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In various theories of quantum gravity, one observes a change in the spectral dimension from
the topological spatial dimension d at large length scales to some smaller value at small, Planckian
scales. While the origin of such a flow is well understood in continuum approaches, in theories
built on discrete structures a firm control of the underlying mechanism is still missing. We shed
some light on the issue by presenting a particular class of quantum geometries with a flow in the
spectral dimension, given by superpositions of states defined on regular complexes. For particular
superposition coefficients parametrized by a real number 0 < α < d, we find that the spatial spectral
dimension reduces to ds ≃ α at small scales. The spatial Hausdorff dimension of such class of states
varies between 1 and d, while the walk dimension takes the usual value dw = 2. Therefore, these
quantum geometries may be considered as fractal only when α = 1, where the “magic number”
ds

spacetime ≃ 2 for the spectral dimension of spacetime, appearing so often in quantum gravity, is
reproduced as well. These results apply, in particular, to special superpositions of spin-network
states in loop quantum gravity, and they provide more solid indications of dimensional flow in this
approach.

I. INTRODUCTION

The identification of good geometric observables is
a thorny issue in (quantum) gravitational physics,
and it is of particular importance in nonperturbative,
background-independent approaches to quantum grav-
ity, especially where the fundamental degrees of freedom
characterizing quantum states and histories of the system
are nongeometric in the standard sense and character-
ized by intrinsic discreteness. Examples are loop quan-
tum gravity (LQG) [1–3], spin-foam models [4, 5] and
group field theory (GFT) [6, 7], strictly related to LQG
[8, 9]. Here, the major challenge is to find a relation to
the continuum spacetime geometries of classical general
relativity, i.e., to show that the latter emerge from the
fundamental discrete quantum structures of the theory
in some approximation. This emergence has to be ex-
pressed in terms of suitable geometry observables, both
classical and quantum, that should indicate that the de-
sired features of smooth spacetimes are recovered. This
is, in fact, a precondition for extracting physics from such
quantum-gravity formalisms.

Effective-dimension observables provide important in-
formation about the geometric properties of quantum
states of space and spacetime histories in quantum grav-
ity. In particular, the spectral dimension ds, which de-
pends on the spectral properties of a geometry through
its definition as the scaling of the heat-kernel trace, has
attracted special attention due to the observation of a di-
mensional flow (i.e., the change of spacetime dimensional-
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ity across a range of scales [10–12]) in various approaches,
such as causal dynamical triangulations (CDT) [13], the
functional renormalization-group approach of asymptotic
safety [14, 15] and Hořava–Lifshitz gravity [16] among
others.

In all these approaches, the spectral dimension of
spacetime exhibits a scale dependence itself, flowing
from the topological dimension D in the infrared (IR)

to ds
spacetime ≃ 2 in the ultraviolet (UV) [16, 17, 20–

23] (although new CDT calculations [24] rather hint at

ds
spacetime ≃ 3/2). While modified dispersion relations

provide an obvious reason for this behaviour in smooth
geometries [16–19, 25], dimensional flow remains to be
better understood in the case of discrete calculations as
in the CDT approach [21–24]. Causal dynamical trian-
gulations, in fact, aim at a definition of the continuum
path integral for quantum gravity via a regularization of
the same in terms of a superposition of simplicial com-
plexes (thus a form of discrete geometries) weighted by
the Regge action. While it is more difficult to identify
the underlying reason for the dimensional flow in this
context, the same is obtained in a very direct manner
from the evaluation of the heat trace as a quantum geo-
metric observable inside the CDT partition function.

Here we take a very similar direct approach, but in a
context that it is closer to the formalism of loop quantum
gravity. In LQG, quantum states are defined as super-
positions of spin networks, which are graphs labelled by
algebraic data from the representation theory of SU(2).
There is thus an interplay between two types of data
and their corresponding discreteness: a combinatorial
discreteness due to the graph substratum for the quan-
tum states, and an algebraic discreteness due to the fact
that the labels are half-integers corresponding to SU(2)
irreducible representations. Quantum effects in the eval-
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uation of observables are thus to be expected, in general,
from both these sources and it is an important limitation
to focus only on one of them, as in preliminary studies of
dimensional flow in LQG [25].

In a previous work [26], we have already tackled the is-
sue of computing the spectral dimension on LQG states
based on a given graph, dealing both with coherent states
and with their superpositions. There, we showed that
the underlying discrete structure plays a dominant role.
Here, we intend to explore the role of combinatorial dis-
creteness and of superpositions of combinatorial struc-
tures in greater detail.

