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We study the spatial properties of the modes responsible for the Hawking effect in the presence
of high frequency dispersion. Near the horizon, the modes are regularized on a small distance which
only depends on the surface gravity and the scale of dispersion. The regularization explains why the
spectrum is hardly affected by dispersion as long as the background geometry does not significantly
vary over this composite length. For relevant frequencies, the regularization differs from the usual
WKB resolution of wave singularity near a turning point. The latter only applies when the frequency
is so high that the Hawking effect is negligible.

INTRODUCTION

For relativistic fields, the stationary modes φω respon-
sible for the Hawking effect posses a singular behavior on
the horizon. Namely, for |x| → 0, one finds

φω ∝ |x|iω/κ, (1)

where ω/κ is their Killing frequency in the unit of the sur-
face gravity, and where x is the proper distance from the
horizon measured in a freely falling frame. As Eq. (1) is
found irrespectively of the mass and the orbital momen-
tum, we can and shall work with massless 1 + 1 dimen-
sional fields. The stationary geometry shall be described
by the line element

ds2 = dt2 − (dx− v(x)dt)2, (2)

where t is the proper time along the freely falling orbits
dx = vdt, with v < 0. The horizon is located at v2 = 1,
and in its vicinity, one has v = −1 + κx. The interior of
the black hole, |v| > 1, is thus x < 0.

As understood by Unruh [1], the singular behavior of
Eq. (1) unambiguously fixes the temperature of the emit-
ted radiation. Indeed, the regularity of the state across
the horizon fixes the ratio of the coefficients weighing φω
on either side of x = 0. This in turn fixes the temper-
ature to be the Hawking one [2]: TH = κ/2π in units
where c = ~ = kB = 1. Notice finally that the regularity
across the horizon is efficiently implemented by working
in Fourier space with modes that contain only positive
wave vector p = −i∂x [3, 4]. Importantly, when includ-
ing short distance dispersion [5], it is still convenient to
work in the p-representation [6], as we shall see below.

From Eq. (1) one sees that the freely falling frequency

Ω = ω − vp ∼ p ∼ ω

κx
, (3)

increases without bound as x → 0. This blueshift con-
nects the infrared physics of the low wave number p ∼ κ,

to deep ultraviolet physics where the assumption of free
field in classical background might break down. This
raises the transplanckian question [7, 8], namely to what
extent the predictions derived from Eq. (1) actually de-
pends on the short distance behavior of the theory.

In analog models [5, 9, 10], this question can be ad-
dressed explicitly since for short wavelengths, one leaves
the hydrodynamical (effectively relativistic) regime for
some dispersive regime. To characterize the first devia-
tions, we shall consider

Ω2 = F 2(p) = p2(1− p2/Λ2). (4)

The minus sign means that the dispersion is subluminal
(the superluminal case can be treated in a similar way,
see Sec.III.E in [11]). Λ defines the momentum scale
above which Lorentz invariance ceases to be valid. Its
value is determined by the microscopic structure of the
medium. Since [5], attention has been mainly given to
the modifications of the asymptotic spectrum due to high
momentum dispersion [6, 11–16]. In this paper instead,
we consider the near horizon properties of the dispersive
modes. As could have been expected, short distance dis-
persion regularizes the logarithmic divergence of Eq. (1),
see in particular [17]. Depending on the value of ω/κ,
we found that the dispersive modes follow two very dis-
tinct behaviors. Nevertheless both involve the same ω-
independent composite length scale. Interestingly, this
length scale was previously found in numerical analysis
of dispersive spectra [14, 15]. Our treatment therefore
provides a rational explanation for these numerical ob-
servations.

