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I am convinced that this challenge and what we do
about it will define us, our era and ultimately our

global legacy.

Ban Ki-moon, United Nations Secretary-General

Introduction

Anthropogenic climate change poses one of the greatest challenges for policy decision
making. The climate has undergone many major changes throughout the Earth’s history.
However, the current climate change exhibits some features that are unusual, and is thus
considered to be of the utmost policy concern. First of all, in contrast to earlier changes,
the current change is attributed to human activities and is referred to as anthropogenic
climate change. In fact, emissions from economic activities have been found to be the main
source of the currently observed high concentrations of atmospheric greenhouse gases and
are therefore held responsible for global warming. Moreover, compared to other incidents
of climate change during the past 650,000 years, the atmospheric concentration of CO,, -
one of the most abundant greenhouse gases in the atmosphere - has never been higher, and
it has risen exceptionally fast (IPCC (2007b)). According to the Intergovernmental Panel
on Climate Change (IPCC), the resulting warming by the end of the century is likely to
be in the range of 1.6°C to 6.9°C above preindustrial temperatures if no further emission
reduction efforts are undertaken (IPCC (2007b)).! This magnitude of warming at such
an unprecedented speed is expected to exert a significant detrimental impact on natural
systems and human life in the future (IPCC (2007a)). The problem of anthropogenic

climate change and its consequences could be tackled by a comprehensive climate policy,

'In accordance with the guidelines of the IPCC’s Fourth Assessment Report, the term “likely” is used
to describe probabilities that are higher than 66%.



consisting of decisive global emission reduction efforts as well as measures to alleviate the
impacts that are already locked in. Yet, up to now the design and implementation of an
appropriate policy response is challenged by an unparalleled combination of obstacles to
decision making.

This thesis aims to explore some of the major issues in impeding climate policy
decision. The purpose of this chapter is to outline the broad context of this topic and
to embed the research articles that follow this introduction in the thesis. Section 1.1
introduces the most prominent challenges to climate policy making examined through
the perspective of economic theory. Section 1.2 specifies the objectives and structure of
the thesis.

1.1 THE MAJOR CHALLENGES TO CLIMATE PoLICcY DECISION MAKING

Economic theory helps us to identify and understand the challenges to climate policy
decision making and their causes. Climate change is perceived to be a negative externality,
describing costs that are imposed on others but are not paid for by those who cause them.
As long as emitting greenhouse gases are not priced there is little or no incentive to reduce
emissions. In view of the anticipated climate impacts, policy intervention is justified
that internalizes these effects by establishing a market in which emissions allowances
are traded, or by creating institution(s) that regulate the emissions. A multitude of
negative externalities have been successfully internalized by policy intervention. Yet, the
climate change problem features a coalescence of characteristics that distinguish it from
others: (i) it is global, (ii) its impacts develop over a long time, (iii) the projection of
its consequences are subject to ubiquitous uncertainties in the causal chain of climate
change, (iv) the impacts and also the policy response are largely irreversible, and (v) it
must be addressed by a diverse portfolio of climate policy measures.?

Global Problem: Climate is a global, non-excludable public good. Greenhouse gas
emissions diffuse in the atmosphere and thus affect the global climate system irrespect-
ive of where they are emitted. The atmospheric greenhouse gas concentration cannot be
controlled by any single nation, but requires international collective action. As a global
authority that could enforce emission reductions does not exist, global action rests on
the voluntary participation of sovereign nations. However, voluntary cooperation is de-
terred by the free-riding incentives emerging from non-excludability. While the benefits
of climate policy can be enjoyed by every country, the costs of curbing emissions must be

borne by the cooperating countries. The free-riding incentives are strengthened by the

2For similar categorizations see IPCC (2001), Levin et al. (2012), Pillet (1999), Stern (2007) or Wagner
& Zeckhauser (2012).



unequal distribution of emissions and their anticipated consequences around the world.
The worst climate change impacts are expected to affect the poorest countries, which have
contributed least to the accumulation of greenhouse gases in the atmosphere (e.g. Smith
et al. (2001)). In contrast, most of the high emitting countries expect relatively mod-
erate impacts, which reduces their incentives to curtail their contribution to the climate
problem. In theory, free-riding incentives can be overcome if mechanisms such as transfer
payments are introduced, so that every country gains from participating and bears an
equitable share of the burden of reducing emissions. However, in addition to heterogen-
eity in the expected damages, further asymmetries, such as in economic development and
historical responsibility, lead to irreconcilable notions of how these mechanisms are to
be designed. Studies of game theory, for example by Fuentes-Albero & Rubio (2010),
have generally found that the level of voluntary cooperation on emission reduction efforts
is rather low, which mirrors the unsuccessful attempts in reality to negotiate a legally
binding global climate agreement.

Long Time Horizon: The extent of global warming is determined by the concen-
tration of the greenhouse gases, which is nourished by the sum of emissions over time.
Furthermore, the repercussions of today’s emissions will mature over decades owing to
some rather slow warming processes in the climate system. Thus, climate policy needs to
be optimally designed for a long time horizon that is over several generations. However,
the required intertemporal welfare evaluation crucially depends on the choice of the social
discount rate, which determines the weight assigned to future welfare. The question of
which social discount rate is to be applied has ignited an ongoing controversy: on the
one hand, there is the “positive” approach that draws on empirically observable market
interest rates for quantification; on the other hand, the “normative” school relies on norm-
ative criteria to address the intergenerational trade-off.> This point of view is advocated
by Stern (2007), who criticizes the procedure for discounting as a concept that deprives
future generations of their representation in present-day decisions. A different problem
of the long time horizon arises from the general incentives for political institutions to sat-
isfy their current (voting) citizens’ interests. Accordingly, the policy decision to reduce
emissions, which imposes mitigation costs in the near term, will continue to be postponed
unless the current society attaches a comparatively high importance to the fate of future
generations (Levin et al. (2012)).

Ubiquitous Uncertainties: Welfare assessment encounters a myriad of uncertainties in
the causal chain of climate change, which ranges from the emission of greenhouse gases to

the ultimately felt impacts. Scientific understanding of the physical processes involved is

3 A more detailed introduction of both concepts is given, among others, by Karp & Traeger (2013).



still incomplete, which leaves unanswered questions about the strength of the greenhouse
gas effect and the vulnerability of climate subsystems. Socio-ecological uncertainties sur-
round the impact of climate change on the relationship between human societies and
nature, for example, in connection with the spread of diseases. There is socio-economic
uncertainty attached to the effects of climate change on human welfare and the gains
from climate policy.* Distinguishing uncertainties according to their severity, as done by
Knight (1921), has been shown by Ellsberg (1961) to be of behavioural meaningfulness.
Knightian risk describes the situation in which outcomes cannot be predicted with ab-
solute confidence, but sufficient statistical information is available to derive statements
about their likelihood. Knightian uncertainty or ambiguity arises, if probability state-
ments are rendered impossible due to missing observations. Climate policy assessment
faces ambiguity in almost every component of the causal chain. How to design policy
given these deep uncertainties has not yet been clarified. The policy design must also
take into account that some elements of the uncertainties will be resolved due to new
scientific findings and further observations, which may make it necessary to adjust policy
in the future. Other elements of the uncertainties are more fundamental or intrinsic, for
instance, those generated by the long time horizons under consideration, and they will
remain uncertain. These intrinsic uncertainties particularly relate to the socio-economic
sphere, in which damage cost assessments are conducted over future generations that may
have different economies and demographics, preferences and attitudes.

Irreversibilities: According to Henry (1974), a decision is defined as being irreversible
if it limits future possibilities of choice for a long time. The climate policy decision faces
two kinds of irreversibilities: economic irreversibility and ecological irreversibility. The
first one relates to the irreversibility of the sizeable investments needed to implement
climate policy; for example, the phasing out coal powered plants requires huge investment
in alternative energies. These sunk costs must be balanced against the benefits of avoiding
ecological irreversiblity. Ecological irreversibility refers to the rather low decay rate of
greenhouse gases, especially of CO,. As a consequence, greenhouse gases continue to
cause global warming long after they have been emitted. Ecological irreversibility is also
associated to the possibility of irreparable climate damage and catastrophic events. To
some extent, the climate changes gradually and slowly, but some of its impacts may
occur abruptly when some climatological thresholds are transgressed. A growing body
of scientific research (e.g. Rockstrom et al. (2009) and Steinacher et al. (2013)) strives
to identify policy targets that protect the climate from crossing these thresholds and

concludes that the time to preserve “the safe operating space for humanity” (as phrased

4This classification of uncertainty is commonly made in the IPCC reports, e.g. IPCC (2001).



by Rockstrém et al. (2009)) is running out.

Choice of Measures: Mitigation is not the only measure that can be employed to
reduce climate change impacts. Adaptation and geoengineering measures become in-
creasingly important the longer emission reduction efforts are postponed. There are a
wide array of technologies in the realm of geoengineering or climate engineering that are
either designed to remove carbon from the atmosphere or to manage solar radiation. So
far, insufficient technological maturity and the partially understood side-effects have ruled
out the adoption of these technologies. Yet, climate engineering may become an indis-
pensable complementary strategy if decisive emission reduction efforts are taken too late.
Climate engineering can also be perceived to be a substitute for mitigation, as even the
prospect of operative readiness is reported to result in the easing of emission reduction
efforts (Rickels et al. (2011)). Different to climate engineering, adaptation is accepted as
an integral part of effective climate policy, as emphasized by IPCC (2007a). It is vital
for alleviating the impacts that are already locked in, owing to the emissions in the past
and at present. However, the optimal mix of mitigation and adaptation is still far from
being clear, as both measures interact with each other in a complex system of substi-
tutions and complementarities. So far, the literature (e.g. Kane & Shogren (2000) and
Lecocq & Shalizi (2007)) has pointed out that they can be perceived as being strategically
complementary. Mitigation can prevent irreversible and severe damage that it is difficult
or even impossible to adapt to, while adaptation can address damage that is inevitable
due to past and present emissions. Ingham et al. (2005) and Tol (2005a) argue that the
measures are also economic substitutes, as they compete for naturally scarce resources
and employing one measure may decrease the marginal benefits of the other.’

The five dimensions of the decision problem are not clear-cut; rather, they overlap
and affect each other. For instance, the operative readiness of techniques to remove
carbon from the atmosphere alleviates ecological irreversibility. The inability to find a
global agreement on emission reduction may force countries to adopt localized measures,
such as adaptation and solar radiation management instead. Intrinsic uncertainty grows
with the length of the time horizon being considered. Decisions about whether to take
precautionary steps by reducing emissions or relying on measures that may alleviate
the future impacts also depend on the representation of the future generations’ welfare
in the present-day considerations. One important interaction is economic irreversibility
and uncertainty. If the economic irreversibility did not exist, policy could be easily and
frequently adjusted as soon as new scientific findings or observations were made. However,

as pointed out by economic theory, the requirement for large-scale sunk costs generates

Further effects of interaction are explained by TPCC (2007a).



incentives to wait for new information to arrive, instead of embarking on a set climate
policy path (e.g. Pindyck (2000, 2002)).

1.2 THESIS OUTLINE

Although research on climate policy decision making has made substantial progress in
recent years, numerous particular aspects are still not well understood owing to a very
complex interplay of the many factors involved. The purpose of this thesis is to provide
new insights into the policy response to being confronted with the different (interact-
ing) challenges posed by climate change. More specifically, it aims to contribute to the
understanding of the overall decision problem outlined in Section 1.1 by addressing se-
lected aspects of it in each chapter. In this spirit, particular attention is paid to the
effects of facing the following: economic and ecological irreversibilities, the uncertainty
and ambiguity, the problem of combining mitigation and adaptation measures, and the
implications of the countries’ asymmetries concerning international collective cooperation
on emissions reduction.

The first three chapters take a real options perspective that is developed to explicitly
account for the tension between uncertainty and economic irreversibility. This approach
discloses the value of waiting for new information to arrive that is incorporated in climate
policy assessment. In other words, real options quantify the opportunity costs of taking
action now rather than waiting for uncertainty to be reduced. It sets the stage for the
investigation of how other characteristics of the climate change problem influence policy
decisions.

Chapter 2, The Race Against Time: Optimal Climate Policies and Costly Inaction,
is motivated by the latest scientific findings that the time to meet climate policy targets,
which limit the risk of unacceptable environmental change, is presumably running out.
How climate policy targets influence emission reduction efforts is mainly studied by util-
izing the expected utility approach (e.g. Held et al. (2009) and Nordhaus (2010)). This
strand of literature generally finds that focussing on climate policy targets intensifies emis-
sion reduction efforts. Unlike these studies, this article accounts for the value of waiting
that is generated by uncertainty and economic irreversibility. Consequently, it allows the
question to be posed about whether the knowledge of facing a closing window of oppor-
tunity could significantly counteract the incentives to wait, and thus accelerate emission
reduction efforts. For this, the paper develops a non-perpetual real options framework
in which the option to adopt policies that comply with the target is only available for a
limited amount of time. In this framework, the effects of two kinds of uncertainty are

examined: stochasticity in the climate damage costs and stochasticity in the temperature

10



evolution. In both cases, the closing of the window of opportunity accelerates emission
reduction efforts, especially if the option to act expires soon. However, the effects are
shown to be comparatively small, which indicates that climate policy inaction is likely to
prevail.

Chapter 3, Dark Clouds or Silver Linings? Knightian Uncertainty and Climate
Change, investigates how economic irreversibility and Knightian uncertainty in the cli-
mate damage costs affect the decision on when to curb emissions. A review by Stern
(2007) reveals that the existing estimates of the future climate damage costs are subject
to enormous ambiguity. These damage cost assessments are not only based on differing
appraisals of vulnerabilities and capabilities for adaptation, but they also ignore the im-
pact of extreme weather events or catastrophes to a great extent. The substantial degree
of ambiguity is illustrated by comparing the assessments of Mendelsohn et al. (2000),
Nordhaus & Boyer (2000) and Tol (2002), which vary between zero and three per cent
of loss of GDP for 3°C warming. This study transfers the ideas of Nishimura & Ozaki
(2007) and Trojanowska & Kort (2010) about how to enhance a real options model by
Knightain uncertainty to a model that examines the decision on when to curb emissions.
First, the decision by an ambiguity-averse policy maker is investigated; and then the ana-
lysis extends to a range of ambiguity preferences. This study finds that policy adoption
is delayed longer when the policy maker is more optimistic about the future outcomes.
Furthermore, this study also identifies that the range of optimal policy responses, which
are implied by alternative preferences for ambiguity, is of a non-negligible size. This result
emphasizes the difficulties in reaching an objectively justified climate policy decision, as
the decision crucially depends on subjective attitudes towards ambiguity.

Chapter 4, The Optimal Climate Policy of Mitigation and Adaptation: A Real Op-
tions Theory Perspective, directs attention to the question of how mitigation and adapt-
ation can be optimally combined. Different to the existing literature, which is dominated
by the expected net present value approach, it analyses how the optimal mix is influ-
enced by the different degrees of uncertainty in the climate damage costs and by the
irreversibility associated with the mitigation and adaptation decision. To this end, this
study develops a novel real options modelling framework in which the policy maker holds
a portfolio of mitigation and adaptation options. The mitigation option gives the op-
portunity to decide on the optimal timing of committing to a certain emission reduction
target. Exercising the adaptation option means optimally expanding the adaptation cap-
ital stock that helps to protect against damages proactively. This paper demonstrates
that the dualistic approach to climate policy is impeded by the interaction of uncertainty

and economic irreversibility. Compared to the expected net present value approach, it
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gives more priority to adaptation as the preferred measure. If the marginal benefits of
investing in adaptation are sufficiently low, mitigation is given more emphasis.

Chapter 5, Can International Environmental Cooperation be bought: Comment, goes
beyond considering one global policy maker by taking into account the implications of
the countries’ heterogeneity when international environmental cooperation is negotiated.
This study addresses the research by Fuentes-Albero & Rubio (2010) which analytically
solves a non-linear, game-theoretical model that incorporates two types of countries and
continuous strategies. In the case of heterogeneity in the damage costs, Fuentes-Albero
& Rubio (2010) conclude that, even though side-payments are not made, an agreement
between one high- and and one low-damage country is self-enforcing, given that the dis-
parities are not very large. This result is proven to be incorrect by demonstrating that
such a coalition is only internally stable, while external stability is not satisfied. Con-
sequently, asymmetries in damage costs provoke countries to defect from cooperative
behaviour, unless some mechanism is established to extinguish the free-riding incentives

without transgressing any notions of fairness.
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The door is closing. I am very worried - if we don’t
change direction now on how we use energy, we will
end up beyond what scientists tell us is the minimum

[for safety]. The door will be closed forever.

Fatih Birol,
Chief Economist at the International Energy Agency

The Race Against Time: Optimal Climate Policies

and Costly Inaction?

2.1 INTRODUCTION

Article 2 of the United Nations Framework Convention on Climate Change demands a
“stabilisation of greenhouse gas concentrations in the atmosphere at a level that would
prevent dangerous anthropogenic interference with the climate system”.? Consequently,
numerous studies have attempted to identify and examine the climate targets that are
supposed to guide climate policy and are thought of as safety constraints, beyond which
societal and environmental disruptions and catastrophic events are considered to be more
likely. The target that has become a critical part of emission reduction negotiations is
the 2°C target, which allows maximum global warming of 2°C throughout the twenty-
first century.®> A more holistic approach by Rockstrém et al. (2009) and Steinacher et al.
(2013) takes into account multiple (interlinked) climate targets that must not be missed.
For both approaches, recent contributions by Meinshausen et al. (2009), Steinacher et al.
(2013) and Vliet et al. (2012) show that these targets will soon move out of reach if

I This chapter is co-authored by Yu-Fu Chen and Michael Funke.
2For the full text of the convention, see http://unfccc.int/resource/docs/convkp/conveng.pdf.
3See Jaeger & Jaeger (2010) and Randalls (2010) for an in-depth discussion of the 2°C target.
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the emission reduction efforts continue to be delayed. Despite this increasing body of
scientific evidence, global emissions are not expected to be reduced soon. Under the
Cancun Accord, countries recognized that sharp reductions in emissions were required,
in order to limit the increase in the global temperature to less than 2°C throughout the
twenty-first century. However, the Accord stopped short of actually delivering a binding
worldwide agreement.* This paper aims to investigate the climate policy decision in the
context of a closing window of opportunity before a climate target moves out of reach.
To this end, we apply and extend a methodology - namely real options analysis - that
explicitly accounts for incentives to delay climate policy and thus offers an illustrative
tool to investigate how the knowledge of having only a limited amount of time to act
influences the policy decision.

An optimal climate policy that is focused upon a climate target is largely studied
by utilizing the (expected) net present value approach. This strand of literature gener-
ally finds that the presence of a climate target tends to accelerate the mitigation efforts
substantially. A full review of this literature is beyond the scope of this paper, but some
studies will be mentioned. Nordhaus (2010) estimates that the 2°C target requires imme-
diate emission cuts, implying a price of $82.05 per ton of carbon (2005 prices) in the year
2015 and steep price increases for decades afterwards. In contrast, a policy that implies
warming of almost 3°C requires only half that price in 2015. Accounting for uncertainty
about climate sensitivity and the climate response time scale, Held et al. (2009) apply a
chance-constrained approach to show that the 75% likelihood of achieving the 2°C target
makes drastic emission cuts necessary (with a maximum investment of 3% of the GDP
in renewable energy sources between 2030 and 2050).°> While the (expected) net present
value approach produces quantitative results describing the optimal policy path, it is not
designed to account for further mechanisms affecting the policy decision. In fact, the
policy decision deserves a closer inspection to understand why scientific evidence of a
climate target moving out of reach does not seem to make a difference to actual global
inaction. This analysis requires an alternative methodology that looks beyond the tradi-
tional expected net present value approach and can contribute to our understanding of
the decision problem.

Unlike the expected net present value approach, real options analysis explicitly quan-
tifies the incentives to delay investments. If an investment involves at least partially sunk

costs and the benefits of this investment are uncertain, delaying the investment, if possible,

“For the Canciin Accord at a glance, see UNFCCC (2010).

SFurther studies, such as those by Lorenz et al. (2012), O’Neill & Melnikov (2008), Schmidt et al.
(2011), Webster et al. (2008) and Yohe (2000), deal with the possibility of learning and revising targets
over time.
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may have a value to the policy maker. Adopting climate policy incurs at least partially
sunk costs and their implied benefits are uncertain. Of course, a delay may come at the
cost of higher climate damage costs as the temperature increases even further, but this
cost must be balanced against the benefits of waiting for new information to arrive. Real
options analysis accounts for both the expected net present value and the opportunity
costs of taking action now - the latter of which are captured by the real option value.
Pindyck (2000) shows that the option to wait has a positive value as long as uncertainty
is not completely resolved. The policy maker thus waits longer before curbing emissions.
However, it is not clear how the knowledge of having a limited amount of time left to act
before a climate target moves out of reach interacts with the incentives to delay climate
policy. Does it accelerate emission reduction efforts by significantly decreasing the value
of waiting?

This paper features a simple real options model that reflects the most important
characteristics of this decision problem. To this end, the race against time is captured
by restricting the availability of the option to a given time period, the duration of which
is exogenously given to the policy maker. The decision maker can only take measures to
meet some target before the deadline expires.” Afterwards, this goal moves out of reach
and the economy may have to bear higher climate damage costs.

The structure of the remainder of the paper is as follows. To illustrate the closing
window of opportunity, Section 2.2 presents a basic overview of the cumulative emission
trajectories that conform to the 2°C target. In Section 2.3, the design of the continuous-
time modelling set-up is presented. Subsequently, in Sections 2.4 and 2.5, we illustrate the
working of two model specifications - involving stochasticity in the damage function and
stochasticity in the temperature evolution - through numerical exercises and examine the
sensitivity of the main results with respect to the key parameters. Finally, in Section 2.6,
a summary and some policy implications stemming from the previous modelling exercise

are provided. Further details of some technical derivations are available in the appendices.

SA very informative introduction to real options analysis and a more detailed reasoning of the import-
ance of accounting for the real option value can be found in Dixit & Pindyck (1994). A more advanced
survey of real options analysis is given by Stokey (2009). Anda et al. (2009) elaborate on the advantages
of real options analysis over the conventional net present value approach by investigating processes that
can be described by a heavy-tailed distribution. Further applications of real options analysis to climate
policy decisions can be found in Chen et al. (2011a), Dobes (2010), Lin et al. (2007), Linquiti & Vonortas
(2012), Maybee et al. (2012), Pindyck (2000, 2002), Strand (2011), Watkiss et al. (2013) and Wirl (2006).
Earlier contributions stressing the importance of accounting for the tension between uncertainty and ir-
reversibilities in the context of climate policy are made by Kolstad (1996), Narain & Fisher (1998) and
Ulph & Ulph (1997).

"The assumption of only one global policy maker is sufficient to isolate and analyse the effects of the
limited opportunity to meet some climate target. As the next step, it is possible to extend this framework
by accounting for multiple decision makers having different views of the desirability of such a target.
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2.2  ADMISSIBLE EMISSION TRAJECTORIES UNDER CLIMATE PoLICY TARGETS

Temperature projections need to account for uncertainty relating several factors, e.g. the
quantity of all greenhouse gases (not only CO,), feedback effects, inertia in the climate
system, cooling and warming effects produced by different aerosols and so forth. Emission
reduction efforts that can meet some long-term temperature targets are assessed by paying
special attention to CO, emissions. Due to its abundance and its remarkable longevity
in the atmosphere, CO, exerts a dominant influence on the temperature evolution in
contrast to rather short-lived greenhouse gases and aerosols. As pointed out by Archer
(2005), half of CO, emissions are removed by the natural carbon cycle within a century,
but a substantial fraction will stay in the atmosphere for several millennia.® Positive
feedback effects will contribute to the atmospheric concentration by releasing CO, out
of the present carbon sinks such as the terrestrial biosphere, by the end of the century;
see Cox et al. (2000). The full extent of the consequences caused by the atmospheric
carbon build-up is not yet observable, as CO,-attributable global warming processes are
diagnosed as rather slow.?

For these reasons, Allen et al. (2009), Meinshausen et al. (2009) and Zickfeld et al.
(2009) find that over a period of a few decades the peak warming is remarkably insens-
itive to the shape of the emission trajectory and depends only on the cumulative total.
Meinshausen et al. (2009) provide explicit numbers for this cumulative total that are com-
patible with the 2°C objective with a certain degree of probability. As a substantial part
of the global carbon budget has already been used up in the first 10 years of this century,
the remaining cumulative total is assessed to be 750 Gt for the time period until 2050.
At this level, the probability of the global temperature rise exceeding 2°C throughout the
twenty-first century is calculated as 33 per cent. Beyond this, Meinshausen et al. (2009)
also point out that the total proven fossil fuel reserves are large enough to move the 2°C
target out of reach with a probability of 100 per cent.

To obtain an idea about the carbon budget approach, Figure 2.2.1 sketches examples
of global emission pathways admitting cumulative CO, emissions of 750 Gt during the
time period 2010 - 2050.1°

8Being based on climate models of differing complexity, other studies support these findings on the
whole; see for example Lenton et al. (2006) and Matthews & Caldeira (2008).

9For instance, the warming of the oceans lags behind considerably, so that the full effects on temperature
are not yet felt. However, the slow ocean mixing that delays the warming would also be responsible for
slow cooling. Hence, the benefits of a decrease in atmospheric carbon concentrations would be widely
offset; see Matthews & Caldeira (2008) and Solomon et al. (2009).

10The past emission trajectory matches the observed data, which are taken from www.cerina.org/home
and www.iwr.de/klima/ausstoss_ welt.html. The computation of the future trajectories corresponds to
the scientifically based equation (9) in Raupach et al. (2011), in which the business-as-usual growth rate
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Global CO2 Emissions from Business as Usual Scenarios:
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Figure 2.2.1: Alternative Carbon Dioxide Emission Pathways Complying with the 2°C Target with a
Probability of 67 Per Cent.

The global emissions of CO, decreased slightly between 2008 and 2009 following the
worldwide financial and economic crisis. Nevertheless, the global emissions again reached
record levels in 2010. Each trajectory merges an initial business-as-usual phase with a
subsequent mitigation phase that is assumed to be delayed until 2014 (red), 2018 (or-
ange), 2022 (green) and 2025 (blue), respectively. Albeit stylized, this graph helps us
to understand the key points that are implied by the carbon budget approach. Firstly,
the window of opportunity to limit global warming to 2°C is still open, but will close
soon. Secondly, the outcomes also illustrate that the longer the start of the mitigation
phase is delayed, the steeper the subsequent reduction in emissions has to be to meet the
2°C target. This occurs due to the realistic assumption of increasing annual emissions
in the business-as-usual scenario, so that the total carbon budget tends to be exhausted
quickly. Some of the exemplified emission trajectories involve almost unachievable reduc-
tion requirements, as two-digit cuts in annual emissions seem to be technologically and

11

economically infeasible from today’s perspective.”* Finally, Figure 2.2.1 indicates the

imperative to shut down CO, emissions almost entirely after 2050, even if the emission

of emissions is assumed to be 3 per cent.

" An implicit assumption when tracing the illustrative CO, pathways in Figure 2.2.1 is the non-
availability of negative emission technologies. The reason is that most decarbonization technologies are
still in early stages of research and development and large-scale deployment in the timescales needed is
very uncertain. We cannot be sure that all these technologies will work in practice outside the labor-
atory, i.e. the scalability and rollout potential on larger scales is uncertain. Furthermore, considerable
cost uncertainties exist. Lemoine et al. (2012) model the optimal combination of abatement, research
and development, and negative emission policies under the anticipated availability of negative emission
strategies with stochastic technological change.
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trend is reversed in 2014.