In this paper, we present a special class of superposi-
tions of discrete quantum states characterized by a real-
valued parameter α. This parameter will control the
scale-dependent values taken by the spectral dimension,
and therefore the dimensional flow. These superpositions
are over states based on regular complexes correspond-
ing to hypercubic lattices to which a single quantum label
is assigned, uniformly to all cells of a certain dimension.
Such states occur indeed in the kinematical Hilbert space
of the quantum gravity formalisms we just mentioned:
LQG, spin-foam models and GFT. Because of the uni-
form labeling, these superpositions are also similar to the
discrete geometries in CDT, although we understand the
former not as regularization tools for physically smooth
geometries but as fundamentally discrete structures with
their own physical interpretation. Contrary to the CDT
setting, we interpret the combinatorial structures we su-
perpose as defining quantum gravity states, not histories,
and the coefficients in the superpositions to have no im-
mediate dynamical content. However, we point out that
this interpretation enters only minimally in the actual
calculations and it could be generalized.

Perhaps surprisingly, superpositions of quantum states
supported on different complexes have not been consid-
ered much in the LQG literature so far. Instead, most
analyses have involved only states based on one and the
same complex. A first simple example of states based on
superpositions of combinatorial structures are the con-
densate states with a homogeneous cosmology interpre-
tation introduced recently in the GFT context [27–31].

Using a known analytic expression for the spectral di-
mension of single members in the superposition [26], we
compute numerically superpositions over up to 106 dis-
crete geometries. On these grounds, we find strong ev-
idence for a dimensional flow, characterized by the pa-
rameter α.

Similarly, we find analytic solutions for the walk di-
mension and Hausdorff dimension of lattice geometries
and perform again numerical calculations of superposi-
tions. For these observables, however, while we recover
the topological dimension at large scales, we do not find
any special properties for superpositions as compared to
states defined on fixed complexes.

II. A GENERAL CLASS OF SUPERPOSITION

STATES

Let us now explain in detail the construction of super-
position states of interest, and the calculation of their
spectral, walk and Hausdorff dimension.

Most generally speaking, a discrete quantum state of
geometry |{jc}, C〉 is given by an assignment of quantum
numbers jc to a certain subset of cells c ∈ C of a (com-
binatorial) complex C, diagonalizing volume operators of
these cells

V̂
(p)
c′ |{jc}, C〉 ∝ lp(jc′)|{jc}, C〉 , (1)

where we have adopted natural units. An example of
such states are spin-network states in LQG, based on the
1-skeleton of the dual complex C⋆, with the j’s identifying
irreducible representations of SU(2). In three spacetime
dimensions, the spatial (d = 2) states in the spin network

basis diagonalize the length operators L̂e associated with
all edges e ∈ C. Thus, they are labelled by spins je
on the corresponding dual edges e⋆ ∈ C⋆. The form of

the L̂e spectra is l(je) =
√
je(je + 1) + c, with a free

parameter c ∈ R due to a quantization ambiguity for
the Euclidean theory (as well as for timelike edges in the
Lorentzian theory, spacelike ones being instead assigned
a continuous positive variable) [32, 33].

In four spacetime dimensions (d = 3), spin-network

states have the same spectrum for area operators Âf on
faces f ∈ C such that [34, 35]

l(jf ) = [jf (jf + 1) + c]1/4 . (2)

Generic quantum-geometry states are superpositions
of the discrete quantum geometries |{jc}, C〉, which in-
deed form a complete spin-network basis of states of the
Hilbert space in LQG.

In the following, we will restrict to superpositions with
nonzero coefficients only for states |j, C〉 labelled by a
single quantum number jc = j for all cells. Thus, one
can consider the individual states |j, C〉 as corresponding
to equilateral lattices.

Given this class of quantum states, we then consider
generic superpositions of the form

|ψ〉 =
∑

j,C

aj,C |j, C〉 . (3)

We also impose a constraint on the overall volume V0
computed from such superposition states:

|ψ, V0〉 =
∑

j,C

aj,C δ(〈j, C|V̂ |j, C〉, V0) |j, C〉 , (4)

where the delta is a Kronecker delta. In the following, we
will further restrict the sum to certain regular complexes,
i.e., hypercubic lattices CN based on the canonical vertex
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set C[0]
N := (ZN )d of d-tuples of integers modulo N . In

this case, the fixed volume condition is explicitly

V0 = 〈j, CN |V̂ |j, CN 〉 ∝ Nd ld(j) , (5)

which fixes the lattice size N = N(j) for a given j.

In general, there are three scales involved in the super-
position states

|V0, jmin, jmax〉 :=
jmax∑

j=jmin

aj|j, CN(j)〉 , (6)

when summing over a finite range from jmin to
jmax: A minimal length scale l(jmin), an intermedi-

ate scale l(jmax) and the overall volume size V
1/d
0 ∝

N(jmin)l(jmin) = N(jmax)l(jmax). Note that a finite vol-
ume V0 bounds also possible cutoffs jmax (since N is a
positive integer).

One can also consider the infinite limit of noncompact
geometries N(jmin) → ∞, where all complexes in the
superposition of fixed-volume states (6) converge to the
infinite lattice C∞. Thus, they are technically the same
as superpositions on the fixed complex C∞, although the
physical interpretation is different. Due to the combina-
torial simplicity, results of infinite-size calculations can
be directly applied to the finite-volume case.

