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We examine the generic theory of a paratially massless (PM) spin-two field interacting with gravity in
four dimensions from a bottom-up perspective. By analyzing the most general form of the Lagrangian, we
first show that if such a theory exists, its de Sitter background must admit either soð1; 5Þ or soð2; 4Þ global
symmetry depending on the relative sign of the kinetic terms: the former for a positive sign the latter for a
negative sign. Further analysis reveals that the coupling constant of the PM cubic self-interaction must be
fixed with a purely imaginary number in the case of a positive sign. We conclude that there cannot exist a
unitary theory of a PM spin-two field coupled to Einstein gravity with a perturbatively local Lagrangian. In
the case of a negative sign we recover conformal gravity. As a special case of our analysis, it is shown that
the PM limit of massive gravity also lacks the PM gauge symmetry.
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Introduction.—In de Sitter (dS) space, unitary spin-two
modes have a mass gap, as opposed to those in the flat
space or anti–de Sitter space. The lightest massive spin-two
modes do not correspond to the massless graviton but to a
special massive field called the partially massless (PM)
spin-two [1]. The PM field has one less degree of freedom
(d.o.f.) than a generic massive spin-two field due to the
decoupling of the scalar mode.
The PM field is gaining renewed interest in the context of

the massive gravity theory of Ref. [2] and the bimetric
gravity theory of Ref. [3]. With a suitable choice of
parameters, these theories can be linearized around dS
space and describe the propagation of massive spin-two
modes. One of the natural questions is the following: When
the mass is tuned to that of PM [4], can the resulting theory
consistently describe the dynamics of an interacting PM
field? To answer this question, one can focus on the gauge
symmetry that is present in the free theory of the PM field.
If the PM limit of massive or bimetric gravity is consistent,
these theories should provide an extension of the linear PM
gauge symmetry to the interacting level. While the emer-
gence of such a gauge symmetry has not yet been reported,
there have been many discussions on the possible (in-)
consistencies of this limit; see Ref. [6] for positive results
and Ref. [7] for negative results. One of the aims of the
present work is to provide a definite answer to this
question.
PM gauge invariance.—In the search for a theory of PM

plus gravity, one may begin with the most general form of
the action S ¼ SEH þ SPM, where the gravity sector SEH is
given by the Einstein-Hilbert term:

SEH½g� ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð1Þ

while κ ¼ 8πGN , and GN is the Newton’s gravitational
constant. The PM part SPM is not fixed for the moment,
except that it is given by a perturbatively local Lagrangian
LPM which is diffeomorphism invariant:

SPM½φ; g� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LPMðφ;∇φ; g; R;…Þ: ð2Þ

Here, … means that there may be higher derivatives of φμν

or curvature Rμνρσ . Let us emphasize that this ansatz also
covers the PM massive and bimetric gravity.
Besides the diffeomorphism symmetries, we also require

the action to be invariant under PM gauge symmetries
δαS ¼ 0 where δα is the nonlinearly deformed PM trans-
formation which we aim to determine together with LPM.
For further analysis, it is convenient to expand the action
and the PM gauge transformations in powers of the PM
field φμν as

SEH ¼ Sð0Þ;

SPM ¼ Sð2Þ þ Sð3Þ þ � � � ;
δα ¼ δð0Þα þ δð1Þα þ � � � ; ð3Þ

where the superscript ðnÞ means that the corresponding
term involves the nth powers of φμν. Then, the PM gauge-
invariance condition provides an infinite set of equations,
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δð1Þα Sð0Þ ¼ 0; ð4Þ

δð0Þα Sð2Þ þ δð2Þα Sð0Þ ¼ 0; ð5Þ

δð0Þα Sð3Þ þ δð1Þα Sð2Þ þ δð3Þα Sð0Þ ¼ 0; ð6Þ
� � � :

The first condition (4) simply tells us that ðδαgμνÞð0Þ ¼ 0,
whereas the other conditions constrain possible forms of
LPM and δα. We shall analyze below the second condition
(5) and the third condition (6).
The quadratic part of the gauge-invariance condition (5)

readsZ
d4x

ffiffiffiffiffiffi
−g

p �
ðδαφμνÞð0Þ

�
δSð2Þ

δφμν

�
þðδαgμνÞð1ÞGμν

Λ

�
¼0; ð7Þ

where Gμν
Λ ≡ Rμν − gμνR=2þ Λgμν is the cosmological

Einstein tensor. The lowest-order PM gauge transformation
ðδαφμνÞð0Þ is given by the covariantization of the free PM
transformation around the dS background:

ðδφμνÞð0Þ ¼
�
∇μ∇ν þ

Λ
3
gμν

�
α: ð8Þ

The gauge-invariance condition (5) can be solved for Sð2Þ
by properly covariantizing the free PM field action.
Plugging the solution Sð2Þ into Eq. (5), the PM gauge
transformation of the metric tensor is determined to be [8]

ðδαgμνÞð1Þ ¼ 2σκð2∇ðμφνÞρ −∇ρφμνÞ∂ρα; ð9Þ

where σ is the sign factor of the PM kinetic term in Sð2Þ that
we have introduced in order to keep track of its role.
Now we turn to the cubic part of the gauge-invariance

condition (6):

Z
d4x

ffiffiffiffiffiffi
−g

p �
ðδαφμνÞð0Þ

�
δSð3Þ

δφμν

�

þ ðδαφμνÞð1Þ
�
δSð2Þ

δφμν

�
þ ðδαgμνÞð2ÞGμν

Λ

�
¼ 0: ð10Þ

Similar to the quadratic part, one can solve the condition
(10) for Sð3Þ by properly covariantizing the PM cubic self-
interaction derived for the dS background [9]. Plugging the
solution Sð3Þ into Eq. (10), we obtain ðδαgμνÞð2Þ and
ðδαφμνÞð1Þ. In particular, the expression of the latter

ðδαφμνÞð1Þ ¼ 2σλð∇ðμφνÞρ −∇ρφμνÞ∂ρα ð11Þ

will be important in the forthcoming analysis. Here, λ is the
coupling constant of the two-derivative cubic interaction
in Sð3Þ.

Let us remark that the expressions (8), (9), and (11) are
unique up to field redefinitions, which are physically
irrelevant. Notice that the cubic-order gauge-invariance
condition (6) does not constrain the coupling constant λ
at all. The coupling constants can be determined by the
quartic or higher-order consistency conditions. Hence, in
principle, we may have to proceed to higher orders to see
the eventual (in-)consistency of the PM-plus-gravity theory.
However, there exist other consequences of gauge invari-
ance that cubic couplings must satisfy. In the following, we
shall explain this point.
In general, when an action S involving a set of bosonic

fields χi admits gauge symmetries, they must form an
(open) algebra:

½δε; δη� ¼ δ½η;ε� þ Cijðη; εÞ
δS
δχi

δ

δχj
; ð12Þ

where the gauge-algebra bracket ½η; ε� may depend on
fields, and the arbitrary matrix Cij ¼ −Cji generates trivial
symmetries. Let us now consider the gauge-algebra brack-
ets of the PM-plus-gravity theory. By explicitly evaluating
the commutator of two successive gauge transformations
given in Eqs. (8), (9), and (11), the gauge-algebra brackets
can be identified at the zeroth order in φμν. First, the
diffeomorphisms give the usual Lie derivative. Next, the
commutator between diffeomorphism and PM gauge trans-
formation gives again a PM gauge transformation:

½ξ; α� ¼ ξμ∂μαþOðφÞ: ð13Þ

Finally, the commutator of two PM transformations results
in a diffeomorphism:

½α2; α1� ¼ 2σκ∂ρα½1∇μ∂ρα2�∂μ þOðφÞ: ð14Þ

In general, these gauge-algebra brackets do not define
a Lie algebra due to the (possible) field-dependent pieces,
but their restriction to the Killing fields, namely, the global-
symmetry brackets, must do so. Moreover, there exists
another important consistency condition, the admissibility
condition, which must hold at the level of global
symmetries.
Global symmetries.—In order to see this point more

clearly, let us briefly move back to the general discussions
presented around Eq. (12). We shall now analyze the
closure of the gauge symmetries perturbatively. One con-
siders the expansions

S ¼ S½2� þ S½3� þ � � � ; δε ¼ δ½0�ε þ δ½1�ε þ � � � ;
½η; ε� ¼ ½η; ε�½0� þ ½η; ε�½1� þ � � � ;

Cij ¼ C½0�
ij þ C½1�

ij þ � � � ; ð15Þ

where the superscript ½n� stands for the total power of fields
χi involved. Restricting the attention to the Killing fields ε̄
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defined by δ½0�ε̄ ¼ 0, one can derive two important consis-
tency conditions. First, one can show

δ½0�½η̄;ε̄�½0� ¼ 0; ð16Þ

meaning that the global symmetry is closed under the
bracket ½·; ·�½0�. Second, one can show the so-called admis-
sibility condition