Other studies raise the concern that the mitigation options to reach such a climate
policy target are likely to disappear much earlier due to the legacy of existing long-lived
infrastructure and inertia in energy demand, which is discussed by Guivarch & Hallegatte
(2011) and Ha-Duong et al. (1997), and due to upper limits on the sustained emission
reduction rates, as illustrated by Stocker (2013). Accounting for the increasing energy
demand that is triggered by global economic and population growth, IEA (2011) projects
that the expansion of the high-carbon infrastructure in the next five years will already
mark the crossing of the 450ppm threshold, which is thought to be equivalent to the 2°C
target.lz

Whether the 2°C target is the exact guardrail, which represents a minimum for safety,
is not clear. Hansen (2005) criticizes such a target as unsuitable for framing climate policy,
as it already commits the world to significant climate change. At the UN climate change
conference in Cancin, governments agreed to review the 2°C target in the light of new
scientific studies on the effects of climate change and to consider lowering the maximum
to 1.5°C.

Rockstrom et al. (2009) look beyond one target and identify nine partly interlinked
Earth-system processes and their associated thresholds, which define “the safe operating
space for humanity”. Their analysis suggests that three of the boundaries have already
been breached. Steinacher et al. (2013) examine the permissable carbon budget by impos-
ing limits on six climate variables and find that the allowable cumulative total of emissions
is lower than that implied by the temperature target only. Whichever target or set of
targets might be the most appropriate, the above-mentioned studies suggest that early
action is urgently required.

How should policy makers respond to such a small window of opportunity? The
answer might be less straightforward if the following reservations are considered. First
of all, the policy decision would need to be made on the basis of climate damage cost
assessments that are rather vague due to substantial ecological and economic uncertainties.
Furthermore, enormous emission reductions imply large sunk costs, which may not be
recouped before long. Moreover, the worst effects of global warming and thus the benefits
of a climate policy reducing them may not be felt for decades, whereas the costs of tackling
climate change will burden the economies immediately. Hence, in spite of all the warnings,

policy makers may be tempted to wait instead of taking action.!?

12Currently, the CO, concentration is measured as 396.81 ppm, featuring annual growth rates of 2-3
ppm in the last years; see http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html.

13Further reasons to delay mitigation efforts relate to the uncertainty about mitigation costs and effect-
iveness, and the potential for making use of geoengineering technologies and for being capable of adapting
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Real options analysis explictly accounts for these incentives to delay climate policy.
In the next section, we present a model that translates the deadline imposed by climate

targets into a non-perpetual real option for climate policy.

2.3 THE BASELINE WINDOW-OF-OPPORTUNITY MODELLING SET-UP

This section anchors our modelling approach in the existing real options literature. Before
we begin our theoretical discussion, we believe that it would be helpful to characterize our
use of real options models. Recent research documents that it is more than a guideline
for decision makers. More precisely, there is ample evidence that policy makers employ
a “real options heuristic” [Kogut & Kulatilaka (2001)], i.e. retain the upside potential
without the downside risk of fully committing up front. That means that in a situation of
substantial uncertainties about the benefits of a policy, decision makers keep the options
to act alive. Afraid of committing themselves to huge expenses, they tend to wait for
further information. However, as explained in Section 2.2 the option to limit global
warming to 2°C will expire some time in the near future. The consequential question that
arises is whether and how this affects the policy maker’s decision. By incorporating the
opportunity to act explicitly, the following model is set up to provide an answer.

We assume that a global social planner strives to find the optimal timing for cutting
emissions by maximizing the flow of consumption over time.'# She faces the intergener-
ational trade-off problem that the costs of curbing emissions burden current generations,
while the benefits of doing so will be enjoyed by future generations. Moreover, bad timing
will certainly lead to one of the following two irreversibility effects. Investing too early
in mitigation technologies could trigger enormous sunk costs that are not recouped for
many years. Waiting too long may cause irreversible damage to ecological systems that
are valuable to human health or the economy. However, ubiquitous uncertainties in al-
most every component of projections and especially in the assessment of future climate
damage render a well-informed decision about the timing almost impossible. Put differ-
ently, all plans depend decisively on the unknown sensitivity of losses to climate change.
The unknown sensitivity is thus modelled as uncertain in the following. Any other lack

of knowledge is assumed to be resolved for the sake of analytical tractability. Expressed

to a good deal of the climate damages. These effects are beyond the scope of this paper and deserve
separate analytic treatment.

11 this framework the world is treated as a single entity in the interest of simplicity. The world
climate policy equilibrium can be constructed as a symmetric Nash equilibrium in mitigation strategies.
The equilibrium can be determined simply by looking at the single country policy, which is defined ignoring
the other countries’ mitigation policy decisions [Leahy (1993)]. Other climate policy measures, such as
adaptation or geoengineering, are not accounted for in the modelling framework. A worthwhile extension
of this model could be to investigate the optimal mix of these measures, given that some of them buy
more time while others, such as mitigation, are required to meet the climate policy target.
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mathematically, the policy maker solves the following objective function, which consists

of the expected net present value of future consumption levels:

W(X,AT)=E [(1 —w(T)) /OO L (X, ATy) Cye™"dt| (2.1)
t=0

where E[-] is the expectation operator and C} is global consumption over time with the
initial value normalized to 1. In its simplest form, the level of global consumption is
assumed to be equivalent to the level of global GDP. Climate change is modelled to
reduce this level of GDP/consumption to L (X¢, AT;) C;. The function L is driven by
AT, which describes scientifically estimated changes in temperature, and by Xy, which
is a (positive) stochastic damage function parameter determining the sensitivity of losses
to global warming. The flow of the net GDP/consumption is discounted by r. If the
policy maker takes measures to limit the temperature increase to a certain target 7, she
is obliged to pay mitigation costs that amount to a certain percentage w (1) > 0 of the
annual GDP. As the option to reach this target is perceived to be expiring soon, we make
the simplifying assumption that the mitigation costs w (7) > 0 do not increase with time,
but remain about the same within this limited time horizon.'® In the case of no climate

policy, the mitigation costs w (7) are zero.'6
Instead of trying to model climate impacts in any detail, we keep the problem ana-
lytically simple by assuming that damages depend only on temperature change, which is
chosen as a measure of climate change. To be precise, following Pindyck (2009, 2012), we

assume that the function L is implied by the exponential loss function
L(Xy, ATy) = e X187, (2.2)

where 0 < L (X, ATy) <1, 0L/0(ATy) <0 and 0L/0X; < 0. Note that the function L
denotes the actual output in percentage terms, relative to the potential output without
climate change. Therefore, the total damage cost ratio is equivalent to 1 — L. The GDP
at time ¢ net of damage from warming is given by L(X;, AT;)GDP;. Intuitively, a high
value of X; means that damage is sharply curved in AT;.

Before we turn to the modelling of the uncertainty that is attached to X; in equation
(2.2), we briefly introduce the other component in the loss function: the temperature in-

crease AT;. For this, we adopt the commonly used climate sensitivity function in Pindyck

15Please note that this assumption brings the great benefit of considerably limiting the complexity of
the numerical solution.

16\ litigation decisions are often modelled in a stylized and abstract way. Here, we assume a one-
off decision. It remains to be seen whether more realistic assumptions can be accommodated without
jeopardizing the main conclusions.
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(2009, 2012) and Weitzman (2009a). The single linear differential equation compresses
all the complex physical processes involved by capturing climate forcings and feedbacks
in a simplified manner. Hence, a direct link between the atmospheric greenhouse gas

concentration GGy and the temperature increase AT; is obtained by

In (G1/Gp)

dAT; =m ( In2

- mgATt> dt, (2.3)
where G, is the inherited pre-industrial baseline level of greenhouse gas and m1 and my
are positive parameters. The first term in the brackets stands for the radiative forcing
induced by doubling of the atmospheric greenhouse gases. The second term represents
the net of all negative and positive feedbacks. A positive parameter for this term thus
rules out a runaway greenhouse effect. The parameter m; describes the thermal inertia
or the effective capacity to absorb heat by the earth system, which is exemplified by the
oceanic heat uptake.

Let H define the considered time horizon. In the business-as-usual scenario, the
maximal temperature increase is assumed to double the warming after H years. This is
tantamount to AT, — 2ATy for t — oo, which implies 2ATy = 1/mg as the equilibrium
and mimo as the adjustment speed. The change in temperature increases linearly in the
logarithm of greenhouse gas concentrations and thus mims = 1%2 Cancelling terms and

rearranging gives

AAT; = lnl(f) (2ATy — AT}) dt (2.4)
and
AT, = 2ATy (1 e %t> : (2.5)

if the initial value ATy is set to zero. Equation (2.4) is an essential building block in the
real options modelling set-up, while equation (2.5) is useful for integrating the intertem-
poral climate change damage function.'”

If the policy maker reduces emissions, a certain temperature target is assumed to be

met after H years, i.e. ATy < 7. In this case, equations (2.4) and (2.5) are reshaped to

In (2)

dAT;, = 7

(21 — AT}) dt, (2.6)

7The increase in temperature is generated by an unspecified natural science climate model. Ultimately,
we take AT; and thus the geophysical microfoundation from climate models and impose this mathemat-
ically upon our economic model. This allows us to bypass climate and atmospheric modelling.



and

In

AT, = 27 (1 e ﬁzt) , (2.7)

respectively.

Let us now focus on the other component of equation (2.2) describing the sensitivity of
losses to global warming. The sensitivity of the future society’s welfare to global warming
depends to a large extent on the intrinsic uncertainty caused by the lack of knowledge
of future habits, tastes and economies’ ability to adapt to climate change. Particularly
for long timescales, which are typically considered in climate economics, this intrinsic
uncertainty increases. Intrinsic uncertainty is commonly assumed to follow a stochastic
process such as geometrical Brownian motion with (deterministic) drift parameter o and
standard deviation o.

dXt = O[Xtdt + O'XtdBt, (28)

where B is a standard Wiener process; see for example Pindyck (2000). The fluctuation
of X; over time complicates considerably the decision on whether to exercise the real
options of adopting the climate policy. Equation (2.8) allows one to trace the uncertainty

transmission to optimal policies, as social welfare W thus evolves as

W (X,AT) = E [(1 —w(r)) /0 N e‘X*(AT”Qe_(T_gO)tdt] (2.9)

~F {[(1 —w(r)) /0 b (1 — X, AT? + % (XtATt2)2) e—“—go)tdt] :

with a constant consumption/GDP growth rate of gy and the assumption that r is greater
than the expected consumption growth rate gg. Note that the exponential loss function
of Xy renders an explicit analytical solution of the Ito-integral impossible. Therefore, we
use second-order Taylor’s expansions approximations in the numerical analysis below.

In the following, the decision on whether to curb emissions now is derived by compar-
ing the value of action with the value of inaction. The welfare value of implementing the
environmental policy now, denoted by W4 (X,AT;7) = T Action (X, AT;T), is computed
by equation (2.9) with w(7) > 0 and the temperature equation (2.7). After utilizing the

relationship

E [th] _ Xg,e(na—l-%n(n—l)UQ)t, (210)
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which is derived by means of Ito’s Lemma, the welfare for taking action now evolves as

WA (X,AT;7) = (1 —w (1)) — 472y X 4 871 X2 (2.11)
=490
where

1 2 .1

Y11= — - 9
moom+ B2 g 22
1 4 L 4 L1

Y2 = — = - )
e g+ B2 gy 22y g3y, 4 yln2

m=7"—go—Q,
and

n2:r—go—(2a+02).

Note that it is assumed that both 7; and 7, are positive.'®

Alternatively, the policy maker may want to continue to emit CO, at the same level
and therefore AT; becomes ATy at t = H, but no mitigation costs are incurred, i.e.
w(7) = 0. Applying the Hamilton-Jacobi-Bellman principle and Ito’s Lemma to equation
(2.9), we obtain the inaction value WN (X, AT; ATy) = WNo Action (X AT ATy), which
can be described by the corresponding partial differential equation. The solutions to
WwN (X, AT; ATy ) and hence the partial differential equation consist of two components,

a particular solution and a general solution

WN(X,AT; ATy) = WNP (X, AT; ATy) + WNC (X, AT; ATy, t*) . (2.12)

Both solutions have a straightforward economic meaning. The business-as-usual policy is

valued by the particular solution, which is derived by solving equation (2.9) with w(7) = 0:

1

r—4go

WP (X, AT; ATy) = — 4AT} 71 X + 8ATH2 X2, (2.13)

where the parameters have the same forms as in equation (2.11).! Let t* denote the
remaining amount of time to take action so that the climate target will not be transgressed.
The value of the real options WNG (X , AT ATH,t*) is obtained from the homogenous
part of the partial differential equation. As discussed in Section 2.2, the limited time to
act implies the availability of real options of only a few years’ time. This implies that
at the end of t* years, 0 < t* < H, the real options value approaches zero. This focus

upon optimal policies over (0,t*) reflects the largely irreversible build-up of CO, in the

18Please see Appendix 2.A.
19Please see Appendix 2.A.
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atmosphere and clearly deviates from the infinite horizon assumption that is assumed in
almost all the variants of real options models. Though it is not possible to pin down
exactly how many years are left for the policy maker to act before it is too late, we
assume a fixed time of years left for the policy maker to pursue aggressive moves to curb
emissions. The exact value of t* is considered to be given and out of the control of the
policy maker. While it would be more realistic to endogenize t*, we simply assume t* as
exogenous and constant. The effects of different values for t* are elaborated on in the
next section.
After tidying up for
WA (X,AT;7) = WA (X, AT; ATy) + WNC (X, AT; ATy, t7), (2.14)

the value-matching condition for the optimal stopping problem for the policy maker is

represented by

4y [AT?{ —(1-w (7‘))7‘2] X — 87 [ATIZ}I —(1-w (7‘))7‘4] X2
_ v + WNG (X, AT; ATy, ), (2.15)
= 4go

where the two terms on the left-hand side denote the benefit of policy adoption. The first
term on the right-hand side quantifies the necessary up-front investment (sunk costs) and
WwNG (X ,AT; AT H,t*) denotes the non-perpetual real options. The value X describes
the threshold at which the policy-maker exercises the real options today in order to limit
the future temperature increase to less than 7 at t = H. This decision necessitates the
payment of the annual mitigation costs w (7) as a percentage of the GDP. The sunk cost
component of equation (2.15) reflects the irreversible commitment. As soon as the option
to cut emissions is exercised, the opportunity to wait and act later as more information

about X; becomes available is irreversibly lost.

We have now laid out an applicable analytical approach that directly addresses the
issue of the limited time to act. It is well known that closed-form solutions for non-
perpetual real options models usually do not exist.?® Therefore, we seek a numerical
solution. In the remainder of this paper, we perform a series of calibrations of this

model.

2.4 NUMERICAL SIMULATIONS OF THE BASELINE MODEL

Formal theory is essential in enabling us to organize our knowledge about climate problems

in a coherent and consistent way. However, the formal theory needs to be applied to data

20See, for example, Hull (2010).
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if it is to enhance our understanding and have relevance for practical problems. This
calibration exercise will provide new insights and may thus contribute to climate policy
discussions, which are certainly influenced by the limited time to act. For this purpose,
we map the theoretical framework presented above to real-world data. Where possible,
the parameter values are drawn from empirical studies. However, the determination of
some parameters is somewhat speculative or they are drawn from back-of-the-envelope
calculations.?! Therefore, for each parameter, a sensitivity analysis over a sufficiently wide
grid is performed, while keeping an eye on robustness. The unit time length corresponds
to one year and annual rates are used when applicable. Our base parameters are chosen to
be a« =0, 0 = 0.075, r = 0.025, go = 0.0 and H = 100. The temperature increase ATy is
assumed to be 3.4°C, which is equivalent to 4°C of warming since the pre-industrial level.
The target 7 is assumed to be 1.4°C, which is equivalent to 2 degrees of warming compared
with the pre-industrial level. In order to assess the mitigation costs, Edenhofer et al.
(2010) examine the energy-environment-economy models MERGE, REMIND, POLES,
TIMER and E3MG in a model comparison exercise.?? Despite the different structures
employed in the models, four of the five models show a similar pattern in mitigation costs
for achieving the first-best 400 ppm CO, concentration pathway. The mitigation costs are
estimated to be approximately 2 per cent of the worldwide GDP if the policy is adopted
in the near term. These costs turn out to be of a similar order of magnitude across the
models. We therefore assume that w(7) = 0.02.

As the sensitivity of losses X; fluctuates over time, we have to pay special attention
to the magnitude of the resulting climate damage. As an illustration and in order to gain
intuition, Figure 2.4.1 shows the numerically simulated percentage of damage (1 — L)
implied by the loss equation (2.2). The curves are derived by assuming three alternative
constant X terms in the temperature equation (2.4). The considered time period ranges
from t = 0 tot = 200. Two effects must be recognized. Firstly, the minimum of L(X;, AT})
and therefore the maximum of GDP net of damages, L(X;, AT;)GDP;, is obtained for the
lowest value of the drift term. Secondly, as can be easily seen in the graph, L spreads out
considerably during the time of undertaking no mitigation. For ¢ =50 years, the damage
is 3.89 per cent of GDP for constant X; = 0.01, 3.12 per cent of GDP for X; = 0.008 and
2.35 per cent of GDP for X; = 0.006. After t = 100 years, the corresponding damage is

Z1Despite the increasingly detailed understanding of climate processes from a large body of research,
various parameters involved remain inevitably unanswered except in retrospect.

22In order to improve model comparability, the macroeconomic drivers in the five modelling frameworks
employed were harmonized to represent similar economic developments. On the other hand, different
views of technology diffusion and different structural assumptions regarding the underlying economic
system across the models remained. This helps to shed light on how different modelling assumptions
translate into differences in mitigation costs.
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10.92 per cent of GDP for X; = 0.01, 8.83 per cent of GDP for X; = 0.008 and 6.70 per
cent of GDP for X; = 0.006.23
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Figure 2.4.1: Simulated Loss Due To Global Warming as a Percentage of GDP

To simulate the full model, we have to solve the partial differential equation by
utilizing an explicit finite difference method. To this end, it is transformed into a one-
factor partial difference equation (see Appendix 2.B). The variable X and the parameter
t need to be expressed as a network mesh of discrete points, AX and At. Afterwards, the
partial differential equation can be displayed as a set of finite difference equations that
are numerically solvable in a backward scheme and subject to corresponding discrete-time
boundary conditions (see Appendix 2.C).2* We use the following benchmark values for
the explicit finite difference method: X,,.x = 0.05, At = 0.0001, AX = 0.0002-0.%°

We now solve for the optimal timing of mitigation. The following graphs show
thresholds that split the space spanned by X shocks into action and inaction areas. In the
inaction area, the marginal reward for pursuing CO, reductions is insufficient and policy
makers prefer to wait. The economic explanation for the thresholds X is straightforward.
The index X is part of the loss function. The smaller X is, the faster the policy response
will be. For the sake of clarity, Figure 2.4.2 offers an isolated inspection of the impact of
alternative time horizons upon the climate policy threshold for the baseline parameters.

Broadly speaking, the results suggest that the limited time to act has a significant impact

Z3These numbers are in the range of common assumptions in the literature. In Weitzman (2009b), the
damage costs are calibrated to be 9 (25) per cent of the GDP for 4°C (5°C) of warming and Millner et al.
(2010) consider damages of 6.5 per cent of the GDP for 5°C of warming.

24The first paper to recognize that option prices could be obtained with a finite difference solution to
the partial differential equation was Schwartz (1977). The finite difference method proceeds by replacing
differentials with differences and then solving over a grid of time and state variables subject to the boundary
conditions. A thorough review of the state of the art in numerical finite difference techniques along with
an exhaustive list of references is offered by Duffy (2006).

25The benchmark values of At and AX are chosen to ensure a positive coefficient of equation (2.43)
and convergence and stability for (2.42) in Appendix 2.C in an explicit finite difference method scheme.
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upon the threshold for t* < 5 years. In the case of a very small t*, rational policy makers
will pursue immediate measures to curb emissions. As outlined in Section 2.2, the current
research indicates that the time left to reach the 2°C target would imply a rather low

t*. Accordingly, the results shown in Figure 2.4.2 elevate the urgency of climate change

policies.?6
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Figure 2.4.2: The Impact of Alternative Time Horizons t* Upon the X Threshold

This result of curbing emissions aggressively contrasts the slow, incremental ap-
proach to CO,, mitigation in reality and fits the urgency emphasized by Krugman (2010).
He warns against relying on models that advocate delaying mitigation measures. For
instance, the optimal policy in Nordhaus’s cost-benefit model would stabilize the atmo-
spheric carbon dioxide concentration at a level about twice its pre-industrial average,
which is supposed to lead to a temperature of 3°C. Decreasing emissions are not required
before 2045. This strategy has only modest negative effects on global welfare, accord-
ing to the RICE model.?” However, the crucial question arises of how trustworthy such
a projection really is. On the one hand, the consequences of such warming are hardly
predictable. On the other hand, looking back at historic experiences does not reveal in-
formation, as for most of the time span of human civilization the global climatic patterns
have remained within a very narrow range. Hence, it cannot be taken for granted that

such a policy will not cause a dangerous climate crisis.

26However, a large caveat should accompany any use of that number because it assumes that the climate
policies will be both efficient and effective. Obstacles to climate policy are exemplified by government
failure, regulatory capture and the impact of rent-seeking behaviour within the policy process. Climate
policy is likely to be a large source of economic rents from policy interventions. Note that this is an

exploratory paper and is by no means intended to give blanket approval to any proposal for climate
protection.

*"Please see Nordhaus (2010) for more information.
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The remaining problem of epistemic uncertainty can be approached in a relatively
straightforward, although computationally expensive, manner. Epistemic uncertainty
arises from a lack of knowledge regarding the true value of parameters and is typically
specified by parameter perturbation. Since the observed data are not directly accessible,
the only information about epistemic uncertainty available to the modeller is in the form
of bounds of the parameter values. In the three-dimensional Figures 2.4.3a - 2.4.3c be-
low, parameter variation is addressed using a “two-at-a-time” approach.?® This shows
how different parameter domains interact, and can indicate the parameters that have the
greatest influence on climate policy responses.

In particular, the assessments of the climate damage costs exhibit a broad range of
uncertainty and always lead to controversies.?? Beyond the issue of the likely consequences
of warming, it is debatable how non-market goods like human life and the intrinsic values
of ecosystems are appropriately monetarized and how catastrophes that have a low prob-
ability but high impacts are included. Furthermore, the future capabilities for adapting
to climate change are hardly predictable. By comparing 28 studies on marginal damages
costs in different regions, Tol (2005c) emphasizes that the estimates give insights into
the signs, orders of magnitude and patterns of vulnerability but remain speculative. To
study the effects of uncertainty in the assessments, Figure 2.4.3a illustrates the results for
different values of 0. It provides an important twist to the story by revealing the adverse
effects of uncertainty on the policy makers’ decision. The combination of the limited
time to act and even moderate increases in uncertainty may make the rational policy
response weaker, not stronger. The reason is that the benefits of waiting for uncertainty
to dissipate overwhelm the cost of moving too slowly. Thus, rational policy makers will
not necessarily behave prudently to keep nature from passing the 2°C threshold. Put
differently, the high o - small ¢* constellation is a double-edged sword. For a high o, the
temptation to avoid tackling climate change is hard to resist, although climate science
suggests that a steep near-term reduction in emissions is very likely to be needed.

Another substantial source of uncertainty is represented by the temperature increase
ATyg. The TPCC’s first assessment, published back in 1990, predicted warming of 3°C by
2100, with no confidence bands. The second IPCC assessment, in 1995, suggested warm-

28 An alternative approach to implementing uncertainty and complexity in the model would be to use
probability distributions weighting the resulting impacts accordingly. The development of such a compu-
tational demanding real options framework is beyond the scope of this paper.

2Tn a recent work, Maslin & Austin (2012) warn that up-to-date climate models offer improvements
to our understanding of complex climate processes, but produce wider rather than smaller ranges of
uncertainty. In other words, the understanding of climate change has become less, rather than more, clear
over time.
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Figure 2.4.3: Impacts on the X Threshold

ing of between 1°C and 3.5°C. The third, in 2001, widened the bands to project warming
of 1.4°C to 5.8°C. The fourth assessment in 2007 restrained them again, from 1.8°C to
4.0°C. At the moment, it seems unlikely that the scientific uncertainty will be completely
resolved in the near future. Quite the reverse, Kevin Trenberth (Head, National Cen-
ter for Atmospheric Research in Boulder, Colorado) recently warned in a commentary
in Nature Online (21 January 2010) headlined “More Knowledge, Less Certainty” that
“the uncertainty in AR5’s predictions and projections will be much greater than in pre-
vious IPCC reports.”® The reason for this is that as“our knowledge of certain factors

[responsible for global warming] does increase,” he wrote, “so does our understanding of

30See http://www.nature.com/climate/2010/1002/full/climate.2010.06.html.
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”31 In other words, there is

factors we previously did not account for or even recognize.
still tremendous and in some cases even increasing uncertainty in the climate projections.
Figure 2.4.3b outlines the joint impact of different temperature predictions ATy and the
time left to act t* to prevent the temperature from overshooting the 2°C target. For any
ATy the curve exhibits the same concave shape as in Figure 2.4.2. Hence, irrespective of
the magnitude of the predicted temperature, a rational policy maker will take mitigation
actions earlier for a small t*. However, the effect of varying ATy is enormous and has
a greater influence on the optimal policy threshold than the limited time to act. The
policy threshold X doubles in size when assuming ATy =2.9°C instead of ATy =3.9°C
and it increases even more when taking ATy =2.4°C instead of our base calibration
ATy =3.4°C. Hence, the decision about when to implement a climate policy is radically
influenced by the projection of the temperature increase. As in reality broad uncertainty
ranges of the temperature dynamics exist, this simulation highlights the huge problems
involved in reaching a decision in favour of a mitigation strategy.?> What is a reasonable
estimation on which to base the climate policy decision?

Next, we take a closer look at the impact of the discount rate . To explore the
sensitivity to alternative discounting assumptions, we employ a range of 0.02 < r < 0.04.
As expected, the results in Figure 2.4.3c affirm the view that higher discount rates will
bolster the reasons for adopting a “wait-and-see” attitude towards climate policy. This
is due to the fact that for a larger value of r the intertemporal damage is substantially
smaller. In other words, a higher discounting factor will trigger later adoption and a lower
intensity of climate policy. This highlights the importance of attaining a consensus on
the discount rate before an appraisal of the optimal timing of policy implementation can
be undertaken. Another important conclusion from Figure 2.4.3c is that the effects of a
higher discount rate trumps the effects of the limited time to act.

To sum up, we may conclude that the knowledge of having a limited time to act
should accelerate climate policy significantly, particularly if the window of opportunity will
close very soon. However, ubiquitous uncertainties in the projections of the temperature

increase and the future damage costs as well as the different opinions on the discount rate

31Up-to-date climate models are trying to come to grips with a range of factors that have been ignored
or only sketchily dealt with in the past. One troubling aspect is the role of clouds, because nobody can
work out exactly whether warming will change them in a way that amplifies or moderates global warming.
Another problem in understanding clouds is the role of aerosols, which dramatically influence the radiation
properties of clouds. It therefore comes as no surprise that the resulting error bands are extremely wide.

32This raises the question of how much we can expect medium-run climate projections to improve. Can
we reduce forecast errors? How much can uncertainty be reduced as models improve? Although climate
models have improved and societal needs push for more accurate decadal climate projections over the next
10-30 years, decadal projections are still in their infancy and the prospect of useful decadal projections is
far from assured [see Cane (2010)].
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are shown to be of more importance to the decision. In particular, the uncertainties in
the damage costs are demonstrated to have adverse effects. Despite the urgency to take

action, this kind of uncertainty delays the implementation of a climate policy.

2.5 MODELLING STOCHASTIC CHANGES IN TEMPERATURE

Analysing a complex and inherently uncertain problem such as climate change and global
warming requires us to consider multiple forms of uncertainty, as well as the incomplete
nature of different types of knowledge. Aside from intrinsic uncertainty in the dam-
age function, the stochasticity and variability in the temperature evolution contribute
to the complexity of the climate policy decision. We address this issue now by adding a
mean-reverting stochastic term to the temperature equation while treating X as constant.
Ultimately, this means that the deterministic equations (2.4) and (2.6) are replaced by
stochastic mean-reverting Ornstein-Uhlenbeck processes.?? To bring clarity to the expos-

ition that follows, we henceforth assume

In (2
and
In (2)
dATt = H (27’ - ATt) dt + O'dBt, (217)

where equation (2.16) represents the stochastic process for possible paths of temperature
changes in the business-as-usual scenario, and equation (2.17) describes the equivalent in
the climate policy scenario. Both equations show bounded uncertainties for AT

As the expectation value of the exponential loss function, which comprises the mean-
reverting processes (2.16) and (2.17), is not analytically obtainable, numerical procedures
need to be employed to derive the solutions of the particular integrals WNF(AT; ATy)
and WA(AT ; T), respectively. The value-matching condition is then used to obtain the

threshold temperature change AT, at which it is optimal to implement climate policy.