Having defined our superposition states, we can move
on to the evaluation of the geometric observables of in-
terest, i.e., dimension estimators.

III. EVALUATION OF DIMENSION

OBSERVABLES OF SUPERPOSITIONS STATES

A. Spectral dimension

Let the heat kernel K(x, x′; τ) be the solution of the
diffusion equation (∂τ − ∆x)K = 0 on a space X , with
initial condition K(x, x′; 0) = δ(x − x′), where ∆ is the
Laplace operator onX . It is a function of the geometry of
X via its assigned metric. In the resolution interpretation
of [36, 37], the parameter

√
τ and its inverse represent,

respectively, the length scale and the resolution at which
a geometry is inspected by a point-wise probe deployed
at a spatial point x′.

While ordinary diffusion takes place on continuous
manifolds, the whole set-up and in particular the defi-
nition of the Laplace operator can be generalized to dis-
crete spaces, like (combinatorial) complexes. This was
indeed the subject of [38]. The points x can be defined
in a discrete context by vertices of a complex C or its
dual C⋆. The trace of the heat kernel over all points is
denoted as P (τ) = TrK(x, x′; τ) and called ‘return prob-
ability’ from the traditional but somewhat problematic
interpretation in terms of a diffusing process (see [20, 37]
for a discussion and resolutions of such problems).

Both the return probability and the Laplacian can be
turned into operators acting on states of quantum geom-
etry, by quantizing the metric observables entering in the
definition of the Laplacian. This can be done in differ-
ent ways, depending on the geometric variables that are
most convenient in the specific quantum geometric con-
text that is chosen. This has been discussed in detail in
[38]. The spectral dimension of quantum states of geom-
etry |ψ〉 is defined as the scaling of the expectation value

of the operator P̂ [26]:

dψ
s
(τ) := −2

∂

∂ ln τ
ln〈P̂ (τ)〉ψ

= −2τ∂τ ln〈TrK̂(x, x′; τ)〉ψ . (7)

For the states (3), expanding the heat-trace operator in
the discrete quantum geometries |j, C〉 gives

〈P̂ (τ)〉ψ = 〈ψ|Tr eτ∆̂|ψ〉 =
∑

j,C

|aj,C |2 〈j, C|Tr eτ∆̂|j, C〉

=
∑

j,C

|aj,C |2 Tr eτ〈j,C|∆̂|j,C〉 , (8)

where in the last step we have assumed that all |j, C〉 are
eigenvectors of ∆̂, which matches our definition of these
labels.

The key geometric observable for the evaluation of
spectral and walk dimensions is, as anticipated, the
Laplacian. As the differential operator acting on a field
φa on the d-cells ca ∈ C (equivalently, on dual vertices),
the Laplacian on C is [38]

− (∆Cφ)a =
∑

b∼a

∆C
ab(φa − φb)

=
1

V
(d)
a

∑

b∼a

V
(d−1)
ab

l⋆ab
(φa − φb) , (9)

where the sum runs over d-cells cb adjacent to ca, V
(d)
a

is the volume of the cell ca, V
(d−1)
ab is the volume of the

common bounding (d− 1)-cell and l⋆ab is the length of its
dual edge. In general, the resulting expression will be
a complicated function of the quantum labels assigned
to the complex, which is however both well-defined and
explicitly computable [26].

Some simplifying assumptions are however needed in
order to proceed with systematic computations on ex-
tended complexes. In the following, we assume that the
expectation value of the quantum-operator version of the
Laplacian scales as

〈j, C|∆̂|j, C〉ab ∝ l−2(j)∆C
ab , (10)

where ∆C is the combinatorial Laplacian on the complex
C (which is just the graph Laplacian of the 1-skeleton of
the dual complex C⋆ [38]). This assumption is sensible
if the Laplacian can be expressed as a function of the
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volumes (1). A similar Ansatz is, in fact, made in [25],
although in that work this is not justified on the basis
of a detailed analysis of the underlying graph and on the
complete expression for the Laplacian, such as the one
presented in [38].

We now evaluate the spectral dimension on our super-
position states. Under the assumption (10), the expres-
sion for the expectation value of the return probability
further simplifies to

〈P̂ (τ)〉ψ ∝
∑

j,C

|aj,C |2 Tr eτl
−2(j)∆C

. (11)

The above expression can be computed most efficiently
considering the limit of infinite lattices, for which an an-
alytic expression for the heat trace is available. In [26],
we showed that the heat trace on C∞ = Zd is

P C∞(τ) = [eτ I0(τ)]
d
, (12)

where I0 is the modified Bessel function of the first kind.
In the same limit, one can give precise formulae for the
contribution to the spectral dimension coming from in-
dividual lattices, so that we are in the ideal position to
investigate the effect of superpositions of the same. The

spectral dimension dj,C∞

s on a single state |j, C∞〉 equals
d for τ ≫ l2(j) and vanishes for τ ≪ l2(j):

dj,C∞

s
≃

{
d , τ ≫ l2(j)
0 , τ ≪ l2(j)

. (13)

Around the scale τ ≈ l2(j), there is a peak of approx-
imate height 1.22d [26]. We consider these features as
discretization artefacts, and we conclude that no real di-
mensional flow is seen for individual states in the super-
position [26].

