationally limited to integration times Tcoh,M less than half
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a year, implying a = 6. If the frequency dimension is interpolated
using interbinning, 〈mf 〉 ≈ 0.14, giving mopt = 0.172 for a total
average mismatch of 〈mtot〉 = 0.312. It is noteworthy that this
result is independent of the computational cost, the coherent
integration time, and the number of harmonics summed.

In principle, one can also rearrange for M to find the
optimal number of harmonics, which then requires solving a
complicated differential equation. However, the derivatives of
the functions h∗(M) defined in Equation (E2) and r(M) defined
in Equation (C4) are difficult to obtain for most pulse profiles.
Therefore, we followed the approach presented in Section 3.5
to find the optimal M at fixed computing cost, which does not
require calculating these derivatives.

APPENDIX F

DERIVATION OF STATISTICAL PROPERTIES
OF SEMICOHERENT TEST STATISTIC

From Equation (54), the expectation value of S1 can be
written as

E0[S1] = E0

[
N∑
j,k

wjwke
−i(φ(tj )−φ(tk ) Ŵ rect

T (τjk)

]
. (F1)

In order to evaluate this expectation value, we must take into
account terms in the double sum where the photon indexes (j, k)
are equal, giving

E0[S1] =
N∑

j=1

w2
j ŴT (0)

+
N∑

j �=k

wjwk E0
[
e−i(φ(tj )−φ(tk ))

]
ŴT (τjk), (F2)

where
∑N

j �=k denotes a double sum over all photons, excluding
terms where j = k. Under the null hypothesis, p = 0, it holds
that

E0[e−iφ(tj )] = E0[eiφ(tk )] = 0, (F3)

and hence we find that the expectation value of S1 is simply

E0[S1] =
N∑

j=1

w2
j ŴT (0). (F4)

To find the variance of S1, we must evaluate

E0
[
S2

1

]
= E0

[
N∑

j,k,l,m

e−i(φ(tj )−φ(tk )+φ(tl )−φ(tm)ŴT (τjk)ŴT (τlm)

]
.

(F5)

Again, taking into account terms where photon indexes are
equal, and using Equation (F3), we find that

E0
[
S2

1

] =
N∑

j=1

w4
j ŴT (0)2 +

N∑
j �=k

w2
j w2

k ŴT (0)2

+
N∑

j �=k

w2
j w2

k ŴT (τjk)
2
, (F6)

and hence the variance of S1 under the null hypothesis is

V ar0[S1] = E0
[
S2

1

] − E0[S1]2

=
N∑

j �=k

w2
j w2

k ŴT (τjk)
2
. (F7)

From now on in this section, we will use the rectangular lag-
window Ŵ rect

T (τjk) of Equation (56). In addition, we assume
binary photon weights for simplicity. In this case, one obtains

E0[S1] = N, V ar0[S1] ≈ N2 R−1. (F8)

To derive the moments of the distribution of S1 in the presence
of a perfectly matched signal, we need to distinguish times tj
of non-pulsed photons (i.e., background) from pulsed photons
by denoting the latter times as t ′j . We then use the definitions
of the Fourier coefficients of the pulse profile to evaluate the
expectation values

Ep[e−inφ(t ′j )] = γn, Ep[einφ(t ′j )] = γ ∗
n . (F9)

Evaluating Equations (F1) and (F5), using the expectation
values from Equations (F3) and (F9), with a pulsed fraction
p ∼ O(10−1) and a typical pulse profile γn (see Figure 2), gives
the first two moments of the distribution of S1 in the presence
of a weak signal as

Ep [S1] ≈ N + p2N2 |γ1|2 R−1, (F10)

V arp[S1] ≈ N2

R
(1 + 2p2N |γ1|2R−1), (F11)

where we have assumed a large number of photons N � 1, and
that R is large enough such that edge effects (e.g., effectively
shorter windows near the end of the observational data time
span) become negligible.

Again, appealing to the central limit theorem (i.e., assuming
that there are many photon pairs within the double sums of
Equation (F1)), we can approximate the distribution of S1 by
a normal distribution with the same mean and variance. By
comparison with numerical simulations, Figure 12 validates this
approximation for the purpose of the sensitivity estimation as
presented in Section 4.1.