WA (AT;7) — WNP (AT; ATy) = WNC (t, AT; ATy, t), (2.18)

33 Alaton et al. (2002) study weather futures prices based on temperature indices using Ornstein-
Uhlenbeck stochastic processes. Subsequent weather derivative pricing papers also take into consideration
extended Ornstein-Uhlenbeck processes.
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or explicitly

[e.o]

E /e—Xt(ATt)2€_(T_90)tdt AT = ATy, T
0

& / ¢ XAT)? (= (r=90)t gt | AT — ATy_o, ATy
LO

=w(r)E { / e_Xt(ATt)Qe_(T_go)tdt‘ AT = ATtZO,T] + WNC (t,AT; ATy, t),
0
(2.19)

where

WA (AT ) = (1 —w(r) E [/ e XHUATY =)t gy
0

T} : (2.20)

WP (AT; ATy) = E U e_Xt(ATt)Qe_(r_go)tdt‘ ATH] : (2.21)
0

and WNG (¢, AT; ATy, t*) describes the non-perpetual real options value.3* The left-
hand side of equation (2.19) denotes the benefit of mitigation, while the right-hand side
represents the present value of the sunk costs and the value of the real options sacrificed
due to curbing greenhouse gas emissions.

We use the same benchmark values as in the previous section, where possible. The
constant value of X is now set to 0.08, as it is no longer a stochastic variable. The risk
parameter o in equations (2.16) and (2.17) needs some consideration. The variance of the
process is given by

2

0% = Var[AT)] = ;W (1 - e—QI“éQ)t) . (2.22)
TH

The accurate specification of the process that the temperature follows over time is a
prerequisite for the analysis. To this end, we evaluate the stochastic process under scrutiny
for a wide range of parameters. In particular, we turn our attention to the accuracy of the
calibrated temperature dynamics at longer horizons. The result is that the grid 0.1 < o <
0.25 yields a reasonable domain of temperature variability. Therefore, as the benchmark

value, we take 0 =0.175.%°

34As a practical matter, though, the numerical solution of the model using finite difference methods
becomes computationally very challenging. See Appendix 2.D.
35The parametrization is also broadly consistent with the findings by Luterbacher et al. (2004) and
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Figure 2.5.1: Impacts on the X Threshold

However, solving the stochastic model at fixed values of the model parameters res-
ults in estimates of optimal policies that do not take into account the uncertainty in the
model input parameters (known as epistemic uncertainty).® Therefore, we again explore
robustness via parameter perturbation. In keeping with Figure 2.4.3, Figure 2.5.1 illus-
trates the sensitivity of the optimal climate policy over a range of parameters for the
predicted temperature increase ATy and the discount rate r. Additionally, the impacts

of different assumptions on the temperature variability o is examined. Whenever the

Swanson et al. (2009) regarding the magnitude of the temperature variability.

36Most economic problems involve epistemic as well as aleatoric uncertainty. In the modelling phase,
sometimes it may be difficult to determine whether a particular uncertainty should be put into one
category or another. This may raise the philosophical question of whether there is any aleatoric or
epistemic uncertainty at all. Clearly, this question does not make sense outside the model universe. From
an economic policy point of view, all uncertainties are the same as a lack of knowledge. This supports the
case for a rather agnostic view of the sources of uncertainty.
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threshold of taking action AT assumes negative values, the policy maker adopts the cli-
mate policy instantaneously. Conversely, positive threshold values mean that the policy
maker should wait for more information to arrive in the future and keep the real option
alive. Figure 2.5.1 confirms that the limited time to act accelerates climate policy, and
that this effect is outweighed by small changes in ATy, r and ¢.3” Hence, despite the
bounded uncertainty for AT in (2.16) and (2.17), both specifications of stochasticity give
the same qualitative results. This can be interpreted as evidence of the robustness and

structural validity of the results in Section 2.4 above.38

2.6 CONCLUSIONS

Recent scientific studies by IEA (2011), Meinshausen et al. (2009) and Steinacher et al.
(2013) indicate that global greenhouse gas emissions need to be substantially reduced in
upcoming years, in order to limit global warming to 2°C. This motivated us to investigate
the climate policy implications of a time-limited window of opportunity from a real options
perspective. Real options quantify the opportunity costs of adopting a policy now and
making the involved irreversible investments rather than waiting for new information to
arrive. As shown by Pindyck (2000), the option to wait has a positive value as long as
the uncertainty is not completely resolved, which implies that the policy maker waits
longer before undertaking emission reduction efforts. In this paper, a non-perpetual real
options framework is developed to investigate whether the closing window of opportunity
significantly reduces the value of waiting and thus accelerates mitigation.

In describing a highly complex picture, we focus on two sorts of uncertainty:
stochasticity in the climate damage costs and in the temperature evolution. Furthermore,
the robustness of the results with respect to some key model parameters is examined. A
unifying message from mapping out different layers of uncertainty could be that policy
makers have to take steps to cut emissions now, so that a radical, hasty and extremely
costly shift towards carbon-neutral alternatives is not necessarily required. Although a

global shift in energy- and carbon-intense investment patterns is required to prevent a

3"Note that the mean-reverting processes in (2.16) and (2.17) contribute to the abrupt decrease in the
thresholds for a very small ¢*. The term (In(2)/H) (2ATy — AT) increases with a negative AT, leading
to a fast rise in real options values when negative AT are presented. Such an effect is smaller when the
thresholds for AT are positive, as shown in Figure 2.5.1. Furthermore, the uncertainty for geometrical
Brownian motion is smallest when X is small in Section 2.4, while uncertainty for equations (2.16) and
(2.17), the term dB, does not depend on the value of AT. Both of these reasons contribute to the big
jumps in the thresholds for a very small ¢t*.

38This usage of “robustness” should not be confused with the concept of robustness in the econometric
literature, which refers to the insensitivity of the estimated coefficients to adding or removing sample
observations.
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long-term high-carbon lock-in, the policy makers will probably not take drastic action in
the near future. Ubiquitous uncertainties in the projections of the temperature increase
and the future damage costs as well as the different opinions for discounting the future
consumption flows affect the decision considerably. In particular, the uncertainties in the
damage costs are shown to have adverse effects. Despite the urgency of taking action,
this kind of uncertainty may lead to a range of inaction, in which the policy makers prefer
to postpone emission reductions. Instead of saying “there is not much time left”, we un-
fortunately may have to note: “time is running out”. That, in a nutshell, is the dilemma

of climate change.
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APPENDICES

2.A DERIVATION OF EQUATION (2.11) AND EQUATION (2.13)

By applying Ito’s Lemma to the logarithm of X; in equation (2.8), we obtain V¢ >0 :
X, = Xoelo=37+Be, (2.23)

After raising equation (2.23) to the power of n, the application of the expectation value

yields
E[th] _ X(?)’Len(a—%az)tE[ naBt]
_ X(?)’Le(na—%nUZ)teEn o2t (224)
_ Xge(na+%n(n—l)a2)t.
This relationship is utilized to compute equation (2.9) for a climate policy:
wh (X,AT;T (2.25)

- [ /0 (1 — X AT? + % (XtATt2)2> e(”gf’)tdt}
o0 2
= 1— Xdr? (1—e it
oy [ (1= (1=
Lo oy 2 NNy
+§Xt 167 (1 —e H ) e \"TI0tt
) N 2
= (1 - w(r)) / (1 —4B[x)r? (1 - e i)
0
S E[X2]rt (1 — et ) ) (r=g0)t g
2

—(1- w(T))/ (1 — 4Xpetr? (1 - e—%t)
0
+8Xge(2a+02)t7_4 (1 _ eh}ft)4> e~ (r=90)t g4

The second equality holds as the conducting of a climate policy is assumed to put the
temperature equation (2.7) into effect. The third equality is obtained by applying Fubini’s
theorem before rearranging and taking advantage of the monotonicity of the expectation

value and the last equality holds due to equation (2.24). By expanding the terms

In2

2 n n
(1= 5) =1 - 207 g o2 (2.26)

36



and

n 1n2t

n 4 n n
(1 — e %t> =1—de” Hl4 62 H — o3 e AP, (2.27)

we obtain after integrating

1 1 2 1
WA (Xv ATvT) = (1 —w (T)) - 47—2X0 o In2 + In2
" —=9o m 77]_""? 771+27

+874X LI LI
o\ — — - )
Ny Mo+ W2 gy o2 gy g2t 4 g2
(2.28)

where
m=7—9go—«
and
m=1—go— (20 +0?),

which is the same as equation (2.11).
Please note that the welfare value of the business-as-usual policy WNF evolves in an
analogical way. Hence, its solution is the same but with w(7) = 0 and equation (2.5),

which gives equation (2.13).

2.B  DERIVATION OF THE ONE-FACTOR PARTIAL DIFFERENTIAL EQUATION FOR NON-
PERPETUAL REAL OPTIONS

The corresponding partial differential equation to equation (2.9) for the case of business-

as-usual is denoted by the following Bellman equation by Ito’s Lemma:

oWN
AT (2.29)

In (2)

1
(r—go—a)WN = (1 — Xy AT? + 3 (XtATE)2> + <

owN L1 X282WN N owN
X 2 X2 ot

(2ATy — ATt)>

+aX

It is the usual practice in financial derivatives that a two-factor partial differential equation
(2.29) can be solved by two-dimensional finite difference methods. However, we can use
the method of separation of variables to reduce (2.29) into a one factor partial differential

equation, as we know that the non-perpetual real options are related to the diffusion
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process X. Without the stochastic process in equation (2.9), the real options terms do
not exist. On the contrary, the policy maker considers the process AT; as an exogenous
variable in the business-as-usual case. Furthermore, the particular solution to equation
(2.13) implies that the solutions to equation (2.29) consist of the mathematical product of
two different components: one for X; and the other for AT;. The discussion indicates that

we can use the method of separation of variables to solve and simplify equation (2.29).
WNG = f(AT)Y (X,1). (2.30)

Substituting (2.30) back into equation (2.29) yields

(r—go—a) f(AT)Y (X,t)= lnf(IQ) (2ATy—AT)Y (X,t) dfdff) +aXf(AT) OYa());,t)
1, 8%Y (X, 1) aY (X, 1)
+ 50 X2f (AT) oz T (AT =
(2.31)
Dividing both sides by f (AT), we obtain
In (2) Y (X, t) df (AT)
- Y (X, ) = 2 oA, — A
Y (X,t) 1 , .0V (X,t) 8Y (X,t)
—l—aXiaX —|—§O'X X2 TR

To make the partial differential equation (2.32) solvable by the separation of variables,

% (2ATy — AT) 7 iT) d];(AA:,? ) has to be a constant linear term. This implies that the

solutions of f (AT) take the form

f(AT) = (2ATy — AT)? (2.33)
and
1an({2) (2ATy — AT) 1;((2(’;)) af dff ) _ —2111]52)1/ (X, 1). (2.34)

Equation (2.34) ensures the separation of equations and yields the following new partial
differential equation for Y (X, ¢) by substituting (2.34) back into (2.32):

In (2) Y (X 1) 1, LY (X,t) OV (X,t)
H)Y(X,t)—aXaX 0K T T (2.35)

Therefore, we obtain the solution

(r—go—a+2

WNG = (2ATy — AT)?Y (X, 1), (2.36)
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where Y (X, t) follows equation (2.35). The results are similar to Chen et al. (2011a)
apart from the fact that equation (2.35) has the term 9Y /0t due to the “limited time
to act” real options. Equation (2.35) can be solved by numerical methods, such as finite
difference methods. By combining equations (2.35) and (2.36), we then obtain the desired

one-factor partial differential equation for non-perpetual real options:

n2)\ ng_ LOWNE 1, L9PWNG  oWwNG
(’"—go—a“H)W X Tx Tt gy g (88D

The main difference between (2.29) and (2.37) is the transition of the term

(% (2ATHy — AT, t)) % in equation (2.29) into the higher effective discount rate of
equation (2.37), increased by a factor of 2% =~ 1.39% for H =100. The meaning is
straightforward, as higher changes in temperature in the future lead to a lower intertem-
poral value of consumption and GDP. This is equivalent to lower real options values being

caused by higher effective discount rates.

2.C ExpriCcIT FINITE DIFFERENCE METHOD SCHEME FOR EQUATION (2.37)

For real options with maturity ¢*, the boundary conditions are

WNG (1, X, = 0,AT}) =0 (2.38)
and
lim WNC (¢, X; = 2, AT))
— max LIEEO (WA (£, X, = 2, ATy 7) — WP (&, X, = 2, ATy; ATy)) ,o} . (2.39)

where W4 (t, X, AT; 1) and WNP (t, X, AT; ATg) are from equations (2.11) and (2.13),

respectively. The terminal condition is
WNC (t = t*, X4, AT}) = 0, (2.40)

which is used as the starting points as the explicit finite difference method is backwards

computing from ¢t = t* to t = 0. The condition of
WNG (¢, X3, ATy) = max [WA (t, Xy, ATy; 7) — WP (¢, Xy, ATy; ATy) , 0] (2.41)

is checked for every t since it is a free-boundary condition for real options in a sense that

real options can be exercised at any time. Accordingly, equation (2.37) for real options
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WNG can be approximated by a function that is defined on a following two-dimensional
grid, i.e. WNG (tAt, jAX) = v; j. For the explicit approximation, the partial derivatives

are approximated by

N
OWNG i i1 — Vi1

= 2.42
0X 2AX ’ (242)
PWNE i1+ Vg1 — 2'Ui+1,j7 (2.43)
0Xx? AX?
8WNG _ Vi+1,5 — Vij (244)
ot At
Substituting the above equations back into equation (2.37) yields
In (2 . Vig1.i41 — Vidl.i—
(r —go—a+ 2I§T)> vij = ajAX ( ZHJJF;AX”H’J 1)
1 900 vo (Vitlj+1 + Vit1j-1 — 20415 Vitl,j — Vij
= AX ’ : 2 ’ =) 2.45
o7 < AX? T\ A (2.45)
Finally, rearranging and simplifying further allows us to obtain
Vijj = G501+ vt + Uity g, (2.46)
where
. 1 I I 5.
af = o (—QajAt + 202]2At> , (2.47)
1+ (r—gg—a+2 77 )At
b = ! (1—0o%j2At) (2.48)
’ 1+<r—go—a+2$>At
1 1 1
c; = — <ajAt + U2j2At> . (2.49)
1+<T—go—a+2%>At 2 2
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As an analogue to equation (2.25), WA (t, X;, ATy; 1) and WNP (¢, Xy, ATy; ATy) can be

expressed by the following equations:

A DY — (1 X (r—go)t _ 2 (1 —Wm20iiar)?
W (X, ATy 1) = (1 —w (1)) e El(1-4Xym°(1—€e H

0
n . 2\ 2
+% (4Xt72 (1 —e %Uﬂﬁf)) ) )] dt  (2.50)

and

o0 n o 2
WNP (Xt, ATt; ATH) :/ e—(T—QO)tE |:<1 _ 4XtAT[2{ <1 — e 172(15-1-JA15))
0
1 2 — 2y a2 ?
+5 (4xATh (1 — e ) dt, (2.51)

where the term (¢ + jAt) reflects the temperature at time = (¢ + jAt) when computing
the pay-offs for real options. Solving equations (2.51) and (2.50) is very time-consuming
since we need to compute the integrals at each time step backwards. Note that equation
(2.5) shows that the early temperature increase is not great for a small ¢. Furthermore,
as we compute the values of WNP (X;, ATy; ATy) and WA (Xy, ATy; 7) backwards at each
step of time from ¢t = t* to t = 0, (¢t + jAt) approaching (¢ = 0) for the final values of real
options, which means that at ¢t = 0, (2.50) and (2.51) become

1
r—4go

WA (X, AT ATy) = (1 —w (1)) —4AT* X + 8AT e X2 | (2.52)

WNP (X, ATy 7) = — AATH X + 8ATHY2 X2, (2.53)

=90
which are the same as in equations (2.11) and (2.13). Numerical testing shows that using
(2.52) and (2.53), time-invariant results, for the time from ¢t = T to ¢t = 0 gives almost
the same numerical results as using (2.50) and (2.51). The threshold for X; at time t =
0 is then obtained from the above algorithm by checking numerically the points where
equation (2.15) holds.
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2.D NUMERICAL SCHEMES FOR SoLviNg WNFP WA anp WNG IN SECTION 2.5

For the stochastic processes (2.16) and (2.17) of temperature changes, WP W4 and
WNG satisfy the Bellman equations

_ NP _ —xar? |, In(2) _ owrr 1 L PWNP
(r—go) W =e + 77 (2ATy — AT) AT + 59 AT (2.54)
(r—go) W =e + =4 (27— AT) 5AT T 57 ATE (2.55)
In (2) oWwNG 1 ,92WNG  gWwNG
_ NG _ 2\4) _ Lt 2
(r—go) W 7 (2ATy — AT) =i + S0t + = (2.56)

Equations (2.54) and (2.55) are both second-order ordinary differential equations and can
be solved by various numerical methods. However, the exponential loss function e~™* AT?
causes some difficulties, because many methods require initial (or terminal) conditions for
the differential equation and its derivative. The only known initial/terminal conditions for
equations (2.54) and (2.55) relate to AT approaching either positive or negative infinity.
To make matters worse, the solutions generated by the usual methods, such as the Runge-
Kutta methods, are very sensitive to the choice of the initial/terminal points and the
corresponding slopes. To obtain stable numerical solutions to equations (2.54) and (2.55),
we utilize a slow iterative method used in solving differential equations — a central finite
difference scheme with boundary conditions. Information about the derivative of W with
respect to temperature changes is not needed.

The derivatives are proxied by the following central finite differences:

NP
ow o ’Uj+1 — ’Ujfl

= 2.
0AT 20Z (2:57)
GQWNP Vj+1 + Vj—-1 — 21}]'
OAT? AZ? ’ (2.58)

where WNF (AT}) = v;. Substituting (2.57) and (2.58) into equation (2.54) gives

_—B(ATy)? In (2) ) Vj+1 — VUj—1 1 5 Vjt1 + V-1 — 21)j
T’UJ =€ ( ]) + T (2TH — ATJ) W + 50' AZ2 . (259)

Rearranging and collecting the terms give

AZ2e PO 4 B 9Ty — AT)) AZ (vj41 — v-1) + 302 (vj41 +v5.1)
rAZ? + o2

(2.60)

U =

The procedure for solving (2.60) is as follows:
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1. Step 1: The initial selection of the starting values for all v; with two boundary
conditions: v; = 0 and vy4; = 0. To raise the speed of the iterative method, we
obtain the initial values of v; by setting o = 0, i.e. v; = fooo e_BATth_("_QO)tdt,

In2, In2,

with ATy = = (AT; — 22Ty (1 ¢#1)), where AT; is the initial value of

temperature changes.

2. Step 2: The systematic running of equation (2.60) over all the initial grid points,
the setting of the new values of v; as initial points and the iterative running of
the process over the grid points. After iterations, the values of v; approach the

approximations of the problem.

The finite difference method/scheme is slow but stable approaching the solutions. We
use the following values for numerical simulations: AZ=0.0025, v; = v (AT = —12) =0,
vy = v (AT =12) = 0. The number of iterations is 500,000. Equation (2.55) can be
operationalized using the same procedure.

After approximating WP, WA, we can focus our attention on the real option WNG
and the value-matching condition, equation (2.18). The scheme is similar to the one in
Appendix 2.C. Therefore, in what follows, we only show the main equations. For the

explicit finite difference approximation, the partial derivatives are approximated by

NG
OWSS w141 — Vig1,5-1

= 2.61
OAT 2AY ’ (261)
PPWNG _ Vil Vigl-1 — 21}i+1,j7 (2.62)
OAT? AY?
aWNG _ Ui—‘,—l,j - vi,j ) (263)
ot At
where Y = AT'. Substituting the above equations back into equation (2.56) yields
In (2) Vit1,j4+1 ~ Vitl,j-1
(= iy =4 (2 = ;) (e
1 5 (Vit15+1 + Vig1,5-1 — 205415 Vitl,j — Vi
— : : . — | 2.64
37 < AY? * At (264)
Rearranging and collecting the terms gives
Vij = Q50411 + bivip1 + U141, (2.65)
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where

. 1 lo2At 22 o1y — vj) At (2.6
YT T (r—go) At \ AY? 2AY ’ '
1 a2 At
A S [ R 2.
% 1+ (r—go) At < AY2>’ (2.67)
D@ 0Ty —vj) At oAt
¢t = ! g (2Tn —Y;) At | 3088 (2.68)
714 (r—go) At 2AY AY?

While the rest of the computation procedure is similar to Appendix 2.C, there is one
difference in the boundary conditions. The temperature at which the real option becomes

worthless needs to be very low. We use ATy, = —6 as such a boundary condition:
WNC (¢, AT, — ATin) = 0. (2.69)

This assumption proves to be adequate, as shown by the numerical simulations.
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All scientific work is incomplete - whether it be ob-
servational or experimental. All scientific work is li-
able to be upset or modified by advancing knowledge.
That does not confer upon us a freedom to ignore the
knowledge we already have, to postpone action that

it appears to demand at a given time.

Sir Austin Bradford Hill,

Epidemiologist and Statistician

Dark Clouds or Silver Linings? Knightian
Uncertainty and Climate Change!

3.1 INTRODUCTION

The future dynamics of greenhouse gas emissions, and their implications for global climate
conditions in the future, will be shaped by the way in which policy makers respond
to climate projections, react to model uncertainty, and derive resultant mitigation and
adaptation decisions. However, assessments of the future impacts of climate change, which
shall provide the basis of a climate policy decision, are far from being conclusive. A
considerable lack of scientific understanding and uncertainties about the future economic
development lead to enormous ambiguities in the projections. Accordingly, the question of
how to design an optimal climate policy causes huge controversies. It could be reasonable
to wait for new information to arrive before taking action. An example for this procedure
is given by the former U.S. president G.W. Bush’s strategy. The key idea was to promote
climate research with the aim to close the relevant gaps in knowledge before devising and

adopting policy.? Critics argue that the peril of serious and irreversible climate damages

!This chapter is co-authored by Yu-Fu Chen and Michael Funke.
2See, for example, G.W. Bush’s announcement on June 11 in 2001, which is available on the webpage
georgewbush-whitehouse.archives.gov.
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may necessitate to take instantaneous and preventive action. This approach to the climate
problem resembles the precautionary principle, which is for example endorsed by the
European Union and the Rio Declaration on Environment and Development. Principle 15
in the 1992 Rio Declaration on Environment and Development states that due to threats
of serious and irreversible damage, “lack of full scientific certainty shall not be used as a
reason for postponing cost-effective measures to prevent environmental degradation.”

To provide an economic foundation for this discussion, analysing the rational de-
cision under fundamental uncertainties has gained importance over the last years. The
absence of knowledge implies that the decision maker is not capable of assigning specific
probabilities to events. This contrasts the situation in which sufficient statistical inform-
ation is available to describe the probability of an event by the relative frequency of its
occurrence over time. Knight (1921) classifies the first case as ambiguity and the latter
as risk. The importance of distinguishing between both notions of uncertainty has been
acknowledged ever since the seminal experiments by Ellsberg (1961). The participants
were presented a situation in which they could bet on correctly predicting the color of the
ball they would blindly draw from one urn of their choice. The subjects were provided
with full information about how many balls of which color are inside one of the urns,
while for the other urn they were given no information at all. The results show that
people prefer to bet on the first urn, indicating that the awareness of missing information
affects decision making.? This phenomenon is generally referred to as ambiguity aversion.
Although further experimental evidence by subsequent studies stresses the relevance of
ambiguity aversion, the attitude towards ambiguity is not necessarily negative.* Among
other studies, Heath & Tversky (1991) give an account of an experiment in which subjects
behave rather ambiguity loving than averse.® Whatever the attitude towards ambiguity,
the experiments show that ambiguity matters for decision making. It should be noted
that the case of risk, in which the decision maker knows exactly the underlying probab-
ilities, and the case in which the absence of knowledge prevents to form any judgement

about the probabilities are extreme cases. In many decisions, there is some, albeit not

3Before, it was widely accepted that a rational decision maker is considered to be indifferent between
the situation where the probability is clear-cut and where it is vague, as long as the mean probability is
the same for both cases, see Savage (1954).

4Subsequently, the so-called Ellsberg paradox has been examined and verified for alternative situations,
see for example Becker & Brownson (1964), Camerer & Weber (1992), Halevy (2007), Hogarth & Kun-
reuther (1985), Sarin & Weber (1993) and Smith (1969). Neuro-empirical evidence has been provided by
Hsu et al. (2005) by proving that certain areas in the brain respond differently to situations of risk and
ambiguity.

SHeath & Tversky (1991) provide support for the so-called competence effect, i.e. people prefer ambigu-
ous alternatives when they consider themselves especially competent or knowledgeable about the source
of uncertainty.
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enough, statistical information available that allows restricting the considerations to a set
of possible probability measures. This narrower concept of ambiguity — also referred to as
Knightian uncertainty — has been brought into close connection with the multiple priors
approach by Gilboa & Schmeidler (1989) and with the notion of kappa-ignorance by Chen
& Epstein (2002), which measures the degree of ambiguity. In the context of ambiguity
aversion Gilboa & Schmeidler (1989) show that the set of probability distributions reduces
to the behavioral bias to extreme pessimism, i.e. the decision maker maximises welfare
of the minimum / worst scenario.

Recently, this concept has been transfered to analyse the decision when to adopt
an environmental policy. Asano (2010) examines the impacts of Knightian uncertainty
referring to future economic developments that affect the social costs of a pollutant, e.g.
the innovation of a technology could lower the costs of a climate policy adoption. Vardas
& Xepapadeas (2010) apply the Knightian uncertainty concept to the evolution of species
biomass to assess ecosystem management strategies. These studies assume ambiguity
aversion and come to the same conclusion that the policy is to be adopted earlier than
in a situation where uncertainty is described by risk. As pointed out by the authors, this
approach can be considered to be a formal way to model the precautionary principle.

This paper reexamines this conclusion by directing the attention to the ambiguous
assessments of the future damage costs and providing a different view onto the effects of
Knightian uncertainty. A review of the existing estimates reveals enormous uncertainties,
see Stern (2007). Apart from different appraisals of vulnerabilities, impacts of extreme
weather events and catastrophes are often neglected and underlying assumptions about
the future economies’ capability to adapt are highly controversial. Highlighting the degree
of ambiguity in these assessments, the three main benchmark studies by Mendelsohn et al.
(2000), Nordhaus & Boyer (2000) and Tol (2002) vary between 0 and 3 per cent of GDP
losses for 3°C warming.® Accordingly, we develop a formal decision model in which the
social planner faces Knightian uncertainty in the future climate damage costs. The degree
of ambiguity is captured by the concept of kappa-ignorance.