Therefore, we are prompted to extend the search for
quantum geometry states that would show true signs of
dimensional flow to superposition states, to which we now
move. Using the above solution, the spectral dimension
of |V0, jmin, jmax〉, Eq. (6) in the limit N(jmin) → ∞, is
given by the scaling of

〈P̂ (τ)〉V0,jmin,jmax
∝

jmax∑

j=jmin

|aj |2
{
el

−2(j)τ I0[l
−2(j) τ ]

}d
.

(14)
For asymptotic power-law spectra

l(j) ≃ jβ , (15)

where β > 0 as usual in LQG (see Eq. (2)), we have
done numerical calculations for various classes of coeffi-
cient functions aj and various values of spatial dimension
d and cutoffs jmax. In all the examples presented here,
we use jmin = 1; calculations with lower cutoffs of the
same order (e.g., jmin = 1/2) give similar results. Notice
also that the same finite minimal value for the geomet-
ric spectra could be obtained in correspondence with a
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FIG. 1. Spectral dimension of a superposition with α = 2 in
d = 1, 2, 3, 4 (dotted, dashed, dot-dashed, solid curve) with
cutoff jmax = 104d.

quantum label j = 0, for choices of quantization map
that give a nonzero value for c in Eq. (2).

The first general class of coefficients to be considered
is of power-law functions,

aj ∝ jγ . (16)

Defining the parameter

α := −2γ + 1

β
, (17)

the spectral dimension of the state under consideration
has the following behaviour depending on the range of
values of α.

• For 0 < α < d:

1. In the IR, i.e., for large length scales τ ≫ l2(jmax),
ds(τ) = d (Fig. 1). This is of course a consistency
check for the validity of the formalism, since at
large scale we recover the topological dimension of
the space the quantum states are supposed to repre-
sent. It is however already a nontrivial test, as iden-
tifying quantum states with the right semiclassical
continuum properties at large scales is no small task
in background-independent quantum gravity.

2. Below the smallest lattice scale, i.e., for τ ≪
l2(jmin), ds(τ) = 0. This is the usual discrete-
ness effect which we find also for individual lattice-
based states (13), which remains at the Planck scale
for discrete spectra induced by holonomies valued
in compact groups [32, 34, 35]. For noncompact
groups, spectra are typically continuous and no vol-
ume discreteness effect at Planck scale occurs, as
jmin → 0 [33].

3. In between these scales, there is a plateau with
value ds(τ) = α (Fig. 2). This plateau indicates
a regime in which the effective dimension is physi-
cally smaller than the topological one, and thus a
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FIG. 2. Spectral dimension of superposition states α =
1/2, 1, 3/2, 2 (dotted, dashed, dot-dashed, solid curve) in
d = 3 with cutoff jmax = 105.
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FIG. 3. Spectral dimension of superpositions with α = 2 in
d = 3 for cutoffs jmax = 1, 10, 103, 105 (dotted, dashed, dot-
dashed, solid curve).

proper dimensional flow. In the light of our pre-
vious results [26], which, as discussed, were per-
formed on the same type of quantum states and in
the same formalism, but without considering large
superpositions of lattice structures, we regard this
as a truly quantum effect stemming from the su-
perposition of states |j, C〉 with geometric spectra
on different scales and based on complexes of dif-
ferent size. It is interesting that, at such interme-
diate scales, the effective dimension is independent
on the topological one (again, provided d > α) and
depends instead only on the specific choice of quan-
tum states.

4. In particular, for infinite superpositions (jmax →
∞) this plateau extends to the limit (Fig. 3)

ds(τ) −→
τ→∞

α. (18)

Notice that this only means that the topological
dimension d is obtained further away at large τ .
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FIG. 4. Spectral dimension of a superposition with α = 2 in
d = 3 summing over positive j ∈ 1

q
N up to jmax = 104 for

q = 1/2, 1, 2, 10 (dotted, dashed, dot-dashed, solid curve).

5. Moreover, these results are independent of the spac-
ing of the quantum labels j. Summing over j ∈ 1

qN
for some q ∈ Q slightly changes the results only at
the scale l(jmin) (Fig. 4). Therefore, neither the IR
nor the UV regime depend on the spacing of the
state label j. The numerical calculations show, in
particular, that this should also be true in the limit
q → ∞, i.e., for positive real j.

