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7. Supplement to “Multiscale change-point inference”

In this supplement we collect the proofs of the main assertions in the paper together with

some auxiliary lemmas. We further give more general versions of some results in the paper.

7.1. Large deviation and power estimates. We begin by recalling some large deviation

results for exponential families. By D(θ||θ̃) we will denote the Kullback-Leibler divergence

of Fθ and Fθ̃, i.e.

D(θ||θ̃) =

∫
R
fθ(x) log

fθ(x)

fθ̃(x)
dν(x) = ψ(θ̃)− ψ(θ)− (θ̃ − θ)m(θ). (43)

With the techniques used in (?, Thm.7.1) it is readily seen that for a sequence of indepen-

dent and Fθ-distributed r.v. Y1, . . . , Yn one has that

P
(
Y −m(θ) ≥ η

)
≤ en(D(θ||θ+ε)−ηε) (44)

for all ε > 0 such that θ + ε ∈ Θ. The following restatement of inequality (44) turns out

to be very useful.

Lemma 7.1. Let Y = (Y1, . . . , Yn) be independent random variables such that Yi ∼ Fθ

and assume that δ > 0 is such that θ + δ ∈ Θ. Then,

P(m−1(Y ) ≥ θ + δ) ≤ e−nD(θ+δ||θ).

Proof. First observe that according to (44)

P(m−1(Y ) ≥ θ + δ) = P(Y −m(θ) ≥ m(θ + δ)−m(θ))

≤ exp(n(D(θ||θ + δ)− (m(θ + δ)−m(θ))δ)).

Now it follows from (43) that

D(θ||θ + δ)− (m(θ + δ)−m(θ))δ = ψ(θ + δ)− ψ(θ)−m(θ + δ)δ

= −(ψ(θ)− ψ(θ + δ)− (θ − (θ + δ))m(θ + δ))

= −D(θ + δ||θ).

�

From (44) we further derive a basic power estimate for the likelihood ratio statistic (4).

Lemma 7.2. Let Y = (Y1, . . . , Yn) be independent random variables such that Yi ∼ Fθ

and assume that δ ∈ R is such that θ + δ ∈ Θ. Then,

P (T n1 (Y, θ + δ) ≥ q) ≥ 1− exp

(
n inf
ε∈[0,δ]

[
D(θ||θ + ε)− ε

δ
D(θ||θ + δ) +

εq

nδ

])
.
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Proof. For

J(Y , θ) = φ(Y )−
(
Y θ − ψ(θ)

)
we obtain

J(Y , θ + δ) = J(Y , θ)− δY − ψ(θ) + ψ(θ + δ). (45)

Thus, we have

Π(q, n, δ) := P
(
T n1 (Y, θ + δ) ≥ q

)
= P

(
J(Y , θ + δ) ≥ q

n

)
= P

(
J(Y , θ)− δY ≥ q

n
− ψ(θ + δ) + ψ(θ)

)
≥ P

(
−δY ≥ q

n
− ψ(θ + δ) + ψ(θ)

)
,

where in the last inequality holds since J(x, θ) ≥ 0 for all x ∈ R and θ ∈ Θ. Now, let us

first assume that δ > 0. Then by (43) we find

P
(
−δY ≥ q

n
− ψ(θ + δ) + ψ(θ)

)
= P

(
Y −m(θ) ≤ − q

δn
+
D(θ||θ + δ)

δ

)
. (46)

Combining this with the large deviation inequality (44) yields

Π(q, n, δ) ≥ 1− exp
(
n(D(θ||θ + ε)− ε

δ
D(θ||θ + δ)) +

εq

δ

)
,

for all 0 ≤ ε ≤ δ. The case when δ < 0 follows analogously. �

For Gaussian observations the estimate can be made explicit.