NEAR HORIZON BEHAVIOR

We consider a massless field propagating in the geom-
etry of Eq. (2) and obeying the dispersion relation (4).
At fixed ω, the mode φω obeys [5, 6]

[(ω + i∂xv)(ω + iv∂x)− F 2(−i∂x)]φω = 0. (5)
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Close to the horizon, one has v ∼ −1 + κx. This ap-
proximation is valid only for a finite range of x, that
we call xlin. In familiar black hole geometries (such as
Schwarzschild), xlin is of the order of 1/κ. Yet, in some
media, it might be much smaller, and this significantly
affects the spectrum [16]. xlin is the first relevant length
of the problem.

The first manifestations of short distance dispersion
can be seen in geometrical optics, at the level of the char-
acteristics of Eq. (5), solutions of (ω− vp)2 = F 2(p). In-
terestingly, the equation for the wave number, dp/dt =
−(∂x/∂ω)−1, is unaffected by dispersion in the near hori-
zon region, and its solution is still p = p0e

−κt [9]. Instead,
the solutions of dx/dt = (∂p/∂ω)−1, critically depend on
F . When considered backwards in time, the character-
istics are swept away from the horizon at short wave-
lengths, see Fig 1. Depending on the sign of Ω, two
types of trajectories exist. For ω and Ω positive, the
characteristic first approaches the horizon with x > 0
as p increases. Then at the value ptp = ω1/3Λ2/3, it
bounces back away from the horizon. The locus of the
turning point is

xtp(ω) =
3ω

2κ

1

ptp
=

3

2κ

(ω
Λ

)2/3
. (6)

This expression is valid if xtp lies within the near horizon
region, i.e., xtp � xlin. Eq. (6) gives the first composite
length of the problem. For ω > 0 but Ω < 0, one obtains
the trajectory followed by the negative energy “partner”.
It focuses on the horizon from the left, crosses the hori-
zon, and follows the Ω > 0 characteristic.

We just saw that the description of the characteristics
is much simpler in p-space than in x-space. When aban-
doning geometrical optics, this is again true. In the near
horizon region, using v̂ = −1 + iκ∂p, one finds that the
solution of Eq. (5) factorizes in a peculiar form [6]

φ̃ω(p) =
p−i

ω
κ−1√
2π

× χ(p)e−i
p
κ . (7)

The first factor is the relativistic mode. Indeed the
Fourier transform of Eq. (1) gives |p|−iω/κ−1. The func-
tion χ obeys a ω-independent second order equation

− κ2p2∂2pχ = F 2(p)χ. (8)

These simplifications are directly related to an extra
de Sitter symmetry1. To solve Eq. (8), we use the

1 In fact, when considered globally, v = −1 + κx corresponds to
de Sitter space. This geometry possesses extra symmetries with
respect to a stationary black hole metric. Importantly, one of
them is compatible with the existence of preferred (freely falling)
frame [18]. Therefore, de Sitter endowed with such a frame offers
a simple specific dispersive model. It allows to explicitly compute
the modes and the spectrum [18].

xtp

Ω < 0 Ω > 0

H

t x

Figure 1. Space-time structure of characteristics in the near
horizon region, with positive (right side) and negative (left)
freely falling frequency Ω = ω − vp. At large times, both
follow some null outgoing geodesic, dx = (1+v)dt, see Eq. (2).
At early times, both are dragged away with the flow v < 0
(towards the past) when effects of the subluminal dispersion
of Eq. (4) dominate in F . As a result, the characteristic with
positive has a turning point at xtp(ω) of Eq. (6).

WKB approximation (in p-space) because it is valid when
κ/Λ� 1, which we assume to be satisfied. Moreover, we
restrict ourselves to ω/Λ� 1 because it allows us to work
in the weak dispersive regime, where F (p) ∼ p−p3/(2Λ2)
offers a good approximation. Doing so, we obtain

φ̃ω(p) =
p−i

ω
κ√

2πpF (p)
exp

(
−i p3

6Λ2κ

)
. (9)

From the exponential factor, we see that the stationary
modes involve a second composite length,

dbr =
1

(2κ)1/3Λ2/3
. (10)

As we shall see below, dbr plays a prevalent role with
respect to the ω-dependent length of Eq. (6).

