
A SEMI-LAGRANGIAN VLASOV SOLVER IN TENSOR TRAIN

FORMAT

KATHARINA KORMANN∗

Abstract. In this article, we derive a semi-Lagrangian scheme for the solution of the Vlasov
equation represented as a low-parametric tensor. Grid-based methods for the Vlasov equation have
been shown to give accurate results but their use has mostly been limited to simulations in two
dimensional phase space due to extensive memory requirements in higher dimensions. Compression
of the solution via high-order singular value decomposition can help in reducing the storage require-
ments and the tensor train (TT) format provides efficient basic linear algebra routines for low-rank
representations of tensors. In this paper, we develop interpolation formulas for a semi-Lagrangian
solver in TT format. In order to efficiently implement the method, we propose a compression of the
matrix representing the interpolation step and an efficient implementation of the Hadamard product.
We show numerical simulations for standard test cases in two, four and six dimensional phase space.
Depending on the test case, the memory requirements reduce by a factor 102 − 103 in four and a
factor 105 − 106 in six dimensions compared to the full-grid method.

Key words. Vlasov equation, tensor train decomposition, semi-Lagrangian method

AMS subject classifications. 15A69, 65F99, 82D10

1. Introduction. The Vlasov equation models the evolution of a plasma in an
external or self-consistent field. In its full generality, the model consists of an advection
equation in the six-dimensional phase space coupled to Maxwell’s equations. Since
analytical solutions are usually not known, the numerical simulation of these problems
is of fundamental importance. Due to the high dimensionality and the development
of small structures the numerical solution is very challenging. There are essentially
three classes of solvers that are used in simulations: particle-in-cell (PIC) methods,
Eulerian solvers, and semi-Lagrangian methods. The idea of particle methods (cf. e.g.
[5]) is to distribute a number of macro-particles in the computational domain that are
evolved according to the equations of motion. Eulerian as well as semi-Lagrangian
solvers, on the other hand, are based on a phase-space grid. In a Eulerian solver (cf.
[1] and references therein), the spatial derivatives are approximated by a standard
method (e.g. finite volumes [36] or discontinuous Galerkin [11, 7]) and the system is
advanced in time using an ODE solver (e.g. Runge–Kutta). Semi-Lagrangian solvers
(cf. e.g. [38]) update the values of the grid point by evolution along characteristics.
They have the advantage that they do not suffer from time step restrictions by the
Courant–Friedrichs–Lewy (CFL) condition.

Grid-based methods suffer from the curse of dimensionality, i.e., from the fact that
the number of unknows grows with the number of dimensions of the problem. For this
reason, grid-based simulations of the 6D Vlasov equations are rarely done. Monte-
Carlo methods are computationally less expensive for high-dimensional problems but
suffer from a numerical noise problem.

To alleviate the curse of dimensionality for grid-based solvers, several methods
especially suited for high-dimensional problems have been developed in the numerical
community. Such methods are the sparse-grid method [4], tensor-based methods
[19, 26, 18], and radial basis functions [3]. In this paper, we consider the solution

∗Lehrstuhl für Numerische Methoden in der Plasmaphysik, Technische Universität München,
Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany. (katharina.kormann@tum.de).
Max–Planck–Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany.

1

mailto:katharina.kormann@tum.de

2 K. KORMANN

of the Vlasov–Poisson system in tensor train format [33] which is a type of tensor-
based method with attractive numerical properties. The main concept of this method
is to represent the solution as nested sums of tensor products. The compression of
full-grid data to a sum of tensor products can be achieved by performing high-order
singular value decompositions (HOSVD). The HOSVD can also be used to recompress
data during time-dependent simulations. Furthermore, all basic numerical operations
are defined in the tensor train (TT) format. Even though small filaments evolve in
the solution of the Vlasov equation, it has been shown in [22] that the data from a
gyrokinetic Vlasov simulation can be compressed by HOSVD.

Tensor-based methods were introduced in the quantum chemistry community by
Meyer et al. [31] and have been further developed since then. In recent years, math-
ematical aspects of tensor-based methods have been addressed and formalized in the
tensor train [35] as well as the hierarchical tensor [20] format. The tensor train for-
mat has been applied to the solution of various high-dimensional differential equations
[24, 25, 13]. In particular, Dolgov et al. [16] have designed a tensor train algorithm
to solve the Farley–Buneman instability in ionospheric plasma. The equations are
similar to the Vlasov–Poisson equations considered in this paper.

The outline of the paper is as follows. In the next section, we introduce the split-
step semi-Lagrangian solver for the Vlasov–Poisson equation. Then we give a short
summary of the tensor train format in §3. The tensor train semi-Lagrangian method
is devised in §4 and its efficient implementation is discussed in §5. In particular, we
discuss an efficient implementation of the TT Hadamard product and compression of
the interpolation operator. Numerical results are provided in §6 and conclusions as
well as future research directions are given in §7.

2. Vlasov–Poisson equation and semi-Lagrangian discretization. The
evolution of the distribution function f(x, v) of a plasma is governed by the Vlasov
equation

∂tf + v · ∇xf + F (t, x, v) · ∇vf = 0,

where the force field F is given by the Lorentz force due to external and self-consistent
electromagnetic fields. The self-consistent fields can be computed by Maxwell’s equa-
tions. If the magnetic field is small, it suffices to consider F (t, x, v) = −E(t, x). Then
the self-consistent part of the electric field can be computed by the Poisson equation

−∆φ(x, t) = 1− ρ(x, t), E(x, t) = −∇φ(x, t),

where ρ =
∫

f(x, v) dv is the particle density. In this paper, we focus on such Vlasov–
Poisson equations.

The Vlasov equation is a hyperbolic equation and the associated characteristics
satisfy the differential system

dX

dt
= V,

dV

dt
= −F (X,V, t).

If the evolution of the characteristic curves is known, the distribution function at time
t can be computed from a given initial distribution f0 at time t = 0 as

f(x, v, t) = f0(x −X(t), v − V (t)).

The idea of the semi-Lagrangian method is to discretize the initial distribution on a
mesh. In each time step, the characteristic equations are solved numerically backwards

TENSOR-TRAIN VLASOV SOLVER 3

in time and the new solution at the grid points is given by the (interpolated) value of
the previous solution at the origin of the corresponding characteristic.

For the Vlasov–Poisson equation, the coefficient of the x gradient is only depen-
dent on v and vice versa. Therefore, a split step method can be designed where
(constant) advection along one coordinate direction is considered at a time. In this
case, the equations for the characteristics can be solved exactly. This yields the split-
step semi-Lagrangian scheme shown in Algorithm 1 which was originally introduced
by Chen and Knorr [6]. Note that the interpolation along the d/2-dimensional x- and
v-coordinates can be split into d/2 separate one-dimensional interpolations. Various
aspects of the semi-Lagrangian method for the Vlasov equations have for instance
been discussed in [17, 2, 8, 9, 10, 30].

Algorithm 1 Split-step semi-Lagrangian scheme by Chen and Knorr [6]

Given f (m) and E(m) at time tm, we compute f (m+1) at time tm +∆t as follows:

1. Solve ft−Enfv = 0 on half time step: f (m,∗)(xi, vj) = f (m)(xi, vj+E
(m)
i

∆t
2).