Lemma 7.3. Let Y1, . . . , Yn be i.i.d. random variables such that Y1 ∼ N (0, 1) and let

x+ = max(0, x) for x ∈ R. Then,

P (T n1 (Y, δ) ≥ q) ≥ 1− exp

(
−1

8

(√
nδ −

√
2q
)2

+

)
. (47)

Proof. Since D(θ||θ + ε) = ε2/2 we find that

inf
ε∈[0,δ]

n
[
D(θ||θ + ε)− ε

δ
D(θ||θ + δ) +

εq

nδ

]
= −1

2

(
δ
√
n

2
− q

δ
√
n

)2

≤ −1

8

(√
nδ −

√
2q
)2

,

if
√
nδ ≥

√
2q. �

7.2. Proof of Theorem 2.1. Throughout this section we will assume that Y = (Y1, . . . , Yn)

are independent and identically distributed random variables with Y1 ∼ Fθ and θ ∈ Θ.

Without loss of generality we will assume that m(θ) = ψ̇(θ) = 0 and v(θ) = ψ̈(θ) = 1.

Moreover, assume that (cn)n∈N satisfies (13) and introduce I(cn) = {(i, j) : j−i+1 ≥ cnn}.
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We start with some approximation results for the extreme value statistic of the partial sums

Y
j

i .

Lemma 7.4. There exist i.i.d standard normally distributed r.v. Z1, . . . , Zn on the same

probability space as Y1, . . . , Yn such that

lim
n→∞

√
log n max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣∣∣∣Y j

i

∣∣− ∣∣Zj

i

∣∣∣∣∣) = 0 a.s.

Proof. We define the partial sums SY0 = 0 and SYl = Y1 + . . . + Yl and observe that

(j−i+1)
∣∣Y j

i

∣∣ =
∣∣SYj − SYi−1

∣∣. Analogously we define SZl . Now let (i, j) such that j−i+1 ≥
ncn and observe that∣∣∣∣∣

∣∣SYj − SYi−1

∣∣
√
j − i+ 1

−
∣∣SZj − SZi−1

∣∣
√
j − i+ 1

∣∣∣∣∣ ≤
∣∣SYj − SZj ∣∣√

ncn
+

∣∣SYi − SZi ∣∣√
ncn

≤ 2 max
0≤l≤n

∣∣SYl − SZl ∣∣√
ncn

.

It follows from the KMT inequality (?, Thm. 1) and (13) that√
log n max

0≤l≤n

∣∣SYl − SZl ∣∣√
ncn

= o(1) a.s.

�

Lemma 7.5.

max
(i,j)∈I(cn)

∣∣∣∣√2T ji (Y, θ)−
√
j − i+ 1

∣∣Y j

i

∣∣∣∣∣∣ = oP(1)

Proof. Set ξ = m−1 and note that ξ is strictly increasing. Since Θ is open, there exists

for each given δ′ > 0 a δ > 0 such that ξ(Bδ(0)) ⊂ Bδ′(θ) ⊂ Θ. Next define the random

variable

Ln = max
1≤i<j≤n

∣∣∣Y j

i

∣∣∣√j − i+ 1.

Then it follows from Shao’s Theorem (?) that Ln/
√

log n converges a.s. to some finite

constant and we hence find that

max
(i,j)∈I(cn)

∣∣∣Y j

i

∣∣∣ ≤√ log n

ncn

Ln√
log n

→ 0 a.s.

Thus, for each ε > 0 there exists an index n0 = n0(ε) ∈ N such that for all n ≥ n0

P

(
max

(i,j)∈I(cn)

∣∣∣Y j

i

∣∣∣ ≥ δ

)
≤ ε.

In other words, ξ(Y
j

i ) ∈ Bδ(θ) uniformly over I(cn) with probability not less than 1 − ε.
Consequently, φ(Y

j

i ) = maxθ∈Θ θY
j

i − ψ(θ) = ξ(Y
j

i )Y
j

i − ψ(ξ(Y
j

i )) which in turn implies

that

J(Y
j

i , θ) = φ(Y
j

i )− θY
j

i + ψ(θ) = (ξ(Y
j

i )− θ)Y
j

i − (ψ(ξ(Y
j

i ))− ψ(θ)).
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Taylor expansion of ψ around θ gives (recall that ψ̇(θ) = 0 and ψ̈(θ) = 1)

ψ(ξ(Y
j

i ))− ψ(θ) =
1

2
(ξ(Y

j

i )− θ)2 +
1

6

...
ψ(θ̃)(ξ(Y

j

i )− θ)3

for some θ̃ ∈ Bε(θ). This implies

J(Y
j

i , θ) = (ξ(Y
j

i )− θ)(Y
j

i )−
1

2
(ξ(Y

j

i )− θ)2 − 1

6

...
ψ(θ̃)(ξ(Y

j

i )− θ)3.