INVERSE FOURIER ANALYSIS

To get the spatial properties of the mode, one should
compute the inverse Fourier transform of Eq. (9). One
then notices that the various solutions of Eq. (5) are re-
covered by adopting different contours C in the complex
p plane [6, 11–13, 17]

φCω(x) =

∫
C

exp

[
i

(
q
x

dbr
− ω

κ
ln(q)− 1

3
q3
)]

dq

2πq
. (11)

To get this expression, we introduced the adimensiona-
lyzed wave vector q

.
= pdbr. Irrespectively of the contour
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C and the value of ω, we see that φω(x) only depends
on the adimensional distance z

.
= x/dbr. It should be

pointed out that to get this result, we simplified the in-
tegrand of Eq. (11) by replacing F (p) by p in the ampli-
tude of Eq. (9). This is legitimate in the weak dispersive
regime. Indeed, the prefactor modulates φω on scales
|x| & 1/κ. Hence it is irrelevant for our near horizon
analysis which is limited to |z| = O(1), or |x| ∼ dbr. For
the expressions of the modulation, we refer to Sec.II.A
of [11].

When choosing the contour C, one should pay attention
to the location of the branch cut of ln(q) which contains
the only dependence in ω/κ. Here we shall only analyze
the mode that decays inside the horizon. To obtain it,
one must integrate on the contour defined in Fig.2. The
mode so defined is proportional to the globally defined
positive norm outgoing mode φoutω . 2 Using the method

C1 C2

C3

Figure 2. Contour of integration of Eq. (11) in the complex
p-plane. C1 and C2 are evaluated by a saddle point approx-
imation (±psaddle are indicated by black dots) and gives the
outgoing branches, while C3 is obtained by setting Λ → ∞,
and gives the incoming branch (see Sec.II.A of [11] for a de-
tailed derivation).

sketched in Fig.2, for x > 0 and z = x/dbr � 1, we
obtain

φCω(x) ∼ e−iπ4 e
i 23 z

3/2

e−i
ω
2κ ln z

√
4πz3/2

− βω
αω

ei
π
4
e−i

2
3 z

3/2

e−i
ω
2κ ln z

√
4πz3/2

+
1

αω
zi
ω
κ

√
κ

2πω
.

(12)

2 It is interesting to notice that this mode was studied in the recent
experiments based on surface waves in flume [19, 20]. This means
that our forthcoming equations contain predictions that can be
experimentally tested in a near future.

αω and βω are the Bogoliubov coefficients encoding the
Hawking effect. Their ratio here obeys

βω = e−
πω
κ αω, (13)

as in the relativistic case. Thus, the temperature is still
given by the standard expression TH = κ/2π. On the
other side of the horizon (x < 0), the mode decays as

φCω(x) ∼ ei
π
2 e−

ωπ
2κ
e−

2
3 |z|

3/2

e−i
ω
2κ ln |z|√

4π|z|3/2
. (14)

In this we recover that the corresponding characteristic
with ω > 0 bounces off without crossing the horizon, see
Fig. 1.

It should now be stressed that these results are valid
for |x| large enough. More precisely, they require

|x| � dbr, (15a)

|x| � xtp. (15b)

However, they also require |x| . xlin, since v ∼ −1 + κx
has been used. When Λ/κ is large enough, the spatial
range satisfying these three inequalities is quite large.
For frequencies ω/κ � 1, one has xtp � dbr. Hence
Eq. (15a) implies Eq. (15b). For ω � κ, one has in-
stead xtp � dbr. However, the Hawking process is then
exponentially suppressed. Therefore, (15a) is the most
relevant condition to accurately obtain the connection
formulae.