2. Solve ft + vfx = 0 on full time step: f (m,∗∗)(xi, vj) = f (m,∗)(xi − vj∆t, vj).
3. Compute ρ(xi, vi) and solve the Poisson equation for E(m+1).
4. Solve ft − E(m+1)fv = 0 on half time step: f (m+1)(xi, vj) = f (m,∗∗)(xi, vj +

E
(m+1)
i

∆t
2).

3. The tensor train format. On a tensor product grid, the number of points
grows exponentially in the dimension variable. In many cases, however, the complete
information—or at least an accurate approximation—can be recovered from much less
data. The simplest example is a function of the form

f(x1, . . . , xd) =

d
∏

k=1

fk(xk).

On a grid with nk points along dimension k, it suffices to store the
∑d

k=1 nk function
values fk(xk,j), j = 1, . . . , nk, k = 1, . . . , d. The value at any grid point can be re-
constructed from this data. Generalizing from this very special case, the tensor train
(TT) format [33] offers the possibility of representing a multidimensional function as
nested sums of such Kronecker products which yield good approximations of much
more complicated functions. In the tensor train format, each dimension k is repre-
sented by a kernel Qk ∈ R

rk−1×nk×rk , in which the second index runs over the grid
points along the kth dimension and the first und third index take care of couplings
to the (k − 1)th and (k + 1)th dimension, respectively. The value at the grid point
(xi1 , . . . , xid) can be reconstructed as

f(xi1 , . . . , xid) =

r0
∑

α0=1

. . .

rd
∑

αd=1

d
∏

k=1

Qk(αk−1, ik, αk).

The size of the ranks rk, k = 1, . . . , d − 1, depends on the structure of the function
and the level of accuracy required. Since f is a scalar function, we have r0 = rd = 1
and we will sometimes omit the corresponding index. As an example, we consider a
three-variate function of the form

(3.1) f(x, y, z) = (f1(x) + f3(z))f2(y).

4 K. KORMANN

This function can be represented by the TT tensor with ranks r1 = r2 = 2 and kernels

Q1(i1, 1) = f1(xi1), Q1(i1, 2) = 1,

Q2(1, i2, 1) = f2(yi2), Q2(1, i2, 2) = 0, Q2(2, i2, 1) = 0, Q2(2, i2, 2) = f2(yi2),

Q3(1, i3) = 1, Q3(2, i3) = f3(zi3).

Let us introduce some further notation following [29]. For the kernel Qk ∈
R

rk−1×nk×rk , we denote by
(3.2)

Q<
k =







Qk(:, 1, :)
...

Qk(:, nk, :)






∈ R

(rk−1nk)×rk , Q>
k =







Qk(:, :, 1)
T

...
Qk(:, :, rk)

T






∈ R

(rknk)×rk−1 ,

the left and right unfolding, respectively. Moreover, we define the matrix Qk(ik) ∈
R

rk−1×rk as the slice Qk(:, ik, :) corresponding to index ik.
In case we have a function represented as a d-dimensional tensor, we can use

a sequence of singular value decompositions (SVD) applied to matrifications of the
tensor to find a representation in TT format to a given error tolerance or with a fixed
maximum rank.

The tensor train format offers not only compression of high-dimensional data but
also provides simple algorithms for basic tensor-tensor and matrix-tensor operations.
For instance, we can build the kernels of the sum of two TT tensors A = QA

1 · . . . ·QA
d

and B = QB
1 · . . . ·QB

d by setting

QA+B
1 (i1) =

(

QA
1 (i1) QB

1 (i1)
)

, QA+B
d (id) =

(

QA
d (id)

QB
d (id)

)

,

QA+B
k (ik) =

(

QA
k (ik) 0
0 QB

k (ik)

)

, k = 2, . . . , d− 1.

This operation is essentially a copying function. However, the ranks of A and B sum
up to the ranks of A + B. In a matrix-vector product, the ranks of the matrix and
the vector are even multiplied. Obviously, continued application of basic operations,
for instance to propagate the tensor in time, will destroy the compression. Most
often, however, the representation of the new TT tensor can be truncated and it is
essential to continuously add rounding steps to any algorithm operating on TT tensors.
Since one wants to be able to truncate one rank at the time, a left-to-right sweep
with QR-decompositions of the kernels is performed to orthonormalize all kernels
except for the last. Then, the kernels are singular-value decomposed individually in a
right-to-left sweep where only the non-orthogonal kernel is touched in each iteration.
Algorithm 2 implements the TT rounding. Note that we use an absolute threshold in
constrast to the rounding in [33]. The rounding requires the computations of d − 1
QR decompositions (for orthonormalization) as well as d− 1 SVD. Since we are not
interested in the zero blocks, it suffices to compute an economy-size decomposition
in both cases, i.e., the vectors corresponding to zero blocks are left out. Computing
such economy-size QR or SV decompositions for a rk−1n× rk matrix is of complexity
O(rk−1nr

2
k) (cf. [19, Chapt. 2.5]). The complexity of a rounding step is hence

O(dnr3) where we have assumed all ranks to be equal to r and n grid points along
each dimension. A more detailed description of operations in TT format can be found
in [33].

TENSOR-TRAIN VLASOV SOLVER 5

Algorithm 2 Tensor train rounding (from [33]).

Require: d-dimensional tensor in TT format A with A(i1, . . . , id) =
Q1(i1) · · ·Qd(id); absolute tolerance ε and maximum rank rmax

Ensure: d-dimensional tensor B with B(i1, . . . , id) = G1(i1) · · ·Gd(id) in TT format
with kernels rounded according to input tolerance ε and/or ranks bounded by rmax

δ = ε√
d−1

⊲ Scale truncation parameter

for k=1 to d–1 do

[G<
k , R] = QR(Q<

k)
Q>

k+1 = Q>
k+1R

end for

for k=d to 2 do

[U, S,G>
k] = SVDδ,rmax((G

>
k)

T) ⊲ δ- truncated SVD with maximum rank rmax

G<
k−1 = G<

k−1US
end for

4. A semi-Lagrangian method in tensor train format. In this section,
we explain how a split-step semi-Lagrangian method can be designed in tensor train
format. First, we derive the formulas for the example of linear interpolation in two
dimensions (i.e. 1D Vlasov) before discussing other interpolation formulas and higher
dimensions. We also discuss suitable ordering of the coordinates in four and six
dimensions and the effects of TT rounding. The conservation properties of the method
are discussed and we propose a projection to the manifold spanned by constant mass
and momentum. Finally, we shortly discuss the solution of the Poisson problem.

4.1. Derivation for 1D Vlasov. Consider the x-advection in two dimensions.
We assume a tensor train representation of the distribution function at time tm of the
form

f (m)(x, v) ≈
∑

α

Q
(m)
1 (x, α)Q

(m)
2 (α, v).