Again, Taylor expansion of ξ = m−1 around 0 shows

ξ(Y
j

i )− θ = Y
j

i −
...
ψ(θ̃)

2(v(θ̃))2
(Y

j

i )
2

for some θ̃ ∈ Bδ′(θ). This finally proves that

2T ji (Y, θ) = (j − i+ 1)J(Y
j

i , θ) = (j − i+ 1)(Y
j

i )
2 + (j − i+ 1)fn(Y

j

i )

where fn is such that
∣∣fn(Y

j

i )
∣∣ ≤ C2 · (Y j

i )
3 for a constant C = C(δ′) > 0 (independent of

ε, i and j) and for all n ≥ n0. It thus holds with probability not less than 1− ε that

max
(i,j)∈I(cn)

∣∣∣∣√2T ji (Y, θ∗)−
√
j − i+ 1

∣∣Y j

i

∣∣∣∣∣∣ ≤C max
(i,j)∈I(cn)

∣∣∣∣(j − i+ 1)
(
Y
j

i

)3
∣∣∣∣1/2

=C max
(i,j)∈I(cn)

∣∣∣∣∣
∑j

l=i Yl√
j − i+ 1

(j − i+ 1)−1/6

∣∣∣∣∣
3/2

≤C
(

Ln√
log n

)3/2
4

√
log3 n

ncn
.

From Shao’s Theorem it follows that the last term vanishes almost surely as n→∞. �

Combination of Lemma 7.4 and 7.5 yields

Proposition 7.6. There exist i.i.d standard normally distributed r.v. Z1, . . . , Zn on the

same probability space as Y1, . . . , Yn such that

max
(i,j)∈I(cn)

∣∣∣∣√2T ji (Y, θ)−
√
j − i+ 1

∣∣Z̄j
i

∣∣∣∣∣∣ = oP(1).

Lemma 7.7. For n ∈ N, define the continuous functionals h, hn : C([0, 1])→ R by

h(x, c) = sup
0≤s<t≤1
t−s≥c

(
|x(t)− x(s)|√

t− s
−
√

2 log
e

t− s

)
and

hn(x, c) = max
1≤i<j≤n

(j−i+1)/n≥c

(
|x(j/n)− x(i/n)|√

(j − i+ 1)/n
−
√

2 log
en

j − i+ 1

)
,
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respectively. Moreover assume that {xn}n∈N ⊂ C([0, 1]) is such that xn → x for some

x ∈ C([0, 1]). Then hn(xn, c)→ h(x, c).

Proof. Let δ > 0. Then there exists an index n0 ∈ N such that |xn(t)− x(t)| ≤ δ for all n ≥
n0 and t ∈ [0, 1]. Thus, it follows directly from the definition that hn(x) = hn(xn) +O(δ)

for n ≥ n0. Since u 7→
√

2 log e/u is uniformly continuous on [c, 1] we consequently have

that hn(x)→ h(x) as n→∞ and the assertion follows. �

Before we proceed, recall the definition of M in (15). Moreover, we introduce for 0 < c ≤ 1

the statistic

M(c) := sup
0≤s<t≤1
t−s>c

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
. (48)

From (?, Thm. 6.1) (and the subsequent Remark 1) it can be seen that M(c) converges

weakly to M as c→ 0+.

Proposition 7.8. Let c > 0 and define

T cn(Y, θ) = max
(i,j)∈I(c)

(√
2T ji (Y, θ)−

√
2 log

en

j − i+ 1

)
.

Then limc→0+ limn→∞ T
c
n(Y, θ) = M , weakly.