The model we develop is based on recent theoretical analyses of decisions under un-
certainty, which have highlighted the effects of irreversibility in generating “real options”.
In these models, the interaction of time-varying uncertainty and irreversibility leads to
a range of inaction where the policy maker prefers to “wait and see” rather than un-
dertaking a costly action with uncertain consequences. We employ this recent literature

and interpret climate policies as consisting of a portfolio of options. The general idea

SPindyck (2013) has convincingly argued that several climate models give a false and misleading sense
of knowledge and precision although several model ingredients are in the realm of the "unknowable”.
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underpinning the view that climate policies are option-rights is that climate policy can
be seen as analogous in its nature to the purchase of a financial call option, where the
investor pays a premium price in order to get the right to buy an asset for some time
at a predetermined price (exercise price), and eventually different from the spot market
price of the asset. In this analogy, the policy maker, through her climate policy de-
cision, pays a price which gives her the right to use a mitigation strategy, now or in the
future, in return for lower damages. Taking into account this options-based approach,
the calculus of suitability cannot be done by simply applying the net present value rule,
but rather has to consider the following three salient characteristics of the environmental
policy decision: (i) there is uncertainty about future payoffs from climate policies, (ii)
waiting allows policy makers to gather new information on the uncertain future, and (iii)
climate policies are at least partially irreversible. These characteristics are encapsulated
in the concept of real option models.” This strand of literature now constitutes a growing
branch of the climate economics literature.® A limited strand of literature — particularly
in mathematical economics — has extended the real options approach to analyse the in-
terplay of irreversibility and uncertainty under Knightian uncertainty. The standard real
options approach rules out the situation in which policy makers are unsure about the
likelihoods of future events. It typically adopts strong assumptions about policy makers’
beliefs and no distinction between risk and ambiguity is made. The usual prescription for
decision making under risk is then to select an action that maximizes expected utility.
This is assumed although the knowledge of climate dynamics is still far from conclusive.
In the more realistic Knightian uncertainty scenario decision making therefore becomes
more complex. That means that the Knightian version of the real options models differs
from the plain vanilla real options model by having an entire set of subjective probability
distributions, see for example Nishimura & Ozaki (2007) and Trojanowska & Kort (2010).
We transfer these ideas by expanding the paper by Pindyck (2012) on uncertain outcomes
and climate change policy.

To gain a thorough understanding of the model, we utilize numerical simulations that
illustrate the timing of policy adoption given alternative assumptions on the degree of

ambiguity and on the policy maker’s ambiguity preferences. In the first step, we compare

"Concise surveys of the real options literature are provided by Bertola (2010), Dixit & Pindyck (1994)
and Stokey (2009).

8There are manifold applications of real options analysis to climate economics, which deserve to be
mentioned. A full review cannot be given here, but some examples shall be mentioned. The real option
to mitigate is investigated in the seminal work by Pindyck (2000, 2002) or in later analyses by Anda et al.
(2009), Chen et al. (2011b), Lin et al. (2007) and Wirl (2006). The real options to undertake specific
adaptation projects is explored by Dobes (2010) and Linquiti & Vonortas (2012). Optimal climate policy
and the real options to invest into the energy sector is examined by Fuss et al. (2009, 2011).
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the decision made in the light of risk with the decision made by an ambiguity-averse policy
maker. In the second step, we keep the assumption of ambiguity aversion to assess the
size of the implied effects. In the third step, we expand our analysis by examining the
range of optimal policy responses that are implied by ambiguity. This range is spanned by
all policy responses that are optimal under alternative ambiguity preferences. So far, it is
not clear, whether in general the climate policy maker is / should be averse to ambiguity.
Therefore, it is of utmost relevance to examine the robustness of the optimal decision,
which may contribute to a better understanding of decision making under ambiguity.
The remainder of the paper is organised as follows. In Section 3.2, the comprehensive
modelling set-up is presented. The framework incorporates cross-discipline interactions
in order to derive dynamically optimal policy responses to Knightian uncertainty. Sub-
sequently, in Section 3.3 we illustrate the working of the model through numerical exer-
cises and examine the sensitivity of the main results with respect to key parameters. The
paper concludes in Section 3.4 with a brief summary and suggestions for further research.

Omitted details of several derivations are provided in the appendices.

3.2 THE MODEL

The following modelling framework is an extended version of the one in Pindyck (2009,
2012). This framework does not only display all essential ingredients to mirror the climate
change decision problem but it also allows for incorporating real options under Knightian
uncertainty. Such a stochastic dynamic programming framework may contribute to the
understanding of the potential implications of Knightian uncertainty for decision-making.
It should be noted that the most obvious challenge along the way is to minimize complexity
so that the model setup under complex uncertainty is still tractable.”

The model assumes that a social planner strives to find the optimal timing of climate
policy adoption by maximizing the flow of consumption over time.'® She faces the in-
tergenerational trade-off problem that the costs of mitigation would have to be born by the

present generations, but the benefits of mitigation would accrue in the future. Moreover,

9The plethora of potentially significant contributions to overall atmospheric heat balance that are not
treated in the simple model used here includes changes in other well-mixed greenhouse gases, ozone, snow
albedo, cloud cover, solar irradiance, and aerosols. From this list, it should be clear that the objectives of
the present paper are limited ones. A more complete assessment of outcome probabilities would include
detailed models of the past and future of each of these effects.

0T our model framework we treat the world as a single entity in the interest of brevity. The world
climate policy equilibrium can be constructed as a symmetric Nash equilibrium in mitigation strategies.
The equilibrium can be determined by simply looking at the single country policy which is defined ignoring
the other countries’ abatement policy decisions [Leahy (1993)].
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a bad timing will certainly lead to one of the following two irreversibility effects. In-
vesting too early in mitigation technologies could trigger enormous sunk costs that are
not recouped before long. Waiting too long may cause irreversible damages to ecological
systems that contribute to welfare. However, ubiquitous uncertainties in almost every
component in the projections and especially in the assessment of future climate damages
render a well-informed decision about the timing almost impossible. Put differently, all
plans depend decisively on the unknown sensitivity of losses to climate change. Hence,
we concentrate on the uncertainty about the future climate damage costs, whereas we
assume any other lack of knowledge to be resolved for the sake of analytical tractabil-
ity. Expressed mathematically, the policy maker solves the following isoelastic objective

function, which consists of the expected net present value of future consumption levels:

(3.1)

® 1-6
W=F /(L(Xt’lmhgct) et dt|

=0

where -] is the expectation operator and C} is the consumption over time with the initial
value normalised to 1. In the simplest form, the level of consumption C} is assumed to be
equivalent to the level of GDP. The parameter § > 0 is the inverse of the intertemporal
elasticity of substitution and r is the discount rate. The term L(Xy, AT;)C; describes
GDP net of climate damage costs. The function L depends on scientifically estimated
changes in temperature AT, and a (positive) stochastic damage function X; determining
the sensitivity of losses to global warming.

Instead of trying to model climate impacts in any detail, we keep the problem ana-
lytically simple by assuming that damages depend only on the temperature change, which
is chosen as a measure of climate change. To be precise, as in Pindyck (2009, 2012), the
damage costs from warming (1 — L), expressed as a share of GDP, are implied by the

following exponential function
L (X, ATy) = e XAT", (3.2)

where 0 < L (X, AT;) < 1, OL/0 (AT;) < 0 and 0L/0X; < 0, i.e. higher damage costs
result in less GDP.!!

"Duye the scarcity of empirical information about the magnitude of the damages in question, the shape
of the damage function is somewhat arbitrary. Pindyck (2012) has assumed the exponential function
L(AT) = exp[—B(AT?)], where 3 follows a gamma distribution. This implies that future damages are
fully captured by the probabilistic outcomes of a given distribution. This concept can be understood as
risk. However, the present uncertainty about § also comprises the choice of the probability distribution,
which will be tackled in this paper.
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Before we show how to incorporate Knightian uncertainty about Xy, we briefly in-
troduce the other component in the loss function: the temperature increase AT;. For
this, we adopt the commonly used climate sensitivity function in Weitzman (2009a) and
Pindyck (2009, 2012). The single linear differential equation compresses the involved
complex physical processes by capturing climate forcings and feedbacks in a simplified
manner.'? Hence, a direct link between the atmospheric greenhouse gas concentration Gy

and the temperature increase AT; is obtained by

In (G¢/Go)

dA—U—t =mi ( 2

— mQA—l]—t> dt, (3.3)
where G is the inherited pre-industrial baseline level of greenhouse gas, and m; and mo
are positive parameters. The first term in the bracket stands for the radiative forcing
induced by a doubling of the atmospheric greenhouse gases. The second term represents
the net of all negative and positive feedbacks. A positive parameter for this term thus
counteracts a runaway greenhouse effect. The parameter m; describes the thermal inertia
or the effective capacity to absorb heat by the earth system, which is exemplified by the
oceanic heat uptake.

By defining H as the time horizon with AT, = ATy at t = H and ATy — 2ATy as

t — 0o, we obtain equations, which are convenient to use in a real options setting, i.e.

dAT; = Inf(f) (2ATy — AT,) dt, (3.4)
and
AT, = 2ATy (1 e 1“72’5) : (3.5)

where In (2) /H denotes the adjustment speed of changes in temperature to the eventual
changes in temperature 2AT .13

Let us now focus on the other component in equation (3.2), which is the sensitivity

12Factors that influence the climate are distinguished between forcings and feedbacks. A forcing is
understood as a primary effect that changes directly the balance of incoming and outgoing energy in the
earth-atmosphere system. Emissions of aerosols and greenhouse gases or changes in the solar radiation
are examples. A secondary and indirect effect is described by a feedback that boosts (positive feedback)
or dampens (negative feedback) a forcing. The blackbody radiation feedback exemplifies an important
negative feedback, whereas, for example, the ice-albedo feedback accelerates warming by decreasing the
earth’s reflectivity.

13There is considerable a priori uncertainty in the probability and scale of climate change, but at
least there are historical time series data available to calibrate probability distributions for parameters
important in modelling climate sensitivity. On the other hand, based on current knowledge there is a
large a priori uncertainty concerning when dramatic technological breakthroughs might occur and how
much impact they will have, so allowing for such possibilities should increase the spread of outcomes for
global carbon emissions and their consequences.
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of losses to global warming. In the following, we explain the idea of how to extend
the standard real options approach, which incorporates the concept of risk, to obtain a
modelling framework that accounts for Knightian uncertainty. As shown by Nishimura &
Ozaki (2007), it means to generate a set of probability distributions out of the one that is

assumed in the standard real options model.'4

To formalize the concept, let (By)o<t<7 be
a standard Brownian motion on (Q2,.%p, P) that is endowed with the standard filtration
(Z)o<i<t for (B). Consider the real-valued stochastic process (X¢)o<i<r generated by

the Brownian motion with drift o and standard deviation o:
dXt = OéXtdt + O'XtdBt. (36)

In equation (3.6) the particular probability measure P is regarded as capturing the true
nature of the underlying process. This, however, is highly unlikely, as this would im-
ply that the policy maker is absolutely certain about the probability distribution that
describes the future development of (X¢)p<¢<7. Unlike this standard case, Knightian un-
certainty describes how policy makers form ambiguous beliefs. Thereby a set & of prob-
ability measures is assumed to comprise likely candidates to map the future dynamics.
Technically spoken, these measures are generated from P by means of density generators,
0.1> Such a probability measure is denoted by @ in the following. By restricting the
density generators to a certain range like a real-valued interval [—k, |, we are enabled to
confine the range of deviations from the original measure P. The broader this interval is,
the larger the set of probability measures, & = {Q9 |0 € [—k, K] }, and thus the higher

the degree of ambiguity. This specific notion of confining the density generators to an

4 Alternatively, the imprecise probability concept in Reichert (1997) employs a set of probability meas-
ures describing the uncertain model parameters. The ambiguity involved in the estimation of the global
mean temperature change in the 21st century is analysed in Kriegler & Held (2005) by constructing a
belief function that is the lower envelope of the corresponding distributions. The model results in large
imprecisions of the estimates, highlighting the key role of uncertainties in climate projections. Apart from
deriving upper and lower bounds of the sets, Borsuk & Tomassini (2005) examine other representations
of the probability measures and demonstrate how to use them to describe climate change uncertainties.

'®Assume a stochastic process (6),.,., that is real-valued, measurable and (%;)-adapted. Fur-

thermore it is twice integrable, hence 6 := (0),.,.+ € £? C L. Define (zf) by z¥ =

t t
—3 [02ds—[0,dB;
e 0 0

0<t<T

t
Vt > 0. Note that the stochastic integral [60.dB; is well-defined for each ¢, as
0

0 € L. A stochastic process § € L is a density generator, if (zf) is a (%#:)-martingale. Using a

0<t<T
density generator § another probability measure Q° on (€, .%#r) can be generated from P by

Q" (4) :/z%dp VA € Fr.
A

Note that any probability measure that is thus defined is called equivalent to P .

52



interval [—k, k| is named s-ignorance by Chen & Epstein (2002).

Endowed with this concept we can now define a stochastic processes (BY)o<i<1 by
BY = B, +t0 (3.7)

for each @ € [~k,x]. As Girsanov’s theorem shows, each process (BY)o<;<7 defined as
above is a standard Brownian motion with respect to Q% on (Q,.Z7, Q%). Inserting the

definition of (BY)o<;<7 into equation (3.6), we obtain for every 6 € [—k, &]
dX; = (a — 00) Xdt + 0 X;dBY. (3.8)

Equation (3.8) displays all stochastic differential equations and thus all future develop-
ments of (X¢)p<i<7 that the decision maker thinks possible. If the policy maker gives
equal weight to all possible developments in equation (3.8) when making a decision, i.e.
if she exhibits no specific ambiguity preferences, the interval [—k, k] would imply a con-
tinuum of optimal policies. This continuum is examined in the next section — for the
moment let us focus on the optimal policy which is implied by ambiguity aversion.

Some preliminary thoughts about what measure in &2 = {Qe |0 € [k, K] } is most
relevant under ambiguity aversion are provided in the following. Ambiguity aversion
makes the decision maker maximize the worst case scenario, as proven by Gilboa &
Schmeidler (1989). As e~ Xt(AT’GDP, is calculated as GDP net of damages, the worst
case scenario is described by the largest value of X;. Note that the processes X; in
equation (3.8) only differ in the drift but not in the volatility terms. As an illustration
we have numerically simulated equation (3.2) and (3.6) for a time period of 200 years for
ATy = 1.9°C versus ATy = 3.4°C (equivalent to pre-industry levels of 2.5°C versus 4°C)
of warming and three alternative drift terms. The character of the impact function (3.2)
for various drift terms is shown in Figure 1. The graphs indicate the forces at play in our
analysis and in particular two effects must be recognised. Firstly, the function L(X;, AT;)
spreads out considerably for higher temperature increases. Under the assumption of
ATy = 3.4°C the damage is 0.09154 = 9.15 per cent of the GDP after 100 years.'6
Secondly and most importantly, the highest value of the drift term generates the maximum
of 1 — L(Xy, AT;) and therefore the minimum of the GDP; net of damages.

After having introduced the basic ingredients to the model and after having gained

'8The calibrated damages from warming are in the range of previous estimates. Weitzman (2009b) has
assumed damage costs of 1.7 percent of GDP for 2.5°C of warming. For higher temperature increases he
has assumed rapidly increasing damages of 9 (25) percent of GDP for 4°C (5°C) of warming. Millner et al.
(2010) have assumed damages of 1.7 (6.5) percent of GDP for 2.5°C (5°C) of warming.
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Figure 3.2.1: Simulated Damages 1 — L(X;, AT;) Due To Global Warming in Percent of GDP. The
initial value for X is Xy = 0.008 and H = 100. The simulated time series are computed ignoring
the uncertainty part of equation (3.6), i.e. dX; = aX,dt.

some intuition about the effects of X;, let us turn to the problem we must solve, which
deals with “optimal stopping”. The idea is that at any point in time the value of climate
policy is compared with the expected value of waiting dt, given the available informa-
tion set and the knowledge of the stochastic processes. If the ambiguity-averse decision
maker conducts no climate policy — referred to as the business-as-usual approach - and
faces Knightian uncertainty in equation (3.1), then the resulting intertemporal welfare,
WX, with consumption growing at a rate gy and initial consumption normalised as 1 is

determined as

o0 (e_xs(mrs)?CS)l*‘;
WN(X,AT; ATy) = min EY / e "ds| F
Qe 1-96
t=0
oo
_ L e / e~ X(1=8)(AT)? -~ (- (1-8)0)s g 7, (3.9)
1 -9 qQoer ’
=0

s.t. equations (3.4) and (3.8), where “N” refers to the no-actions-taken approach, r —

(1 —9) go is assumed to be positive, and EQ’ [ |-Z¢] represents the expectation value with
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respect to QY € & conditional on .%.17 The first equation holds as ambiguity aversion
implies that the policy maker reckons with the lowest expected welfare value.'®

For the sake of analytical tractability, we apply a Taylor series expansion to
e~ Xs(1=0)ATZ gych that

e Xs1=0ATS & 1 X (1 - 6) ATZ, (3.10)

where 0 < L (AT;) <1 and OL/0 (AT,) < 0 still hold.'® By inserting (3.10) into (3.9) we

thus obtain

WN (X, AT; ATy) (3.11)
1 : i —(r—(1—- s
=173 Qnengi] g’ / (1- X, (1—0)AT2)e (r=(=0)g0)s g\ 7, |
=0

s.t. equation (3.4) and (3.8). Using Ito’s Lemma and following the standard dynamic pro-

gramming argument, we formulate the problem in terms of the Hamilton-Jacobi-Bellman

equation®’

1 In (2) OWN
— (1= N = X*AT? 4+ — (2ATy — AT) ——
(r—( ) 90) W 13 t (2ATH )amr (3.12)
+ (a+ ko) X I —|—§O' X X

The asterisk represents the density generator —x, meaning that Q* is generated by —k

"For reasons of mathematical tractability we assume that the continuous Knightian uncertainty is
independent of time and therefore the planning horizon is infinite. The reasoning for the perpetual
assumption is that the underlying time scales in the natural climate system are much longer than those in
the economic system. Technically, we consider T" — oo for (By)o<i<r and (Bf Jo<t<7 in the above made
introduction to the concept of Knightian uncertainty.

18irst, the ambiguity-averse policy maker takes only the probability measure into consideration that
creates the worst outcomes for the welfare. Then she strives to find the policy strategy that maximizes
this ‘worst-case welfare function”. The maxmin nature of the problem links the analysis with contributions
on robust control. See, for example, Funke & Paetz (2011).

19Real option models suggested in the literature seem always to make a trade-off between analytical
tractability and realism. In this paper we analyse a model that combines both features into one model:
the model has a rich analytical structure and nevertheless the analytical forms of the particular solutions
can be obtained. As numerical simulations in Appendix 3.A show, the choice of § minimising the welfare
by the principle of the Knightian uncertainty is always § = —k. The first order Taylor’s expansions results
display the similar qualitative results. Note that § = —k implies the worst equivalent outcome for welfare,
which requests the third or higher order terms of Taylor’s expansion of the welfare function to yield more
accurate results. For simplicity, we opt for the first order term of Taylor’s expansions to investigate the
problem.

20For the derivation please see Appendix 3.A.
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and the stochastic process X* is defined by inserting — into equation (3.8):
dX; = (a+ok) X/dt + o0 X[dB;". (3.13)

As indicated by Figure 1 and also proven in Appendix 3.A, the ambiguity-averse policy
maker reckons with the probability measure (3.13) that exhibits the highest drift term.
Given this pessimistic view that X™* is perceived to be the true process, the optimal policy
response is described by equation (3.12). Real options analysis specifies that the solution
of (3.12) consists of the particular and general solution. The particular solution WNF
is obtained by computing the integral for WY in equation (3.11) without considering
possible policy intervention. It is straightforward to explain WNF as the expected present
value of the business-as-usual policy. The general solution, hereinafter denoted by WNG,
gives the value of adopting policy in the future, which is referred to as the real options

value and is obtained by

In (2) OWNG
1 NG _ _ ow—"
(7" ( 5) go) w H (2A—|]—H A—ﬂ—) OAT
LOWNG 1 L 92WNG

Now, we turn our attention to the welfare value of implementing climate policy. Let
us assume that the policy maker is willing to pay annual mitigation costs w (7) as a
percentage of GDP to limit the temperature increase at t = H to 7.2! The temperature

evolution is then described by

In (2
AT, = n}g ) (2r — AT,) ds (3.15)
and
AT, = 27 (1 — e “‘72’5> , (3.16)

which evolve as variants out of the equations (3.4) and (3.5) by setting ATy = 7.
Analogous to the derivation procedure in Appendix 3.A, the intertemporal welfare

function of taking action to reduce the green house gas emission, W*, is then given by

1

(= (L= 9 WA = (1= ()~ (25 - xar) 4 22 ow

w O 9aT (3.17)

1-6
owA 1 2 02 WA
2
+ (a+ ko) X* o
( ) ox* 2 oOX*"’
2'In practical terms, this means that the policy maker reduces G in equation (3.3) so that the increase
in temperature is limited to less than 7 at ¢ = H. While endogenised mitigation costs would be a more

realistic modelling choice, we use a simple assumption about constant mitigation costs to focus attention
on the issues of the impacts of the Knightian uncertainty.
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which is derived from the following integral

WA (t=0,X,AT;7)

) o0 (3.18)

=15 5EQ* (1—w(r)° / (1— X7 (1—0)AT?) e~ =(=a0)s g 7, | |
t=0

s.t. equation (3.8) and equation (3.15). If climate policy is time-consistent, then the
solutions to W4 can be obtained by integrating equation (3.18) directly.

As mentioned earlier, the aim of this analysis is to determine the optimal timing of
mitigation, which allows to limit the temperature increase to some 7 at t = H. As long
as the value of postponing policy W is higher than the value of implementing policy
WA, it is optimal to continue the business-as-usual policy. As soon as both values WN
and W are identical, the optimal strategy is to take action. Accordingly, the threshold

of taking action to limit global warming to 7 at ¢t = H is computed from the identity
W (taking action) = W (business — as — usual) + Real options. (3.19)

The threshold of taking action, denoted as X, is expressed in terms of the observed values

of the stochastic process X*. Substituting, we have
WA (X,AT;7) = WP (X, AT; ATy) + WG (X, AT; ATy) . (3.20)

Exercising the real options WNG (X S AT, AT H) implies that the policy maker forgoes the
option to wait and to act later as more information about X; becomes available. In other
words, real options analysis explicitly accounts for the opportunity costs of early action.

Please note that all terms in (3.20) are affected by Knightian uncertainty. Accord-
ingly, the impact of Knightian uncertainty is not necessarily monotonous for the policy
maker.??

The next step is to solve the particular integrals of WP and W#, and the real
options expression WNG, As shown in Appendix 3.B the following particular integrals

result from Ito’s Lemma:

1 1
1—0|r—(1-=9)g0

WP (X, AT; ATy) = —4AT3 (1 -6y X* (3.21)

*?Real options dominate the particular integral with extreme Knightian uncertainty, while the effect of
smaller Knightian uncertainty on the particular integral is prevailing.
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and

WA (X, ATy = (LW @) L AP (- )X (3.22)
ST = 1-96 r—(1-49)g0 T 7 '
where
2 1
== n=r—(1-0)go— (a+ ko).

— + ,
noon+ B 22

Note that it is assumed that 7 is positive.
After obtaining the particular solutions of equations (3.21) and (3.22) analytically,
we now turn our attention to the real options term WNS in equation (3.14). In Appendix

3.C we show that the general solutions have the form:
WNG (£ = 0, X, AT; ATg) = A, X7 (AT? — 4ATHAT +4AT%) (3.23)

where 3 is the positive root of the quadratic characteristic equation

%a%’ (B+1) + (o + 1) B — (r (1= 0)go+2 (lnlf)» —0,  (3.24)
and A;p is the unknown parameter to be determined by the value-matching and smooth-
pasting conditions. The meaning of equation (3.23) is straightforward. For a small AT g
the value of the options to take actions is small — the option of taking action is reduced
for less global warming. The effective discount rate for real options is a positive function
of In(2) /H. As we know from equation (3.4), In(2) /H also denotes the adjustment
speed of changes in temperature. Higher temperature adjustment speed (for example,
H = 50 years instead of H = 100 years) means that the damage is higher and thus
the option value is smaller. After obtaining the solutions to equation (3.20) by applying
the value-matching condition, the smooth-pasting condition is given by equalising the
derivative of (3.22) with respect to X* with the sum of the derivatives of (3.21) and
(3.23) with respect to X*. Substituting (3.21) — (3.23) back into the value-matching and

smooth-pasting conditions yields

1—(1—w(r)?
(r—(1—20) go) (1 — ) (3.25)
+ ALXT (AT? — 4AT AT + 4ATY)

2y (AT} = AP (1= w (7)) X =
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and

4~y (ATT%{ —AT*(1 —w (T))l_é)
— A8 X (AT? — AATHAT +4ATY) . (3.26)

The solution to the decision problem under ambiguity aversion is fully given by the equa-
tions (3.21) — (3.26). Likewise, the continuum of solutions implied by all processes X; in
equation (3.8) can be generated by inserting all € [—k, k]. In the next section, we will
examine the impacts of Knightian uncertainty by conducting a numerical simulation of

this analytical solution.

3.3 NUMERICAL SIMULATIONS AND RESULTS

While the preceding section has laid out the modelling framework, we now focus on a
thorough numerical analysis of the model. We aim to clarify whether the more realistic
assumption of ambiguity implies a timing of policy adoption that is different from the one
in the usually applied approach of risk. To this end, we start by exploring the decision
under ambiguity aversion. Afterwards, this assumption is relaxed in order to observe the
range of optimal policy responses that are implied by alternative ambiguity preferences.
Is the range rather big, we may deduce that this subjective assumption on the attitude
towards ambiguity matters significantly. The magnitude of these effects is compared with
the sensitivity to the other parameters which calibration is up for debate.

The baseline calibration of these parameters requires the use of judgement, i.e. they
reflect a back-of-the-envelope calculation.?®> The unit time length corresponds to one
year. Our base parameters are ¢ = 0.075, k = 0.02, r = 0.04, a« = 0.0, go = 0.01,
0 = 0.0, and H = 100. ATg is assumed to be 3.4°C which is equivalent to 4 degrees
of warming since the pre-industrial level. The climate policy target 7 is assumed to be
1.4°C, which is equivalent to 2 degrees of warming compared with the pre-industrial level.
Special attention has to be paid to the calibration of w(7). The term w(7) represents
the achievability and costs of climate targets. What are the economic costs of reaching
the target of climate stabilisation at no more than 2°C above pre-industrial level by the
end of this century? To assess this question, Edenhofer et al. (2010) have compared the
energy-environment-economy models MERGE, REMIND, POLES, TIMER and E3MG in

ZDespite the increasingly detailed understanding of climate processes from a large body of research,
various parameters involved inevitably remain inestimable, except in retrospect. Moreover, the calibrated
model is not based on detailed time series data in the way econometric models are and does not have the
projective power of the latter.
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a model comparison exercise.?* Despite different structures employed in the models, four
of the five models show a similar pattern in mitigations costs for achieving the first-best
400 ppm CO, concentration pathway. These costs turned out to be of a similar order of
magnitude across the models, i.e. approximately 2 per cent of the worldwide GDP. We
therefore assume that w(7) = 0.02.

First, we consider the thresholds of mitigation, i.e. we calculate the optimal timing of
curbing emissions that allows achieving the 2°C target. The optimal strategy is to adopt
the climate policy right now if X;> X* and to continue waiting if X;< X*, where X* is
the threshold value.?> The first set of graphs, Figure 3.3.1 — 3.3.5, illustrates the optimal
timing problem from the perspective of an ambiguity-averse policy maker. Afterwards,
a broad range of preferences is accounted for by conjecturing a whole set of 8-values,
0 € [k, K]

To start with, in Figure 3.3.1 we focus on the sensitivity of the optimal thresholds to
the degree of ambiguity «. A higher x-value specifies a higher level of uncertainty. The
case of k = 0 characterises the situation in which ambiguity has been resolved. Then, the
set of probability measures boils down to one single measure, the same one that would be

postulated in a traditional real option framework.
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Figure 3.3.1: The Climate Policy Thresholds for Alternative «'s and «'s under Ambiguity Aversion

The numerical results indicate an acceleration of climate policy for higher degrees of

2411 order to improve model comparability, the macroeconomic drivers in the five modelling frameworks
employed were harmonised to represent similar economic developments. On the other hand, different views
of technology diffusion and different structural assumptions regarding the underlying economic system
across the models remained. This helps to shed light on how different modelling assumptions translate
into differences in mitigation costs. Low stabilisation crucially depends upon learning and technologies
available.