APPENDIX G

SEMICOHERENT METRIC

To derive the semicoherent metric, we investigate the mis-
match in the semicoherent detection statistic in the presence
of a strong signal. Starting from Equation (54), using binary
photon weights and the rectangular lag window,

S1 =
N∑

j=1

N∑
k=1

e−i[φ(tj )−φ(tk )] Ŵ rect
T (τjk)

=
N∑

j=1

e−iφ(tj )
N∑

k=1

eiφ(tk ) Ŵ rect
T (τjk). (G1)

Again, replacing the sum over k with a continuous integral
allows us to write the mismatch as

m̄ = 1 −
∑N

j=1 e−iφ(tj ,usig+Δu) 〈eiφ(t,usig+Δu)〉[tj ]

∑N
j=1 e−iφ(tj ,usig) 〈eiφ(t,usig)〉[tj ] . (G2)
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Figure 12. Comparison of empirical and analytically predicted probability
density function (PDF) of the semicoherent test statistic S1. The blue curves
(left) refer to the noise-only case, where S1 has been calculated from many
simulated data sets of N = 104 unit-weight photons with R = 60 to obtain the
empirical PDF (solid curve), which is compared to the analytical PDF (dashed).
The green curves represent the PDF of S1 for simulated data sets containing
signals with a pulsed fraction of p = 0.1 and a profile with |γ1|2 = 0.668,
where again the empirical PDF (solid curve) is compared to the analytical PDF
(dashed).

(A color version of this figure is available in the online journal.)

Assuming that each coherent window contains the same power
(and hence has the same S/N at usig), this can be simplified to

m̄ = 1 − 1

N

N∑
j=1

e−iφ(tj ,Δu) 〈eiφ(t,Δu)〉[tj ]
. (G3)

Taylor expanding this mismatch around Δu = 0 to second order
in Δu gives

m̄ = i

N

N∑
j=1

(∂kφ|t=tj − 〈∂kφ〉[tj ])Δuk

+
1

2N

N∑
j=1

(∂kφ|t=tj ∂�φ|t=tj + 〈∂kφ∂�φ〉[tj ])ΔukΔu�

− 1

N

N∑
j=1

(∂kφ|t=tj 〈∂�φ〉[tj ])ΔukΔu�

+
i

2N

N∑
j=1

(∂k∂�φ|t=tj − 〈∂k∂�φ〉[tj ])ΔukΔu�

+ O(Δu3), (G4)

where there are implicit sums over repeated indices.
Under the assumption T � Tobs, the mismatch of Equa-

tion (G4) becomes

m̄ ≈ 1

2N

N∑
j=1

(〈∂kφ∂�φ〉[tj ] − 〈∂kφ〉[tj ]〈∂�φ〉[tj ])ΔukΔu�

= 1

2N

N∑
j=1

G
[tj ]
k� ΔukΔu�. (G5)

Hence, the semicoherent metric components can be found by
taking half the average of the coherent metric components of
Equations (B10) over all photons in the observation time. Using
the approximations given in Pletsch (2010), which are valid
under the assumption that the data set spans many years, we
find

Ḡff = π2T 2

6
, (G6a)

Ḡḟ ḟ = π2T 4

360
γ 2, (G6b)

Ḡnxnx
= Ḡnyny

= π2f 2r2
E[1 − sinc2(ΩET /2π )], (G6c)

where γ is the semicoherent refinement factor (Pletsch & Allen
2009; Pletsch 2010) defined as

γ 2 = 1 +
60

N

N∑
j=1

(tj − t0)2

T 2
. (G7)

The mismatches predicted by these derived metric components
are compared to the measured mismatches in S1 for a simulated
pulsar signal in Figure 13. For the purpose of the analytic

−2 −1 0 1 2

x 10
−6

0

0.2

0.4

0.6

0.8

1

Frequency Offset (Hz)