½δ½1�ε̄ ; δ½1�η̄ � ¼ δ½1�½η̄;ε̄�½0� þ δ½0�½η̄;ε̄�½1� þ C½0�
ij ðη̄; ε̄Þ

δS½2�

δχi

δ

δχj
; ð17Þ

which implies that δ½1�ε̄ provides a representation of the Lie
algebra of the global symmetry on the space of fields.
Having the above general lessons in mind, let us come

back to the PM-plus-gravity theory and consider the dS
metric gμν ¼ ḡμν and φμν ¼ 0 as the background. In this
case, the χi fields in the above general discussion would
correspond to hμν ¼ gμν − ḡμν and φμν. The global sym-
metries of this background are the subset of gauge
symmetries which leave it invariant. The gauge parameters
of the global transformations are defined as the solutions of
the following Killing equations:

∇̄ðμξ̄νÞ ¼ 0;

�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
ᾱ ¼ 0; ð18Þ

where ∇̄ is the dS covariant derivative. From the Killing
equations (18) and the gauge-algebra brackets (13) and
(14), the Lie brackets of global symmetries are readily
computed as

½ε̄2; ε̄1�½0� ¼ 2

�
ξ̄ν½2∂νξ̄

μ
1� − σκ

Λ
3
ᾱ½2∂μᾱ1�

�
∂μ

þ 2ξ̄μ½2∂μᾱ1�: ð19Þ

Here, we have conveniently packed the parameters as
ε̄ ¼ ξ̄μ∂μ þ ᾱ. In order to identify the global symmetry
given by Eq. (19) in the standard classification of Lie
algebras, we need to solve the Killing equations (18). For
that, it is convenient to reformulate them in the ambient-
space formalism through the standard embedding:

ξμðxÞ ¼ l2
ΞMðXÞ∂μXM

X2
; αðxÞ ¼ l

AðXÞffiffiffiffiffiffi
X2

p ; ð20Þ

where the XM’s are the coordinates of the ambient space
containing dS space as a hyperboloid with the radius
l ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

. In terms of the ambient-space fields ΞM and
A, the Killing equations simply read ∂ðMΞ̄NÞ ¼ 0 and
∂M∂NĀ ¼ 0. The general solution can be presented as

Ξ̄M∂M ¼ WABMAB; Ā ¼ VAKA; ð21Þ

whereWAB ¼ −WBA and VA are arbitrary parameters while
MAB and KA are the global-symmetry generators:

MAB ¼ 2X½A∂B�; KA ¼ XA: ð22Þ
Using this explicit form of the generators and the bracket
(19), one can derive the Lie brackets ⟦·; ·⟧≡ ½·; ·�½0� as

⟦MAB;MCD⟧ ¼ 4η½A½CMD�B�;

⟦MAB;KC⟧ ¼ 2ηC½BKA�;

⟦KA;KB⟧ ¼ −
Λ
3
σκMAB: ð23Þ

This Lie algebra contains the isometry algebra soð1; 4Þ
generated by MAB as a subalgebra. Together with the
KA-generators for σ ¼ þ1, they define soð1; 5Þ, and for
σ ¼ −1, they define soð2; 4Þ depending on the relative sign
σ between the graviton and PM field kinetic terms.
Admissibility condition.—We are now at the point to

examine the admissibility condition (17). It plays an
important role in higher-spin field theories [12] as well
as in supergravities. In the case of PM plus gravity, it will
also turn out to be a decisive condition. In order to examine
the admissibility condition for the system under consid-
eration, one first needs to linearize the transformations with
respect to the metric perturbation hμν as

δε̄hμν ¼ δε̄gμν ¼ δ½1�ε̄ hþOðh;φÞ;
δε̄φμν ¼ δ½1�ε̄ φþOðh;φÞ; ð24Þ

where the superscript [1] means that the corresponding
terms are linear in hμν or φμν. First, from the diffeo-
morphism symmetry, we get the usual Lie derivative. Then,
from Eqs. (8), (9), and (11), we obtain the PM trans-
formation parts as

δ½1�ᾱ hμν ¼ −2σκ∂ρᾱð2∇̄ðμφνÞρ − ∇̄ρφμνÞ; ð25Þ

δ½1�ᾱ φμν ¼ 2λσ∂ρᾱð∇̄ðμφνÞρ − ∇̄ρφμνÞ

−
1

2
∂ρᾱð2∇̄ðμhνÞρ − ∇̄ρhμνÞ þ

Λ
3
ᾱhμν: ð26Þ

With Eqs. (25) and (26), we are ready to compute the
commutator between two PM transformations, which is the
lhs of Eq. (17). After straightforward calculations and impos-
ing the global-symmetry conditions on gauge parameters,
we obtain the commutator of two PM transformations as