251t is worth conjecturing that the existence of the no action area sheds light on why policy makers
often deem it desirable to stay put, contrary to intuition which stems from thinking in terms of a simple
cause and effect framework.
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ambiguity. Increasing ambiguity has an unequivocally positive impact upon the timing
of optimal climate policy and shrinks the continuation region in which exercising climate
policy is suboptimal. The reason is that higher degrees of ambiguity force the ambiguity-
averse policy maker to anticipate even worse future outcomes and to act sooner. This
result for the special case of ambiguity in the damage costs is in line with the existing
research by Asano (2010) and Vardas & Xepapadeas (2010). Figure 3.3.1 also shows that
this result is insensitive to the choice of the drift parameter «, which can be regarded as
a measure of the trend in the economy’s vulnerability. The higher «, the more vulnerable
the economy is over time. Therefore it is clear, that a higher trend in vulnerability implies
a decrease of the threshold.
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Figure 3.3.2: The Climate Policy Thresholds for Alternative ¢'s and «'s under Ambiguity Aversion

Figure 3.3.2 provides an analysis of the threshold effects for alternative degrees of
risk/noise 0. The threshold value at which climate policy is implemented is shown to
increase in the noisiness level o. Irrespective of the degree of ambiguity, the noise makes
projections of future climate damage costs less reliable, which generates the incentive to

wait for new information to arrive instead of taking action. Hence, increased risk o leads to

61



a delay in policy action. In contrast, increased Knightian uncertainty in combination with
ambiguity aversion tend to accelerate optimal timing. Additional observations concerning
the scale of these effects emerge from a bird’s eye examination of the 3-dimensional figure.
It is observable that an increase in x has a mildly bigger impact on the climate policy
threshold, meaning that the waiting incentives are counteracted. An ambiguity-averse
policy maker takes the most pessimistic view on the future outcomes and therefore adopts
precautionary measures. Noise in the projections are thus of a little less importance.
How to calibrate the discount rate is one of the most controversial questions in the
economic literature on climate change, e.g. see Stern (2007). As this problem is still
far from being resolved, the sensitivity to alternative discounting assumptions needs to
be explored. Figure 3.3.3 confirms common knowledge that higher discount rates bolster
the reasons for taking a “wait and see attitude” towards climate policy. The choice of
the discount rate decisively determines the weight of future climate damage costs in the
welfare considerations. The higher the value of r, the less far-sighted the policy maker
becomes and the later mitigation efforts are undertaken. Figure 3.3.3 also reveals that
the problematic choice of the discount rate is of more importance to the ambiguity-averse
policy maker than the degree of ambiguity. Indeed, the effects caused by a marginal
increase of r undo the outcomes induced by a marginal increase of x. This emphasizes

the importance of reaching an agreement on the choice of the discount rate value.
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Figure 3.3.3: The Climate Policy Thresholds for Simultaneous Changes in the Discount Rate r and
+ under Ambiguity Aversion

As already indicated at the beginning of this section, estimations of the abatement
costs also face a lot of uncertainties. Figure 3.3.4 provides a sensitivity analysis of the
thresholds with respect to w(7), i.e. we illustrate the impact of alternative climate stabil-

isation costs upon the threshold. This simulation shows that higher climate stabilisation
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costs lead to an increase of the no action area, i.e. the mitigation threshold is moved
upwards. Intuitively, this makes perfect sense. Higher costs make climate policies less
attractive for policy makers, so policy makers hesitate to perform them in the first place.
This incentive to delay policy is again counteracted by an increase of the degree of am-
biguity. More precisely, under ambiguity aversion the option value of the climate policy
opportunity is again lower than in the standard model real options model. Therefore, an
ambiguity-averse policy maker acts earlier. The magnitude of both effects appear to be

about the same size.

Figure 3.3.4: The Climate Policy Thresholds for Alternative Costs of Climate Stabilisation under
Ambiguity Aversion

Finally, we analyse how different expected degrees of warming in the business-as-usual
scenario, i.e. changesin AT, affect the threshold. Looking back on all IPCC assessments,
it becomes evident that uncertainty about ATz could not significantly be resolved in the
last years.?6 Accounting for different assumptions of ATy, Figure 3.3.5 clearly indicates
that the tactic to postpone policy adoption becomes less attractive for higher projected
temperature increases. In other words, higher ATy values accelerate climate policies by
shrinking the no action area. In contrast to the simulations above, an increase of ATy
and x work in the same direction. The effects of a change in x is only of secondary

importance.

260ne has to admit that despite more observations, more sophisticated coupled climate models and
substantial increases in computing power, climate projections have not narrowed appreciably over the last
two decades. Indeed, it has been speculated that foreseeable improvements in the understanding of the
underlying physical processes will probably not lead to large reductions in climate sensitivity uncertainty.
See Roe and Baker (2007).
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X thresholds

Figure 3.3.5: The Impact of Changes in ATy Upon the Threshold under Ambiguity Aversion

Now, we broaden our view on ambiguity by accounting for a range of 8-values, i.e.
0 € [-0.1,0.1]. Each value in this interval leads to a different optimal policy response.
A higher value is tantamount to specifying the policy maker as more ambiguity loving or
optimistic. A lower value is equivalent to more ambiguity aversion or pessimism. How
important is such a subjective attitude towards ambiguity for the design of an optimal
policy design? How wide is the “operating space” for the policy maker before she decides
how to react to ambiguity? To answer these questions, we again make use of simulations
that compare the induced threshold effects with the effects implied by varying the values
of o, r, w(r) and AT, respectively. The threshold curves in Figure 3.3.6 — Figure 3.3.9
confirm what intuition suggests: The decision maker delays policy adoption the longer

the more optimistic she is about the future.

X thresholds

Figure 3.3.6: The Thresholds for Alternative Preferences 6 and Noise Parameters o
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This effect is not of negligible size, as for example displayed by Figure 3.3.6 and
3.3.7. Indeed, the attitude towards ambiguity is crucial to the timing of policy adoption,
more crucial than the existence of noise (Figure 3.3.6) and the amount of the mitigation
costs (Figure 3.3.7). In particular, the first mentioned finding stresses the value-added
of accounting for ambiguity in the real options framework. Furthermore, we can observe
that the ambiguity preferences influence the response to noise. As seen before in Figure
3.3.2, noise in the damage costs projections cannot dissuade the pessimistic policy maker
from taking preventive action. In contrast, the optimistic policy maker’s decisison is
more susceptible to incentives to postpone mitigation efforts. A similar effect can be also
observed in Figure 3.3.7, albeit it is less significant. A pessimistic policy maker is less
worried about the costs of mitigation, as the avoidance of the worst outcomes, which
she considers to be very likely, will certainly outweigh these costs. For the optimists an
increase in the costs w(7) could be a reason to delay mitigation efforts, because in her

calculation the benefits of mitigation are lower.
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Figure 3.3.7: The Thresholds for Alternative Preferences 6 and Mitigation Costs w(T)

Figure 3.3.8 contrasts the threshold effects of ambiguity to the effects by another
subjective assumption on decision making, to wit the discount rate r. Evidently, a myopic
and optimistic policy maker prefers to wait rather long until she commits herself to curbing
emissions. In contrast, a far-sighted and pessimistic policy maker needs to take action
sooner. These subjective assumptions on decision making appear to affect the threshold
almost equally.

Figure 3.3.9 explores the scale of effects implied by alternative ambiguity preferences
and projections of the temperature increase AT . The higher the projected increase is, the
sooner the policy maker has to take action. Furthermore it is evident that the differences in

the reponse implied by alternative preferences vanish for higher temperature projections.
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Figure 3.3.8: The Thresholds for Alternative Preferences 6 and Discount Rates r

In view of bad news about the future temperature evolution even the optimist finds it
difficult to delay the low-emission policy much longer. Scientifically provided evidence that
the future turns out harmful thus restricts the “operating space” for the policy maker.
In contrast, lower temperature projections can either be considered to be bad enough
to justify early action (from the pessimist’s point of view) or they can be dismissed
as rather insignificant and unworthy to trigger efforts soon (from the optimist’s point
of view). These projections thus leave a wide “operating space”. As there is enormous
uncertainty about the climate sensitivity parameter, temperature projections are typically
given in ranges. When considering the interval for AT g that is illustrated in Figure 3.3.9,
we observe a vast variety of optimal policy responses, which is mainly caused by the

uncertainty about the temperature increase.
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Figure 3.3.9: The Thresholds for Alternative Preferences 6 and Projections of the Temperature
Increase ATy
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3.4 (CONCLUSIONS

Lack of scientific knowledge and uncertainty about the future economic development lead
to a considerable degree of ambiguity in the assessments of future climate damage costs.
To analyse the question of how ambiguity affects the climate policy decision, we enhance
a standard real options model by the Knightian uncertainty concept. This offers the
opportunity to explore the effects by alternative degrees of ambiguity and ambiguity
preferences.

A unifying message from our paper could be stated as follows: We have demon-
strated that Knightian uncertainty affects irreversible climate policies in a way which
significantly differs from the impact of risk. High degrees of ambiguity are shown to
have a positive effect on the willingness to adopt mitigation efforts, if the policy maker is
assumed to be averse to it. However, two caveats must be mentioned. Firstly, the simula-
tions demonstrate that early action might be thwarted by uncertainty about other crucial
parameters such as the mitigation costs or the projected temperature increase. The result
reveals that Knightian uncertainty does not necessarily imply extreme policy activism.
Secondly, whether a climate policy maker is / should be assumed to be ambiguity-averse
is not clear. If we allow for a range of preferences in the simulations, we observe that
policy adoption is delayed the longer the more optimistic she is about the future outcomes.
Indeed, this effect is not of negligible size, which indicates a wide range of possible policy
responses. Put differently, whatever policy response is adopted now, it will lack robust-
ness concerning ambiguity. This must not be understood as a reason to defer the policy
decision, but as evidence of how important it is to reach a political agreement on how
to deal with ambiguity. This could, for example, result in the perception to follow the
precautionary approach as taken by the EU.

We believe that our application of Knightian uncertainty comes with an advantage
and a disadvantage. The advantage is that it allows one to recognise the difference
between risk and uncertainty and its implied size of effects.?” Thus, it provides a more
realistic grounding for assessing climate policy and deriving optimal and rational policy
decisions when ambiguity is involved. On the other hand, one has to admit that the
comparative static results also have their limitations. First, the numerical results do
not account for the fundamental dynamic nature of climate policies.?® Second, we have

focussed on Knightian uncertainty in the damage function. However, there are further

2TTo quote from Mastrandrea & Schneider (2004, p. 571) “we do not recommend that our quantitative
results be taken literally, but we suggest that our probabilistic framework and methods be taken seriously”.
See also Schneider & Mastrandrea (2005).

280ne may also follow a different strategy. Instead of tailoring policies towards one future in particular,
one may find institutional arrangements, regulatory policies and technologies of adapting to many possible
future climate scenarios.
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layers of uncertainty in complex climate models about which we have ambiguous beliefs.
Our analysis may therefore be considered as a first step and it may be refined in several
ways. One future research question is the possibility of tipping points. In addition to a
high level of complexity, the major challenge of this extension is the need to incorporate
thresholds, discontinuities and sudden switches, which remain poorly understood on a
theoretical level.2? Another interesting direction goes towards a more detailed analysis of
short- and medium-run climate projections.?® We hope to take up some of these tasks in
our future work and we consider it probable that this research agenda and the conceptual

follow-up issues will continue to warrant substantial research effort in the future.

29The climate literature on tipping points is, indeed, a fast growing industry. Unfortunately, there
are not any models yet incorporating such nonlinearities into micro-founded decision-making frameworks
with Knightian uncertainty. It must be emphasised that the model described here is sufficiently general
to study various tipping points. It is only necessary to fine-tune the framework for specific nonlinearities
and to embed further stochastic processes.

3%Tn the simulations in Section 3.3, the impact of Knightian uncertainty is “statically” addressed. Hence,
we may next aim to study the temporal implications of Knightian uncertainty, and the impact of less
medium-run ambiguity resulting from more reliable decadal projections upon optimal climate policies.
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APPENDICES

3.A DERIVATION OF EQUATION (3.12)

First, we to show that the QY € 22 that minimises the expectation value in equation
(3.11) is generated by 6 = —k.

Additionally Fubini’s theorem for conditional expectations transforms

WN(X,AT; ATg) to

1 . r —(r—(1=6 s 0 2
H@@é{;}/e (r=(1=0)90)s pQ” [1 — X, (1 — 6) AT? | ] ds. (3.27)
t=0

By applying Ito’s Lemma to the logarithm of X we obtain Vs > 0 :

X, = Xoe(oc—%gﬂ_ae)s—i-aBg _ Xoe(a—%o-Q_o'G)seaBg. (328)

Obviously it holds that

2

X, = Xoel@m29°=00)s0B] < xelam30’4om)seoBl v o> Vo e [—k, K] (3.29)

Due to the monotonicity of the conditional expectation value, we obtain

B9 [1 - Xpelodr'=otenB (1 _ §) AT |7
> g’ [1 — Xpelam30%+0R)s 0Bl (1 §) AT? |gzt]
- (1 - Xoe<a—%02+<m>8) (1—0) AT2EY’ [effo |,%}
(1 oelo b o) (1 ) AT b
= (1= Xoelom3e"+75) (1 — ) AT B9 7B |7, |
Vs >0, V0 € [—k,K]. (3.30)
Thus, the measure Q" € & minimises the expectation value in (3.11), which we
therefore denote as Q*. Consequently the process X that results from implementing
f = —k into equation (3.8) shall be called X*.

For the following considerations let W™ (X, AT; ATg) be conveniently abbreviated by
WN,
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The corresponding Hamilton-Jacobi-Bellman equation to equation (3.11) is as follows:

1

(r—(1—=208)go) WN = _5(1—X*( — AT + —EY [dw | %]

dt 3.31
: 331

1o
= X*AT? Q N
5 X AT + 2 [dW™ | F ] .

WN is obviously differentiable at least once in AT and twice in X*, which allows to apply

Ito’s Lemma:

owN owN PPWN
dWN = ———dAT dx* dx*)?
N k> G =G
_In(2) owN (3.32)
=7 (2AT gy — ATy) AT dt
0 N * * —K 1 2 yrx? aQWN
+ X [(a+ok) X{dt + o X;dB; "] + 5 X X7 dt,
by using equation (3.4) in the text. Taking expectation of (3.32) and dividing by dt we
obtain
E[dWN]  1In(2) OWN owN 1 2 OPWN
= 2ATy — AT X; —o’X* . (3
dt T ) par et RO X T X G 333)
Substituting (3.33) back to the Hamilton-Jacobi-Bellman equation (3.31) gives
(r—(1=10)go) WN = 1 xeapy In(2) (2ATy — AT) o=
90 1-6 H T72VBAT  (334)
LOWN 1, 0PN
ot ro) X + 57X Gy

which is equation (3.12) in the text.
Note that the above proof only holds for the first order Taylor’s expansion of the

Xs(1=0)ATs - We need to numerically confirm that the above

exponential loss function e~
results also hold for the exponential loss function. While it is almost not possible to obtain
the direct expectation of the exponential function, we can numerically test the impact of
6 on WN by using simple Monte Carlo simulations of equation (3.6). The discrete-time

approximation of equation (3.6) is shown as follows,
Xt+At — Xt = (a — 0'0) XtAt + oV AtXtEt. (335)

where ¢ is generated from a standard normal distribution N (0, 1) generator and At is
the discrete-time representation of dt. The value of WY is computed from the following
approximations,

: f e_XnAt(l—(s)(ATnAt)ze_(r_(l_é)gO)nAtAt7 (3'36)

wh = _—
1-6 &~
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where AT, o = 2ATH (1 — e‘lnT?”At), an discrete-time version of equation (3.5). The
results of the Monte Carlo simulations are shown in Figure 3.4.1. Note that At =0.01,
Nmax = 30,000 with 10, 000 rounds of Monte Carlo simulations, and the rest of benchmark

values are the same as ones in the text.

(a) Monte Carlo simulations (b) First Order Taylor Expansion Result

Figure 3.4.1: Comparison of the Results for WY

The results of Monte Carlo simulations clearly show that the nature responds with
choice of # = —k to yield the minimal value of WY, while the results by the first order
Taylor’s expansion exhibit similar qualitative outcome, albeit over-estimating the impact

of reduction in # on WX,

3.B  PARTICULAR SOLUTIONS TO WNP Anp WA

Using equations (3.11) and (3.5) yields the following particular integral,

o0

WP (X, AT, ATy) = — / (1 - xeer (1 - )
t=0
n 2
(2474 (1-¢ ) >e‘<r‘<l—5>90>8ds. (3.37)
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In the same manner we employ equation (3.18) and (3.16) to derive

_ 1-5 %
WA (X,AT; 7) = (1;"_(75)) / (1 — Xelotro)s (1 — g)
t=0

<2T (1 e 1zf))2> e~ (r=(1=8)g0)s . (3.38)

Equations (3.37) and (3.38) result from Ito’s Lemma which means that equation (3.28)
with § = —k is applied to equation (3.11) and (3.18), respectively. Furthermore please

note that F9 " [e"B;K \9}} = 3973, By expanding the term
(1 e l"ﬁzf)Q = 1- 2 B4 2 (3.39)
we obtain
<1 _ xrelatra)s (1 g) (2MH (1 e 11{2))2) e~ (r=(1=8)g0)s (3.40)

_ ef(rf(lfé)go)s o 4AF%{ (1 . 5) X*e(aJr/iU)s (1 — 9~ ln%s + 672 ln723) 67(7’7(176)90)3
Substituting (3.40) back into (3.37) and integrating yields

WP (X, AT; ATy) (3.41)

1 1 1 2 1
—AAT%L (1-6) X" = — +
r—(1-20)g0 7 (1=9) (n n+ B2 n+21nH2)]

T1-9%

where
n=r—(1-9)go— (a+ ko)

Similarly, we have

WA (X, AT;7) 242
B 1-6
_ (Q—-w(r)) 1 —4AT*(1-0) X* 1o 21n2 + 1ln2
1—9¢ r—(1—46)go oty ot

which are equations (3.21) and (3.22), respectively.
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3.C  GENERAL SorutioN WNG por WN

We guess the solution to equation (3.14) has the following functional form:
WNG (1 =0, X, AT; ATy) = AX* (AT> + CAT + D). (3.43)

where A, C, D are some parameters. Calculating derivatives, we obtain

NG
aaVZW = AX* (2AT + 0), (3.44)
awNG P
X' = BAXT (AT + CAT+ D) and (3.45)
2117 NG
x* 88‘;/*2 — B(8-1)AX*" (AT? + CAT + D). (3.46)

Substituting the above-outlined equations back to equation (3.14) and rearranging yields

~ [ A= 0w+ a+ro) 5+ 35— )

AX* (AT? + CAT + D). (3.47)
Solving (3.47) requires
AT? - <2MH — g) AT — CATy = (AT + CAT+ D). (3.48)
Thus, we have
C = —4ATy (3.49)
and
D = —CATy = 4AT%. (3.50)

Plugging (3.49) and (3.50) into (3.47), we obtain

(r- -2 () + e wo) s+ gt (a -] WO =0, (35)

where WNG = Ax*” (AT? — 4ATHAT + 4AT%). The solution of (3.51) requires

(a+ ko) B+ 30—25 (B—1)— (r —(1—=0)go+2 <1n132>>> = 0. (3.52)
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Let 81 and (7 be the positive and negative roots of the above characteristic function,

respectively. By some manipulations, this leads to
WNG — 4, X* (AT? — 4ATHAT + 4AT%) — A X*7 (AT? — 4ATH AT + 4AT%) (3.53)

As we only consider the option to take action, we need to set the boundary condition such

that )l(imo WwNG (X) = 0, which is tantamount to a zero option value of a climate policy, if
%

climate change causes no damages that reduce the GDP. Therefore, the general solution

with the negative root can be ignored. Consequently, we obtain

WNG = 4, X7 (AT? — 4AT AT + 4AT%) . (3.54)
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So while we must take on the great challenge of mit-
igation with urgency and commitment [...] we must
never lose sight of the importance of planning for and

acting on adaptation now.

Sir Nicholas Stern, Professor of Economics
and Chair of the Grantham Research Institute on

Climate Change and the Environment

The Optimal Climate Policy of Mitigation and
Adaptation: A Real Options Theory Perspective

4.1 INTRODUCTION

The negotiations at the past Conferences of the Parties to the UN Framework Convention
on Climate Change have illustrated that the interests in and ideas about global cooper-
ation on reducing emissions diverge considerably. At the same time, the global emission
rates keep breaking new records every year and climate policy goals like the 2°C target
become less likely to be achieved. Even if every country stopped emitting today, the
warming trend would continue for several decades due to inertias in the climate system.
Therefore, climate change is certain to happen and it will lead to changes in the envir-
onment and in the living conditions in more and more countries. Appropriately designed
adaptation measures may help to gain from beneficial changes or to alleviate adverse im-
pacts. Accordingly, climate policy can only be optimal if it factors in mitigation as well
as adaptation. The best way to combine the two measures to fight climate change is,
however, still far from being conclusive.

In the light of the urgency and relevance of this topic, the literature devoted to
analysing the mix of the two measures is expanding rapidly . Kane & Shogren (2000) and
Lecocq & Shalizi (2007) argue that mitigation and adaptation can be considered to be
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strategic complements and do not stand alone if policy is optimally designed. Mitigation
prevents irreversible and potentially unmanageable ramifications, whereas adaptation is
necessary to alleviate the impacts that are already locked in by climate change. Ingham
et al. (2005) show that mitigation and adaptation are economic substitutes on the cost
as well as on the benefit side. On the cost side, the investments in these measures
compete for resources that are naturally scarce. On the benefit side, the usage of one
option decreases the marginal benefit of the other. More precisely, mitigating emissions
will successfully avoid damage and thus less adaptation is needed. Conversely, adapting
effectively to global warming and the related consequences decreases the marginal benefit
of emission reductions, as for example noted by Tol (2005a). As suggested by de Zeeuw
& Zemel (2012), already the prospect of adapting in the future is increasing the current
emission rate.! Quite recently, the existence of complementary and substitution effects
was confirmed by Integrated Assessment Models such as AD-WITCH by Bosello et al.
(2009, 2010, 2011) and Bosello & Chen (2010), AD-DICE by de Bruin et al. (2009), Ada-
BaHaMa by Bahn et al. (2012) and AD-FAIR by Hof et al. (2009).2 Interestingly, Bosello
et al. (2010) and de Bruin et al. (2009) identify the trade-off between the two measures
to be asymmetric. The two measures crowd each other out, but the effect of mitigation
on adaptation is found to be weaker. In the short- and medium term, the benefits of
mitigation are argued to be too small to reduce significantly the need to adapt. Moreover,
both studies exhibit higher expenditures on adaptation, indicating that adaptation is the
preferred measure. However, this result is very sensitive to the assumption concerning the
discount rate: the more far-sighted the policy maker is assumed to be, the more attractive
mitigation becomes. The reason is that the time gap between the occurrence of costs and
the occurrence of benefits is much longer in the case of mitigation due to slow and lagged
dynamics in the climate system. In contrast, adaptation can become effective as soon as
it is fully implemented.

The understanding of how uncertainty affects the optimal mix is still at a “very
early stage”, as pointed out by Agrawala et al. (2011b). Felgenhauer & Bruin (2009)
investigate the effects of uncertainty about climate sensitivity in a two-period model with

learning. This kind of uncertainty is shown to reduce both mitigation and adaptation

! Aside from the outlined structure of the strategic complementarity and trade-offs, IPCC (2007a) iden-
tifies specific examples of adaptation measures that can facilitate or exacerbate mitigation. If adaptation
efforts involve an increased usage of energy, the total level of emissions that has to be mitigated increases.
This is for example the case for air conditioning as a measure to adapt to heat or for seawater desalination
as a measure to adapt to draughts. Other adaptation measures can facilitate mitigation, as they also
decrease emissions. Buildings that are designed to reduce vulnerability to extreme weather events may
also decrease the energy needs for heating and cooling.

2 An extensive survey of this literature is provided by Agrawala et al. (2011b).
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efforts. Furthermore, mitigation efforts are shown to be more sensitive to uncertainty
than adaptation efforts. It is reasoned that uncertainty about climate sensitivity has
long-run implications, affecting the decision about the long-run measure of mitigation
more significantly. A multi-stage-decision under uncertainty about the benefits of both
measures is qualitatively discussed by Felgenhauer & Webster (2013b), who suggest that
the differences in the time lags between adopting a measure and learning about its benefits
make adaptation and mitigation imperfect substitutes.

This paper aims to complement the research on the optimal policy mix of adaptation
and mitigation under uncertainty by accounting for characteristics that cannot be fully
captured by the normal net present value approach. It is generally agreed that the climate
policy decision needs to take into account that (i) there is uncertainty about the future
benefits of mitigation as well as of adaptation, (ii) waiting allows policy makers to gather
new information about the uncertain future, (iii) the required investments in both policy
measures are at least partially irreversible, which means that disinvesting cannot fully
recover all the expenditures and (iv) the greenhouse gases accumulate and remain in the
atmosphere long after they are emitted. On the one hand, the opportunity to wait for new
information to arrive may induce the policy maker to delay costly and irreversible policy
measures. On the other hand, a wait-and-see attitude may burden future generations
with costs of an unknown size that are caused by irreversible climate damage. Hence,
it may seem rational to adopt climate policy as soon as possible. These considerations
show that the tension between uncertainty and these two types of irreversibility generates
some value of delaying or accelerating investments. Differently from the above-mentioned
studies, which apply a normal net present value approach, this paper explicitly accounts
for this value.

This value of waiting— also referred to as the value of managerial flexibility — is con-
sidered to be a real option. This concept has its roots in the evaluation of financial options
as developed by Black & Scholes (1973) and Merton (1973). On financial markets, the
investor pays a premium price to obtain the right, but not the obligation, to buy an asset
for some time at a predetermined price. Profit is made when the price of the underlying
asset rises above the predetermined price and the option is exercised. Even then, it can
be profitable to wait to exercise the option and to speculate for a further price increase
in the underlying asset. Hence, holding the option is still of value due to uncertainty
about the future asset price. The concept soon turned out to grant considerable insights
into capital investment decisions and is thus referred to as real options analysis (ROA).
Similar to exercising a financial option, most capital investment decisions are (at least

partially) irreversible due to sunk costs incurred by the investment. Furthermore, the
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investor often faces uncertainty about the profits the investment will generate, because
the prices of inputs or outputs may vary over time. In such a situation, the flexibility
to delay an investment may be of value, as more information about the involved uncer-
tainties can be gained as time passes. ROA is designed to capture the value of waiting
and thus exceeds the normal net present value approach. Early applications of ROA to
investment decisions are for example given by McDonald & Siegel (1986) and Pindyck
(1988, 1993). The studies by Kolstad (1996) and Ulph & Ulph (1997), published soon
afterwards, focus their attention on the implications of irreversibility and uncertainty for
climate policy. The ROA conception is that the policy maker has the “right” to adopt
these climate policy measures in return for lower future damage costs. Accordingly, the
real options value captures the opportunity costs of implementing such a policy now rather
than waiting for new information to arrive. In almost all cases, ROA is conducted solely
to examine either mitigation or adaptation and not both together. The mitigation option
is investigated in the seminal work by Pindyck (2000, 2002) or later analyses by Anda
et al. (2009), Baranzini et al. (2003), Chen et al. (2011a,b), Lin et al. (2007), Nishide
& Ohyama (2009) and Wirl (2006).2 The real option to undertake specific adaptation
projects is explored by Dobes (2008, 2010), Hertzler (2007), Linquiti & Vonortas (2012),
Nordvik & Lisg (2004) and Watkiss et al. (2013). In practice, however, more than one
measure is available to fight climate change, and their optimal mix might be affected
by uncertainty and irreversibility as well.* The first attempts to analyse the optimal
balance of mitigation and adaptation by means of real options theory are presented by
Maybee et al. (2012) and Strand (2011). As a result of a non-formal discussion, May-
bee et al. (2012) anticipate that, due to the local nature of adaptation, the benefits of
adaptation seem to be more guaranteed and thus greater priority is given to adaptation
measures. Strand (2011) examines how the decision to mitigate is affected by adaptation,
but adaptation is not treated as a real option but as an exogeneously given process.