We now consider the displacement in the x direction by −∆tv. To keep the pre-
sentation simple, we derive the formulas for linear interpolation. Even though not
necessary for stability, we impose the CFL-like condition that

(4.1) |∆tv| ≤ ∆x,

where ∆x is the grid spacing along x. On a full grid, the distribution function at the
new time step would be computed according to the formula

f (m+1)(xj , vk) = f (m)(xj −∆tvk, vk) ≈ max

(

0,
∆tvk
∆x

)

f (m)(xj−1, vk)

+

(

1− abs

(

−∆tvk
∆x

))

f (m)(xj , vk) + max

(

0,−∆tvk
∆x

)

f (m)(xj+1, vk),

where the indices are periodically shifted for periodic boundary conditions. Note that
the displacement can either be positive or negative. For a function in tensor train

6 K. KORMANN

format the kernels representing f (m+1) are computed from the kernels of f (m) by

(4.2)

Q
(m+1)
1 (xj , α)Q

(m+1)
2 (α, vk) = Q

(m)
1 (xj −∆tvk, α)Q

(m)
2 (α, vk)

≈ Q
(m)
1 (xj−1, α)

(

Q
(m)
2 (α, vk)max

(

0,
∆tvk
∆x

))

+Q
(m)
1 (xj , α)

(

Q
(m)
2 (α, vk)

(

1− abs

(

−∆tvk
∆x

)))

+Q
(m)
1 (xj+1, α)

(

Q
(m)
2 (α, vk)max

(

0,−∆tvk
∆x

))

.

This can be interpreted as the sum of three tensor trains. In each case, the first kernel
is a shifted version of the original kernel und the second kernel is scaled depending on
the value of v. Hence, we can compute the advection in x direction performing the
following steps:

1. Form the three shifted kernels of Q
(m)
1 .

2. Form three scaledQ
(m)
2 -kernels that are line-wise multiplied by max

(

0, ∆tvk
∆x

)

,
(

1− abs
(

−∆tvk
∆x

))

, and max
(

0,−∆tvk
∆x

)

, respectively.
3. Form three TT-tensors from the resulting kernels.
4. Add the TT-tensors and perform a rounding step.

Each of the tensors formed in step 1 and 2 have the same rank as the original
tensor. Adding the tensors will increase the rank (by a factor three in this case).
However, the rank can usually be reduced again by performing a rounding step.

We can also write the evolution operator as a matrix A in tensor product form.
If we denote by Sj the matrix with one diagonal of ones shifted by j from the center,
we have

A =S−1 ⊗ diag

(

max

(

0,
∆tvk
∆x

))

+ S0 ⊗ diag

(

1− abs

(

−∆tvk
∆x

))

+ S1 ⊗ diag

(

max

(

0,−∆tvk
∆x

))

.

This can be written in TT format as a matrix with rank r1 = 3. It is obvious that the
advection with respect to v can be done in the same way by interchanging the roles
of Q1 and Q2.

In principle, we can use any other interpolator in our derivation. Especially, a
centered Lagrange interpolator that includes p points will result in p+ 1 TT-tensors
that have to be formed by shifting the Q1-kernel, scaling the Q2-kernel, and finally
adding the (p+ 1) kernels. For a non-nodal interpolator, like splines, step 2 needs to
be augmented. Before shifting the kernel, the values of the interpolator weights have

to be computed for each column Q
(n)
1 (:, α).

Remark 1. Similar to a Eulerian solver and opposed to the usual case for semi-
Lagrangian solvers we have imposed the CFL-like condition (4.1). However, it is
possible to relax this condition. The condition was not introduced to ensure stability
but to make sure that we only have to consider p+1 points for a centered interpolator
with p points. We can relax the condition at the price of additional terms in the sum
(4.1). For the condition

(4.3) |∆tv| ≤ m∆x

TENSOR-TRAIN VLASOV SOLVER 7

with some m ∈ N, the number of points will be p+ 2m− 1. Since p intervals will be
used at a time, the scaled Q2-tensors will contain an increasing number of zeros (as
m increases). This might be exploited to further improve on the efficiency.

4.2. Generalization to higher dimensions. In higher dimensions, the 2D
algorithm can be applied in essentially the same way to parts of the kernels while
others are left unchanged. In particular, the advection along a spatial dimension will
only depend on one (velocity) dimension also in 4D and 6D. Then, we treat the two
corresponding kernels as discussed in the previous section and keep the other two or
four kernels unchanged.

For the velocity advection, the situation becomes more involved. For simplicity,
we consider the 4D case. The generalization to 6D is straightforward. The displace-
ment is now not only dependent on one dimension but on two. Let us revisit the
linear interpolation and consider the advection along v1
(4.4)

Q
(m+1)
1 (x1,j1 , α1)Q

(m+1)
2 (α1, x2,j2 , α2)Q

(m+1)
3 (α2, v1,j3 , α3)Q

(m+1)
4 (α3, v2,j4) =

Q
(m)
1 (x1,j1 , α1)Q

(m)
2 (α1, x2,j2 , α2)Q

(m)
3 (α2, v1,j3 +∆tE1(x1,j1 , x2,j2), α3)Q

(m)
4 (α3, v2,j4).

The displacement ∆tE1(x1,j1 , x2,j2) is a function of two variables and we assume we
are given its TT representation. For the linear interpolation, we need a TT represen-

tation of g1(x1, x2) = max
(

0,−∆tE1(x1,x2)
∆v

)

, g2(x1, x2) = 1 − abs
(

∆tE1(x1,x2)
∆v

)

, and

g3(x1, x2) = max
(

0, ∆tE1(x1,x2)
∆v

)

. Let us denote them by gi(x1, x2) =
∑s(i)

γ(i)=1 W
(i)
1 (x1, γ

(i))W
(i)
2 (γ(i), x2),

where s(i) are the ranks of each TT tensor. Then (4.4) becomes

3
∑

i=1





s(i)
∑

γ(i)=1

(

Q
(m)
1 (x1,j1 , α1)W

(i)
1 (x1,j1 , γ

(i))
)(

Q
(m)
2 (α1, x2,j2 , α2)W

(i)
2 (γ(i), x2,j2)

)



 ·

Q
(m)
3 (α2, v1,j3−2+i, α3)Q

(m)
4 (α3, v2,j4).

Thus, we have to form (for each i) s(i) scaled versions of the 2D TT tensor represented
by Q1, Q2 and add them up. To keep the size of the rank small, it is advantageous
to truncate after each addition. Note that this operation can also be described as

a multiplication of the TT-tensor Q1Q2 by the matrix diag
(

W
(i)
1 W

(i)
2

)

. This is, of

course, much more expensive than step 3 of the 2D algorithm but there is no additional
difficulty due to the use of the TT format.

Now, we turn to the question of how to compute the kernels W
(i)
1 W

(i)
2 . For this,

we need to compute the positive and negative part of a TT tensor. This can be
done with the TT-cross approximation method [34]. In the TT toolbox, a routine for
TT-cross approximation based on the AMEn algorithm [14] is available. However,
the use of this routine is rather time consuming. Moreover, we have observed that
comparably large ranks are necessary to represent the postive/negative part which is
presumably due to occurring kinks.