Further away from the horizon, the 4 modes are well
approximated by a WKB approximation (in x-space) un-
der the condition, see App.A of [11],∣∣∣∣∂x ln[F (pω)vg(pω)]

pω

∣∣∣∣� 1. (16)

Far from the horizon, this gives |∂xv/ω| � 1 for the
low momentum mode. For high momentum, one gets
|∂xv/Λ| � 1 which is very well satisfied since κ/Λ � 1.
As a result, short wavelength modes freely propagate.
Therefore, the relativistic limit Λ→∞ in Eq. (5) can be
taken safely, and the residual scattering can be obtained
using the relativistic equation.

We thus conclude that the total S-matrix factorizes

S =

1 0 0
0 αint∗

ω βint∗
ω

0 βint
ω αint

ω


︸ ︷︷ ︸

inside scattering

·

Tω 0 Rω
0 1 0

R̃ω 0 T̃ω


︸ ︷︷ ︸
outside scattering

·

αω βω 0

β̃ω α̃ω 0
0 0 1


︸ ︷︷ ︸

near horizon scattering

.

(17)
The two matrices on the left describe the late time, low
momentum, scatterings that can be evaluated using the
relativistic equation. The first one describes the mixing
of the spectator infalling mode with the partner mode. It
is an element of U(1, 1) since these have opposite norms.
The second matrix encodes the elastic mode mixing in
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the outside region and gives the so-called greybody fac-
tors [21]. The third matrix on the right describes the
early, high momentum, scattering. In the weak disper-
sive regime, Eq. (12) fixes the norm of the scattering
coefficients |β̃ω/α̃ω|2 = |βω/αω|2 = e−2πω/κ.

However, because of Eq. (15a), Eq. (12) says nothing
about the mode behavior in a close vicinity of the hori-
zon. Performing exactly the integral in Eq. (11), as done
in [17], one finds that this behavior is given in terms of
sums of hypergeometric functions 1F2. Because the ex-
act expressions are cumbersome 3, in what follows, we
separately analyze Eq. (11) for low and high frequency.
Two distinct regimes clearly appear.

Small frequency regime ω . TH

In the limit ω → 0, we get

φC0 (x) =

∫
C

exp

(
iqx

dbr
− iq3

3

)
dq

2πq
. (18)

For the contour of Fig.2, Eq. (18) is proportional the
primitive integral of the Airy function Ai(z) that vanishes
for x→ −∞, see [22]. Calling it PAi(z), we get

φC0 (x) = iPAi

(
− x

dbr

)
. (19)

This result is consistent with Eq. (12). Indeed, for ω �
TH , using βω ∼ αω, Eq. (12) becomes

φC0 (x) = i
sin[2/3(x/dbr)

3/2 − π/4]√
π(x/dbr)3/2

+ i, (20)

which is the large z approximation of Eq. (19). In white
hole flows, this mode gives the spatial profile of the un-
dulation studied in [23, 24], and observed in [25].

For non-zero ω . TH , the first effect implied
by Eq. (12) is a modulation of the profile (20) by
exp(iω/2κ ln[x/dbr]). The location of the first node is
given by xzero ∼ dbre

4πκ/ω. For ω ∼ TH , we thus have
xzero/dbr ∼ e8π

2

. Hence, this modulation possesses a
wavelength much larger than dbr, possibly even larger
than the near horizon size xlin. We conclude that it is a
subdominant effect, barely visible as long as ω . TH . As
a result, the first significant effect comes from the βω/αω
factor. To study it, we decompose the mode in its real
and imaginary parts

φCω(x) = i
1 + e−

πω
κ

2
ϕω(x) +

1− e−πωκ
2

ψω (x) , (21)

3 Note also that the integrand of Eq. (11) in [17] differs from ours
in several respects.

where ϕω and ψω are real functions. To lowest order
in ω/κ, ϕω reduces to Eq. (19). Similarly, ψω is also
independent of ω. This is neatly confirmed in Fig.3. The
spatial properties of ψω→0 follow from the fact that ψ0

obeys −∂3zψ0 − z∂zψ0 = φC0 (z). Its spatial behavior is
thus similar to that of Airy functions.