To provide a more realistic picture of the policy maker’s portfolio to fight climate
change, this paper develops a new modelling framework for a portfolio of mitigation and
adaptation real options. The adaptation options allow the policy maker to postpone
investment or to invest the optimal portion of the GDP in projects that alleviate climate
change impacts. The mitigation option gives the opportunity to choose the optimal

timing for curbing emissions. Incorporating both real options into the same framework

3While the above-mentioned research deals with one global decision maker, the work by Barrieu &
Chesney (2003) and Ohyama & Tsujimura (2006, 2008) analyses the strategic agents’ decision on when to
curb emissions.

4Evidence of adverse effects by uncertainty and irreversibility on climate policy is found in psychology.
Gifford (2011) argues that the existence of sunk costs, uncertainty and risks belongs to the barriers or
“dragons of inaction” that hinder mitigation and adaptation efforts.
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implies that the values of the individual options are affected by each other’s presence.
This paper can thus investigate the interaction of the two values of waiting. How are the
decisions to design the optimal mix of mitigation and adaptation affected by uncertainty
and irreversibility?°

The remainder of this paper is organized as follows. Section 4.2 gives an overview
of the most important properties of the modelling framework. Section 4.2.1 provides all
the required equations to derive the optimal adaptation policy in Section 4.2.2 and the
optimal mitigation timing in Section 4.2.3. The numerical simulations are presented in
Section 4.3. Section 4.4 concludes the paper. More details are available in the technical
Appendices 4.A - 4.D.

4.2 A REAL OPTIONS MODEL OF ADAPTATION AND MITIGATION

The decision regarding when to cut emissions is complicated. Firstly, the predicted bene-
fits of mitigation involve huge uncertainties. Secondly, exercising the option to mitigate
involves large sunk costs — for example induced by a switch to CO, neutral technologies
in the energy sector. As soon as this option is exercised, the decision maker gives up
the possibility to wait for new information to arrive. The combination of sunk costs and
uncertainty generates opportunity costs of adopting the policy now. However, as the
damage is largely irreversible, exercising this option can also create sunk benefits. The
net of these opportunity costs and benefits is reflected by the value of the real option
and must be included in the decision model. In contrast to normal cost-benefit analysis,
this approach can therefore explain how optimal policy and its timing is influenced by
uncertainty and irreversibility.%

In practice, a decision maker also holds the option to invest in a better adjustment
to the future impacts of climate change. The possibilities to adapt are manifold. The
category of adaptation measures that is most relevant to the context of climate policy
design is referred to as anticipatory or proactive adaptation, because it can be planned

and taken in advance.” Additionally, these measures may be classified on the basis of the

% Alternatively, one may consider only one real option that offers the opportunity to switch between
different “modes” of climate policy, e.g. to do nothing, to mitigate only, to invest a certain, albeit not
optimised, portion of the GDP in adaptation or to do both (in this case switching between all the modes
might not be allowed). These kinds of real options models are for example applied to assess decisions
to invest in the electricity sector, e.g. see Fuss et al. (2009, 2011). Obviously, this simplification cannot
adequately encapsulate the interaction of the respective values of waiting, as they are not individually
modelled.

SA more detailed introduction to the real option modelling framework is provided by Dixit & Pindyck
(1994) and Stokey (2009).

"The measures falling into the opposite category are implemented as soon as the damage occurs (reactive
adaptation); see Smit et al. (2000) for this and other categorizations.
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type of damage they reduce. Dykes and early warning systems are meant to lessen the
impacts of occasionally occuring climate catastrophes. Other measures, like sea water de-
salination, land-use zoning, air conditioning, thermal insulation, vaccination programmes
or the breeding of more resilient crops, help to alleviate everyday life that has been made
difficult by gradually evolving climate change. Although differing in the purpose they
address, almost all adaptation efforts require investments that are largely sunk. Further-
more, it is not clear in advance whether their design is both perfectly suitable for and
effective in decreasing the future damage costs. The combination of irreversible invest-
ments and the uncertainty of the resulting benefits implies that adaptation projects can
be modelled as real options. Consequently, the policy maker holds a portfolio of different
option types: one option to mitigate and options to invest in adaptation.

In this paper, the options are modelled to reflect certain characteristics of adaptation
and mitigation. Mitigation addresses the source of the climate change problem by reducing
the amount of emitted greenhouse gases (GHGs). Once abated, these emissions cannot
cause future damage. Therefore, early mitigation efforts can be considered to be the
best insurance against climate change damages. Adaptation addresses the outcome of the
climate change problem by alleviating the present or expected damages.

The decision to mitigate is modelled as a commitment to a certain emission reduction
target, but it is not meant to be a continuous investment decision that can be immedi-
ately adjusted if necessary. In this context, making this distinction is important, as the
first mentioned specification resembles a one-off decision and implies less flexibility to
react to shocks or to new information pouring in. This idea of modelling better reflects
reality, as mitigation efforts are negotiated in terms of emission reduction targets and are
stipulated by an international treaty for longer periods of time. In contrast, adaptation
is not about committing to a particular target but about investing in suitable projects
wherever and whenever required. Accordingly, in the model, the decision maker can
switch between waiting to invest and investing the optimal amount of money. However,
the implementation of adaptation projects is assumed to take time.

The model also incorporates a stylized notion of adaptation capacity. The capacity
is here understood to comprise all the means that enable the adoption of adaptation
measures rather quickly.® Climate damage is assumed to compromise these means. This
is consistent with the observation, as for example indicated by Smith et al. (2001), that
countries already suffering from climate damage lack the capacity for quick adaptation.

Finally, adaptation provides a local public good in most cases. Hence, economic

theory suggests that adaptation should be supplied by the countries or local communities

8The capacity to adapt depends on many factors, e.g. on the institutional system, economic and
technological development, knowledge, values, ethics and cultures; see for example Adger et al. (2009).
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that benefit from these measures in the first place. However, as outlined by Lecocq &
Shalizi (2007), several reasons corroborate the idea of modelling adaptation as a strategy
that requires international collective action. A large number of countries lack the institu-
tional, technological and financial capacities to meet their adaptation needs, a fact that
calls for international aid and cooperation. Moreover, while mitigation forces the polluter
to pay, adaptation is required where the damage occurs and not necessarily where it is
primarily caused. Hence, equity justifies the international funding of adaptation projects.
Furthermore, planning adaptation internationally could be effective. For example, it is
beneficial to internalize externalities that may be caused by adaptation measures. Some
projects may be operated in a more cost-effective fashion if they are carried out transna-
tionally. In fact, the United Nations negotiates on adaptation and mitigation in the same
breath.” Accordingly, in this paper, both mitigation and adaptation are considered to
concern global policy.

For simplicity, technological progress is not incorporated into the modelling frame-
work. Accounting for further real options that allow investment in R&D of one or the
other climate policy measure would be a valuable next research step. Alternatively, the
technological progress in these measures could be modelled as additional sources of uncer-
tainty. However, the implementation of exogenously defined technological progress based
on some ad hoc assumptions about how the technologies to mitigate and or to adapt may
develop is not considered to be a worthwhile improvement of this analysis.

The procedure for incorporating both real options into one framework is as follows.
The policy maker has the choice of when to switch from the high- to the low-emission
scenario. In both scenarios, adaptation efforts are undertaken optimally. The optimal
timing of mitigation is then inserted back into the adaptation model to obtain the optimal

adaptation policy given that the emissions are optimally reduced.

4.2.1 THE MODEL

In the following model, it is assumed that a forward-looking and risk-neutral policy maker
strives to find the optimal policy for adaptation and mitigation by weighing the flow of
consumption against the policy costs. More precisely, the policy decision is based on

maximizing welfare, which can be expressed by

W = Eq / [ Y(t) (1= D(t)) — Calt) — Co(t) et ] , (4.1)
0

9 Accordingly, the Kyoto Protocol has not only stipulated emission reductions, but also established
a fund that finances adaptation projects and programmes in needy member states; see http://www.
adaptation-fund.org/.
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where Ey describes the expectations operator conditioned on the information given in
the present period ¢ = 0. Here, the level of consumption is assumed to be equivalent to
the level of the GDP Y (¢). Climate change causes damage costs D(¢), which reduce the
level of the GDP. The costs of adaptation and mitigation are given by C,(t) and Cy, (1),
respectively. The discount rate is described by r.

In the following, Y (t) = Y is assumed to be constant. Hence, all the processes that
drive economic growth are ignored, in particular technological change.!”

The proportion of climate damage costs D in equation (4.1) can be expressed by an

exponential function:
_ po)M@®)Y

D(t)=1—e (+aa)? (4.2)

where p € [0,1), a, ¢,9 € Ry. The exponent ¢ determines how quickly the effectiveness
of adaptation decreases. This exponential function depends on the functions M (), which
describes the accumulation of GHGs in the atmosphere, A(t), which reflects the adapta-
tion efforts, and 6(t), which causes stochasticity in the social costs of climate change. For

notational ease, the exponential function is referred to:

_ pot)M)Y

Y(O(t), M(t), A(t)) = e (+ar®)? (4.3)

The uncertainty regarding the gravity of the losses inflicted by pollution is either caused
by a lack of knowledge about the values of certain key parameters or intrinsically given.
Economic models exhibit a substantial degree of instrinsic uncertainty. Even if all the
parameters were known, there would still be uncertainty due to random exogenous events
and fluctuations in the system. This kind of uncertainty is immense over long time
horizons, which need to be considered to assess climate policies. Therefore, it is important

to analyse the effects caused by intrinsic uncertainty. Pindyck (2000) suggests modelling

"How the GDP growth affects the optimal policy mix is not the pivotal question in this paper and it is
thus ignored in the following for the sake of limiting the computational effort. It is certainly worthwhile
addressing this question as well, as the implementation of these policy measures and economic growth
may exhibit interesting interaction effects. Some adaptation projects are thought necessary to allow for
/ facilitate economic growth, especially in developing countries. Conversely, as for example pointed out
by Jensen & Traeger (2013), economic growth increases the expected future wealth, which may delay
mitigation, as present generations are less willing to forego consumption today. Tsur & Withagen (2013)
argue that these future, richer generations could more easily afford to invest in adaptation. However, it
should not be forgotten that economic growth is the main driver of emissions and thus of the climate
problem. A worsening of the climate conditions limits the possibilities to adapt and requires ever more
refined technologies to alleviate the impacts. How economic growth affects both policy measures is thus a
question of whether these technologies will be available and how costly they will be. The ambiguity in the
relationship between the GDP and the adaptation costs is emphasized by Agrawala et al. (2011a). They
find that in AD-WITCH and AD-DICE contrary but valid assumptions are made about this relationship.
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the intrinsic uncertainty in the damage costs by utilizing a geometric Brownian motion

with drift p, variance o and Wiener process z:
df = pbdt + o0dz. (4.4)

Let 0 capture all the processes that cannot be controlled by the policy maker, e.g. tastes
or population growth. This process reflects the above-described characteristics of intrinsic
uncertainty. First of all, the present level of social costs can be observed, whereas the
future costs remain uncertain. Secondly, the longer the time horizon considered, the
more uncertainty increases, which makes a reasonable decision on climate policy strategy
difficult.!?

For simplicity, I assume that there is no ecological uncertainty in the accumulation

of GHGs in the atmosphere. As in Nordhaus (1994), it evolves according to:

dM
o = BE() — 8M(), (4.5)

where [ is the marginal atmospheric retention of emissions £. The natural rate of de-
pletion is given by 4, 0 < § < 1. Once emitted, a certain percentage of the GHGs will
stay in the atmosphere for a long time, as described by equation (4.5). For simplicity,

the emissions are assumed to be proportional to the GDP without losses:

E(t) = ¢(1 — m(t))Y, (4.6)

which can be curbed according to an emission reduction target m, 0 < m < 1. Mitigation,

however, incurs costs of:
Cn(t) = k1m(t)"?Y, (4.7)

with k1 > 0 and kg > 1 so that C,,(t) < Y for all ¢ holds.'> The convexity of this
function relates to the increased costs and efforts required when choosing a higher emission
reduction rate m.

Proactive adaptation can be considered to be a capital stock that lowers the harm
inflicted by climate change; see Bosello et al. (2009, 2010, 2011) and Bosello & Chen

11 Alternatively, stochasticity could be modelled by a mean reverting process. This approach would
imply that the policy maker has a good idea, albeit not perfect knowledge, of how the social costs will
develop over long time horizons. The uncertainty about the costs in the very distant future is thus not
significantly greater than the uncertainty about the costs in the near future. This would certainly be a
feasible assumption if the climate damage cost function only depends on the atmospheric pollution, which
is perfectly known in this model set-up. Here, I argue that there are many more factors that influence the
damage costs, in particular economic factors, which are difficult to anticipate over long time horizons.

2Equations (4.6) and (4.7) are versions of the corresponding functions in Nordhaus (2010) without any
technological progress.
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(2010). The evolution of this capital stock is given by:

% =a(t)Y — EA(t). (4.8)
This stock depreciates at a rate of £ € (0,1). The decision maker can allocate a share a(t),
a(t) < 1forallt > 0, of the GDP to investments in adaptation capital. These investments
are assumed to be irreversible, i.e. a(t) > 0 for allt > 0. The investment costs are assumed
to be convex, i.e. adaptation efforts take time. To account for the adaptive capacity, 1
also assume that the time to adapt increases with unabated damage. In other words, the
(financial, institutional, technological, etc.) means that facilitate the quick conducting
of adaptation measures deteriorate due to unabated climate damage. Accordingly, the
“unit costs” of adaptation are the same, but the adjustment costs increase if the climate

damage worsens.'® These cost effects are disentangled by:

(a()Y)?
Y(0(t), M(t), A(t))’

1
Ca(t)) = ma(®)Y + 57 (4.9)
where the parameters vy, and =9 are positive. Additionally, the calibration of these two
parameters must rule out a > 1.
Accounting for all the above-mentioned equations, the model is solved by first determ-
ining the optimal flow of investments (a(t)Y'),~, for the high- (m = 0) and low-emission

(m > 0) scenarios, as outlined in Section 4.2.2.

4.2.2 ADAPTATION PoLICY

The decision maker strives to find the optimal strategy for investing in adaptation given

emission policy F or m. Welfare is thus rephrased as:

W(6(t), M(t), A(t);m(t) =m) = Ogrle(%)xgl Eo

[ (v (e aro, a)
0

— yia(t) — %T GO A}?(t)’ a0 a(t)2Y> - Cm) e”dt] : (4.10)

13Please note, that the “unit costs” of adaptation only stay the same in the absence of technological
progress.
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By applying Ito’s Lemma, this optimization can be expressed by a Hamilton-Jacobi-

Bellman equation:

oW ow 1 >*W
_ - - ow ow 1 5
TW =YT = Cin + (Be(1 =m)Y = 6M) oo + pb—5 + 507675 (4.11)

ow ow 1y 4
— AT 4Y “ya— =22
¢ 0A og?@fél {a 9A “ } ’

where the functional arguments are dropped to simplify the notation. Equation (4.11)

implies the first-order condition for the optimal investment:

. X (oW
a* = Y <8A 71) (4.12)

The optimality condition clarifies whether and how much to invest. The marginal welfare
of adaptation increases with higher pollution M and a higher 6. Therefore, the investment
efforts increase in a situation of worse climate impacts. However, these efforts are slowed
down by a decrease in Y (6, M, A), reflecting a reduced adaptive capacity. Accordingly,
the optimal policy design needs to incorporate considerations about maintaining sufficient
adaptive capacity so that future generations are not limited in their options to adapt to
climate change. This emphasizes the importance of the assumption of m being
the adjustment cost parameter in equation (4.9).

Depending on the marginal value of adaptation, the investment strategy can then be

summarized as:

0 for 0< —‘X <m
o =955 (G5 —m)  for o <GF<m+ % (4.13)
1 for 87 > + %

It is optimal to start investing in adaptation as soon as the marginal welfare of adaptation
is higher than ;. Please note that a* = 1 is ruled out and only serves as a upper boundary.
When reinserting the optimal investment policy (4.13) into equation (4.11), the resulting
Hamilton-Jacobi-Bellman equation is defined differently in the range of possible values
R3 = {(6,M,A):0,M,A>0}. In the region S; = {(H,M,A) 0< W < 71} C R3,

welfare can be expressed by:

2
W =YY — Cyp, + (Be(1 —m)Y — 5M)§—AVZ+M9%—Z/+1 2928392/_514%‘?4/

If the marginal welfare of adaptation is sufficiently low, it is optimal not to invest. Then,

(4.14)

the decision maker receives the expected present welfare given for the scenario of never
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investing in adaptation. However, the stochastic fluctuations of # may cause less favour-
able conditions and increase the marginal welfare of adaptation in the future. The value
of the opportunity to invest in the future is clearly influenced by these stochastic fluctu-
ations and by the fact that the investment costs are sunk. Accordingly, this opportunity
is quantified by a real options value. The welfare in the region S; is therefore given by
the sum of the expected present welfare of never investing and the real options value to
expand the existing adaptation capital stock in the future.
In the region S = {(0, M,A):v < %—VX} C R, welfare can be expressed by:

rW:YT—Cm—i—(ﬁe(l—m)Y—&M)a—W—i-uHa—W
) oM o6 (4.15)
1 oW OW X (oW
500 g Mg Yo, \aa ) -

As soon as the marginal welfare trespasses on the value =1, the policy maker starts to
invest at the optimal rate given by equation (4.12). However, it is possible that the
stochastic fluctuations of # may decrease the marginal welfare of adaptation in the future.
Such a decrease in the social costs may render investments in adaptation unnecessary and

the policy maker can stop investing without costs. Therefore, the solution to the welfare in

the region Ss is only given by the expected present value of investing a* = WLY (%—‘j‘: — 'yl).

As the threshold at which the decision maker optimally switches from one investment
regime to the other as well as the rate of optimal investment are given in terms of the

marginal welfare of adaptation, the system is solved by deriving the partial derivatives of

equations (4.14) and (4.15). More precisely, with the abbreviations w = %—VX, wy = %ZTVX,

_ oW _ 9w _ 0*W : ;
Woo = Fgga» WA = Gz and wy = F3r; the marginal welfare of adaptation for S; can be

expressed as:

agpdM?¥
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its equivalent for Ss is given by:
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(4.17)
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By equations (4.14) - (4.17) as well as equation (4.13) describing the threshold between
S1 and Sy in terms of the marginal welfare of adaptation, the system is fully described.
However, due to the complexity, the system cannot be solved analytically but requires
numerical treatment. The applied numerical routine is a fully implicit finite difference

method, as explained in Appendix 4.A.

4.2.3 MITIGATION PoLiCcy

The timing of undertaking mitigation efforts, i.e. increasing m = 0 to some m > 0,
depends on the optimal adaptation policy that is conducted in these emission scenarios.
Hence, the recipe in Section 4.2.2 needs to be applied to derive the welfare of adaptation
for m = 0 and for m > 0, respectively. The difference in the respective welfare values
W0, M, A;m > 0)—W (0, M, A;m = 0) would describe the benefits of reducing emissions,
if the decision to mitigate were a now-or-never decision. This net present value consists
of the direct benefits that are given by less pollution and of the indirect benefits from
prescribing a different adaptation strategy. These indirect benefits can be understood
as the value of the additional flexibility in adaptation investments. As opposed to a
now-or-never decision, the decision on when to cut emissions involves uncertainty and
irreversibility, which gives waiting to mitigate a value that is expressed by its real option
wM (0, M, A;m = 0). Depending on the optimal adaptation activities in the no-mitigation

scenario m = 0, the real option to mitigate is expressed as follows:

o*wM
06° (4.18)
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where 19 ar,4)es,) is one in the region Sz and zero in the region Sj.

The threshold of mitigation is derived by comparing the real options value (4.18)
with the benefits of switching from the high- to the low-emission scenario,
W0, M, A;m > 0)—W (0, M, A;m = 0). Again, the solution cannot be found analytically
but requires numerical treatment, as described in Appendix 4.B.

To obtain the optimal policy thresholds, the mitigation threshold is computed by
taking the optimal adaptation policy into account and the optimal adaptation policy

needs to incorporate the optimal timing of the emission reduction efforts.
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4.3 NUMERICAL SIMULATION

To achieve a better understanding of the interaction of mitigation and adaptation, a
numerical analysis of the model needs to be conducted. This analysis consists of four
parts. First, the optimal policy mix is investigated. Then, the interaction of the two
measures is explored. Afterwards, the contribution of the ROA to the analysis of the
climate policy decision is demonstrated. It must be noted that calibrating the model is
particularly challenged by the lack of estimates concerning adaptation. As emphasized
by Agrawala & Fankhauser (2008) and Bosello et al. (2009), studies of adaptation have
been limited to a few economic sectors, countries and measures and are thus insufficent
to provide reliable estimates. Accordingly, some caution is required when interpreting the
quantitative insights of modelling exercises based on these estimates. The last part of this
numerical analysis is thus devoted to a sensitivity analysis of these parameters and other
parameters that are controversially discussed. Studying the model as proposed may be
comprehensive enough to provide some meaningful insights into the pivotal effects.

The base calibration is as follows. Emissions E assume the value of 0.033 trillion
of CO, metric tonnes, as estimated by EDGAR (the Emission Database from Global
Atmospheric Research) for 2011.'* For the same year, the IMF reports the global GDP
to amount to Y = 78.97 trillion US dollars (PPP).!® The present concentration of almost
400 ppm translates into M = 40 (x 10 ppm).'® A considerable simplification of the
numerical routine is offered by assuming that § = 0. This means that the parameter g
has to be adjusted to reflect the average increase in the atmospheric CO, concentration
over the time horizon of interest. According to the latest measurements from the Mauna
Loa Observatory, Hawaii, the current atmospheric CO, concentration can be assumed to
increase by about 3 % per year. The parameter 3 is thus computed to be 9.09 ppm per
trillion CO, metric tonnes.

In most integrated assessment models, as in DICE, the damage function implictly
factors in optimal adaptation efforts. Therefore, de Bruin et al. (2009) recompute the
damage function in DICE by disentangling the adaptation costs from the damage costs.
I adapt the damage function (4.3) to their calculations for the doubling of CO, and
to the rather arbitrary assumption, which is needed for the numerical routine, that an
extremely high concentration of 4200 ppm CO, in the atmosphere would lead to a total

loss of GDP. For the concentrations that are likely to be reached in the near future and

This database is created by European Commission and the Joint Centre (JRC)/PBL Netherlands
Environmental Assessment Agency; see http://edgar. jrc.ec.europa.eu.

15The data originate from the World Economic Outlook Database, October 2012 edition.

1nformation about the measurements can be retrieved from http://co2now.org.
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are thus of relevance to this study, the resulting damage function is very similar to the
damage function presented by de Bruin et al. (2009). The current value of the cost
parameter is set to be § = 10. This choice implies an approximate value for the social
cost of CO, of about 16 US dollars, which is in the range of the estimates surveyed by
Tol (2005b).17 Just as controversial and crucial as the calibration of the damage function
is the assignment of a value to the discount rate r. Here, I settle for a 2.5% discount rate.

The mitigation costs are chosen to be slightly lower than the function estimated by
Cline (2011), which is based on a large set of model results compiled by the Stanford
Energy Modeling Forum study EMF 22.1® The mitigation target m is premised on the
emission reduction targets that countries would have to adhere to in order to satisfy the
Copenhagen Accord by 2020. As reported by Cline (2011), these efforts would mean a
9% reduction in global emissions.

As many diverse forms of capital can be considered to be adaptation capital, it is
also controversial to determine the depreciation rate £ in equation (4.8). For example,
Bosello et al. (2011) and de Bruin et al. (2009) choose a value of 10%, while Agrawala
et al. (2011a) and Felgenhauer & Webster (2013a) settle for a depreciation rate of 5%. I
choose to compromise with £ = 0.075.

As pointed out by Nishide & Ohyama (2009), the stochastic path of # should be
chosen somewhat arbitrarily, since associated data are lacking. A plausible calibration is
represented by ¢ = 0.07 and p = 0.

The other parameters, such as those describing the costs and the effectiveness of
adaptation, are chosen to comply with the rather broad estimates that are also used to
calibrate the AD-DICE model by de Bruin et al. (2009) and the AD-WITCH model by
Bosello et al. (2009, 2010, 2011). The reference point of calibration is the doubling of
atmospheric CO,. Concerning this point, an extensive review of the impact assessment
literature by Tol et al. (1998) values the adaptation costs at about 7% - 25% of the
total damage costs. Further studies, for example by Mendelsohn (2000) and Reilly et al.
(1994), give the impression that the amount of damage that is reduced by adaptation in
the calibration point could lie between 30% and 80%. Consistent with these ranges, the
calibration of ; and = determines the adaptation costs that are incurred by reacting
to a doubling of CO, to be at least 0.18% of the GDP.!” This number is thus of the

" The social cost is derived by taking the net present value of the future damages caused by an additional
ton of CO,. The review by Tol (2005b) illustrates the diversity of the social cost assessments. In order
to obtain a vague idea about whether the calibration of 6 is feasible, i.e. the implied social cost is within
the range of assessments, the exponential function in equation (4.3) can be roughly approximated by its
first-order Taylor expansion.

18 An overview of the EMF scenarios caan be found in Clarke et al. (2009).

9This value is calculated assuming that 0 = 6.
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same order of magnitude as the estimates produced by the AD-WITCH and AD-DICE
models.2’ The full listing of the parametrization is given in Appendix 4.C.

In the following, the simulation results are demonstrated by three-dimensional graphs
of the state variables that are assumed to be given at the point in time when the decision
has to be made. For each combination of already installed adaptation capital A and
level of atmospheric CO, concentration M, the threshold of taking action is derived in
terms of the observed value of §. The resulting threshold curves thus divide the space of
(0, M, A) values into regions of optimal policy. The lower region spans all the values in
which it is optimal to postpone policy adoption. In all the values above the threshold, the
policy maker implements the policy immediately. In the case of adaptation, it additionally
holds true that the intensity of investment efforts is higher the greater the distance to the
threshold. The purpose of this representation is to investigate how the curves shift under
alternative assumptions and to draw conclusions concerning the implied policy decisions.

Figure 4.3.1 illustrates the optimal policy of adaptation and mitigation. In this
simulation, the two climate policy measures interact with each other. The adaptation
threshold shown by Figure 4.3.1a takes into consideration the optimal timing of mit-
igation. The mitigation threshold given by Figure 4.3.1b is obtained by incorporating
the information about the optimal investment into adaptation. The optimal policy mix
unfolds by considering Figure 4.3.1c, which displays both thresholds together.

Figure 4.3.1a shows that the threshold of adaptation shifts upwards for more in-
stalled adaptation capital, i.e. investment becomes less necessary. This effect is more
pronounced for lower values of M. Moreover, it is clear that the region of inaction shrinks
for higher pollution M. Therefore, the results confirm what intuition tells us: investment
in adaptation needs to be undertaken sooner the more the economy is exposed to climate
change damage.

The mitigation threshold in Figure 4.3.1b reveals some familiar features, which have
already been observed in the mitigation real options literature as well as some new char-
acteristics. As is generally known, the mitigation threshold shifts downwards for higher
pollution levels. That means that a higher atmospheric CO, concentration increases the
urgency to cut emissions soon. In contrast to the hitherto existing research that focuses on
mitigation as the only real option, the mitigation threshold in this paper features discon-
tinuities or sudden jumps, which appear to be located on a curve. Figure 4.3.1c explains
that the source of these discontinuities is the intersection of the two threshold curves.

Indeed, at these points, the description of the mitigation real options (4.18) switches to a

20These models estimate the costs to be 0.19% (AD-WITCH) and 0.28% (AD-DICE) of the GDP. For
a comparison of the two models, see Agrawala et al. (2011a).
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different functional form, which causes the associated threshold to drop (seen from low to
high A-levels).?! In other words, this drop is attributed to the phasing out of adaptation
investments. Hence, adding adaptation to the model grants a new perspective on optimal

mitigation, which can be discussed in more detail by considering Figure 4.3.1c.