• For α < 0, no superposition effect occurs and the
profile of the spectral dimension equals approximately
the one of the single state |jmax, C∞〉, Eq. (13):

dV0,jmin,jmax

s
(τ) ≈ djmax,C∞

s
(τ). (19)

This is a numerical result, for which we lack, at present,
a complete analytical or physical understanding. Never-
theless, we can offer an intuitive explanation. We saw
that, in the range 0 < α < d, α is the spectral dimension
of the state at sufficiently small scales. On a continuous
medium, the case α < 0 would correspond to an un-
physical one with negative dimension. This situation is
meaningless both in the conventional diffusion interpre-
tation of the spectral dimension (where the probe would
do “less than not propagating”) and in the resolution
interpretation of [36, 37]. In the latter, the return proba-
bility P (τ) ∼ (

√
τ )−ds ∼ ℓ−ds ∼ (res)ds is the probability

to find the probe anywhere when the geometry is probed
at scales ℓ, i.e., with resolution 1/ℓ. For positive ds, this
probability decreases with the resolution: if 1/ℓ is too
small, there is a chance that we do not see the probe
at all. On the other hand, a negative ds implies that
the coarser the probe, the greater the chance to find it
somewhere. In our case, this pathological behaviour is
screened by discreteness effects and ds is saturated by
the lattice with labels jmax. The resolution interpreta-
tion coupled with the LQG interpretation of the spin
labels helps in explaining Eq. (13): coarser resolutions
can effectively probe only large volumes and the largest
volume available for the states (14) is at the upper cutoff
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jmax. Under such conditions, it is natural to expect that
the lattice structure completely dominates the profile of
the spectral dimension.

• For α > d, no superposition effect occurs and the
profile of the spectral dimension equals approximately
the one of the single state |jmin, C∞〉,

dV0,jmin,jmax

s
(τ) ≈ djmin,C∞

s
(τ). (20)

In the continuum limit, α > d would imply a spectral di-
mension larger than the ambient space. Similarly to the
previous case, one has both the diffusion and the resolu-
tion interpretation at hand. In the conventional diffusion
interpretation of the spectral dimension, the case ds > d
may be regarded as physical: the probe effectively sees
more than d dimensions and tends to super-diffuse. In
the resolution interpretation, the probability of finding
the probe somewhere grows more steeply than for the
normal case (Brownian motion) and probes with large
resolution (small scales ℓ) become even more effective.
However, in the present quantum framework there is a
limit to which one can probe the microscopic structure
of geometry: volume spectra are discrete with minimum
eigenvalue determined by jmin. Again, the variation of
the spectral dimension is dominated by lattice effects,
this time governed by the lower cutoff in the spin labels.

A partial understanding of the results with 0 < α <
d, in particular concerning the dependence of the UV
value of ds on the powers β and γ in (17), is provided
by the following re-expression of the heat trace (14). A
redefinition of variables k(j) := l−α(j) demands a change
of summation-integration measure by

dk

dj
=

d

dj
l−α(j) = −αd ln l(j)

dj
l−α−1(j) . (21)

In particular, for the power-law spectra (15) and the def-
inition of α (17)

dk

dj
= −αβ j−αβ−1 (17)

= (2γ + 1) j2γ (22)

which is proportional to |aj |2 for the power-law coeffi-
cients (16). Thus, the heat trace on these superpositions
is a uniformly weighted sum in the k-variable (over the
range corresponding to (14)):

〈P̂ (τ)〉V0,jmin,jmax
∝

∑

k

[
e−k

2/ατI0(k
2/ατ)

]d
. (23)

Therefore, genuine dimensional flow comes from a subtle
balancing of d and α in this expression, while a negative
α yields just a dominant kmax = k(jmax) contribution
in the sum. Indeed, we have also calculated the spec-
tral dimension directly for (23) for various values of d,
α and summing ranges of integer k’s, obtaining qualita-
tively similar results as discussed above for (14). As a
consequence, dimensional flow has some dependence on
the form of the spectrum (15) but only in combination
with appropriate superposition coefficients.

Still maintaining the power-law spectrum (15) (which
is the most reasonable assumption, consistent with
known results in LQG and related approaches), we have
calculated the spectral dimension for various other classes
of coefficient functions. In most cases, there are no sur-
prising results.

(a) For example, exponential coefficients aj ∝ eaj let
either the maximal state jmax dominate when a > 0, or
the minimal one jmin when a < 0. (b) Gaussian coeffi-
cients, on the other hand, result in a dominance of the
j0 at which they are peaked. (c) Trigonometric func-

tions add some oscillations to djmax,C∞

s in the intermedi-
ate regime, depending on the relation of the periods to
the spacing of j in the sum. In all these cases, therefore,
the overall behaviour of the spectral dimension is the
same we found for coefficients given by simple powers.