1
−

m̄
f

−8 −6 −4 −2 0 2 4 6 8

x 10
−14

0

0.2

0.4

0.6

0.8

1

Frequency Derivative Offset (Hz/s)

1
−

m̄
ḟ
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Figure 13. Comparison of mismatch in S1 (dashed curves) with semicoherent metric prediction (solid curves). In each panel, the horizontal axis shows the offset
from the signal parameters in f (left), ḟ (middle), and sky position (right). The sky-location offset is

√
Δn2

x + Δn2
y , which measures the offset in coordinates (nx, ny )

in the ecliptic plane. The underlying pulsar signal has been simulated with parameters f = 32 Hz, ḟ = −10−12 Hz s−1 for a total observational data time span of
Tobs = 3.4 yr and a coherent window size of T = 524288 s.

(A color version of this figure is available in the online journal.)
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study of the computing cost scaling in this paper, we employ
the approximation γ ≈ √

5 Tobs/T = √
5 R. Hence, the

determinant of the semicoherent metric is obtained as

√
det Ḡ ≈ π4

4
√

27
T 3 f 2 r2

E R

[
1 − sinc2

(
ΩE T

2π

)]
. (G8)

APPENDIX H

OPTIMAL MISMATCH IN SEMICOHERENT SEARCH

Following the same steps as in Appendix E, we can find
the optimal average mismatch for a semicoherent search with
sensitivity p−1

scoh,1 at a fixed computing cost C0 by consideration
of the following Lagrange function:

L(T , m̄, λ) = p−1
scoh,1 + λ(Cscoh − C0)

= (1 − 〈m̄tot〉)1/2T 1/4 + λ(K ′
scohm̄

−3/2T (s−1) − C0).

(H1)

Applying the method of Lagrange multipliers as above, we find
that

3ξm̄opt = 1 − ξm̄f

4(s−1)
3 + 1

. (H2)

As argued in Section 4.3, an efficient strategy uses coherence
window sizes T much less than half a year. In this regime of
interest, s = 5. Using interbinning to interpolate the frequency
spectrum gives 〈mf 〉 ≈ 0.075, giving the optimal maximum
mismatch in the remaining three parameters as m̄opt = 0.146.

APPENDIX I

SKY-GRID CONSTRUCTION

From the metrics derived above, in Appendices B and G, we
know when searching over a grid of sky locations that these grid
points should be defined by a uniform grid in the ecliptic plane.

To construct the sky search grid for a source within an angular
radius of θ from (α0, δ0), this central point is rotated from
equatorial to ecliptic coordinates according to the Earth’s axial
tilt (using the obliquity of the ecliptic, ε) and projected into the
ecliptic plane, with Cartesian coordinates (x0, y0),

x0 = cos(α0) cos(δ0), (I1)

y0 = cos(ε) sin(α0) cos(δ0) + sin(ε) sin(δ0). (I2)

A square of side length θ on the unit circle is calculated around
this point and sampled (using the semicoherent or coherent
metric components as appropriate) with spacings

Δnx = Δny = 2
√

m/Gnxnx
. (I3)

These grid points are then projected back onto the unit sphere
and rotated into equatorial coordinates for barycentering.

Since a square region is sampled in the ecliptic plane, many of
the resulting sky-points lie outside the radius defining the search
region on the sky. These points are simply discarded, resulting
in the original circular search region on the sky in equatorial
coordinates, sampled by a uniform grid defined in the ecliptic
plane.

A possible problem arises when the search region crosses
the ecliptic equator since when the square is constructed in
the ecliptic plane, some points lie outside the unit circle, and
therefore cannot be projected onto a unit sphere. This can be
overcome by reflecting points, (x, y), which lie outside the unit
circle back into the sphere around the ecliptic longitude, l, of
the center of the search region:

l = tan−1(y0/x0), (I4a)

x ′ = cos(l) − [x − cos(l)], (I4b)

y ′ = sin(l) − [y − sin(l)]. (I4c)

The new points (x ′, y ′) are then projected into the opposite
hemisphere from the central point of the search region, resulting
in a grid that covers an area of the sky that wraps around the
ecliptic equator.
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