M

(a) The Optimal Adaptation Threshold (b) The Optimal Mitigation Threshold

(c) The Optimal Policy Mix Given by Both
Thresholds

Figure 4.3.1: The Optimal Policy

Figure 4.3.1c discloses two different regimes of optimal policy. For low levels of
adaptation capital A or high pollution M, the mitigation threshold hovers above the
adaptation threshold. In this area, the optimal policy action can be described as follows.
Below the adaptation threshold, the policy maker will neither invest in adaptation nor

undertake any emission reduction efforts. In between the two thresholds, the optimal

21 As the numerical solution procedure approximates the partial derivatives, these discontinuities cause
errors in their neighbourhood, which materialize as single-point peaks. The induced errors vanish at
more distant points to the intersection. For illustrational purposes, some of the single-point peaks are
not displayed in Figure 4.3.1. The corresponding graphs with all the single-point peaks are available on
request.
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strategy is to expand only the adaptation capital stock. As soon as the upper threshold
has been reached for the first time, mitigation complements adaptation. Accordingly,
the policy maker is advised to invest first in adaptation before curbing emissions. The
question of why adaptation is the preferred alternative is answered by the acute exposure
to climate damage with low A and/or high M values.?? If properly planned and managed,
the adaptation projects that are undertaken first are relatively inexpensive, completed
quickly and effective. Emission reduction is of less importance, because it does not help
to cure the present vulnerability.

For bigger adaptation capital stocks, the adaptation threshold moves above the mit-
igation threshold. Below the mitigation threshold, climate policy efforts are dispensable,
because the climate damage costs are very low. As soon as the mitigation threshold has
been crossed for the first time, emissions need to be reduced. Only if the process moves
above the adaptation threshold is investment in adaptation optimal. This area describes
the optimal policy of well-adapted economies, which are less exposed to climate damage.
Investing more in adaptation becomes inefficient, while mitigation becomes the preferred
measure. All in all, Figure 4.3.1c thus points out the key role of being well adapted:
it is optimal to reduce the current vulnerability to climate change first and then to cut
emissions to reduce the future impacts.

To understand the curvature of the mitigation threshold, we have to dissect the
components of adaptation, which are added to the mitigation model, and examine their
effects on the timing of mitigation. Adaptation means (i) to enjoy the benefits of the
already existing capital stock and (ii) to have the opportunity to expand this stock. If
the existing stock is responsible for the curvature, we may speak of a complementarity
effect: a sufficient build-up of adaptation capital would ensure the availability of the
(financial) means to take care of the future generations’ fate by curbing emissions. The
better the economy is adapted, the sooner emissions are to be curbed. However, for
very low and very high stocks, the mitigation threshold in Figure 4.3.1c appears to be
insensitive to the A-levels. To clarify this issue ultimately, Figure 4.3.2 illustrates the
optimal timing of mitigation under the assumption that adaptation capital exists but the
opportunity to expand it is not given. First of all, it is confirmed that the timing of
mitigation is rather insensitive to the existing adaptation capital stock size. The reason
is that adaptation capital only grants short- or medium-term benefits, as it depreciates
over time. In contrast, the benefits of mitigation are rather small in the near future

and are expected to accumulate over longer time horizons. Accordingly, the current level

22Here, 1 use the terms “exposure to climate change damage” and “vulnerability to climate change”
interchangeably.

92



of adaptation capital cannot have a significant effect on the decision regarding whether
to adopt a measure that pays in the distant future. Put differently, a high adaptation
capital stock does not accelerate mitigation. As Figure 4.3.2 suggests, the current A-levels
slightly decrease the benefits of mitigation. This small effect of substitution on the benefit
side is, however, hardly visible in Figure 4.3.1b. If the adaptation capital stock is not
responsible for the mitigation threshold curvature, the opportunity to expand it is. It is
recognizable that for lower adaptation capital stocks A the threshold in Figure 4.3.1b is
much higher than its equivalent in Figure 4.3.2. This means that taking the opportunity
to invest in adaptation delays the mitigation efforts, presumably due to substitution
effects on the cost and benefit side. Indeed, the opportunity to invest in adaptation
decreases the benefits of mitigation. In other words, the benefits of mitigation would be
very high if the economy continues to be so highly exposed to climate damage. However,
investing in adaptation reduces the vulnerability to climate change and thus decreases
the future benefits of mitigation. In addition, investing in adaptation leave less financial
means for adopting emission cuts. Consequently, the mitigation threshold shifts upwards.
With higher A-values, the threshold in Figure 4.3.1b converges to the one displayed in
Figure 4.3.2. The opportunity to expand the adaptation capital loses its value due to
the decreasing effectiveness of the capital. Therefore, the effect of the opportunity to
invest in adaptation on the mitigation threshold vanishes. All in all, the curvature of the
mitigation threshold arises from the decreasing value of expanding the adaptation capital

stock.

Figure 4.3.2: The Mitigation Threshold under the Assumption that Investing in Adaptation Is Not
Possible

Next, the effects of mitigation on the adaptation option are examined. Considering

Figure 4.3.1a once again, we can see that the decision to cut emissions does not lead to
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any noticeable jumps in the adaptation threshold. Therefore, the interaction between
the two measures is obviously not of a symmetric nature. By analogy with Figure 4.3.2,
Figure 4.3.3a demonstrates the threshold of adaptation for the scenario in which emissions

cannot be curbed.

(a) The Adaptation Threshold in the High-
Emission Scenario

L ), L L \
0 2 4 6 8 0 2 4 6 8
A A

(b) The Adaptation Threshold in the High- (c) Both Adaptation Thresholds in the Ab-
Emission Scenario (Black) and the Adapt- sence of Uncertainty in M =40

ation Threshold in the Optimal Mitigation

Scenario (Red) Displayed in M = 40

Figure 4.3.3: The Adaptation Thresholds

The comparison of the thresholds in the optimal-emission scenario (Figure 4.3.1a)
and the high-emission scenario shows no visible difference. Indeed, Figure 4.3.3b proves
that the two thresholds are even identical at the present pollution level. The timing the
investment in adaptation is thus determined by the present magnitude of atmospheric
pollution M but not by the future development of M or the opportunity to slow down its

growth. The reason is that for the decision on whether to adopt a short-term measure,
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such as adaptation, the present impacts matter more than the future threats. Figure 4.3.3c
illustrates the same thresholds for the deterministic case, in which ¢ and the real options
value of adaptation are zero. Obviously, the thresholds are much lower, which means that
the policy maker is more willing to shoulder the sunk costs caused by adaptation when
certain about the resulting benefits. Figure 4.3.3c also shows that there is a difference,
albeit marginal, between the two thresholds in the deterministic case. This simulation
thus confirms earlier findings in the literature, which describe the crowding out effect of
mitigation on adaptation as rather small. It is reasoned that in the short- and medium-
term the benefits of mitigation are too small to reduce significantly the current need to
adapt. Comparing Figure 4.3.3b with Figure 4.3.3c leads to the conclusion that this effect
of substitution with respect to timing vanishes when taking a real options perspective.
The benefits of mitigation are not only too small but also too uncertain to influence the
timing of the adoption of a measure that promises to improve the situation soon.

In order to conduct a more comprehensive analysis of the interaction effects, the
adaptation investment levels need to be examined as well. To this end, Figure 4.3.4a
provides information about the optimal adaptation efforts - specified as a percentage of
the GDP - in the high-emission scenario for M = 40. For the present level of § = 10
the investment efforts are rather small for low levels of adaptation capital A and zero
for higher levels of adaptation capital.?? Figure 4.3.4b comprises the cuts of investment
efforts when emissions are curbed optimally. These cuts range from 0% up to almost
0.03% of the GDP, if all the value combinations of A and € are considered. For the 6
values that can be assumed in the near future, the reduction of efforts is significantly
lower than 0.01%. Figure 4.3.4c and Figure 4.3.4d illustrate the investment efforts for
the deterministic version of the model. Comparing Figure 4.3.4a with Figure 4.3.4c, we
can see that uncertainty makes the policy maker less willing to invest in adaptation, as
shown before in Figure 4.3.3. Figure 4.3.4b and Figure 4.3.4d demonstrate that cutting
emissions optimally allows the policy maker to invest less in the deterministic case than
under uncertainty. In other words, if the benefits of mitigation cannot be counted on with

absolute certainty, the adaptation investment efforts must not be too severly cut back.

Z3The graph also indicates that with extremely high values of 6 and extremely low values of A, the
investment efforts may rocket upwards to approximately 0.7% of the GDP. This static analysis, however,
hides the fact that this combination of very high values of 6 and extremely low values of A will not occur,
as the policy maker expands the capital stock long before the stochastic process can fluctuate to this level.
Therefore, it is not deemed necessary to implement an explicit investment budget constraint, which would
add just another parameter posing calibration difficulties.
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Figure 4.3.4: The Adaptation Investment Costs in M =40

Having considered the effects of interaction, we may conclude that there is consider-
able asymmetry in the interaction of the two real options. The timing of mitigation is not
sensitive to the currently installed adaptation capital stock. However, the opportunity to
expand the adaptation capital stock affects the benefits of mitigation greatly. Contrari-
wise, adaptation activites are only slightly influenced by the real option to mitigate.

Next, the contribution of taking the real options perspective when analysing the
climate policy decision is addressed. For this, Figure 4.3.5 presents the optimal policy
threshold curves under alternative assumptions. Figure 4.3.5a illustrates the case in which
the uncertainty parameter o and the real options values are zero. A deterministic view
on the optimal policy decision is for example taken by Bosello et al. (2009, 2010, 2011)
and de Bruin et al. (2009). Figure 4.3.5b takes a step further by prescribing o = 0.07 as
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in the base calibration, but it postulates that only the expected net present value matters
to the policy decision. The existence of any effects generated by the interaction of uncer-
tainty and the irreversibilities are neglected. The strand of literature that accounts for
uncertainty but exclusively follows the expected net present value approach to determine
the optimal policy mix is represented by Felgenhauer & Bruin (2009) and Felgenhauer &
Webster (2013a,b).24

A A
(a) The Optimal Climate Policy Thresholds (b) The Optimal Climate Policy Thresholds
in the Deterministic Framework in the Expected Net Present Value Frame-
work

Figure 4.3.5: The Optimal Climate Policy Thresholds under Alternative Methodological Assump-
tions

Comparing the graphs in Figure 4.3.5 with each other and with Figure 4.3.1c, we can
see that neglecting uncertainty and the real options values shifts the thresholds downwards
to a great extent. Accounting for uncertainty but ignoring the real options approach
alters the threshold curves less. For low A values, the area in which emissions are not
curbed is enlarged. The timing of adaptation is only slightly affected by accounting for
uncertainty. What really has a big impact on the decision is the incorporation of the
values of waiting or the real options values generated by the tension between uncertainty
and the irreversibilities, as emphasized by Figure 4.3.1c. The area of inaction, in which
neither of the climate policy measures is adopted, is shown to be significantly larger in
this graph. Accordingly, this result given by the real options approach is in accordance
with the existing global climate policy inaction. In contrast, Figure 4.3.5b indicates that
a global climate policy of adaptation and mitigation would already have been adopted if

the policy makers had not incorporated any considerations of delaying policy adoptions

24Tt must be noted that these studies explore the effects of uncertainty attached to different components
of the model. A direct comparison with these studies is thus not possible.
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and waiting for more information to arrive.

Taking a closer look at the graphs, we can see that the area in which adaptation is the
preferred measure is widened by the real options approach. ROA thus gives more weight to
adaptation to fight acute exposure to climate change damage than the ordinary expected
present value approach. As uncertainty is also accounted for in the expected net present
value approach, this observation can only be explained by the interaction of uncertainty
and the economic irreversibilities. Investments in adaptation are allowed to be of a small
scale, which makes it possible to limit the magnitude of the sunk costs. In contrast,
mitigation imposes relatively high sunk costs. The combination of comparatively low sunk
costs and being less affected by uncertainty restricts the real options value of adaptation,
which gives adaptation greater priority in a more vulnerable economy. On the contrary,
mitigation is delayed due to its rather high sunk costs and its rather uncertain benefits.
However, the marginal real options values cause the marginal benefits of adaptation to
decrease much faster for high A values. Accordingly, for a better-adapted economy, this
approach favours the stand-alone policy of curbing emissions more than the expected net
present value approach does. ROA widens the areas in which only one measure is adopted,
i.e. the associated values of waiting delay the implementation of the measure that is least
favoured. Consequently, the benefits of taking a real options perspective are not trivial.
This perspective helps us to understand the existing reservations regarding early climate
policy activities. In addition, it points out that the policy maker is rather reluctant to
adopt two measures that cause sunk costs and generate more or less uncertain benefits.

The optimal policy mix certainly depends on the above choices of the parameter
values. Clarification of the involved sensitivity of the results is provided by Figure 4.3.6
- Figure 4.3.9. For the purpose of a clear visual representation, the response of the
mitigation threshold (red) and the adaptation threshold (black) to alternative assumptions
on the parameter values is only given for the value M = 40. In each case, the base
calibration of the investigated parameter is varied by + 10%. If clarity requires it, an
additional graph for a + 20% parameter variation is presented.?® The thresholds resulting
from the new simulations are then compared with the thresholds of the base calibration.

Figure 4.3.6 indicates that mitigation is more sensitive to changes in uncertainty o.
A + 10% variation as shown by Figure 4.3.6a causes only small shifts in the mitigation
threshold and no visible changes in the adaptation threshold. More pronounced is the
result for a + 20% variation given by Figure 4.3.6b. The adaptation threshold appears to
be almost insensitive. The benefits of mitigation, which evolve slowly over the considered

time horizon, are crucially affected by intrinsic uncertainty, as it grows over time as well.

25The other graphs for a +20% variation are listed in Appendix 4.D.
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In contrast, the adaptation decision is based on the benefits that this capital will grant
in its rather short life-time. These benefits are thus more guaranteed and less affected by
variations in ¢. This result, however, does not imply that uncertainty is not important for
the adaptation decision at all, as proven by the comparison of Figure 4.3.1c with Figure
4.3.5.

theta*
theta®
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A A
(a) Sensitivity to Alternative o Values Gen- (b) Sensitivity to Alternative o Values Gen-
erated by a + 10% Variation: ¢ = 0.07 erated by a + 20% Variation: o = 0.07
(Solid Line, Base Calibration), o = 0.063 (Solid Line, Base Calibration), o = 0.056
(Dashed Line), o = 0.077 (Dotted Line) (Dashed Line), o = 0.084 (Dotted Line)

Figure 4.3.6: Sensitivity of the Optimal Policy Mix to Uncertainty Depicted by the Threshold of
Mitigation (Red) and the Threshold of Adaptation (Black) in M = 40

The mix of short- and long-term policy measures may depend on the policy maker’s
weighting of future welfare. To this end, the effects of alternative assumptions on the
discount rate value r are examined. The results in Figure 4.3.7a emphasize the importance
of the appropriate discount rate choice. As the lifetime of adaptation capital is relatively
short compared with the effects of mitigation, the adaptation threshold is only slightly
influenced by the choice of the discount rate. In contrast, small variations in the discount
rate can generate huge differences in the timing of mitigation. Mitigation becomes more
attractive for lower discount rates. A far-sighted policy maker cares more about the future
damage costs and thus finds the long-term solution to the climate problem, mitigation,
more appealing.

As mentioned in Section 4.2.1, it is debatable how GDP growth affects the measures
and their technologies and therefore this is not explicitly modelled in this paper. Nonethe-
less, the role of alternative GDP values will be examined. Assuming a higher (lower) GDP
value is tantamount to having greater (fewer) financial resources available to spend on

climate policy efforts, but also to having higher (lower) emissions, higher (lower) climate
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damage costs in the future and a higher (lower) total amount of emissions to reduce. The
question arises of whether a higher GDP gives more priority to adaptation or to mitiga-
tion in this modelling framework. Figure 4.3.7b reports that a higher GDP level means
that the adoption of both measures is accelerated. Whether one or the other option is
preferred cannot be answered in general, but depends on how exposed the economy is to
the climate impacts. In a well-adapted economy, the two thresholds appear to be equally
sensitive to variations in the GDP level. In a badly adapted economy, adaptation is not
very sensitive to the GDP, because early investment is mandatory irrespective of having
a 10% higher or lower GDP level. However, a richer world can cut emissions sooner, be-
cause more financial means are left after undertaking adaptation efforts. The sensitivity

of mitigation is thus higher in the area of low A values.

theta*
theta®

0 2 4 g 8 10 12 0 2 4 i 8 10 12
(a) Sensitivity to Alternative Discount Rates (b) Sensitivity to Alternative GDP Values
Generated by a + 10% Variation: r = 0.025 Generated by a + 10% Variation: Y = 78.97
(Solid Line, Base Calibration), » = 0.0225 (Solid Line, Base Calibration), Y = 71.07
(Dashed Line), » = 0.0275 (Dotted Line) (Dashed Line), Y = 86.87 (Dotted Line)

Figure 4.3.7: Sensitivity of the Optimal Policy Mix to Discounting and GDP

As already mentioned, it is necessary to examine the results concerning the rather
vague calibration of the adaptation model. Figure 4.3.8 delivers insights into the sensitiv-
ity to the depreciation rate and the effectiveness of adaptation capital. Intuition suggests
that the optimal policy mix may depend on the depreciation rate £ of adaptation. A
high depreciation rate implies that the involved investments bring only short-term ef-
fects, while a lower rate makes adaptation compete with mitigation as a long-term policy.
More precisely, a lower depreciation rate makes adaptation a measure that not only helps
to alleviate the impacts of the current damage but that also reduces the impacts in the
more distant future. Consequently, adaptation partially crowds out mitigation in the op-

timal policy portfolio. This is confirmed by Figure 4.3.8a, as the shifts in the thresholds
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imply that the policy maker invests in adaptation sooner (later) and curbs emissions later
(soomner) if the capital stock depreciates slower (faster). Thus, the effects of substitution
between both policy measures is decisively affected by the durability of the adaptation

projects undertaken.

theta*

(a) Sensitivity to Alternative Depreciation
Rates Generated by a = 10% Variation: £ =
0.075 (Solid Line, Base Calibration), £ =
0.0675 (Dashed Line), & = 0.0825 (Dotted
Line)

theta*
theta*

0 2 4 2 2
(b) Sensitivity to Alternative Adaptation (c) Sensitivity to Alternative Adaptation
Effectiveness Parameters Generated by a + Effectiveness Parameters Generated by a £+
10% Variation: ¢ = 4.5 (Solid Line, Base 20% Variation: ¢ = 4.5 (Solid Line, Base
Calibration), ¢ = 4.05 (Dashed Line), ¢ = Calibration), ¢ = 3.6 (Dashed Line), ¢ = 5.4
4.95 (Dotted Line) (Dotted Line)

Figure 4.3.8: Sensitivity of the Optimal Policy Mix to the Calibration of the Adaptation Parameters

The sensitivity to alternative assumptions on the effectiveness of adaptation is ex-
amined in Figure 4.3.8b and Figure 4.3.8c. How the effectiveness parameter ¢ affects
adaptation depends on the size of the currently operating adaptation capital stock. For

low values of A, a higher level of effectiveness of adaptation clearly incentivizes early
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investment to build up a sufficient stock size. The meaning of “sufficient” also relies on
the effectiveness parameter. Consequently, a higher ¢-value implies that investment in
adaptation can be cut back sooner. The effectiveness parameter affects mitgation signi-
ficantly as well. If adaptation works well to fight climate change impacts, it becomes less
of an imperative to fight the root of the climate change problem. Accordingly, mitigation
can be delayed.

The lack of empirical evidence requires us to test alternative values for the “unit
costs” 1. Figure 4.3.9a indicates that higher investment costs make adaptation efforts less
attractive and the threshold shifts upwards, the greater the installed adaptation capital
stock is. Although adaptation efforts are more costly, the timing of mitigation is not
affected. On the one hand, one may suspect that mitigation is delayed if it is undertaken
after investing in adaptation, because the investment claims a bigger share of the financial
resources. On the other hand, the adoption of mitigation could be accelerated in order to
make the future generations less dependent on expensive investments in adaptation. At
this point of our analysis, Figure 4.3.9a offers no other choice than to conjecture that the
two effects balance each other out, leading to the insensitivity of the mitigation threshold.

Figure 4.3.9b investigates the influence of the other component of the adaptation
costs, the adjustment costs. This parameter o is amongst the factors that determine
the costs of quick capital stock expansion, which can be interpreted as evidence of the
economy’s adaptive capacity. As expected, the timing of adaptation is insensitive to
alternative adjustment costs.2® In contrast, the adaptive capacity has an impact on the
timing of mitigation. If the capability to adapt is poor, the policy maker should not rely
on adaptation as a measure to fight climate impacts. Mitigation is thus adopted sooner
to reduce the need to adapt in the future.

The final point to investigate is how the mitigation costs affect the thresholds. Figures
4.3.9c and 4.3.9d show that higher mitigation costs, i.e. higher x; and lower kg, deter
the policy maker from curbing emissions. On the contrary, the necessity to invest in
adaptation is not influenced by the spending on mitigation, as it only depends on the

magnitude of the marginal welfare of adaptation.?”

26 As derived in Section 4.2.2, the timing of adaptation is determined by the values for which the marginal
welfare of adaptation is greater than the “unit costs”, i.e. the adjustment costs do not affect the adaptation
threshold.

2"More precisely, when taking the partial derivative of equations (4.14) and (4.15) to obtain the marginal
welfare of adaptation, the mitigation costs drop out.
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(a) Sensitivity to Alternative Adaptation
Cost Parameters Generated by a + 10%
Variation: 71 = 0.4 (Solid Line, Base Cal-
ibration), 1 = 0.36 (Dashed Line), 71
0.44 (Dotted Line)
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(c) Sensitivity to Alternative Mitigation Cost
Parameters Generated by a &+ 10% Variation:
k1 = 0.03 (Solid Line, Base Calibration),

k1 = 0.027 (Dashed Line), k; = 0.33 (Dot-
ted Line)
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(b) Sensitivity to Alternative Adaptation
Cost Parameters Generated by a + 10%
Variation: 75 = 16.81 (Solid Line, Base Cal-
ibration), 2 = 15.13 (Dashed Line), v, =
18.49 (Dotted Line)
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(d) Sensitivity to Alternative Mitigation Cost
Parameters Generated by a + 10% Variation:
ko = 1.2 (Solid Line, Base Calibration), ko
1.08 (Dashed Line), ko = 1.32 (Dotted Line)

Figure 4.3.9: Sensitivity of the Optimal Policy Mix to the Calibration of the Cost Parameters
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4.4 CONCLUSION AND OUTLOOK

The optimal policy response to climate change has to account for a mix of mitigation and
adaptation efforts. This paper considers this mix from the perspective of a continuous-
time real options modelling framework, which allows the examination of the impacts of
economic and ecological irreversibilities and intrinsic uncertainty in the future climate
damage costs. To this end, a new framework for a portfolio of adaptation and mitigation
options is developed. The mitigation option gives the opportunity to choose the optimal
timing to commit to a certain emission reduction target. The form of adaptation that is
considered can be categorized as proactive adaptation and is modelled as investments in
an adaptation capital stock. Exercising the adaptation option means optimally expanding
the adaptation stock. The model also features a stylized notion of adaptation capacity,
which determines how quickly the adaptation proceeds and is assumed to be compromised
by unabated climate damages.

The numerical simulations show the benefits of analysing the optimal climate policy
decision from a real options perspective. It is not the existence of uncertainty in itself
but the interaction with the irreversibilities that delays the adoption of both climate
policy measures significantly. More precisely, it postpones the implementation of the first
measure and it also prolongs the period until the second measure complements the policy
mix. Hence, it points out that the policy maker is rather reluctant to adopt two measures
that cause sunk costs and generate more or less uncertain benefits.

The optimal policy mix is determined by the differences in the characteristics of the
measures. Among the most important distinguishing features are the different timescales
on which the two measures work. The benefits evolve differently over time: while the
investments in adaptation can pay off rather soon, the benefits of mitigation are expected
to accumulate over a long time horizon. Consequently, the simulations demonstrate that
adaptation is the preferred measure if the economy is currently exposed to climate change
impacts. If the marginal benefits of expanding the adaptation capital stock are sufficiently
low, mitigation is given a higher priority so that the root causes of climate change can
be fought. Another distinguishing feature is given by the magnitude of the incurred sunk
costs. Curbing emissions incurs relatively high (at least) partially irreversible costs. The
tension between these costs and the uncertainty, which grows over the time horizon in
which the benefits accrue, nourishes the real option to mitigate. In contrast, the benefits
of the investments in adaptation are of a shorter lifetime, i.e. the benefits are less subject
to uncertainty. Adaptation allows small-scale investments to be made, which means that

the incurred sunk costs are not necessarily high. Consequently, compared with other
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decision frameworks, the real options perspective grants adaptation more emphasis as the
preferred measure in the portfolio.

The simulations also disclose significant asymmetry in the interaction of the two real
options, which is again reasoned by the different timescales on which the two measures
work. In particular, the simulations indicate that mitigation is delayed not only due
to its own real options value but also due to the opportunity to invest in adaptation.
In contrast, the timing of adaptation efforts is mainly determined by the present levels
of climate change impacts and less so by the future developments of the atmospheric
pollution level. Likewise, the today’s investments in adaptation are only slightly affected
by curbing emissions now. Hence, the real option to adapt is less affected by the presence
of the opportunity to mitigate than vice versa.

An extensive sensitivity analysis reveals that the policy maker’s weighting of future
welfare is crucial for the optimal policy mix, because the discount rates determine the
importance of emission cuts. The adaptation real option is less affected by discounting
due to the above-mentioned short-term benefits of the involved investments. Further
numerical simulations show that the adaptation option is exercised sooner and mitigation
adopted later if adaptation depreciates less quickly. Higher “unit” costs of adaptation are
demonstrated to increase the real options value of adaptation but to have no effects on
mitigation. In contrast, a lower capacity to adapt accelerates mitigation.

The modelling framework is meant to be the first stepping stone towards real options
models of holistic climate policy portfolios. The framework can be extended to incorporate
options of Carbon Capture and Storage, options to promote technological progress or more
specific adaptation options that allow the display of the manifoldness and complexity
of adaptation in reality. Furthermore, it would be fruitful to account for adaptation
measures that protect against catastrophic climate damage. Adaptation measures that
grant different levels of flexibility are also worthwhile investigating in a real options model.
Some adaptation measures have negative effects on mitigation efforts, while others have
positive spillover effects, as outlined by IPCC (2007a). There are adaptation measures
that are inseparable from development policies, which would represent another real option.
As a result of not covering all these and many more forms of adaptation, the model
is rather stylized, but it grants the advantage of having a small model to explain the

interaction of two climate policy instruments under uncertainty and irreversibility.
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APPENDICES

4.A SOLUTION OF THE OPTIMAL ADAPTATION PoLICY

The adaptation model needs to be solved in several steps. One possible way to proceed
is to compute the marginal welfare of adaptation, in order to find the threshold between
the area of inaction S7 and the area of action Ss. The information about the marginal
values w and the threshold location can then be used to derive the solution to the welfare
function.

As already indicated in Section 4.2.2, the solution in the area of inaction consists
of two parts. More precisely, the solution of W for S; is given by the expected present
welfare of never investing into adaptation and the real option of investing in the future.
Accordingly, the marginal welfare for Sy consists of the respective marginal values. Both
values can be derived from equation (4.16). The marginal expected present welfare of

P is the same as the particular solution to

adaptation, from now on referred to as w
equation (4.16). The general solution of equation (4.16) is used to find the marginal real
option of adaptation. As a by-product, the location of the threshold defined in terms
of the marginal values is obtained. This information about the the threshold location
is then used to determine the solution to equation (4.17). For Sa, the real options to
adapt are exercised instantaneously and thus only the expected present welfare of optimal
investment needs to be computed. In an analogous manner, only the particular solution
of equation (4.17) needs to be computed, which can only be derived, because its value v,
in the threshold is known. The information about the threshold location and the marginal
welfare for S and Ss is sufficient to derive the solution to equations (4.14) and (4.15). In

the following, the above-outlined steps are described in more detail.