More interesting is the case of coefficients which are
linear combinations of power functions in j. Then one
finds, for their asymptotic behaviour aj ∼ jγ , the same
effect as for power-law coefficients. In particular, if there
are several regimes with different approximate scaling
γ1, γ2, . . . , one obtains plateaux in the spectral dimen-
sion plot of different values α1, α2, . . . accordingly. An
example is shown in Fig. 5. This effect coincides, both
in its qualitative shape and origin, to the one obtained
in the multi-scale generalization of the diffusion equation
with different powers of the Laplacian [40]. In general,
all coefficient functions with an approximate power-law
behaviour in some regime give rise to dimensional flow
at those scales. Details such as the value of jmin and the
spacing in j are not relevant for the value of the spec-
tral dimension in these intermediate regime, in agreement
with the discussion in [40] on the role of regularization
parameters in the profile of ds. The details of regular-
ization schemes are nonphysical and affect only transient
regimes in ds(τ), not the value of the plateaux.

B. Walk dimension of superpositions

The spectral dimension is only one of the possible di-
mensional observables. Our strategy is well-suited to an-
alyze other observables as well, and it is interesting to do
so because there exist several relations among them, in
classical and continuum spaces. Only a detailed analysis
of their combined behaviour can give solid indications on
the nature of the quantum geometries corresponding to
quantum gravity states.

A closely related observable is the walk dimension dw.
It is defined via the scaling of the mean square displace-
ment

〈X2〉y(τ) =
∫

dx |x− y|2K(x, y; τ) ∝ τ2/dw , (24)
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FIG. 5. Spectral dimension of superpositions with coefficients
|cj |

2 = j−4 +200j−7 summing from jmin = 1/2 to jmax = 200
for d = 3 and β = 3 (to be able to numerically cover enough
scales with a feasible number of states in the sum). According
to (17), two different UV regimes with dimension ds ≈ 2 and
then ds ≈ 1 can be observed.

that is

dw(τ) := 2

(
∂ ln〈X2〉y
∂ ln τ

)−1

. (25)

In the case of the d-dimensional hypercubic lattice C∞,
we can choose the origin y = 0, so that

〈X2〉C∞

0 (τ) =
∑

~n∈Zd

∣∣~n2
∣∣K(~n, 0; τ) (26)

=
∑

~n∈Zd




d∑

j=1

n2
j


 e−τ

d∏

k=1

Ink
(τ) . (27)

This can be evaluated using standard relations of the
Bessel functions In,

〈X2〉C∞

0 (τ) ∝ e−dτ
d∑

j=1

∑

~n∈Zd

n2
j

d∏

k=1

Ink
(τ) (28)

= e−dτ
d∑

j=1


 ∑

nj∈Zd

n2
jInj (τ)




×
d∏

k 6=j

[∑

nk∈Z

Ink
(τ)

]

= e−dτd

[
τ

2

∑

n∈Z

In−1(τ) + In+1(τ)

]
(eτ )

d−1

= d τ . (29)

Thus, the walk dimension on the lattice is

dC∞

w
(τ) = 2 , (30)

as in the continuum.

Quantum superpositions |V0, jmin, jmax〉 are character-
ized by the Laplacian (10), so that along the same lines
as (14) one has

〈
〈X2〉0(τ)

〉
V0,jmin,jmax

=

jmax∑

j=jmin

|aj |2 〈X2〉C∞

0 [l−2(j)τ ]

= d

jmax∑

j=jmin

|aj |2 l−2(j)τ (31)

∝ τ . (32)

Therefore, also for quantum superpositions the scaling of
the mean square displacement yields the standard result

dV0,jmin,jmax

w
= 2 , (33)

independent of the form of the coefficients aj . Notice that
the dependence on the topological dimension in Eq. (31
is only through a proportionality coefficient. Therefore,
Eq. (33) is valid both for space and spacetime.

C. Hausdorff dimension of superpositions

The Hausdorff dimension of a quantum state is defined
in terms of the scaling of the expectation value of the
volume V (R) of a ball with radius R:

dψ
h
(R) :=

∂ ln〈V (R)〉ψ
∂ lnR

, (34)

which can be further expanded like the spectral dimen-
sion (8). Using the graph distance and measuring R in
units of the lattice spacing, the volume on the lattice C∞
is

V C∞(R) = 2d
(
R+ d− 1

d

)
=

2d

d!

d−1∏

n=0

(R+ n) , (35)

yielding the Hausdorff dimension

dC∞

h
(R) = R

d−1∑

n=0

1

R + n
= R [ψ(R+ d)− ψ(R)] , (36)

where ψ is the digamma function. At large scales, dh
approaches the topological dimension d, while at small
scales it tends to 1:

dC∞

h
≃

{
d , R ≫ 1
1 , R ≪ 1

. (37)

On discrete quantum geometries |{jc}, C〉, we define
the quantum analogue of V (R) as follows. Let v0 ∈ C be a
given vertex in the complex and consider the subcomplex
Cv0 ⊂ C of all vertices v which have an expectation value
of their distance to v0 no larger than the radius,

〈{jc}, C|L̂vv0|{jc}, C〉 ≤ R , (38)
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where the expectation value of L̂vv0 is the minimum of
lengths derived from the sum of edge lengths of possible
(combinatorial) paths between v and v0.