Proof. Set S0 = 0 and Sn = Y1 + . . . + Yn and let {Xn(t)}t≥0 be the process that is linear

on the intervals [i/n, (i + 1)/n] with values Xn(i/n) = Si/
√
n. We obtain from Donsker’s

Theorem that Xn
D→ B. Now, recall the definition of h and hn in Lemma 7.7 and observe

that

hn(Xn, c) = max
(i,j)∈I(c)

(√
j − i+ 1

∣∣Y j

i

∣∣−√2 log
en

j − i+ 1

)
.

It hence follows from Lemma 7.5 that

|T cn(Y, θ)− hn(Xn, c)| ≤ max
(i,j)∈I(c)

∣∣∣∣√2T ji (Y, θ)−
√
j − i+ 1

∣∣Y j

i

∣∣∣∣∣∣ = oP(1). (49)

Since Xn
D→ B, Lemma 7.7 and (Billingsley, 1968, Thm. 5.5) imply that hn(Xn, c)

D,→
h(B, c). Theorem 4.1 in (Billingsley, 1968) and (49) thus imply that T cn(Y, θ)

D→ h(B, c) =

M(c) as n→∞ for all c > 0. Thus, the assertion finally follows, since M(c)→M weakly

as c→ 0+ �

Theorem 7.9. Let Y = (Y1, . . . , Yn) be independent and identically distributed random

variables with distribution Fθ, θ ∈ Θ. Moreover, assume that {cn}n∈N is a sequence of

positive numbers such that n−1 log3 n/cn → 0 and set

Tn(Y, θ, cn) = max
(i,j)∈I(cn)

(√
2T ji (Y, θ)−

√
2 log

en

j − i+ 1

)
.
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Then, Tn(Y, θ, cn)→M weakly as n→∞.

Proof. First observe that according to Proposition 7.6 we have for all t > 0 that

P (Tn(Y, θ; cn) ≤ t) = P

(
max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣Zj

i

∣∣−√2 log
en

j − i+ 1

)
≤ t

)
+ o(1)

≥ P

(
sup

0≤s<t≤1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
≤ t

)
+ o(1)

This shows that for all t > 0

lim inf
n→∞

P(Tn(Y, θ, cn) ≤ t) ≥ P(M ≤ t)

Now let c > 0 be fixed and assume w.l.o.g. cn < c for all n ∈ N. With T cn as defined in

Proposition 7.8 we conversely find

lim sup
n→∞

P(Tn(Y, θ, cn) ≤ t) ≤ lim sup
n→∞

P(T cn(Y, θ, cn) ≤ t) = P(M(c) ≤ t).

Hence the assertion follows from Proposition 7.8 after letting c → 0+ and the fact that

M > 0 a.s. �

Proof of Theorem 2.1. Let Tn(Y, ϑ; cn) be defined as in (14). From Theorem 7.9 it then

follows that

Tn(Y, ϑ; cn)
D→ max

0≤k≤K
sup

τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
.

Clearly the limiting statistic on the right hand side is stochastically bounded from above

by M . Conversely, we observe by the scaling property of the Brownian motion that

sup
τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
D
= sup

0≤s<t≤1

(
|B(t)−B(s)|√

t− s
−

√
2 log

e

t− s
+ 2 log

1

τk+1 − τk

)
D
≥M −

√
2 log

1

τk+1 − τk
.

�

7.3. A general exponential inequality. In this section we give a general exponential

inequality for the probability that SMUCE underestimates the number of change-points.

To this end, we will make use of the functions

κ±1 (v, w, x, y) = inf
v≤θ≤w
θ±x∈[v,w]

sup
ε∈[0,x]

[ ε
x

(D(θ||θ ± x)− y)−D(θ||θ ± ε)
]
, (50)

κ±2 (v, w, x) = inf
v≤θ≤w
θ±x∈[v,w]

D(θ ± x||θ). (51)
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Theorem 7.10. Let q ∈ R and K̂(q) be defined as in (18). Moreover, assume that κ±1 and

κ±2 are defined as in (50) and (51), respectively and set

κ1 = min

κ+
1

θ, θ, ∆

2
,

(
q +

√
2 log 2e

λ

)2

nλ

 , κ−1

θ, θ, ∆

2
,

(
q +

√
2 log 2e

λ

)2

nλ


 and

κ2 = min

{
κ+

2

(
θ, θ,

∆

2

)
, κ−2

(
θ, θ,

∆

2

)}
.