In conclusion, Eqs. (19), (21), and Fig. 3 explicitly
give the near horizon properties of dispersive modes for
several dbr lengths, and for all frequencies in the domain
0 6 ω . 3TH , which is the most relevant domain for the
Hawking effect. This is our principal result.

Ω = 0.1TH

Ω = TH

Ω = 3TH

-2 2 4 6 8 10

-2

-1

1

2

3

4

5

Figure 3. Plot of −∂xψω(zdbr) of Eq. (21) as a function of z,
i.e. we work in units of dbr, for Λ/κ = 20 and with four values
of ω. For numerical reasons, we plotted the derivative instead
of ψω itself. Only the curve for ω = 3TH (dashed line) can be
distinguished from the others. This establishes that Eq. (21)
offers an accurate description of the near horizon profile for
several dbr lengths, and for ω . 3TH .

Large frequency regime ω � TH

To complete the picture, it is worth examining what
happens at large frequencies. When ω is larger than
TH , the βω-term in Eq. (12) is exponentially small. The
anomalous mode mixing is thus progressively turned off,
and one is left with a total reflection. To obtain the mode
near the turning point, we now follow the standard pro-
cedure. It consists in expanding the phase of the inte-
grand of Eq. (11), i.e., W (z, q) = zq − ω

κ ln(q) − 1
3q

3, to
third order in ∆q = q− qtp, where qtp(ω) = dbrptp is the
adimentionalized momentum at the turning point. Per-
forming the q-integration, by construction, one obtains
an Airy function:

φCω(x) =
eiθtp

31/3qtp
eizqtpAi

(
−z − ztp

31/3

)
, (22)

where ztp = xtp/dbr, see Eq. (6), and where θtp =
−ω/(3κ) ln(ω/2κ) − ω/(6κ). Eq. (22) is valid as long as
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|∆q| �
∣∣∂3qW/∂4qW

∣∣. Moreover, the range of ∆q should
be at least of order 1 since one must integrate on several
oscillations of eiq

3

to accurately get an Airy function.
Therefore, the inequality becomes∣∣∣∣∣∂4qW∂3qW

∣∣∣∣∣ ∼
∣∣∣∣ 1

qtp

∣∣∣∣ ∼ ∣∣∣∣ 1

dbrptp

∣∣∣∣ ∼ ∣∣∣∣2κω
∣∣∣∣1/3 � 1. (23)

The inequality |∆q| �
∣∣ 2κ
ω

∣∣−1/3 also restricts the va-
lidity range of z of Eq. (22). Indeed, for ∆z & 1,
the values of q that mainly contributes to the integral
(11) are around the saddle point, which increases as
∆z1/2 = |z − ztp|1/2. It implies that φω(x) is cor-
rectly approximated by Eq. (22) only for ∆z � q2tp, i.e.,
|x−xtp| � xtp. Yet, such interval can contain several dbr
lengths since we work at large ω/κ. This is confirmed in
Fig. 4. As can be seen, Eq. (22) is valid for larger ranges
of z = x/dbr when ω/κ increases.

Ω = 100 Κ
Ω = 10 Κ
Ω = Κ
Ai

-4 -2 2 4 6

-1.0

-0.5

0.5

1.0

1.5

Figure 4. Plot of e−izqtp × φCω(xtp + zdbr) as a function of z,
for Λ/κ = 20, various values of ω, and also compared with the

Airy function Ai(−z/31/3). The different curves are normal-
ized to 1 at the turning point ztp(ω), which is here set at z = 0.
When ω increases, the matching with the Airy function gets
better, and for a larger range of z. By numerically comparing
the values at the first peak, we found that the error decreases
as ∼ (κ/ω)γ with the exponent 1/3.25 . γ . 1/3.15, in agree-
ment with Eq. (23) to a good accuracy. Notice that since we
factorized eizqtp , Eq. (22) is valid for many short wave lengths
oscillations controlled by qtp.