This problem is not specific to linear interpolation. The important fact is that we
use a different interpolation function depending on the interval into which the point
is displaced. Again, the TT-cross approximation could be used to compute a TT
tensor defining the intervals where the displaced points are found. This way, no step-
size restrictions would be necessary. An alternative that does not require TT-cross
approximations is to always use the Lagrange polynomial computed on an odd number

8 K. KORMANN

of points around the original point. As long as we impose a CFL-like condition that
makes sure that we do not displace more than the grid size, we interpolate close to the
center. In this case, we only have to compute polynomials of the displacement which
can easily be done in TT format. However, we have to make sure the displacements
stay small, i.e., relaxing the CFL-like condition will generally result in rather poor
approximations. However, the displacement in the v-advection step due to the electric
field is usually small compared to the displacement in the x-advection step. Therefore,
relaxing the CFL-like condition for the x-advection step only will already result in a
fairly efficient time stepping.

4.3. Ordering of variables. The natural ordering of the coordinates is to start
with the spatial coordinates and then add the velocity coordinates. On a full grid,
a reordering does not change the algorithm. In the TT representation, however, we
have an explicit coupling between neighboring dimensions. Hence, the compression
is affected by the ordering of the variables. To illustrate this, we revisit the three-
variate function (3.1). We have represented this function by a TT tensor with ranks
r1 = r2 = 2. If we instead reorder the variables as x, z, y, the TT tensor representing
f has ranks r1 = 2 but r2 = 1 and kernels

Q1(i1, 1) = f1(xi1), Q1(i1, 2) = 1,

Q2(1, i2, 1) = 1, Q2(2, i2, 1) = f3(zi2), Q3(1, i3) = f2(yi3).

Analyzing the splitting algorithm, we see that the xi-advection step couples di-
mensions xi and vi and the vi advection step couples vi and x1, . . . , xd/2. Therefore,
it is reasonable to assume that an ordering that groups the pairs (xi, vi) as well as
the spatial variables together will result in better compression. In four dimensions, a
reordering of the coordinates as v1, x1, x2, v2 satisfies all the requirements. Also, it
simplifies the advection steps which—up to an initial orthogonalization steps—only
involves two or three neighboring kernels of the TT tensor. Moreover, we note that
r0 = r4 = 1 which is why the first and last kernels are only 2-tensors and therefore
generally smaller than the inner kernels that are 3-tensors. This further improves
the compression if the number of grid points along the velocity dimensions is higher
than along the spatial dimensions. This situation is not uncommon in Vlasov–Poisson
simulations.

For the six dimensional case, there is no ordering that places together all different
coordinate combinations for the six advection steps. Since the coupling appears to be
strongest between the pairs (xi, vi), we have found the ordering v1, x1, x2, v2, x3, v3
to be most efficient (up to index shifting).

4.4. TT rounding. When simulating the Vlasov equation with the semi-La-
grangian split-step method in TT format, we constantly compress the data for the
distribution function. This adds to the numerical error of the method. In each simu-
lation, we have to decide when to truncate the HOSVD computed to recompress the
data. One strategy would be to keep all the information up to round-off errors. Al-
ternatively, we could choose the drop tolerance such that the error from TT rounding
is on the same order of magnitude as other numerical errors. Even though the first
strategy has its advantages, especially with respect to the conservation properties as
discussed in the next section, this will generally become rather expensive. The rea-
son is that the tensors have to resolve numerical errors that are generally much less
smooth than the actual solution. Hence, we will need considerably larger ranks in
order to resolve spurious information. It is therefore recommended to choose the drop

TENSOR-TRAIN VLASOV SOLVER 9

tolerance carefully to fit the numerical errors of the underlying method. However, we
need an error estimator for the underlying spatial discretization in order to be able
to automatically decide on a proper tolerance.

When simulating the Vlasov equation over longer times, filaments evolve. This
means that the distribution function is relatively well-resolved in the beginning. A
simple strategy to account for this fact is to scale the tolerance ε at final time according
to the time step j as j

Nt
ε, where Nt is the total number of time steps in the simulation.

We have used this scaling in our numerical experiments.

4.5. Conservation properties. Many integrals of the solution of the Vlasov
equation are conserved: mass, momentum, energy, and all Lp norms. Moreover,
the maximum and minimum value of the solution remain constant. These invari-
ants of the mathematical function mimic the physical behaviour of the distribution
function. Therefore, a good numerical method should conserve these properties as
accurately as possible. Without rounding in the TT representation, we would—up
to roundoff errors—recover the same solution as the underlying method on the full
grid. Hence, our method would inherit the conservation properties of the underlying
full-grid method. If we perform rounding up to some drop tolerance, we fulfill the
conservation laws of the full-grid method with the accuracy of the rounding. The
conservation thus depends on the drop tolerance. When choosing a loose tolerance,
a projection onto the manifold spanned by one or more conservation laws should be
considered (cf. the next section). Since the SVD yields a best approximation in ℓ2
sense, the ℓ2 norm is expected to be conserved to a large extent.

4.6. Projection. If the tolerance is chosen too loose or fixed ranks are used,
one can use a projection method (cf. [21, Chapt. IV.4]) to improve conservation.
Given the propagated solution, the closest solution on the manifold defined by the
conserved quantities is found by minimizing the Lagrange function describing this
constrained minimization problem. In particular, we consider conservation of mass
and momentum. The discrete mass and momentum are defined as

mass(f) = (∆x)d(∆v)d
∑

(x,v)∈G

f(x, v)

mom(f) = (∆x)d(∆v)d
∑

(x,v)∈G

f(x, v)v,

where G denotes the set of grid points. The number of points is denoted by |G|. Given
the solution f̃ (m) at point (x, v), obtained by the time evolution algorithm, we add
a perturbation by (1, vT)µ for a suitably chosen Lagrange multiplier µ ∈ R

d+1. In
the case of mass and momentum conservation, the projection is rather simple since
all the d+ 1 projections are orthogonal to each other. The projected solution is then
given by

f (m)(x, v) = f̃ (m) +
mass(f (0))−mass(f̃ (m))

(∆x)d(∆v)d|G| +

d
∑

k=1

momk(f
(0))−momk(f̃

(m))

(∆x)d(∆v)d|G| vk.

Applying this projection to the solution in TT format will increase the rank by d+1
since we add d+ 1 rank-one tensors to the solution.

4.7. Poisson’s equation. So far, we have only discussed the solution of the
Vlasov equation. However, we also have to solve a Poisson problem in each time step.

10 K. KORMANN

Since the Poisson equation only depends on the spatial variable, the dimensionality
is cut into half. In our prototype implementation, we have therefore chosen to solve
Poisson’s equation with a pseudo-spectral method on the full grid. However, a pseudo-
spectral solver based on the fast Fourier transform in TT format [12] will presumably
improve the efficiency of our method.

5. Efficient implementation. While it is possible to achieve considerable data
compression when using the TT format, it is less obvious if this helps in reducing the
computing time. Even though a much smaller amount of data needs to be handled,
we have to rely on more complex algorithms. As mentioned in §3 the ranks are mul-
tiplied in a matrix-vector product in TT format and we have to perform a rounding
step together with each matrix-vector product. In this section, we discuss the TT
matrix-vector product in more detail and explain how to efficiently implement it for
the matrices appearing in our semi-Lagrangian solver. §5.1 discusses the complexity
of the direct matrix-vector product and iterative alternatives. In §5.2-5.5 we devise
non-iterative alternatives to the direct matrix-vector product that exploit the special
structure of the matrix-vector products appearing in our semi-Lagrangian solver. Fi-
nally, in §5.6 it is explained which methods are applied in the various steps of our
algorithm.