If λ ≥ 2cn, then

P
(
K̂(q) < K

)
≤ 2K

[
e−

nλκ1
2 + e−

nλκ2
2

]
. (52)

Proof. Let ∆ and λ be the smallest jump size and the smallest interval length of the true

regression function ϑ, i.e.

∆ = inf
1≤k≤K

|θk − θk−1| and λ = inf
0≤k≤K

τk+1 − τk.

Now define K disjoint intervals Ii = (τi − λ/2, τi + λ/2) ⊂ [0, 1]. Let θ+
i = max {θi−1, θi},

θ−i = min {θi−1, θi} and split each interval Ii accordingly, i.e. I+
i = {t ∈ Ii : ϑ(t) = θ+

i }
and I−i = {t ∈ Ii : ϑ(t) = θ−i }. Clearly Ii = I−i ∪ I+

i .

From the definition of the estimator K̂(q) it is clear that

K̂(q) < K ⇔ ∃ϑ̂ ∈ Sn[K − 1] such that Tn(Y, ϑ̂) ≤ q.

If ϑ̂ ∈ Sn[K−1], then there exists an index k ∈ {1, . . . , K} such that ϑ̂ is constant on Ik. Let

Ωk =

{
∃θ̂ ∈ Θ :

√
TI+k

(Y, θ̂)−
√

log en
#I+k
≤ q√

2
and

√
TI−k

(Y, θ̂)−
√

log en
#I−k
≤ q√

2

}
Since

the K intervals Ii are disjoint we find

P(K̂(q) < K) ≤
K∑
k=1

P (Ωk) .

If ϑ̂ ∈ Sn[K − 1] is constant on some Ik with value θ̂, then either θ̂ ≤ θ+
k − ∆/2 or

θ̂ ≥ θ−k + ∆/2, by construction. Set

Ω+
k =

{
∃θ̂ ≤ θ+

k −∆/2 :
√
TI+k

(Y, θ̂)−
√

log
en

#I+
k

≤ q√
2

}
Ω−k =

{
∃θ̂ ≥ θ−k + ∆/2 :

√
TI−k

(Y, θ̂)−
√

log
en

#I−k
≤ q√

2

}
and observe that P(Ωk) ≤ P(Ω+

k )+P(Ω−k ). We proof an upper bound for P(Ω−k ), the same

bound can be obtained for P(Ω+
k ) analogously. Recall that θ 7→ TI−k

(Y, ·) is convex and

has its minimum at m−1(Y I−k
). Thus, TI−k

(Y, θ̂) ≥ TI−k
(Y, θ−k +∆/2) whenever m−1(Y I−k

) ≤
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θ−k + ∆/2. This yields

P
(
Ω−k
)
≤ P

(
Ω−k ∩

{
m−1(Y I−k

) ≤ θ−k +
∆

2

})
+ P

(
m−1(Y I−k

) > θ−k +
∆

2

)
≤ 1−P

(
TI−k

(
Y, θ−k +

∆

2

)
≥ 1/2

(
q +

√
2 log(2e/λ)

)2
)

+ P

(
m−1(Y I−k

) > θ−k +
∆

2

)

≤ exp

λn
2

inf
ε∈[0,∆/2]

D(θ−k ||θ
−
k + ε)− ε

∆/2
D(θ−k ||θ

−
k + ∆/2) +

2ε
(
q +

√
2 log(2e/λ)

)2

∆λn




+ exp

(
−λn

2
D(θ−k + ∆/2||θ−k )

)

≤ exp

−nλ
2
κ+

1

θ, θ, ∆

2
,

(
q +

√
2 log(2e/λ)

)2

λn


+ exp

(
−nλ

2
κ+

2

(
θ, θ,

∆

2

))

by Lemma 7.1 and Lemma 7.2. With the definition of the constants κj as in the Theorem

(j = 1, 2) we eventually obtain

P(K̂(q) < K) ≤ 2K

[
exp

(
−nλκ1

2

)
+ exp

(
−nλκ2

2

)]
.