4.A.1 THE PARTICULAR SOLUTION OF EQUATION (4.16)

The marginal expected present welfare of adaptation for S equals:

n OO MY _pemMu)?
wP =, / (YWG (1+aA(t))¢> e "tdt| , (4.19)
+ «

106



with 6(t) and M (t) given by equations (4.4) and (4.5), and A(t) is provided by equation
(4.8) with a(t) = 0 for all . The solution of (4.19) cannot be derived analytically but
can be obtained by solving (4.16) numerically. To this end, the specification of the model

needs to be enriched by some more information.

upper boundary condition for M — co:  w' =0, (4.20)
lower boundary condition for § = 0:  w’ =0, (4.21)
upper boundary condition for § — co:  w’ = 0. (4.22)

Condition (4.20) and (4.22) become clear by considering (4.19): for M — oo as well as for
0 — oo, the exponential term converges to zero faster than its factor. Condition (4.21)
explains that the integral is zero for § = 0 and it stays zero, as the geometric Brownian
motion has an absorbing barrier at this point.

In the following, equation (4.14) is solved by applying the finite difference method,
which gives the values of w! in terms of a discrete choice of its function arguments.

P

This means that the continuous function w* is approximated by its discrete version

wP(z’AG,jAM, kEAA) = wfﬁk, where 0 <7< .7, 0<j< _# and 0 <k < .#. The values
are chosen so that SAl0 = Opax, FAM = Myax and X AA = Anax with sufficiently
large numbers Onax, Mmax and Apax. The approximation of the partial derivatives by
finite differences is crucial. In general, two types of finite difference schemes can be
applied: the explicit and the implicit finite difference method. The explicit method has
the disadvantage that the discretization must obey some constraints, which often turn out
to be very restrictive. Especially for the equations at hand, the conditions for the number
of steps and the length of the step sizes imply enormous computational effort. Therefore,
the implicit finite difference method is applied in the following. More precisely, equation

(4.16) is transformed into:

agpig ((j — 1)AM)Y —e20U=DaT
(L+akAA)PT ©

(r+ f)wfj—l,k =Y

whip = w1y,
+ (Be(1 —m)Y = 6((j — DAM)) =52
n z‘AHw’il’j—l’k - wil,j—l,k (4.23)
H 210
P P P
1 ) Wit1j- 1k T Wit 1k — 2“", j—1,k
+ 502 (iA9)* =2 EA0])2 =

wl. —wl.
_tkAA i,j—1,k i,j—1,k—1 ik
¢ AA Vi gk,
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which is the same as:

Wi = - Ya¢'0(i1Aj gi;;))ﬁy)we_w g g 71 (4.24)
+wli gy TaF Wiy T3 W1 T4
with
AM

T Be(l—m)Y —o(j - DAM
T1=4q (;m - ;a2i2> )
zo=1+q(r+o%i*+&(k+1)),
r3=q (—;m’ - 20212> ,
g = —q&k. (4.25)

As the values of wff’k for all ¢ and k are given by (4.20), the values of wf/—l,k; can
be found by using its relation to wf 7k 3 given by equation (4.24). Accordingly, all other
values wqu,k can thus be computed step by step. For A = 0, it should be noted that
the partial derivative with respect to A vanishes and the ’out-of-the-grid’ value wfj_17_1

is not needed to approximate all the values in k& = 0.

4.A.2 THE GENERAL SOLUTION OF EQUATION (4.16)

Consider the value of the option to invest in additional adaptation capital W&, which is

described by the homogeneous part of equation (4.14):

owe owe 1 PWe owe
+ p6 + ~026? —¢A .

oM 00 2 062 0A

The real option to adapt loses value the more adaptation capital is installed. Hence, the

. . G . . . G . .
partial derivative 83/4 is negative. Defining w® as —%LA, the marginal option can be

rW% = (Be(1 —m)Y — M)

(4.26)

expressed as:
1
(r+&w® = (Be(1 = m)Y — 6M) w§; + pbw§ + 5029%59 —AwS,  (4.27)

which obeys the value-matching condition:

wY = max {wP — 71,0}, (4.28)

at the threshold of taking action. Please note that w’ is the particular solution of equation
(4.16), as described in Appendix 4.A.1.
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To approximate the marginal option, the following additional boundary conditions

are then implied:

upper boundary condition for M — co:  w"™ =0, (4.29)
lower boundary condition for # = 0:  w% =0, (4.30)
upper boundary condition for  — co:  w? = 0. (4.31)

The conditions (4.29) and (4.31) can be explained by noting that w’ is zero for M — oo
and 8 — oco. Hence, welfare cannot be increased by additional investment in adaptation
capital, which makes the real option worthless, and this does not change for a slightly
higher value of A. Condition (4.30) is due to the absorbing barrier of the geometric
Brownian motion.

Equation (4.27) is approximated in a similiar way to w” in Appendix 4.A.1:
G G G G G
wl'7j7k = wi*l,jfl,k T+ wi’jil,k To + wi+1’j71’k T3 + wi,j*l,k*l T4, (432)

with z1, 22, 3 and x4 as in (4.25). The numerical procedure, however, is more complex
than the one in Appendix 4.A.1. Implicit schemes for the free boundary problem given
by (4.28) cannot be solved directly.?® Therefore, the solution is derived iteratively by
applying successive overrelaxation (SOR). The acceleration parameter is the value in
which the spectral radius of the SOR matrix is the minimum, as explained in detail
by Thomas (1999). This procedure provides the marginal real options values and as a

by-product the threshold of taking action in adaptation.

4.A.3 THE PARTICULAR SOLUTION OF EQUATION (4.17)

After conducting the numerical routine explained in Appendix 4.A.1 and 4.A.2, we can
make use of the information about the threshold location. Denote the set of all values
(0, M, A) defining the threshold as 7 = {(6, M, A) : w¥ (0, M, A) = wF(0, M, A) — 1 }.

Then, the required boundary conditions for the marginal expected present welfare for S

(henceforth referred to as w!?) read:
upper boundary condition for M — oo:  w!’? =0, (4.33)
upper boundary condition for § — co: w2 = 0. (4.34)
threshold condition, for (6, M,A) € 7: w!? =, (4.35)

28 A more detailed explanation of this problem and further useful information about the finite difference
method is given by Brandimarte (2006).
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In the case of extremely high damage costs, i.e. M — oo and/or § — oo, the welfare
approaches zero and additional investment in adaptation will not change this.

In order to apply an implicit finite difference scheme to equation (4.17), it is nec-
cessary to deal with two troubling characteristics of this partial differential equation. The
first one relates to the non-linear terms, which render the matrix manipulations required
to solve the implicit schemes impossible. As stated by Thomas (1995), there is no nice
way out of this problem and the easiest and most common solution is to lag parts of the

non-linear term. Accordingly, I choose to lag the values of w'? in the non-linear terms

of <% (wP? =) — gA) wh? and T%ﬁ (wh? — 71)2. The other issue relates to

the changing sign of the term (% (wP 2 'yl) — §A), which may cause instabilities in
the routine. This problem can be elegantly handled by upwinding: whenever the sign is
negative, wf? is approximated by the backward finite difference scheme; whenever the
sign is positive, the forward finite difference scheme is used. Additionally, the scheme is
made conservative by refining the discretization of the term in the A-direction: whenever
the sign is negative, the term is discretized at the point (i,7,k — %) instead of (4,7, k);
whenever the sign is positive, the term is discretized at the point (i, 7, k + %) instead of
(,7,k), see e.g. Wilmott (1998). Denoting Y; ;1 as the discretized version of equation
(4.3), the scheme thus reads:

WP _p . 00piAG ((j — AM)”
sk T kA )

P P P P
T Wij1k T5+ Wit1j1k L3+ Wi 1,1 L6+ Wij1pp1 T7,

1, 5 2 P
(Y + 279 (wijx—m) > Witk T (4.36)

with ¢, 1 and x3 as in (4.25). The remaining coefficients are given by:

1+q(r+02i2+§—ﬂi’j’k7%) for II<O0

Irs = 9.9 (437)
1+q(7‘+01 +£+Hi,j’k+%) for II>0,
1I. . for II<O0
g =4 ok = (4.38)
0 for II>0
and
0 for II<O0
T7 = (4.39)
—qHM’kJr% for II>0
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with II being:

Tijik P2
Ik = ygl’Aj,A (wi,j,k: - 71) —&k. (4.40)
The values wZPJ .2k7 ; and wi ,2k L1 are the average values of their “neighbours” wﬁzk and
2y 2 2y 2 J

wfﬁk_l, and wfﬁk and wfﬁk_s_l, respectively.

Please note that defining boundary conditions for A is not necessary. For A = 0, II
is positive and the values in A = 0 can be directly derived by the scheme. Likewise, the
values wf?[ directly result from the scheme, because the marginal welfare of adaptation
for a very high A approaches zero and thus II is certainly negative. Hence, in the A
direction the scheme only uses values from inside the grid. The scheme is then iteratively

solved for all the remaining values beyond the threshold of taking action.

4.A.4 THE PARTICULAR SOLUTION OF EQUATION (4.14) AND EQUATION (4.15)

Appendices 4.A.1 and 4.A.3 describe how to compute the marginal expected present
welfare for S1 and S2, respectively. The idea is to insert these values for %—VX into the
corresponding equations (4.14) and (4.15) and to apply an implicit finite difference scheme.

Equation (4.10) helps to find the boundary conditions for the particular solution of
(4.14) (henceforth referred to as W¥1):

upper boundary condition for M — oo: W = —Zk;m"2Y, (4.41)
r
Y
lower boundary condition for § = 0: Wt = — (1 — kym™?), (4.42)
r
1
upper boundary condition for  — co: WPl = —;mm’”Y. (4.43)

For an enormous amount of pollution M — oo or for a high value of § — oo, the GDP
net of damage tends to zero. The mitigation costs remain as the only term in equation
(4.10). In the case of § = 0, the climate damage costs remain zero and Y = 1. Then, the
integral in equation (4.10) has the analytical solution (4.42).

The same boundary conditions apply to the particular solution of (4.15) (henceforth
referred to as W2). If the GDP net of the damage costs is close to zero, equation (4.12)
shows that a* becomes zero. If the climate damage costs remain zero, there is no need to
invest in adaptation. Hence, for these extreme cases, a* is zero and W2 behaves in the
same way as W1,

The scheme to approximate W1 is then:
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Wi == (YY1 — im™ — kA A}, 1)

P1 P1 P1
+ Wi—l,j—l,k‘ r1 + Wi,j—l,k‘ rs + Wi-}—l,j—l,k‘ xrs3,

(4.44)

with w?! being given by Appendix 4.A.1, ¢, x; and 3 as in (4.25) and zg is given by:
zg=1+q(r+ 0'22'2) . (4.45)

The same coefficients are used for the scheme to approximate W12

T, 1k 2
w2 = —q (yrivj_m — kim(t)" — EkAAWS? | |+ ;T (wi? 1 h—m) > (4.46)

P2 P2 P2
Witk 1 WiiTa e 28 +Wiid 51k @3,

with w’? being given by Appendix 4.A.3.
Along the same lines, the real options value as described by (4.26) can be derived.

The boundary conditions are

upper boundary condition for M — co: W% =0, (4.47)
lower boundary condition for § =0: WY =0, (4.48)
upper boundary condition for § — co: W& = 0. (4.49)

The explanation again follows the same logic. In the situation of extremely high
climate damage costs, investment in adaptation would no longer be beneficial. For 8 = 0,
there is no need to invest in adaptation. Therefore, the real options value is zero in both
extreme cases.

The marginal real options value w®

is then inserted into the partial differential
equation (4.26), which is solved by the analogue to (4.44).

The full solution to Section 4.2.2 is then composed of the sum of the real options
value W& and the expected present welfare W¥! for S1 and the expected present welfare

WP2 for SQ.

4.B THE PROCEDURE TO SOLVE THE REAL OPTION TO MITIGATE

The applied solution routine to find the values of the real option to mitigate does not

fundamentally differ from the finite difference method outlined in Appendix 4.A. To avoid
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needless repetitions, I only outline the most important steps that need to be considered
when solving equation (4.18).

As in Appendix 4.A.2, I opt to solve this free boundary problem by applying SOR.
To save the computational costs of deriving the acceleration parameters, I take the ones
derived in Appendix 4.A.2. Although the involved spectral radii are not equal for the two
routines, they are sufficiently close to guarantee quick convergence.

Asin Appendix 4.A.3, the non-linearity of the partial differential equation does not fit
well with the implicit finite difference method. To solve it nonetheless, I rewrite equation
(4.18) for Sy as follows:

owM owM 1 oPwM
M _ _ 1 992
rW = (BeY — M) EYYi + pb 20 + 50 0 502 (450)
+ l M -9 _ §A M + L’Y%
2799\ 94 N 9A | 2yy’

and opt to “lag” the discretized version of the partial derivative in
T (owM
(25 (%5 —2m) - ¢4).
Finding a boundary condition for A = 0 is far from being straightforward. Instead,

I coarsely approximate the partial derivative a‘é‘;M in A = 0 by the derivative of the
corresponding particular solution.

An issue of concern is caused by the switch of the functional form in equation (4.18).
The resulting jump in the values may lead to errors in the approximated finite differences
in the neighbourhood of the discontinuities. For instance, the real options values in
the switch could drop to a suspiciously low level. With the aim of constraining the
magnitude of these errors, I first solve the mitigation model that ignores the opportunity
to adapt. The equation describing the real options value in that case is continuous and
thus garantuees precise results. In the absence of adaptation, the urgency to mitigate is
certainly higher than in the case in which the damage can be alleviated by adaptation.
Accordingly, the values computed thus then serve as a lower boundary in the SOR method

that derives the real options values given by equation (4.18).

4.C CALIBRATION

The base calibration is as follows.
Greek letters:

adaptation parameter o 0.05
atmospheric retention ratio (in ppm per trillion of CO, metric tonnes) B8 9.09
natural rate of CO, depletion in the atmosphere 1) 0*
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emission parameter (in CO, metric tonnes per US dollars PPP of GDP) | ¢ | 4.18 x10™*

adaptation parameter 10) 4.5
adaptation cost parameter Y1 0.4
adaptation cost parameter Y2 16.81
mitigation cost parameter K1 0.03
mitigation cost parameter K2 1.2

drift term in the Brownian motion w 0
damage cost parameter p | 717 x10712
variance term in the Brownian motion o 0.07
depreciation rate of adaptation capital 13 0.075
damage cost parameter P 4.88

Annotation * : This calibration represents a valuable simplication to the numerical
solution routine. The parameter 3 is parametrized to capture the depreciation, by making

the crude assumption that the increase in atmospheric CO, follows a constant trend of 3

ppm per year.

Further parameters:

emissions (in trillion of CO, metric tonnes) E | 0.033

Global GDP in the absence of climate damages (in trillion US dollars PPP) | Y | 78.97
emission reduction rate m | 0.09

discount rate r | 0.025

“Calibration” of the implicit finite difference method:

Omaz 100 A6 | 0.2
Mopas | 420 | AM | 0.6
Amas | 16.67 | AA | 0.05
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4.D FURTHER SIMULATIONS FOR THE SENSITIVITY ANALYSIS

Here, the base calibration of the investigated parameter is varied by 4+ 20%. The

thresholds resulting from the new simulations are then compared with the thresholds

of the base calibration.

(a) Sensitivity to Alternative Discount (b) Sensitivity to Alternative GDP Val-
Rates: » = 0.025 (Solid Line, Base ues: Y = 78.97 (Solid Line, Base Cal-
Calibration), » = 0.02 (Dashed Line), ibration), Y = 63.18 (Dashed Line),

r = 0.03 (Dotted Line) Y = 94.76 (Dotted Line)

Figure 4.4.1: Sensitivity of the Optimal Policy Mix to Discounting and GDP, Depicted by the
Threshold of Mitigation (Red) and the Threshold of Adaptation (Black) in M = 40

>o

Figure 4.4.2: Sensitivity to Alternative Depreciation Rates Generated by a +£20% Variation: £ =
0.075 (Solid line, Base Calibration), £ = 0.06 (Dashed Line), £ = 0.09 (Dotted Line)

Please note that a —20% parameter variation for ko would make the mitigation cost

curve concave. This case is thus ignored in the sensitivity analysis.
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(a) Sensitivity to Alternative Adapta- (b) Sensitivity to Alternative Adapta-
tion Cost Parameters Generated by a tion Cost Parameters Generated by a
+20% Variation: 7, = 0.4 (Solid Line, +20% Variation: y2 = 16.81 (Solid
Base Calibration), 3 = 0.32 (Dashed Line, Base Calibration), v = 13.45
Line), 71 = 0.48 (Dotted Line) (Dashed Line), v2 = 20.17 (Dotted

Line)

Figure 4.4.3: Sensitivity of the Optimal Policy Mix to the Calibration of the Adaptation Parameters

(a) Sensitivity to Alternative Mitigation (b) Sensitivity to Alternative Mitigation
Cost Parameters Generated by a +£20% Cost Parameters Generated by a +20%
Variation: k; = 0.03 (Solid Line, Base Variation: k2 = 1.2 (Solid Line, Base
Calibration), k1 = 0.024 (Dashed Line), Calibration) and ko = 1.44

k1 = 0.36 (Dotted Line)

Figure 4.4.4: Sensitivity of the Optimal Policy Mix to the Calibration of the Mitigation Costs
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In solidarity with my countrymen who are struggling
to find food back home, I will now commence a volun-
tary fasting for the climate, this means I will volun-
tarily refrain from eating food during this COP, until

a meaningful outcome is in sight.

Yeb Sano,
Philippines Lead Negotiator at the 2013 United

Nations Climate Change Conference

Can International Environmental Cooperation be

bought: Comment!

5.1 INTRODUCTION

Most of the theoretical literature on international environmental agreements assumes
that countries are homogeneous, because implementing asymmetries in benefits or costs
of abatement pose great difficulties in finding analytical solutions. Thus, the effects of het-
erogeneity on the coalition formation have been mostly examined by means of simulation
tools.

In this light, Fuentes-Albero & Rubio (2010) have made an important contribution,
as they analytically solve a non-linear model allowing for two types of countries and con-
tinuous strategies. Heterogeneity in abatement and damage costs is analyzed separately,
where for both cases two different institutional settings, i.e. one with and one without
transfer payments, are applied.

Fuentes-Albero and Rubio show for both scenarios of asymmetry and no side-
payments that the maximum level of cooperation consists of three countries of the same
type. In the case of heterogeneity in abatement costs, countries of a different type are not

willing to form a coalition and a transfer system contributes only to an agreement of two

!This chapter is published as Glanemann (2012).
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asymmetric signatories. When the differences in environmental damages are considered,
the size of the coalition even increases with the degree of heterogeneity in a self-financed
payment system. Assuming that no transfers are paid, Fuentes-Albero and Rubio con-
clude that an agreement between one type 1 and one type 2 country is self-enforcing given
that the differences in the damages are not very large.?

The derivation of the last mentioned result is shown to be incorrect in the following

by proving that this coalition is not self-enforcing.

5.2 THE MODEL AND THE DERIVATION OF THE NEW RESULT

At first the set-up as well as the required equations in Fuentes-Albero & Rubio (2010)
are summarized.

The model is designed for two kinds of countries, of which N; are of type 1 and No
are of type 2. The types are assumed to differ only in the marginal damage costs m; > 0
with my > my. Hence, they bear different environmental damage costs m; X, which are
generated by the global pollution X. Implementing a national emission level x; lower than
in the business-as-usual scenario § induces abatement costs (c¢/2)(6 — ;)% with ¢ being
the marginal abatement costs. The abatement and the environmental damage costs add
up to the country’s cost function.

The negotiation process is modeled as a two-stage game, in which in the first stage
the countries decide to sign or to stay outside the agreement (membership game) and
in the successive stage they determine their emissions (emission game). As this game is
solved by backward induction, at first the countries’ optimal emission levels are computed
by minimizing their cost functions. For this the non-signatories are assumed to act non-
cooperatively, whereas the signatories consider the aggregate costs of the coalition while
acting non-cooperatively against the non-signatories. Assuming n; signatories of type 1
and ng of type 2, the optimal emission levels of the defecting and signing countries of type
i are computed to be m{ =0 — (my/c) and =} = § — (min1 + mans)/c, respectively. The

signatories’ cost function is therefore:

1
Cf(nl,ng) = ?C (m1n1 + m2n2)2 +m; X (nl,ng) , 1=1,2 (51)

and the corresponding function of the defecting countries is represented by:
2

C’lf(nl,ng) = % +m;X (n1,n9), i=1,2, (5.2)

2An agreement is called self-enforcing, if the countries acting in their own self-interest have incentives
to sign it.
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where the global emissions X (n1,n2) add up to:

X (n1,n2) =N, (5 — %) LN, (5_ %)
_ % (my (ny — 1) + mang) — % (mant +ma (ng — 1)) . (5.3)

In the membership game the coalition (n1,n2) is tested for stability, which means
that no country has an incentive to revise its membership decision. More precisely,
if the internal stability condition, i.e. Cf(ni,ng) < C{(nl — 1,n9) for type 1 and
CS(ni,m2) < C’g (n1,ne — 1) for type 2 holds, every signatory is better off by staying
in the coalition. If the external stability condition, i.e. C’{(nl,ng) < Cj(n1 + 1,ng) for
type 1 and C’g (n1,n2) < C5(n1,ng + 1) for type 2 is fulfilled, the non-signatories cannot
improve by acceding to the agreement. If both conditions apply, the coalition is called
stable or self-enforcing. Fuentes-Albero and Rubio prove that only a coalition of one type
1 country and one type 2 country is internally stable given the differences in relative terms
are not greater than 40%. They also state the countries being externally stable, but the
following calculations show that the external stability condition is not satisfied. It would

hold for type 1, if C’{ (1,1) — C§(2,1) < 0. Computing both summands separately, gives

) =" 4o, K (5—@)“\@(5_%)_@_@}

2c C c c
9 2
S [ (5 )y (5 )] - e
2c c c c c
2
o [ (5 ) (5 2] (5.4)
2c c c c
and
CH2,1) = — (2my + mo)
1\4 - 2% 1 2
2
b [N (5= 22) N (5 72) = 2 gy ) - 21
2 2 2
= my m1m2—}—@+m1|:N1((5—71>+N2(5—72)}
c c 2c
_ Qm% _ leTTLQ Qm%
c c c
92 2 2
=T B [N (5= 2 v (6 - 22)] (5.5)
c 2c c c
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Therefore the external stability condition evolving as

2 2 2
m mimsy  2m m
0>cl(1,1)—cs(2,1) = —— M2 2T T2
—1(7) 1(7) % C+c 9
1
22—(3m%—2m1m2—m%)
c
1
= 5 (M1 —mz) (3my +ma), (5.6)
3

is not satisfied, as it is assumed that mq > mso.
The assumption mg > my would lead to external stability for type 1, however in this case

the condition for type 2
1
ci,1)-c301,2) = 5 (M1 = ma) (mi + 3ma) <0 (5.7)

cannot hold.
Hence, the coalition consisting of one type 1 country and one type 2 country does not
fulfill the external stability condition and is thus not self-enforcing.

The calculations show that a coalition of two countries differing in environmental
damages attracts further highly affected countries. Consequently, the low-damage country
is burdened with a too high emission reduction target, so that it annuls the agreement.
This leaves behind a treaty that only includes high-damage countries - an agreement of

homogeneous countries.

5.3 CONCLUSION AND FURTHER REMARKS

Fuentes-Albero and Rubio show that only an agreement of one type 1 and one type
2 country is internally stable if heterogeneity in environmental damages and no side-
payments are considered. This comment proves that the external stability condition has
however not been satisfied. Therefore heterogeneity in environmental damage costs pro-
vokes countries of different types to defect from cooperating, unless they are compensated
by side-payments.

As Fuentes-Albero and Rubio draw the same conclusion for the case of different
abatement costs, a system that is designed to balance asymmetries seems to be a necessary
tool for the formation of a global international environmental cooperation. However, the

assumed self-financed transfer system that makes the size of the coalition increase with the

3Probably as a result of calculation mistakes, Fuentes-Albero and Rubio state a different equation
being Cf (1,1) — C5(2,1) = —(m3/2¢)(m? 4+ 2m 4 1) with m = (m1/m2), which is claimed to be also valid
for type 2. This equation is obviously negative for all m and the external stability condition would thus
hold.
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degree of asymmetry in the marginal environmental damages is not generally applicable.
In this scenario, one or two countries with relatively high marginal damage costs buy the
cooperation of the low damage countries, in order to decrease the global emission level.
The incentives to buy the others’ cooperation increase the greater the asymmetries get,
as otherwise the less affected countries tend to have high emissions causing comparatively
high damages in the vulnerable countries. This positive result confirms Barrett (2001)
that inequalities can be a vehicle to establish a high degree of international cooperation.
Barrett examines the case of the Montreal Protocol, where the rich countries gaining
the most from the treaty bought the poor’s cooperation.* Hence, in this special case a
transfer system can exploit the existing asymmetries, as it wipes out free-riding incentives
without transgressing any notions of fairness. However, negotiations on CO, emission
reduction must overcome a different distribution of inequalities. Even though assessing
the countries’ damages caused by atmospheric CO,, is always controversial, most of the
literature argues that poor countries being - on the whole - most vulnerable (see for
example the review of several studies in Smith et al. (2001) or Mendelsohn et al. (2006)).°
Hence, according to Fuentes-Albero and Rubio, a high level of cooperation could be
achieved, if these countries compensate the developed world for reducing emissions. Due
to aspects of equity and budget constraints the examined transfer scheme is unlikely
to be ever up for debate, let alone lead to a high degree of international cooperation.
A realistically enforceable system of side-payments does not only eliminate free-riding
incentives but also satisfy criteria of feasibility and fairness. The difficulty of finding such
a transfer system is illustrated by the failed UN climate change negotiations of the past
years.

Instead of overcoming asymmetries to accede to one agreement, multiple coalitions

consisting of rather homogeneous countries may be more realistic and effective. Com-

4The Montreal Protocol, which has been signed by almost every nation in the world, is designed to
protect the ozone layer by phasing out harmful substances. Barrett argues that the industrialized countries
benefit more from this treaty than the developing ones, as depletion has been reported to be mainly in
high latitude regions and light-skinned people run a higher risk of getting skin cancer.

®Smith et al. (2001) compare different studies, which have estimated the total monetized impacts in
different regions of the world for a doubling of atmospheric CO,. Although there is a substantial degree
of uncertainty around the numerical results, most studies show that the developing countries expect more
severe damages by climate change. The reasoning is that less developed countries typically depend on
climate-sensitive sectors like agriculture and lack the financial, technical and institutional capacity to adapt
to climate change. Furthermore many of the poor countries already face environmentally disadvantageous
conditions. This argument is stressed by Mendelsohn et al. (2006). Investigating the distributional effects
of climate change on rich and poor countries, they find that the poorest half of the world’s nations is
threatened by the highest damages, the second richest quarter bears a relatively small burden and the
richest quarter suffers almost no net impacts. They show that the poor countries’ vulnerability is mainly
due to their geographical location. As low latitude regions are already exposed to very high temperatures,
further warming has worrying consequences.
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bined with exclusive membership rules the entry of countries being different could be
rejected, which prevents the treaty from becoming unprofitable and unstable. Given the
negative results concerning asymmetries, further research to develop a theoretical model
that incorporates heterogeneity and multiple coalitions is thus required.%

Moreover, it would be interesting to examine whether the resulting destructive ef-
fects of heterogeneity on cooperation are due to the implementation of linear damage
costs alongside quadratic abatement costs. This kind of modeling emphasizes the costs
of abatement over the costs of pollution. The implementation of non-linear damages,
however, pose problems of analytical tractability, as Fuentes-Albero and Rubio also point

out.

5Indeed, the theoretical papers by Finus & Rundshagen (2003) and Asheim et al. (2006) attest the co-
existence of multiple coalitions a higher efficiency. However, both papers make the simplifying assumption
of symmetry. In the empirical strand of literature Eyckmans & Finus (2006) confirm the welfare enhancing
effects of multiple coalition structures by implementing six world regions (USA, Japan, European Union,
China, Former Soviet Union and the "Rest of the World”) into an integrated assessment model.
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