5.1. The TT matrix-vector product. Let us consider the matrix-vector prod-
uct w = Mu, where all objects are in TT format. When counting arithmetic opera-
tions, we assume all ranks of the matrix to be s and all ranks of the vector to be r
and the matrix to be quadratic. In practice, the complexity will be dominated by the
maximum rank.

The complexity of a direct matrix vector product, i.e., multiplying the kernel
and then performing a TT rounding on w at the end, is O(dn2r2s2 + dnr3s3), where
the first part is due to the matrix vector product and the second due to the TT
rounding. If the matrix is a (nested sum of) Kronecker products of sparse matrices in
each dimension, the complexity is reduced to O(dnr2s2 + dnr3s3). In this case, the
complexity is clearly dominated by the rounding operation. Already if the ranks are
on the order 10, the factor r3s3 becomes significant. Compared to the complexity of
the sparse matrix-vector product on the full grid, O(nd), this might not be small for
d = 2, 4, 6. However, the optimal rank of w is usually close to max(r, s) rather than
rs. Therefore, the complexity can be improved if the matrix-vector product is not
computed directly but approximation to a certain threshold or maximum rank size is
incorporated into the matrix vector product.

As an alternative to SVD-based rounding, methods within the alternating direc-
tion framework pose the problem of finding a low-rank approximation to a tensor as an
optimization problem. These methods are iterative and optimize on one (or two) ker-
nels at a time while the others are frozen. The ALS method [28] works with fixed ranks
and has a complexity ofO(dnsr3+dn2s2r2+dnr3) for full orO(dnsr3+dns2r2+dnr3)
for sparse matrix kernels. The DMRG method or MALS [23, 39] is an alternative that
is based on the same algorithmic idea but operates on two kernels at a time. In this
way, the ranks can be adapted. However, the complexity is increased by a factor n.
Matrix-vector products based on the DMRG method were introduced in [32]. Re-
cently, the AMEn routine [14, 15] has been presented that allows for adaptive ranks
and relatively fast convergence with complexity comparable to the ALS method.

5.2. Efficient multiplication with a diagonal matrix – Hadamard prod-

uct. A standard TT representation of a matrix does not take sparsity of the one-

TENSOR-TRAIN VLASOV SOLVER 11

dimensional kernels into account. The multiplication by a diagonal matrix should
therefore be considered as a Hadamard product, i.e., the element-wise product of two
tensors.

As seen in Algorithm 2, the TT-rounding algorithm proceeds in two steps:
1. Left-to-right sweep with orthogonalization of the kernels 1, . . . , d− 1 via QR

decomposition.
2. Right-to-left sweep with SVD and truncation of singular values.

For the first step, we note that we can find an orthogonalized representation of
both TT tensors. If we then compute the Hadamard product of the kernels, the
resulting TT tensor is again orthogonal. This splitting of the orthogonalization step
reduces the complexity from (d − 1)ns3r3 to (d − 1)n(s3 + r3) compared to when
computing the QR decomposition of the multiplied kernel.

For the SVD in the second step, let σ = min(s, r) and τ = max(s, r) and consider
the kernel in dimension j. Since we have already truncated over the jth rank, we
can assume that this rank is of the order τ and rank j − 1 should be truncated.
The multiplied kernel consists of σ blocks of size τ . We now take two such blocks
and truncate them. Then, we add another block of size τ and truncate again. This is
repeated until all σ blocks are included. The procedure is summarized in Algorithm 3.

In total, the complexity is reduced to the order O(dnrsmax(r, s)2), if we assume
that the rank of the product is approximately max(r, s). The reduction is about a
factor min(r, s)2/8 compared to the direct method. Of course, one could consider any
other grouping of the constituents of the kernel. For instance, one might group more
than two τ -sized kernels together.

5.3. Combination of diagonal kernels with one non-diagonal kernel.

The idea presented in the previous subsection is limited to diagonal matrices, since
the QR decomposition of a sparse matrix is generally non-sparse. Hence, the orthog-
onal representation of the kernels of the matrix in TT format would be non-sparse,
which would give complexities in the range of n2. However, we can essentially ap-
ply Algorithm 3 if we have a matrix that is non-diagonal in dimension d only since

the kernels Q
A/B
d are not QR decomposed. We only need to replace the Kronecker

products QA
d (i)⊗QB

d (i) by a sparse matrix-vector product of the kernels.
Using RQ instead of QR decompositions, we can interchange the direction of the

loops and create a TT tensor that is non-orthogonal in Q1. Combining QR and RQ
decompositions, we can create an orthogonalized TT tensor with any non-orthogonal
kernel. In this case, however, we have to choose the direction of the truncation
step, i.e., the truncation step will only include the initially non-orthogonalized kernel
together with either the kernels with smaller or larger indices. If we do not want to
truncate on one side of the non-diagonal kernel—for instance because the matrix is
the identity on one side—Algorithm 3 is still applicable. As long as we order the
dimensions such that the spatial coordinates are adjacent, the advection matrices in
our splitting semi-Lagrangian scheme have this structure.

5.4. Combinations of stencils and coefficients through splitting. A more
flexible alternative to combine the efficient Hadamard product with a sparse non-dia-
gonal kernel is to split diagonal and off-diagonal parts. For the Kronecker product of
two matrices A and B, it holds that

A⊗B = (I1 ⊗B)(A⊗ I2),

where I1/2 denote identity matrices of the corresponding size. Hence, we can apply all
non-diagonal kernels first followed by an application of the diagonal kernels according

12 K. KORMANN

Algorithm 3 Rounded tensor train Hadamard product.

Require: d-dimensional tensors in TT format A with A(i1, . . . , id) =
QA

1 (i1) · · ·QA
d (id) and B with B(i1, . . . , id) = QB

1 (i1) · · ·QB
d (id); tolerance ε

and maximum rank rmax

Ensure: d-dimensional tensor C with C(i1, . . . , id) = Q1(i1) · · ·Qd(id) in TT for-
mat being the Hadamard product A ⋆ B with kernels rounded according to input
tolerance and/or ranks bounded by rmax

for k=1 to d− 1 do ⊲ Orthogonalize kernels of A
[QA,<

k , R] = QR(QA,<
k)

Q
A,>
k+1 = Q

A,>
k+1R

end for

for k=1 to d− 1 do ⊲ Orthogonalize kernels of B
[QB,<

k , R] = QR(QB,<
k)

Q
B,>
k+1 = Q

B,>
k+1R

end for

for k=1 to d do ⊲ Compute Kronecker product of kernel slices corresponding to
Hadamard product on kernel level

for i=1 to nk do

Qj(i) = QA
j (i)⊗QB

j (i)
end for

end for

δ = ε√
d−1

⊲ Scale truncation parameter

for k=d to 2 do ⊲ Truncate kernels.
σ = min(rAj−1, r

B
j−1); τ = max(rAj−1, r

B
j−1)

ρ = min(2, σ)τ ; iter = max(σ − 1, 1)
δ̃ = δ/iter
for j=1 to iter do

[U, S,Q>
k (:, 1 : ρ′)] = SVDδ̃,rmax

((Q>
k (:, 1 : ρ))T) ⊲ δ- truncated SVD with

maximum rank rmax

Q<
k−1(:, 1 : ρ′) = Q<

k−1(:, 1 : ρ)US
ρ = ρ′ + τ

end for

end for

to Algorithm 3. Of course, this means we are applying the matrix in two steps with
an error in each step if we apply intermediate rounding in contrast to the alternative
discussed in the previous section. On the other hand, the structure of the matrix is
not limited. Also, we do not have to explicitly form the kernels of the non-diagonal
matrices since no orthogonalization is necessary.