The expectation value of the volume of this subcom-
plex |{jc}, C〉 is

∑
v∈Cv0

〈Vv〉{jc},C. To obtain the desired

observable, one must average over all possible centers v0:

〈{jc}, C|V (R)|{jc}, C〉 =
∑

v0∈C

∑

v∈Cv0

〈{jc}, C|Vv|{jc}, C〉 .

(39)
On the uniform hypercubic lattice states |j, C〉, however,
the sum over center vertices v0 is not necessary due to
translation invariance and because of the local volumes
being all equal, 〈j, C|Vv|j, C〉 ∝ ld(j) for all v ∈ C∞.

Similarly, on |j, C〉 the condition (38) simplifies to

〈j, C|L̂vv0 |j, C〉 ∝ l(j)Nvv0 (40)

where now Nvv0 is the minimal number of edges in a path
from v to v0.

Therefore, the evaluation of V (R) on |j, C〉 can be ex-
pressed in terms of V C∞(R) as

〈j, C|V (R)|j, C〉 ∝ ld(j)V C∞ [R/l(j)]

∝ ld(j)

d−1∏

n=0

[R/l(j) + n] . (41)

As for the spectral dimension (14), this gives a nontrivial
expectation value for generic superposition states:

〈V (R)〉V0,jmin,jmax
∝

jmax∑

j=jmin

|aj |2ld(j)
d−1∏

n=0

[R/l(j) + n] .

(42)
Nevertheless, numerical calculations on the same classes
of states as investigated above for the spectral dimension
show qualitatively similar results to the Hausdorff dimen-

sion dj,C∞

h on single states |j, C〉 (Fig. 6). That is, in all
instances there are plateaux as in the pure lattice case
(35). Only the scale and steepness of the flow between
these plateaux is modified. For example, for power-law
coefficients (16) the fall-off is much steeper and occurs,
as α increases, closer to the scale as in the case of the
single state |jmin, C∞〉.

IV. DISCUSSION

Our calculations have shown that a flow in the spec-
tral dimension occurs in quantum gravity, at least for a
specific class of superpositions of regular (both from the
combinatorial perspective and for what concerns the as-
signment of additional quantum labels) quantum states
of geometry. These quantum states, although restricted
by the regularity assumption, are exactly of the type
appearing in the related quantum-gravity formalisms of

0.01 1 100 104 106
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R

dH

FIG. 6. Hausdorff dimension dh of a superposition with α =
1, 2 (solid and dash-dotted curve) in d = 3 summing up to
jmax = 105, compared to dh on single states |1, C∞〉 (dashed
curve) and |jmax, C∞〉 (dotted curve).

loop quantum gravity, spin-foam models and group field
theory, but can also simply be seen as quantum states of
lattice quantum gravity, in the spirit of quantum Regge
calculus.

On the other hand, we see no dimensional flow due
to quantum effects in the Hausdorff and walk dimension.
This conclusion is based on the interpretation, which we
maintained throughout the paper, that the flow of a ge-
ometric indicator is an artefact of discretization effects
whenever it approximately coincides with the flow for
lattices. We will presently come back to this point.

Let us comment a bit further about our results from
the point of view of loop quantum gravity.

Under the assumptions made for the action of the
quantum Laplacian on the states (a very simple scaling
behaviour), an important example of states of the type we
have studied are kinematical states in LQG where length
(d + 1 = 3) or area and volume operators (d + 1 = 4)
are diagonalized by spin-network states. In this sense,
we have identified a class of LQG states with a dimen-
sional flow. More precisely, for any 0 < α < d there is a
class of states in the kinematical Hilbert space with a di-
mensional flow from the spatial topological dimension d
in the IR to a smaller value α in the UV. The UV value
depends on the exact superposition considered but not
on the topological dimension.

This result is in contrast with earlier arguments in
LQG [25]. There, the author argues for evidence of di-
mensional flow for individual spin-network states (thus,
for a given graph or complex), and the same result is
claimed in [41, 42] for simple spin-network states with
additional weights given by a 1-vertex spin foam (thus,
not yet in a truly dynamical context). The starting point
in [25] is an assumption about the scaling of the expec-
tation value of the Laplacian, very similar to (10). The
essential part of the argument is then the further assump-
tion that the momenta p of the scalar field defining the
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spectral dimension are directly related to a length scale
set by the quantum numbers as p ∝ 1/

√
j. The scaling of

the Laplacian in j is then translated in a modified disper-
sion relation in p and the result depends on the precise
form of the spectrum (2) with c = 0.