�

The constants κ±i (i = 1, 2) basically depend on the exponential family F . Their explicit

computation can be rather tedious and has to be done for each exponential family sepa-

rately (for the Gaussian case see below). Therefore, it is useful to have a lower bound for

these constants.

Lemma 7.11. Let v be as in (11) and κ±1 and κ±2 be defined as in (50) and (51), respectively.

Then,

κ±1 (v, w, x, y) ≥ x2

8

infv≤t≤w v(t)2

supv≤t≤w v(t)
− y and κ±2 (v, w, x) ≥ x2

2
inf

v≤t≤w
v(t).

Proof. First observe from (43), that for any θ ∈ Θ and ε > 0 such that θ + ε ∈ Θ one has

D(θ||θ + ε) =
∫ θ+ε
θ

(θ + ε− t)v(t) dt. Thus if follows that for all 0 ≤ ε ≤ x

ε

x
D(θ||θ + x)−D(θ||θ + ε) =

ε

x

∫ θ+x

θ

(θ + x− t)v(t) dt−
∫ θ+ε

θ

(θ + ε− t)v(t) dt

≥ εx

2
inf

t∈[θ,θ+x]
v(t)− ε2

2
sup

t∈[θ,θ+x]

v(t).
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Maximizing over 0 ≤ ε ≤ x then yields

sup
ε∈[0,x]

ε

x
D(θ||θ + x)−D(θ||θ + ε) ≥ x2

8

inft∈[θ,θ+x] v(t)2

supt∈[θ,θ+x] v(t)
.

This proves that

κ+
1 (v, w, x, y) ≥ x2

8

infv≤t≤w v(t)2

supv≤t≤w v(t)
− y.

Likewise, one finds

κ+
2 (v, w, x) ≥ x2

2
inf

v≤t≤w
v(t).

The estimates for κ−1 and κ−2 are derived analogously. �

The combination of Theorem 7.10 and the estimates in Lemma 7.11 yield the handy result

in Theorem 2.2. For the case of Gaussian observations, the constants κ±i (i = 1, 2) can be

computed explicitly and in particular κ1 is strictly larger than the approximations obtained

from Lemma 7.11 by setting v(t) ≡ 1.

Theorem 7.12. Let q ∈ R and K̂(q) be defined as in (18) and assume that F is the family

of Gaussian distributions with fixed variance 1. Then,

P
(
K̂(q) < K

)
≤2K

exp

−1

8

(
∆
√
λn

2
√

2
− q −

√
2 log

2e

λ

)2

+

+ exp

(
−λn∆2

16

)
Proof. The proof is similar to the proof of Lemma 7.3. From Lemma 7.11 it follows that

κ±2 (v, w, x) = x2

2
and one computes explicitly that κ±1 (v, w, x, y) = 1

2
(x

2
− y

x
)2 ≥ 1

8
(x−
√

2y)2

if x2 ≥ 2y. The assertion now follows from Theorem 7.10. �

We close this section with the proof of Theorem 2.8 which is very much in the same spirit

than the proof of Theorem 7.10 above.

Proof of Theorem 2.8. Let again ∆ be the smallest jump of the true signal ϑ and recall that

ϑ(t) ∈ [θ, θ] for all t ∈ [0, 1]. Moreover, define the K disjoint intervals Ii = (τi−cn, τi+cn) ⊂
[0, 1] and accordingly I−i , I+

i , θ−i , θ+
i and ϑ̂i as in the proof of Theorem 7.10.

Now assume that K̂ ∈ N and that ϑ̂ ∈ Sn[K̂] is an estimator of ϑ such that Tn(Y, ϑ̂) ≤ q

and

max
0≤k≤K

min
0≤l≤K̂

|τ̂l − τk| > cn.