Remark 2. The leading-order complexity of the various variants of the matrix-
vector product that were presented in this section is of the same order as the AMEn
matrix-vector product. However, the computation does not involve any iterative method
and the constant is therefore supposed to be smaller in general. Indeed, we have seen
in numerical experiments that our matrix-vector product is generally faster than the
AMEn product. Possibly, the computing time can be further reduced by applying the
AMEn algorithm not to the full matrix-vector product but to the rounding steps in the
Hadamard-based algorithms.

TENSOR-TRAIN VLASOV SOLVER 13

5.5. Rounding of propagation matrices. When we are explicitly forming the
propagation matrices, we may round the matrix before computing the matrix vector
product. Especially when using higher order and for the velocity advections in four
and six dimension where ranks of the propagation matrices become larger, rounding
can reduce the complexity of the advection step.

If we build the full kernels of a matrix, the rounding has a computational com-
plexity of O(dn2s3) for ranks s and n points per dimension. However, there will be
many zero entries in this matrix. For the rounding operation, an m × n TT matrix
kernel is treated as a TT tensor kernel of size mn. If we have an index i ∈ {1, . . . ,mn}
such that the corresponding entries of the kernel are all zero, i.e., Q(:, i, :) = 0, this
dimension will always give a zero contribution. Hence, we can erase these dimensions
from the TT tensor representing the TT matrix. For a diagonal kernel this means that
only the diagonals need to be stored and the size can be reduced from n2 to n. For a
sparse matrix, we need to keep a sparsity pattern that includes the sparsity pattern
of all the sparse matrices representing the kernel. This reduces the complexity to the
order O(dns3).

The sparse matrices appearing in our propagation matrices represent an index
shift. If we use an interpolator that involves p points around each point, we have
p index-shifting matrices and the total sparsity pattern includes a band of p points
around the diagonal. However this band of p points will be exactly the same for each
of the n points. Since the rank coupling to the neighboring dimensions is the same for
all points, it suffices to keep one copy of this band. This reduces the size of the kernel
representing the sparse index-shifting matrix from n2 for a full matrix representation
to p. Hence, the size of the kernel representing the index-shift matrix is independent
of the number of grid points.

5.6. Efficient advection. In our experiments, we found a matrix-vector prod-
uct following §5.3 to be most efficient if the advection coefficient only depends on one
variable, i.e., velocity advection in two dimensions and all spatial advections. Essen-
tially, this is the algorithm described in §4.1 with some specified interpolation formula
and applied to parts of an orthonomal TT-tensor. For the case where the coefficient
is multivariate, we use the splitting described in §5.4. In this case, we also round
the propagation matrix before computing the matrix-vector product. However, we
have observed considerable loss in accuracy when using the same threshold as for the
rounding of the TT tensor. Therefore, the threshold is reduced by a factor 4 for the
matrix rounding. When rounding the propagation matrix, most redundancies in the
matrix-vector product are already eliminated. Hence, the splitting of the SVD over
σ in Algorithm 3 does generally not speed up the product.

6. Numerical results. In this section, we present results obtained with the
semi-Lagrangian method in TT format for the weak and strong Landau damping as
well as the two stream instability. In the simulations, we use a cubic spline interpolator
for all advections with univariate coefficient and a five-point Lagrange interpolation for
all advections with multivariate coefficients. As a reference, we compare our result to
a full grid solution using cubic spline interpolation. All experiments are performed in
MATLAB with a prototype implementation based on the TT-Toolbox1. The reported
computing times are for an Intel Ivy Bridge notebook processor with two cores at 3.0
GHz.

1Available at https://github.com/oseledets/TT-Toolbox, downloaded on March 19, 2014.

14 K. KORMANN

6.1. Weak Landau damping. The initial condition for the standard Landau
test case [27] in d = 1, 2, 3 dimensions is given by

(6.1) f0(x, v) =
1

(2π)d/2
e

(

− |v|2

2

)(

1 + α

d
∑

ℓ=1

cos(kℓxℓ)

)

.

In our experiments, we choose kℓ = 0.5 and for the weak Landau damping experiments
we set α = 0.01. One can linearize the electric field around the Maxwellian equilibrium
and get the linear solution for the electric field which is a good approximation if the
parameter α is small. For the chosen parameter kℓ = 0.5 the damping rate of the
electric field is −0.1533 according to the linear theory [37], i.e., the electric energy is
damped by a factor −0.3066. We solve the weak Landau damping problem on the
domain [0, 4 · π]d × [−6, 6]d discretized with a grid of 32 points along each spacial
dimension and 128 points along the velocity dimensions. The experiment is done in
one, two and three dimensions in TT format and in one and two dimensions on the full
grid with the same resolution. The TT rounding is done to the accuracy ε = 4 · 10−6.
Figure 1a shows the electric energy as a function of time together with the envelope
functions predicted by linear theory. We note that we recover the damping rate in
all cases. Figure 1b shows the difference between the solutions on full and TT grid
together with the solution on the full grid for two and four dimensions. One can see
that the solution obtained in TT format is in good agreement with the solution on
the full grid. Especially, the spurious recurrence occurs around time 63 on both the
full and the TT grid. The maximum rank combinations are given in the upper part of
Table 1 together with the corresponding compression rate compared to the full-grid
solution. Note that the ranks are only checked after each time step.

At time t = 40, the ℓ∞ error in the distribution function on the 32× 128 grid in
2D is about 4.7 · 10−6 compared to the solution on a refined grid. In the tensor train
computations with ε = 4 · 10−6 for time t = 80, we have an error of 2.0 · 10−7 in the
distribution function at time t = 40. Hence, the TT truncation error is much smaller
than the numerical error on the full grid for the chosen parameters.

0 10 20 30 40 50 60 70 80
10

−15

10
−10

10
−5

10
0

time

el
ec

tr
ic

 e
ne

rg
y

2d TT
2d fg
4d TT
4d fg
6d TT

(a) TT and full grid solution.

0 10 20 30 40 50 60 70 80
10

−20

10
−15

10
−10

10
−5

10
0

time

(e
rr

or
 in

)
el

ec
tr

ic
 e

ne
rg

y

2d fg
2d |fg−TT|
4d fg
4d |fg−TT|

(b) Difference between TT and full grid com-
pared to full grid solution.

Fig. 1: Weak Landau damping. Electric energy for simulations on 32d × 128d grid.