In our case, no further assumption beyond (10) is
made. Calculations are based on the momenta of the
scalar field on the lattice-based geometry, that is, the
spectrum of the Laplacian, but the spectral dimension
is computed directly as a quantum geometric observable
evaluated on quantum states. As recalled already above,
in a previous work using this more direct approach [26]
we have found no effects on the spectral dimension for
individual quantum-geometry states of LQG based on
given graphs or complexes. On the other hand, the gen-
uine dimensional flow that we have encountered here for
the states |V0, jmin, jmax〉 is crucially related to the super-
position of spin-network states also with respect to the
underlying combinatorial structures, and it is not solely
the result of the discreteness of geometric spectra. In this
deeper sense, dimensional flow can indeed be seen as an
effect of quantum discreteness of geometry.

We are also in a position to characterize the change
of dimensionality more precisely than a generic “flow” of
geometry. Quite often in the literature of quantum grav-
ity, dimensional flow has been advertised as spacetime
being “fractal.” However, strictly speaking not all sets
with varying dimensionality are fractals. Although no
unique operational and rigorous definition of fractal ex-
ists, one property all fractals generally possess is a special
relation among the spectral dimension ds, the Hausdorff
dimension dh and the walk dimension dw:

dh =
dw
2
ds. (43)

On the hypercubic lattice superpositions that we have
considered, dw = 2 and the above relation simplifies to
dh = ds. This is trivially obtained in the IR regime,
where both dimensions take the value of the topological
dimension. In the UV regime above the lattice scale (re-
call that below such scale any scaling effect is arguably
unphysical), the Hausdorff dimension takes the classical

value dC∞

h ≃ 1. Thus, (43) is only obeyed in the case
of a scaling α = 1 such that also the spectral dimension
takes this value. Only then can one call the quantum su-
perposition |V0, jmin, jmax〉 an effective one-dimensional
fractal. This is indeed a perfectly allowed choice of quan-
tum states and we can conclude that we have identified a
particular class of quantum geometries that corresponds,
by all appearances, to a fractal quantum space.

However, we should mention a caveat here. For these
geometries to be safely regarded as fractals, the origin
of the dimensional flow should be the same in the left-
and right-hand side of Eq. (43), which may not be the
case for us: the left-hand side flows due to discreteness
effects, while the right-hand side flows due to physical

quantum effects. This situation might suggest either that
we should not place particular significance in the fulfill-
ment of Eq. (43) or that our discrimination between dis-
creteness artefacts and physical effects is somewhat too
strong and should be revised. We no dot attempt to solve
this mild conceptual issue here, which is harmless for our
main results. Still, it will deserve further attention.

Interestingly, the geometry with α = 1 is also the only
one where the spectral dimension of spacetime reaches
the value ds

spacetime ≃ 2 so often commented upon in
the literature of quantum gravity. Its appearance across
independent approaches such as causal dynamical trian-
gulations, asymptotic safety, Hořava–Lifshitz gravity and
others [10–12] triggered the suspicion that this “magic
number” was a universal characteristic of frameworks
with good ultraviolet properties or, in other words, that
a two-dimensional limit of the spectral dimension was
tightly related to the renormalizability or finiteness of
quantum gravity. By now, it has become clear that this is
not the case in general, as there exist counterexamples of
field theories with good renormalization properties with
ds

spacetime 6= 2 in the UV [43], as well as of theories whose
renormalization properties are not at all improved by di-
mensional flow [44]. Here we provide another instance
pointing towards the same conclusion: the value of ds is
governed by a choice of states which, by itself, is not (suf-
ficiently) connected with the dynamical UV properties of
the underlying full theory.

Conclusions

We have investigated the effective structure of quan-
tum superpositions of regular (hypercubic and homoge-
neous in label assignment) states of quantum geometry.

It is possible to identify states with a flow of the spec-
tral dimension to a dimension α in the UV, provided the
superposition includes fine enough combinatorial struc-
tures and a large enough number of (kinematical) degrees
of freedom of quantum geometry, and a particular set of
expansion coefficients (16) related to α (17).

For the Hausdorff and walk dimension, no physical
quantum effects are observed, although discreteness ef-
fects do alter the value of the Hausdorff dimension across
scales. A fractal structure in the strict sense, i.e., where
(43) relating the three dimensions is fulfilled also in the
UV, is realized in the case α = 1.

In particular, these results provide evidence for a di-
mensional flow in a certain class of kinematical LQG
states, also available in the spin-foam and group field
theory context.

The results at hand can be further generalized in vari-
ous directions as well as refined within individual theories
of quantum gravity. In parallel, it becomes feasible to ex-
plore the phenomenological consequences of the discov-
ered dimensional flow and (when applicable) fractal na-
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ture of quantum space as a direct effect of the full theory.
This possibility is especially interesting in a quantum cos-

mological context, where a change of dimensionality can
bear its imprint in the early stage of cosmic evolution
[45–47].
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