Put differently, there exists an index i ∈ {1, . . . , K} such that |τ̂l − τi| > cn for all 0 ≤ l ≤
K̂ or, in other words, ϑ̂ contains no change-point in the interval Ii. With the very same
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reasoning as in the proof of Theorem 7.10 we find that

P

(
∃K̂ ∈ N, ϑ̂ ∈ Sn[K̂] : Tn(Y, ϑ̂) ≤ q and max

0≤k≤K
min

0≤l≤K̂
|τ̂l − τk| > cn

)

≤
K∑
k=1

P

(
∃θ̂ ∈ Θ : TI+k

(Y, θ̂) ≤ 1

2

(
q +

√
log

e

cn

)2

and TI−k
(Y, θ̂) ≤ 1

2

(
q +

√
log

e

cn

)2
)
.

By replacing λ/2 in the proof of Theorem 7.10 by cn and applying Lemma 7.11 the assertion

follows. �

7.4. Proof of Theorems 2.6 and 2.7.

Proof of Theorem 2.6. W.l.o.g. we shall assume that δn ≥ 0. The main idea of the proof

is as follows: Let Jn = argmax {|J | : J ⊂ [0, 1], J ∩ In = ∅}. In order to show that (24)

holds, we construct a sequence θ∗n ∈ Θ such that

supθ≥θ∗n P

(
TJn(Y, θ) ≤ 1/2

(
qn +

√
2 log (e/ |Jn|)

)2
)
→ 0 and (53)

supθ≤θ∗n P

(
TIn(Y, θ) ≤ 1/2

(
qn +

√
2 log(e/ |In)|

)2
)
→ 0. (54)

Note that the true signal ϑn takes the value θ0 + δn on In and θ0 on Jn and it is not

restrictive to assume that infn∈N |Jn| > 0. We construct θ∗n = θ0 +
√
βn/n for a sequence

(βn)n∈N that satisfies
√
βn/qn →∞.

We first consider (53). To this end observe that for all t ∈ Jn we have |θ∗n − ϑn(t)|
√
|Jn|n =√

βn |Jn|. We further find that

ΓJn :=
√
βn |Jn| − qn −

√
2 log(e/ |Jn|) = qn

(√
βn
qn
− 1−

√
2 log(e/ |Jn|)

qn

)
→∞.

Thus, we can apply (47) and find for all θ ≥ θ∗n

P

(
TJn(Y, θ) ≤ 1/2

(
qn +

√
2 log(e/ |Jn|)

)2
)
≤ exp

(
−

Γ2
Jn

8

)
→ 0.

Now observe that for t ∈ In we have |θ∗n − ϑn(t)|
√
|In|n = δn

√
|In|n −

√
βn |In|. Thus

(54) follows from (47) given

ΓIn := δn
√
|In|n−

√
βn |In| − qn −

√
2 log(e/ |In|)→∞.

It hence remains to construct sequences (βn) for each case (1) and (2) such that the previous

condition holds while
√
βn/qn →∞.
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We assume first that lim infn→∞ |In| > 0 and define βn through the equation
√
βn |In| =

c
(
δn
√
|In|n− qn −

√
2 log(e/ |In|)

)
for some 0 < c < 1. Then,√

βn |In|
qn

= c

(
δn
√
|In|n
qn

− 1−
√

2 log(e/ |In|)
qn

)
From the condition in case (1) of the theorem and the fact that |In| is bounded away from

zero for large n, we find that
√
βn/qn →∞. Further we find ΓIn = (1− c)

√
βn |In| → ∞.

Finally we consider the case when |In| → 0 and define βn through the equation
√
βn |In| =

cεn
√
− log |In| for some 0 < c < 1. From the conditions in case (2) of the theorem and the

inequality
√
x+ 1−

√
x ≤ 1/(2

√
x), which holds for any x > 0, one obtains

ΓIn ≥ (
√

2 + εn)
√
− log |In| −

√
βn |In| − qn −

√
2 log(e/ |In|)

= (
√

2 + (1− c)εn)
√
− log |In| − qn −

√
2
√

1 + log(1/ |In|)

≥ ((1− c)εn)
√
− log |In| −

1√
−2 log |In|

− qn.