Admittedly, the problem is particularly suited for the tensor train format since the
initial perturbation is aligned with the coordinate axes. We have therefore repeated

TENSOR-TRAIN VLASOV SOLVER 15

Table 1: Weak Landau damping. Compression on TT grid. Grid size: 32d × 128d.

initial value maximal rank combination compression rate

(6.1)
2D 7 2.7 · 10−1

4D 10,4,9 2.9 · 10−4

6D 11,4,18,4,10 2.5 · 10−7

(6.2)
4D 25,34,25 3.6 · 10−3

6D 21,23,23,23,18 1.7 · 10−6

the experiment with the initial condition

(6.2) f0(x, v) =
1

(2π)d/2
e−

|v|2

2

(

1 + α cos

(

k

d
∑

ℓ=1

xℓ

))

.

For such a perturbation diagonal to the coordinate axes, the ranks between different
pairs of (xi, vi) are no longer small compared to the ranks between xi and vi. The
compression is reduced by approximately one order of magnitude as can be seen from
the lower part of Table 1. However, we still have a very good compression.

6.2. Strong Landau damping. If we increase the value of α, linear theory is
no longer a good approximation of the actual situation and nonlinear effects start to
dominate. The filaments in the distribution function cannot be properly resolved on a
given grid after a certain time. In 2D, the ℓ∞ difference between the solution at time
t = 30 on a grid with 32× 128 points and a grid with 64× 256 is 1.2 · 10−1. However,
one is often only interested in some functional of the distribution function which can
be recovered more accurately than the distribution function itself. In our example,
we consider the electric field. The (absolute) ℓ∞ error in the electric field is 3.0 · 10−3

which corresponds to a relative error of about 10 %. For one and two dimensions,
we compare the electric field for the full and TT grid solution in Table 2. For the
given choice of the rounding threshold the error due to the rounding is comparable
to the numerical error on the grid. Table 3 reports the computing time and memory
consumption for the representation of the distribution function. The reported times
should give an indication on the order of magnitude of the computational time. In
order to get quantitative results, a high-performance implementation of the methods
needs to be used.

Comparing the results with and without projection to conserve mass and momen-
tum, we observe that there is no significant impact on the accuracy in the electric field
nor on memory consumption or computing time. In Figure 2a, the evolution of the
electric energy is shown for the various runs. For the two dimensional problem, Figure
2 shows the development over time of mass, momentum, ℓ2 norm, and energy and
compares the version with and without projection to conserve mass and momentum.
It can be seen that there is a considerable drift in mass and momentum if we do not
project the solution. On the other hand, the figures show that the projection of mass
and momentum nicely conserves these quantities without imparing the conservation
of energy or ℓ2 norm.

6.3. Two stream instablity. Finally, we consider the two stream instability in
4D. In 2D phase space, the initial condition is

f0(x, v) = (1 + ε cos(kx))0.5/
√
2π
(

e−0.5(v−v0)
2

+ e−0.5(v+v0)
2
)

.

16 K. KORMANN

Table 2: Strong Landau damping. Electric energy for the TT representation with
(TTP) and without (TT) projection to conserve mass and momentum compared to
the full grid. Grid size: 32d × 128d.

ε ℓ∞ error Ex, (Ey)

2D TT 4 · 10−3 7.0 · 10−4

2D TTP 4 · 10−3 6.4 · 10−4

4D TT 4 · 10−4 2.4 · 10−3, 2.3 · 10−3

4D TTP 4 · 10−4 2.1 · 10−3, 2.5 · 10−3

Table 3: Strong Landau damping. Computing time (wall time) in seconds and memory
of a TT representation with (TTP) and without (TT) projection to conserve mass
and momentum compared to the solution on the full grid. Grid size: 322 × 1282,
threshold for TT rounding: 4 · 10−3 (2D), 4 · 10−4 (4D), 2 · 10−4 (6D).

dim method # doubles for f fraction wall time [s] fraction

2D FG 4096 1.4 · 101

2D TT 2720 0.66 1.8 · 101 1.3
2D TTP 3040 0.74 2.0 · 101 1.4
4D FG 1.7 · 107 6.2 · 104

4D TT 5.9 · 104 3.5 · 10−3 2.7 · 102 4.4 · 10−3

4D TTP 6.0 · 104 3.6 · 10−3 2.8 · 102 4.5 · 10−3

6D TT 7.1 · 105 1.0 · 10−5 6.6 · 103

In our simulations, we choose the parameters k = 0.2, ε = 0.001, and v0 = 2.4. We
consider two kinds of extensions to 4D phase space

f0(x, v) =
0.5

2π
(1 + ε cos(kx1))

(

e−0.5(v1−v0)
2

+ e−0.5(v1+v0)
2
)

e−0.5(v2)
2

,

f0(x, v) =
0.25

2π
(1 + ε(cos(kx1) + cos(kx2)))

(

e−0.5(v1−v0)
2

+ e−0.5(v1+v0)
2
)

·
(

e−0.5(v2−v0)
2

+ e−0.5(v2+v0)
2
)

,

In the first case, we have an equilibrium state in y, vy plane. A solution in TT format
detects this simple form and the solution is represented as a TT tensor with only rank
r1 different from one. The second case is a tensor product of two one dimensional
two stream instabilities. Figure 3b shows the (inner) ranks as a function of time for
a simulation on a grid with 644 points and a rounding threshold ε = 5 · 10−4. We see
that the compression is very good in the beginning until about time 20. Thereafter
the instability grows rapidly until about time 30. During this phase the ranks r1, r3
coupling the pairs (vx, x) and (vy, y) strongly increase. When nonlinear effects start
to dominate and the electric energy flattens out, also rank r2 increases for some time.
Finally, the ranks remain almost constant from about time 60.

Figure 3a shows the electric field as a function of time for the TT solution as well
as the full grid solution. The curves show good agreement. In the nonlinear phase
they start to deviate up to 27 %. However, comparing the solution on the full grid
with a solution on the same grid but with the same interpolation formulas as in the
TT algorithm we see a deviation of up to 30 %. Hence, the error due to TT rounding
is on the scale of the numerical error. Figure 4 shows the distribution function in
(vx, v) plane (integrated over vy, y) at time 35 for the TT compressed as well as the

TENSOR-TRAIN VLASOV SOLVER 17

0 5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

time

el
ec

tr
ic

 e
ne

rg
y

2d TT 2d fg 4d TT 4d fg 6d TT

(a) Electric energy.

0 5 10 15 20 25 30
157.905

157.91

157.915

157.92

157.925

157.93

157.935

(b) Mass.

0 5 10 15 20 25 30
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

(c) Momentum, component 1.

0 5 10 15 20 25 30
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(d) Momentum, component 2.

0 5 10 15 20 25 30
15.45

15.5

15.55

15.6

15.65

15.7

15.75

15.8

(e) ℓ2 norm.

0 5 10 15 20 25 30
235.6

235.8

236

236.2

236.4

236.6

236.8

237

237.2

(f) Energy.

Fig. 2: Nonlinear Landau damping. (a) Electric energy for 2D, 4D and 6D compu-
tations. (b-f) Conservation of various properties for 4D simulations with (−−) and
without (−) projection of mass and momentum compared to the full-grid simulation
(−·).

full-grid solution with splines. We see that the TT solution covers the overall features
of the full-grid solution but the solution is less smooth.