ðδ½1�ᾱ1
δ½1�ᾱ2

−δ½1�ᾱ2
δ½1�ᾱ1

Þhμν¼ 2∇̄ðμAρhνÞρþAρ∇̄ρhμνþ2∇̄ðμBνÞ;

ð27Þ

ðδ½1�ᾱ1
δ½1�ᾱ2

− δ½1�ᾱ2
δ½1�ᾱ1

Þφμν ¼ 2∇̄ðμAρφνÞρ þAρ∇̄ρφμν

þ ðλ2 þ σκÞCμν; ð28Þ
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where Aμ, Bμ, and Cμν are given by

Aμ ¼ 2σκ
Λ
3
ᾱ½1∂μᾱ2�; ð29Þ

Bμ ¼ −2σκ∂ρᾱ½1∂σᾱ2�ð∇̄ρhσμ − 4σλ∇̄ρφσμÞ

− 4σκ
Λ
3
ᾱ½1∂ρᾱ2�hρμ; ð30Þ

Cμν ¼ 4∂ρα½1∂σα2�∇̄ðμj∇̄σφjνÞρ

þ 4Λα½1∂ρα2�ð∇̄ðμφνÞρ − ∇̄ρφμνÞ: ð31Þ

Let us analyze each term in Eqs. (27) and (28) to see whether
they are compatible with the rhs of Eq. (17): (i) the terms
involving Aμ take the form of a Lie derivative, and they

correspond to the δ½1�½ᾱ2ᾱ1�½0� contribution in the rhs of Eq. (17);

(ii) the terms involving Bμ take the form of a linearized

diffeomorphism; hence, they are related to the δ½0�½ᾱ2ᾱ1�½1� con-
tribution; (iii) there remains the Cμν term, which does not
correspond to any of the contributions. Therefore, the admis-
sibility condition requires that the coefficient of the Cμν term
vanish:

λ2 þ σκ ¼ 0: ð32Þ

This equation determines the PM self-interaction coupling
constant λ in termsof thegravitational one κ.Now,onehas two
options for a theory of PM plus gravity depending on the
relative sign σ between the kinetic terms: for σ ¼ þ1, we
obtain purely imaginary λ; for σ ¼ −1, we obtain λ ¼ � ffiffiffi

κ
p

.
Let us stress that the inclusionof higher-derivative interactions
cannot change this conclusion since theydonot affect the form
of thePM transformations [11] onwhichour analysis is based.
Conclusions.—In this Letter, we have investigated the

most general form of the Lagrangian for PM field and
gravity with a positive cosmological constant. By examin-
ing its gauge symmetries, we have determined the two-
derivative cubic self-interaction of the PM field
together with its coupling constant λ. Our results have
several implications for different models of gravity.
(i) Nonunitarity of the PM-plus-gravity theory. When the
kinetic terms have a relatively positive sign with σ ¼ þ1,
the gauge invariance of the PM-plus-gravity action requires
the PM cubic self-interaction to have an imaginary coupling
constant, which manifestly violates the unitarity. In particu-
lar, this implies that the PM limit of bimetric gravity cannot
lead to a gauge-invariant Lagrangian theory. Consequently,
the scalar d.o.f.—that is, the seventh d.o.f.—would not
decouple from the theory in the PM limit. (ii) Conformal
gravity. In the case where the kinetic terms have a relatively
negative sign with σ ¼ −1, the theory admits the global
symmetry of soð2; 4Þ, which is the conformal algebra in four
dimensions. Hence, in this case, we actually recover

conformal gravity (CG). In fact, CG is another playground
for the PM field: among six d.o.f. of CG [13], the additional
four d.o.f. organize themselves into a PM representation
around dS space [14] (see also Ref. [15]). The PM gauge
symmetry in CG is a disguised version of Weyl symmetry.
(iii) PM massive gravity. The case of PM theory without
gravity is covered by taking the limit κ → 0 and choosing the
background to be dS space. This limit effectively freezes out
the dynamics of the metric tensor. In such a case, the global
symmetry reduces to anAbelian one instead of soð1; 5Þ. The
admissibility condition then requires the PM cubic coupling
constant λ to vanish; therefore, no two-derivative cubic
interaction is consistent in the pure PM theory. This rules out
the PM limit of massive gravity from the possible consistent
theories of the PM field due to the presence of its two-
derivative cubic interaction inherited from the Einstein-
Hilbert term.
All the analyses of the present Letter were carried out in

four dimensions. A similar analysis might be possible in
higher dimensions where we expect that the admissibility
condition would require the field content to include some
massive modes as well [16].
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