This shows that ΓIn → ∞ for a suitable small c, such that supn∈N qn/(εn
√

log(1/ |In|)) ≤
1− 2c. Again from the assumptions in the theorem it follows that

√
βn/qn →∞. �

Proof of Theorem 2.7. Theorem 7.12 implies P(K̂(qn) < Kn) ≤ e−Γ1,n + e−Γ2,n with

Γ1,n =
1

8

(√
nλn∆n

2
√

2
− qn −

√
2 log(2e/λn)

)2

+

− logKn and Γ2,n =
nλn∆2

n

16
− logKn.

It is easy to see, that any condition (1) - (3) implies Γ2,n → ∞. It remains to check that

Γ1,n →∞. Under condition (1) we observe that

Γ1,n

q2
n

=
1

8

(√
nλn∆n

2
√

2qn
−
qn +

√
2 log(2e/λn)

qn

)2

+

− logKn

q2
n

→∞.

Since qn is bounded away from zero, the assertion follows. Next, we consider conditions

(2) and (3). To this end, assume that
√
nλn∆n ≥ (C + εn)

√
log(1/λn) for some constant

C > 0 and a sequence εn such that εn
√

log(1/λn)→∞. We find that

Γ1,n ≥
1

8

(C + εn)
√

log 1
λn

2
√

2
− qn −

√
2 log(2e/λn)

2

+

− logKn

=
1

8

εn
√

log 1
λn

2
√

2
+

(
C − 4

2
√

2

)√
log

1

λn
− qn −

1 + log 2√
2 log(1/λn)

2

+

− logKn,
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where we have used the inequality
√
x+ 1−

√
x ≤ 1/(2

√
x). If supn∈NKn <∞, then the

choice C = 4 implies Γ1,n →∞. Otherwise, we use the estimate Kn ≤ 1/λn which results

in C = 12 as a sufficient condition for Γ1,n →∞. �

7.5. Proof of Lemma 3.1.

Proof. First observe that the definition of ϑ̂(q) in (6) implies that q ≥ Tn(Y, ϑ̂(q)) and

hence, by identifying ϑ̂(q) with the pair (P̂(q), θ̂(q)), we find

(K̂(q) + 1)q ≥ (K̂(q) + 1)Tn(Y, ϑ̂(q)) ≥
∑
I∈P̂(q)

(√
2TI(Y, ϑ̂(q))−

√
2 log(e/ |I|)

)

≥
√

2

√ ∑
I∈P̂(q)

(
|I|φ(ȲI)

)
− l(Y, ϑ̂(q)− n

√
2 log(en)

≥
√

2

√
l(Ȳ , ϑ̂(q))− l(Y,m−1(Ȳ ))− n

√
2 log(en)

The last inequality follows from the fact that φ(Y I) ≥ Y Iθ − ψ(θ) for all θ ∈ Θ and all

I ∈ P̂(q) for the choice θ = m−1(Y ). Summarizing, we find

γ ≥
(

(K̂(q) + 1)q + n
√

2 log(en)
)2

/2 + l(Y,m−1(Ȳ )) ≥ l(Y, ϑ̂(q)).

Now, let ϑ̂ = (P̂ , θ̂) be a minimizer of (31). The definition of K̂(q) in (18) implies that

D(P , θ) = ∞ if #P < K̂(q). Thus we have that
∣∣P̂∣∣ ≥ K̂(q). Assume that there exists

k ≥ 1 such that #P = K̂(q) +k (for k = 0 nothing is to show). Since (P̂ , θ̂) is a minimizer

of (31) and since D ≥ 0 we find

γ(
∣∣P̂∣∣− 1) ≤ D(P̂(q), θ̂(q))−D(P̂ , θ̂) + γ

(∣∣P̂(q)
∣∣− 1

)
≤ D(P̂(q), θ̂(q))− kγ + γ

(∣∣P̂∣∣− 1
)

< (1− k)l(Y, ϑ̂(q)) + γ
(∣∣P̂∣∣− 1

)
.

This is a contradiction for l(ϑ̂) being non-negative and hence we conclude that
∣∣P̂∣∣ = K̂(q)

and that ϑ̂ = (P̂ , θ̂) solves (6). �
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