7. Conclusions and Outlook. In this paper, we have devised a semi-Lagrangian
Vlasov–Poisson solver with representation of the distribution function in tensor train
format. For the efficient implementation of the advection step it is important to avoid
direct matrix-vector products. Instead, we propose to compress the matrix describ-

18 K. KORMANN

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

fg spline
tt

(a) Electric energy.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

r
1

r
2

r
3

(b) Ranks of TT representation.

Fig. 3: Two stream instability.

x

v x

0 5 10 15 20 25 30

−6

−4

−2

0

2

4

6

0

1

2

3

4

5

6

(a) Tensor train solution.

x

v x

0 5 10 15 20 25 30

−6

−4

−2

0

2

4

6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(b) Full grid solution.

Fig. 4: (vx, x) projection of distribution function at time 36 for two stream instability.

ing the interpolation step and an iterative implementation of the arising Hadamard
products. The method has been tested for a number of standard test cases in two to
six dimensions. We have demonstrated that the solution can be compressed to a very
high extent without losing essential parts of the solution when using a tensor train
representation. Also the computing time is considerably reduced. As expected the
gains from the tensor train representation become larger with growing dimension.

In order to be able to study more complicated equations with more pronounced
multidimensional effects, we plan to work on a high-performance implementation of
the method. The choice of the interpolation formula and the effects of the CFL-like
conditions and possible alleviations need to be studied in future work. Moreover, the
effect of the rounding parameter and possibilities of automatic tolerance detection
need further attention.

Acknowledgements. The author thanks Eric Sonnendrücker for bringing the
tensor train framework to her attention and discussions on various aspects of this work.
Discussions with Michel Mehrenberger and Marco Restelli on test cases were also
appreciated. The comments of the anonymous referees are gratefully acknowledged.

TENSOR-TRAIN VLASOV SOLVER 19

REFERENCES

[1] T. D. Arber and R. G. Vann, A critical comparison of eulerian-grid-based Vlasov solvers, J.
Comput. Phys., 180 (2002), pp. 339–357.

[2] N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov–Poisson
system, SIAM J. Numer. Anal., 42 (2004), pp. 350–382.

[3] M. D. Buhmann, Radial basis functions, Acta Numerica, 9 (2000), pp. 1–38.
[4] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004), pp. 147–269.
[5] A. B. Langdon C. K. Birdsall, Plasma Physics via Computer Simulations, Adam Hilger,

1991.
[6] C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.

Comput. Phys., 22 (1976), pp. 330–351.
[7] Y. Cheng, I. M. Gamba, and Ph. J. Morrison, Study of conservation and recurrence of

Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems, J. Sci. Com-
put., 56 (2013), pp. 319–349.

[8] N. Crouseilles, M. Gutnic, G. Latu, and E. Sonnendrücker, Comparison of two Eulerian
solvers for the four-dimensional Vlasov equation: Part I, Commun. Nonlinear Sci., 13
(2008), pp. 88–93.

[9] , Comparison of two Eulerian solvers for the four-dimensional Vlasov equation: Part II,
Commun. Nonlinear Sci., 13 (2008), pp. 94–99.

[10] N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-Lagrangian
schemes for Vlasov equations, J. Comput. Phys., 229 (2010), pp. 1927–1953.

[11] B. Ayuso de Dios, J. A. Carrillo, and C.-W. Shu, Discontinuous Galerkin methods for
the multi-dimensional Vlasov–Poisson problem, Math. Method Appl. Sci., 22 (2012),
p. 1250042.

[12] S. Dolgov, B. Khoromskij, and D. Savostyanov, Superfast Fourier transform using QTT
approximation, Journal of Fourier Analysis and Applications, 18 (2012), pp. 915–953.

[13] S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov, Fast solution of parabolic prob-
lems in the tensor train/quantized tensor train format with initial application to the fokker-
planck equation, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739.

[14] S. V. Dolgov and D. V. Savostyanov,Alternating minimal energy methods for linear systems
in higher dimensions. Part I: SPD systems, 2013.

[15] , Alternating minimal energy methods for linear systems in higher dimensions. Part II:
Faster algorithm and application to nonsymmetric systems, 2013.

[16] S. V. Dolgov, A. P. Smirnov, and E. E. Tyrtyshnikov, Low-rank approximation in the
numerical modeling of the Farley–Buneman instability in ionospheric plasma, J. Comput.
Phys., (2014), pp. –.

[17] F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the
Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166–187.

[18] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, arXiv preprint 1302.7121v1, 2013.

[19] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Verlag, Berlin Hei-
delberg, 2012.

[20] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.
Appl., 15 (2009), pp. 706–722.

[21] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer Verlag,
Berlin Heidelberg, 2006.

[22] D.R. Hatch, D. del Castillo-Negrete, and P.W. Terry, Analysis and compression of
six-dimensional gyrokinetic datasets using higher order singular value decomposition, J.
Comput. Phys., 231 (2012), pp. 4234 – 4256.

[23] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor opti-
mization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713.

[24] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the chemical master
equation using quntized tensor trains, Tech. Rep. 2013-04, Seminar for Applied Mathemat-
ics, ETH Zürich, 2013.

[25] V. Kazeev, O. Reichmann, and C. Schwab, hp-DG-QTT solution of high-dimensional de-
generate diffusion equations, Tech. Rep. 2012-11, Seminar for Applied Mathematics, ETH
Zürich, 2012.

[26] B. N. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey on
recent advances, Chemometr. Intell. Lab., 110 (2012), pp. 1–19.

[27] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGrawHill, New York,
1973.

20 K. KORMANN

[28] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-(r1 ,
..., rn) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000),
pp. 1324–1342.

[29] C. Lubich, I. V. Oseledets, and B. Vandereycken, Time integration of tensor trains, arXiv
preprint 1407.2042, 2014.

[30] M. Mehrenberger, C. Steiner, L. Marradi, N. Crouseilles, E. Sonnendrücker, and

B. Afeyan, Vlasov on GPU (VOG project), ESAIM: Proc., 43 (2013), pp. 37–58.
[31] H.-D. Meyer, U. Manthe, and L.S. Cederbaum, The multi-configurational time-dependent

hartree approach, Chem. Phys. Lett., 165 (1990), pp. 73–78.
[32] I. Oseledets, DMRG approach to fast linear algebra in the TT-format, Comput. Methods

Appl. Math., 11(3) (2011), pp. 272–403.
[33] , Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[34] I. Oseledets and E. Tyrtyshnikov, Tt-cross approximation for multidimensional arrays,

Linear Algebra and its Applications, 432 (2010), pp. 70–88.
[35] I. V. Oseledets, B. N. Khoromskij, and R. Schneider, Efficient time-stepping scheme for

dynamics on TT-manifolds, Preprint 24, MPI MIS, 2012.
[36] J. M. Qiu and C. W. Shu, Conservative semi-Lagrangian finite difference WENO formulations

with applications to the Vlasov equation, Comm. Comput. Phys., 10 (2011).
[37] E. Sonnendrücker, Approximation numérique des équations de Vlasov–Maxwell. 2010.
[38] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method

for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201–
220.

[39] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Letters, 69 (1992).