We also point out that Eq. (22) is rapidly modulated by
a high wave number ptp, and that the Airy function gives
the slowly varying envelope [26]. This scale separation
follows from Eq. (23) which implies ptp � 1/dbr. Hence,
for ω � TH , φω and ∂xφω are both described by Airy
functions. This contrasts with the low frequency regime
where there is no rapid modulation, and where only ∂xφω
is described by the Airy function Ai. At low ω/κ, the
profile of φω has thus a phase shift of π/2 with respect
to that of the Ai function. This phase shift could be
experimentally validated.

In conclusion of this Section, it should be emphasized
that Eq. (23) implies that Eq. (22) offers a good ap-
proximation only when the Hawking effect is negligible,
βω � 1. This can understood by noticing that we inte-
grated only over positive values of p centered around ptp.
The contribution of negative p, which is responsible for
βω 6= 0, has thus been neglected. As a byproduct, the
notion of “ω-dependent group velocity horizon” (i.e., the
turning point of Eq. (6)) is not relevant for the Hawking
effect. Indeed, xtp can be distinguished from the Killing
horizon at x = 0 only if they are distant by several broad-
ening lengths dbr, i.e.

xtp
dbr
∼
(ω
κ

)2/3
� 1, (24)

which is satisfied only when the Hawking radiation is
exponentially suppressed.

SMOOTHING OUT SHORT-DISTANCE DETAILS

When computing the corrections to the Hawking spec-
trum due to dispersion, it is a priori tempting to take
into account the ω-dependence of Eq. (6). In partic-
ular, to optimize the calculation of the spectrum, one
could have used the local value of the gradient [27, 28]
κtp(ω) = ∂xv(xtp(ω)) in the place of κhor evaluated at
the Killing horizon. Yet, no such dependence was found
in numerical analysis of the spectrum [14, 15].

This lack of dependence is corroborated by the above
study of near horizon modes which indicates that the best
fit for the effective surface gravity should be obtained by
averaging ∂xv over a broadening length. This is because
the finite resolution of the modes will erase the details
of the background on scales smaller than dbr. In this
we recover what was numerically observed in [15]. To
clarify this, we consider a background profile separated
in two contributions v(x) = v0(x) + δv(x), where v0 is
smooth enough so that the approximations used above
work, and where δv is a small amplitude perturbation.
If this amplitude is small enough, adapting the distorted
wave Born approximation [29] to anomalous scattering,
we can evaluate the induced correction of the Bogoliubov
coefficient. This gives

δβω = 2iπ

∫ [
φout−ω∂x(δv πin

ω ) + πout
−ωδv ∂xφ

in
ω

]
dx, (25)

where π(x) is the conjugate momentum of φ given by
π = (∂t + v∂x)φ, and where φinω (φoutω ) designates the
incoming (outgoing) positive norm mode of frequency ω
propagating in the unperturbed flow. From this expres-
sion, we clearly see that if the spatial scale of variation of
δv is much shorter than dbr, the integral is automatically
smoothed out. As a result, δβω will essentially vanish.
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CONCLUSION

Our main conclusion is that in dispersive theories,
event horizons effectively acquire a finite spatial exten-
sion given by dbr of Eq. (10). We reached this by ana-
lyzing the spatial properties of the stationary modes in
the near horizon region, and by showing that they are
smoothed out on that scale, irrespectively of their fre-
quency. These properties explain that, when the velocity
gradient (surface gravity) does not significantly vary over
that scale, Hawking radiation is recovered and the S-
matrix factorizes according to Eq. (17). In addition, we
established that the usual WKB resolution near a turn-
ing point becomes valid for high frequencies, precisely in
the regime where the Hawking process is negligible.
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